集合的特性

合集下载

集合的认识与分类

集合的认识与分类

集合的认识与分类在数学中,集合是一种基本概念,它是由一些确定的元素组成,并且这些元素都有共同的特性或者满足一些特定的条件。

集合在数学中扮演着重要的角色,被广泛应用于各个领域,例如集合论、数理逻辑、概率论等。

本文将从集合的定义、性质和分类等方面进行探讨。

一、集合的定义与性质在数学中,集合的概念是非常抽象的,我们无法对其给予直观的描述。

然而,通过集合的定义和一些基本性质,我们可以更好地理解和应用集合。

1. 集合的定义集合可以用罗素悖论严谨而简洁地描述为:给定一个特定的性质,所有满足该性质的元素构成的整体就是一个集合。

例如,可以定义一个集合A,它包含所有小于10的自然数,即A={1, 2, 3, 4, 5, 6, 7, 8, 9}。

2. 集合的表示方法为了便于理解和表示集合,数学家们提出了几种常用的集合表示方法:(1)列举法:直接将集合的所有元素列举出来,用大括号{}括起来。

例如,集合A={1, 2, 3}。

(2)描述法:通过给出集合中元素的共同特性来描述集合。

例如,集合B是所有偶数的集合,可以表示为B={x | x是偶数}。

3. 集合的基本运算集合之间可以进行一些基本的运算,以更好地处理和分析集合问题。

(1)并集:表示两个集合的所有元素的总和,用符号∪表示。

例如,集合A={1, 2, 3},集合B={2, 3, 4},则并集为A∪B={1, 2, 3, 4}。

(2)交集:表示两个集合中共同存在的元素,用符号∩表示。

例如,集合A和集合B的交集为A∩B={2, 3}。

(3)补集:表示一个集合相对于另一个集合的差集,用符号'表示。

例如,如果全集为U={1, 2, 3, 4, 5},集合A={1, 2, 3},则A的补集为A'={4, 5}。

二、集合的分类根据元素的性质和特点,集合可以进行不同的分类。

下面将介绍一些常见的集合分类方式。

1. 有限集与无限集根据集合中元素的个数是有限还是无限,集合可以分为有限集和无限集。

大学集合知识点总结

大学集合知识点总结

大学集合知识点总结引言集合论是数学中的一个基本概念,它涉及各种数学分支和许多其他领域。

集合论的基本思想是研究对象的整体,而不是对象的具体性质。

在数学中,集合论涉及一致性、重合性、交集、并集等基本概念,然后发展到更加抽象的概念,如基数、序数、拓扑空间等。

在本文中,我们将从集合论的基本理论开始,逐步深入到相关的高级应用领域,以帮助读者更好地理解和运用集合论知识。

一、基本概念1. 集合的定义在数学中,集合是由一些确定的对象组成的整体。

通常用大写字母A、B、C等来表示集合,用小写字母a、b、c等来表示集合中的元素。

例如,集合A={1,2,3,4,5}表示由1、2、3、4、5这5个元素组成的集合。

2. 集合的特性集合具有以下几个基本特性:(1)互异性:集合中的元素是互不相同的,即一个集合中不包含相同的元素。

(2)无序性:集合中的元素没有顺序之分,即集合{1,2,3}和{3,2,1}是等价的。

(3)确定性:一个元素要么属于一个集合,要么不属于该集合,即集合中的元素是确定的。

3. 集合的表示方法集合可以通过列举法、描述法和运算法来表示。

(1)列举法:直接将集合中的元素一一列举出来,如A={1,2,3}。

(2)描述法:通过一定的条件来描述集合中的元素,如B={x|x是正整数,且x<10}表示由小于10的正整数组成的集合。

(3)运算法:通过集合的运算,如交集、并集、差集等,来表示新的集合。

4. 基本运算(1)交集:集合A与集合B的交集,记作A∩B,表示A和B中共同存在的元素组成的集合。

(2)并集:集合A与集合B的并集,记作A∪B,表示A和B中所有的元素组成的集合。

(3)差集:集合A减去集合B,记作A-B,表示A中去掉属于B的元素后的集合。

(4)补集:集合A对于全集U的补集,记作A'或者A^c,表示全集U中不属于A的元素组成的集合。

5. 集合的基数集合中的元素个数称为集合的基数,通常用符号|A|来表示。

1集合的定义

1集合的定义
(1)属于:如果a是集合A的元素,就说a属于A, 记作a∈A
(2)不属于:如果a不是集合A的元素,就说a
不属于A,记作 a A
练一练:
用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
一、集合的有关概念
1.集合---把一些元素组成的总体叫做集合, 简称集. 2.元素---我们把研究的对象统称为元素
一般用大括号”{ }”表示集合,也常用大写 的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
二、集合特性:
(1)确定性:集合中的元素必须是确定的.
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合
集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并用大括号{ } 括起来的方法叫做列举法
• 例1用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合。
中国的直辖市

身材较高的人
×
著名的数学家
×
对口3班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
三、重要数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

第一周 元素与集合、集合与集合的关系重点知识梳理1.集合元素的三个特性:确定性,互异性,无序性. ①确定性:集合中的元素必须是明确的,不能含糊不清;②互异性:一个集合中的元素是唯一的,不能有相同元素,相同元素只能出现一次; ③无序性:即一个集合中的元素出现没有顺序,只要两个集合的元素完全相同,这两个集合就是相同的.2.元素与集合的关系:集合的元素通常用小写的拉丁字母表示,元素与集合是从属关系,如a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ,a 不属于集合A ,记作a ∉A . 3.集合间的基本关系(1)子集:如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作A ⊆B . (2)真子集:如果A ⊆B 且A ≠B ,那就说集合A 是集合B 的真子集,记作A B .(3)相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即A =B . (4)常用结论①任何一个集合是它本身的子集,即A ⊆A ;②空集是任何集合的子集,空集是任何非空集合的真子集; ③如果A ⊆B ,B ⊆C ,那么A ⊆C ; ④如果A ⊆B ,同时B ⊆A ,那么A =B .典型例题剖析例1 已知集合A ={x |ax 2-2x -1=0,x ∈R },若集合A 中至多有一个元素,求实数a 的取值范围.【方法指导】集合A 中至多有一元素,即为对应方程至多只有一根,这样通过讨论方程根的情况来求a 的取值范围即可.【解析】(1)当a =0时,方程只有一个根-12,则a =0符合题意;(2)当a ≠0时,关于x 的方程ax 2-2x -1=0是一元二次方程,则该方程有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}. 综上所述,实数a 的取值范围是{a |a =0或a ≤-1}. 【提示】以下解法是错误的:由于集合A 中至多有一个元素,则一元二次方程ax 2-2x -1=0有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}.错误原因 方程ax 2-2x -1=0不一定是一元二次方程,若方程不是一元二次方程,则不能利用判别式Δ判断其实根的个数.淘出优秀的你2【小结】本题体现了转会与化归的思想,解答时将问题转化为关于x 的方程ax 2-2x -1=0的实数根的个数问题,这样就容易解决了.同时,要注意若方程的二次项系数含有字母,则需对其是否为零进行讨论.变式训练 已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A 是单元素集(只含有一个元素的集合),求a 的值及集合A ; (2)求集合P ={a ∈R |a 使得A 至少含有一个元素}. 【解析】(1)当a =0时,A ={23},符合题意;当a ≠0时,要使方程有两个相等的实根,则Δ=9-8a =0,即a =98,此时A ={43}.综上所述,当a =0时,A ={23};当a =98时,A ={43}.(2)由(1)知,当a =0时,A ={23}含有一个元素,符合题意.由a ≠0时,要使方程有实根,则Δ=9-8a ≥0,即a ≤98.综上所述,P ={a ∈R |a 使得A 至少含有一个元素}={a |a ≤98}.例2 已知-3∈A ,A 中含有的元素有a -3,2a -1,a 2+1,求a 的值. 【解析】由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或a =-1.变式训练 已知互异的两数a ,b 满足ab ≠0,集合{a ,b }={a 2,b 2},则a +b 等于( ) A .2 B .1 C .0 D .-1 【答案】D【解析】由{a ,b }={a 2,b 2},则⎩⎪⎨⎪⎧a =a 2b =b 2① 或⎩⎪⎨⎪⎧a =b 2b =a 2,② 由①得⎩⎪⎨⎪⎧a =0或a =1b =0或b =1,∵ab ≠0,∴a ≠0且b ≠0,即a =1,b =1,此时集合{1,1}不满足条件. 由②两式相减得a 2-b 2=b -a ,∵两数a ,b 互异,∴b -a ≠0,即a +b =-1,故选D.例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【解析】A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}, 且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3. 由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.【小结】对于这类含有字母参数的集合的包含关系,应注意空集是任何集合的子集,如本题中,应讨论集合B 为空集的情形.变式训练 已知集合P ={x |x 2+x -6=0},集合Q ={x |ax +1=0},且Q ⊆P ,求实数a 的取值构成的集合A .【解析】∵x 2+x -6=0, ∴(x +3)(x -2)=0, 即x =-3或x =2. ∴P ={-3,2}. 又∵Q ={x |ax +1=0}, 当a =0时,Q =∅,满足Q ⊆P ; 当a ≠0时,有-1a =-3或-1a =2,∴a =13或a =-12,故a =0或a =13或a =-12.∴A ={-12,0,13}.跟踪训练1.若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a 等于( ) A .4 B .2 C .0 D .0或42.集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中含有的元素个数为( )淘出优秀的你4A .4B .6C .8D .123.若集合A ={x |ax 2+(a -6)x +2=0}是单元素集合,则实数a 等于( ) A .2或18 B .0或2 C .0或18D .0或2或184.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .05.集合A 满足关系式(a ,b )⊆A ⊆{a ,b ,c ,d ,e },则集合A 的个数是( ) A .5 B .6 C .7 D .86.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( ) A .{a |1≤a ≤9} B .{a |6≤a ≤9} C .{a |a ≤9}D .∅7.若集合A ={x |x 2-5x +6≤0},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________.8.若集合M ={}1,m 2,集合N ={2,4},M ∪N ={1,2,4},则实数m 的值的个数是________.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________________. 10.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则有序实数对(a ,b )的值为________. 11.设集合A ={3,3m 2},B ={3m,3},且A =B ,则实数m 的值是________.12.已知集合A ={x |2a -2<x ≤a +2},B ={x |-2≤x <3}且A ⊆B ,求实数a 的取值范围. 13.已知由实数构成的集合A 满足条件:若a ∈A ,则1+a1-a∈A (a ≠0且a ≠±1),则集合A 中至少有几个元素?证明你的结论.参考答案1.A 当a =0时,方程为1=0不成立,不满足条件;当a ≠0时,Δ=a 2-4a =0,解得a =4. 故选A.2.B 由题意,集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中的元素满足x 是正整数,且12x 是整数,由此列出下表根据表格,可得符合条件的x 共有6个,即集合⎩⎨⎭⎬x ∈N *|12x ∈Z 中有6个元素,故选B.3.D a =0时,-6x +2=0,x =13,只有一个解,集合A ={13},满足题意.a ≠0时,方程ax 2+(a -6)x +2=0有两个相等实根. 判别式Δ=0, Δ=(a -6)2-8a =0, a 2-20a +36=0, 解得a =2或a =18, ∴实数a 为0或2或18. 故选D.4.B 集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A , a =2∈A,6-a =4∈A ,∴a =2, 或者a =4∈A,6-a =2∈A ,∴a =4, 综上所述,a =2,4. 故选B.5.D 由题意知集合A 中的元素a ,b 必取,另外可从c ,d ,e 中取,满足题意的集合A 的个数等于集合{c ,d ,e }的子集个数,因为{c ,d ,e }的子集个数为23=8,则集合A 的个数是8. 故选D. 6.B 7.0或1 8.49.x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.淘出优秀的你610.(0,1)或(14,12)解析 ∵M ={2,a ,b },N ={2a,2,b 2},且M =N ,∴⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 即⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12,当a =0,b =0时,集合M ={2,0,0}不成立, ∴有序实数对(a ,b )的值为(0,1)或(14,12)故答案为(0,1)或(14,12).11.0解析 依题意,3m =3m 2,所以m =0或m =1.当m =1时,违反元素互异性(舍去). 12.解析 由已知A ⊆B 可得, (1)当A =∅时,有2a -2≥a +2⇒a ≥4. (2)当A ≠∅时,由A ⊆B 得⎩⎪⎨⎪⎧2a -2<a +2,2a -2≥-2,a +2<3⇒⎩⎪⎨⎪⎧a <4,a ≥0,⇒0≤a <1a <1. 综合(1)(2),实数a 的取值范围是{a |a ≥4或0≤a <1}. 13.解析 ∵a ∈A ,则1+a1-a ∈A ,∴1+1+a 1-a 1-1+a1-a =-1a ∈A ,进而有1+⎝⎛⎭⎫-1a 1-⎝⎛⎭⎫-1a =a -1a +1∈A ,∴又有1+a -1a +11-a -1a +1=a ∈A .∵a ∈R ,∴a ≠-1a.假设a =1+a1-a ,则a 2=-1,矛盾,∴a ≠1+a 1-a.类似方法可得a 、1+a 1-a 、-1a 和a -1a +1四个数互不相等,故集合A 中至少有四个元素.。

(完整版)《集合》知识点总结

(完整版)《集合》知识点总结

《集合》知识点总结一、集合有关概念1.集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集) 2.集合中元素的三个特性:确定性 互异性 无序性3.集合的表示:{}⋅⋅⋅如:{}我校的篮球队员,{}太平洋,大西洋,印度洋,北冰洋用拉丁字母表示集合:A ={}我校的篮球队员,B ={}1,2,3,4,5 集合的表示方法:列举法与描述法。

列举法:{,}a b ⋅⋅⋅,c,d,描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{|32}x x ->语言描述法:例:{}不是直角三角形的三角形Venn 图:注:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 *N N +或 整数集Z 有理数集Q 实数集R4.集合的分类:有限集 含有有限个元素的集合 无限集 含有无限个元素的集合空集 不含任何元素的集合 例:2{|5}x x =-二、集合间的基本关系1.“包含”关系—子集 注意:A B ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。

反之,集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2. “相等”关系:A=B (5≥5,且5≤5,则5=5)例:设A={x|210x -=} B={-1,1} “元素相同则两集合相等”① 任何一个集合是它本身的子集. A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作B A ⊆ (或B ⊇/A) ③如果A ⊆B, B ⊆C ,那么 A ⊆C④如果A ⊆B 同时 B ⊆A 那么A=B3.不含任何元素的集合叫做空集,记为∅规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

结论:有n 个元素的集合,含有2n 个子集,12n -个真子集(2)交、并、补集的混合运算①集合交换律 A B B A ⋂=⋂ A B B A ⋃=⋃②集合结合律 ()()A B C A B C ⋂⋂=⋂⋂ ()()A B C A B C ⋃⋃=⋃⋃③集合分配律 ()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃ (3)容斥定理()()()()card A B card A card B card A B ⋃=+-⋂()()()()()card A B C card A card B card C card A B ⋃⋃=++-⋂()()()card A B card B C card A B C -⋂-⋂+⋂⋂card 表示有限集合A 中元素的个数。

中职集合通俗易懂

中职集合通俗易懂

中职集合通俗易懂
集合是一个数学概念,它包含一定范围内所有事物。

通俗易懂地说,
集合就是将许多物体放在一起形成一个整体,这个整体就是一个集合。

在集合论中,集合通常由大写的英文字母表示,例如A、B、C等。


合中的每一个元素可以用小写的英文字母表示,例如a、b、c等。

集合有三大特性:确定性、互异性和无序性。

确定性是指集合中的元
素是确定的,不能模棱两可;互异性是指集合中的元素是互不相同的,不能重复;无序性是指集合中的元素排列顺序不影响集合本身。

集合根据其元素的数量可以分为有限集、无限集和空集。

含有有限个
元素的集合叫做有限集,含有无限个元素的叫做无限集,不含任何元
素的集合叫做空集。

例如,小于5的正整数构成的集合就是有限集,
小于5的整数构成的集合就是无限集,大于5的负整数构成的集合就
是空集。

此外,还有一些常用的数集及其记法,例如实数集记作R,有理数集记作Q,正实数集记作R+或Q+等。

这些数集在数学和日常生活中都有广
泛的应用。

总之,中职学生通过学习集合论,可以更好地理解数学的基本概念和
原理,提高数学素养和思维能力。

同时,集合论在计算机科学、物理学、工程学等领域也有着广泛的应用。

高一数学集合的含义与表示

高一数学集合的含义与表示
几个要求
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
集合三大特性:
(1)确定性:集合中的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
只要构成两个集合的元素是一样 的,我们就称这两个集合是相等 的
;钣金加工 钣金激光切割 / 钣金加工 钣金激光切割
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市

身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
练一练:用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

《集合》知识点总结

《集合》知识点总结

《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。

2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。

3、集合的特性:确定性、互异性、无序性。

二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。

2、并集:把两个集合合并起来,记作A∪B。

3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。

四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。

2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。

3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。

五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。

2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。

3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。

4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。

5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。

6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。

7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。

集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。

2、集合的表示方法:常用的表示方法有列举法和描述法。

列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。

3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。

集合中的三个特性概念

集合中的三个特性概念

集合中的三个特性概念集合是数学中的一个基础概念,表示具有特定性质的对象的总体。

集合的研究是数学中的一个重要分支,有着广泛的应用。

在数学中,集合具有以下三个特性:元素、子集和运算。

首先,集合是由元素组成的。

元素是构成集合的基本单元,一个集合可以由一个或多个元素组成。

元素可以是数值、字母、符号、几何图形等任何具有明确定义的对象。

例如,下面是一些集合的例子:- 自然数集合:{1, 2, 3, 4, ...}- 偶数集合:{2, 4, 6, 8, ...}- 奇数集合:{1, 3, 5, 7, ...}- 字母集合:{a, b, c, ...}- 平面上的点集合:{(0, 0), (1, 1), (2, 2), ...}其次,集合之间可以存在包含关系。

如果一个集合A的所有元素也是另一个集合B的元素,那么称A是B的子集,记作A⊆B。

如果集合A不是B的子集,可以记作A⊄B。

特别地,每个集合都是自身的子集。

例如,偶数集合是自然数集合的子集。

当两个集合A和B互为子集时,即A⊆B且B⊆A,称A和B相等,记作A=B。

集合之间常见的关系有两个重要的特例:空集和全集。

空集是不含任何元素的集合,用符号∅表示。

任何集合的子集都是空集,即对于任何集合A,都有∅⊆A。

全集是包含其他所有集合的集合,可以用符号U表示,通常根据具体问题的需要而定。

例如,在自然数集合中,全集可以是自然数集合本身,即U={1, 2, 3, 4, ...}。

在平面上的点集合中,全集可以是整个平面上的所有点的集合。

最后,集合之间可以进行运算。

常见的集合运算有并集、交集、差集和补集。

并集是指包含所有属于两个或多个集合的元素的集合,记作A∪B。

交集是指同时属于两个或多个集合的元素的集合,记作A∩B。

差集是指属于一个集合但不属于另一个集合的元素的集合,记作A-B。

补集是指相对于给定全集中不属于某个集合的元素的集合,记作A的补集关于全集U为A的补集AC。

集合的运算可以通过示意图表示。

高中数学-集合

高中数学-集合

集合[知识梳理]1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种元素:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:2A B或B A1.集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.2.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图.3.数形结合思想数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.[知识自测]1.(2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}[解析]集合A与集合B的公共元素有3,5,故A∩B={3,5},选B.[答案] B2.(2018·江西重点中学联考)已知集合A={x|x2-6x+5≤0},B={x|y=x-3},则A∩B 等于()A.[1,3] B.[1,5]C.[3,5] D.[1,+∞)[解析]根据题意,得A={x|x2-6x+5≤0}={x|1≤x≤5},B={x|y=x-3}={x|x≥3},所以A ∩B ={x |3≤x ≤5}=[3,5]. [答案] C3.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 017=______.[解析] 由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧ m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.[答案] -1或0题型一 集合的基本概念(基础拿分题——自主练透)(1)(2018·山东省枣庄十六中4月模拟试卷)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },集合M 真子集的个数为( )A .32B .31C .16D .15[解析] 由题意集合A ={1,2,3},B ={4,5},a ∈A ,b ∈B ,那么:a 、b 的组合有:(1、4),(1、5),(2、4),(2、5),(3、4),(3、5),∵M ={x |x =a +b },∴M ={5,6,7,8},集合M 中有4个元素,有24-1=15个真子集.故选:D.[答案] D(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2018+b 2018为( )A .1B .0C .-1D .±1[解析] 由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2018+b 2018=(-1)2018+02018=1.[答案] A方法感悟1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.【针对补偿】1.(2018·山西省大同市豪洋中学四模试卷)已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |127<3x ≤9,B ={x ∈N |-2<x <3},则集合{z |z =xy ,x ∈A ,y ∈B }的元素个数为( )A .6B .7C .8D .9[解析] 由127<3x ≤9,即3-3<3x ≤32,解得-3<x ≤2,∴A ={-2,-1,0,1,2}.B ={0,1,2}.∴集合{z |z =xy ,x ∈A ,y ∈B }={-2,-1,0,1,2,-4,4}的元素个数为7.故选:B.[答案] B2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为 ________ .[解析] 由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.[答案] -323.已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为______. [解析] 因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] 5<k ≤6题型二 集合的基本关系(重点保命题,共同探讨)(1)已知集合A ={x |x 2-3x +2=0,x∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4[解析] (1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4}. 所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. [答案] D(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为______.[解析] 因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. [答案] m ≤3方法感悟1.空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.2.已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.[注意] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论. 【针对补偿】4.已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为( )A.13或-12 B .-13或12C.13或-12或0 D .-13或12或0[解析] 由题意知A ={2,-3},当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a ,由B ⊆A ,可得1a =-3或1a =2,∴a =-13或a =12.综上,a 的值为-13或12或0.[答案] D5.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,实数a 的取值范围是(c ,+∞),则c =______.[解析] 由log 2x ≤2,得0<x ≤4.即A ={x |0<x ≤4},而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. [答案] 4题型三 集合的基本运算(高频考点题,多角突破)集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题难度不大,多为低档题.高考对集合运算的考查主要有以下三个命题角度: (1)求集合间的交、并、补运算; (2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(或参数的取值范围).考向一 求交集1.(2017·课标Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0[解析] 集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y =x 上所有的点组成的集合,圆x 2+y 2=1与直线y =x 相交于两点(1,1),(-1,-1),则A ∩B 中有两个元素.故选B.[答案] B 考向二 求并集2.(2016·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)[解析] A ={y |y >0},B ={x |-1<x <1},则A ∪B ={x |x >-1},选C. [答案] C考向三 集合的交、并、补的综合运算3.(2018·山东省德州市四月二模) 设全集U =R ,集合M ={x |x 2+x -2>0},N =⎩⎨⎧⎭⎬⎫x |⎝⎛⎭⎫12x -1≥2,则(∁U M )∩N =( ) A .[-2,0] B .[-2,1] C .[0,1]D .[0,2][解析] M ={x |x >1或x <-2},∁U M ={x |-2≤x ≤1},N ={x |x -1≤-1}={x |x ≤0},所以(∁U M )∩N ={x |-2≤x ≤0},故选A.[答案] A考向四 利用集合运算求参数4.已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( )A .[-1,2)B .[-1,3]C .[2,+∞)D .[-1,+∞)[解析] 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4},又A ∩B =B , 所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2.②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). [答案] D考向五 集合的斜定义问题5.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .30[解析] 如图,集合A 表示如图所示的所有圆点“○”,集合B 表示如图所示的所有圆点“○”+所有圆点“·”,集合A ⊕B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A ⊕B 表示如图所示的所有圆点“○”+所有圆点“·”+所有圆点“⊙”,共45个,故A ⊕B 中元素的个数为45.故选C.[答案] C方法感悟集合基本运算的常见题型与破解策略:6.(2017·山东)设函数y=4-x2的定义域A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)[解析]由4-x2≥0得-2≤x≤2,由1-x>0得x<1,故A∩B={x|-2≤x≤2}∩{x|x <1}={x|-2≤x<1},选D.[答案] D7.(2018·山东省青岛市数学一模试卷)已知集合A={x||x+1|≥1},B={x|x≥-1},则(∁A)∩B=()RA.[-1,0] B.[-1,0)C.(-2,-1) D.(-2,-1][解析]∵A={x||x+1|≥1}={x|x≤-2或x≥0},∴∁R A={x|-2<x<0},又B={x|x≥-1},∴(∁R A)∩B=[-1,0).故选:B.[答案] B8.定义一种新的集合运算△:A△B={x|x∈A,且x∉B},若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4} B.{x|3≤x≤4}C.{x|3<x<4} D.{x|2≤x≤4}[解析]A={x|1<x<3},B={x|2≤x≤4},由题意知B△A={x|x∈B,且x∉A}={x|3≤x≤4}.[答案] B◆牛刀小试·成功靠岸◆课堂达标(一)[A基础巩固练]1.(2017·课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅[解析]由3x<1可得3x<30,则x<0,即B={x|x<0},所以A∩B={x|x<1}∩{x|x<0}={x|x<0},A∪B={x|x<1}∪{x|x<0}={x|x<1}.故选A.[答案] A2.(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}[解析](A∪B)∩C={1,2,4,6}∩[-1,5]={1,2,4},选B.[答案] B3.(2018·哈尔滨九中二模)设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈P D.∃x0∈P,使得x0∉P[解析]∵P∩Q=P,∴P⊆Q∴A错误;B正确;C错误;D错误.故选B.[答案] B4.(2018·刑台摸底考试)已知集合A={x|-2≤x≤2},B={y|y=x,0≤x≤4},则下列关系正确的是()A.A⊆∁R B B.B⊆∁R AC.∁R A⊆∁R B D.A∪B=R[解析]依题意得B={y|0≤y≤2},因此B⊆A,∁R A⊆∁R B.[答案] C5.(2018·湖北七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117[解析] 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,不与y =3,y =5时有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.[答案] B6.(2018·山东临沂期中)已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)[解析] ∵x 2-3x +2>0,∴x >2或x <1. ∴A ={x |x >2或x <1},∵B ={x |x ≤a }, ∴∁U B ={x |x >a }.∁U B ⊆A ,借助数轴可知a ≥2,故选D. [答案] D7.已知集合A ={x |y =x },B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <4,则(∁R A )∩B 等于______. [解析] 因为A ={x |y =x }={x |x ≥0},所以∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <4={x |-1<x <2},所以(∁R A )∩B ={x |-1<x <0}.[答案] {x |-1<x <0}8.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为 ________ .[解析] 当m ≤0时,B =∅,显然B ⊆A .当m >0时,∵A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. [答案] (-∞,1]9.(2018·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B = ________ .[解析] 因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}. [答案] (-∞,-1]∪(1,+∞)10.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是{m |m >5或m <-3}.[B 能力提升练]1.(2018·湖南衡阳第三次联考)集合M ={(x ,y )|x +y ≤1,y ≤x ,y ≥-1},N ={(x ,y )|(x -2)2+y 2=r 2,r >0},若M ∩N ≠∅,则r 的取值范围为( )A.⎣⎡⎦⎤22,3B.[]1,10C.⎣⎡⎦⎤22,10 D.⎣⎡⎦⎤1,102[解析]由条件可得M的可行域:如图阴影部分,N则是以P(2,0)为圆心,半径为r的圆,由M∩N=∅,则当圆与x+y=1相切时半径最小,如图D处,则d=r=22,当过y=x,y=-1的交点时最大,此时r=10,故选C.[答案] C2.(2018·开封模拟)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}[解析]易知A={x|2x(x-2)<1}={x|x(x-2)<0}={x|0<x<2},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},则∁U B={x|x≥1},阴影部分表示的集合为A∩(∁U B}={x|1≤x<2}.[答案] B3.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n ),则m = ________ ,n = ________ .[解析] A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.[答案] -1;14.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有__________________个.[解析] 当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个.[答案] 175.(2018·徐州模拟)已知集合A ={x |1<x <3},集合 B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.[解] (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).[C 尖子生专练](2018·贵阳市监测考试)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =______.(用列举法表示)[解析] 若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,a 1∉A ,假设不成立,故集合A ={a 2,a 3}.[答案] {a 2,a 3}。

集合的内容与概念

集合的内容与概念

集合的内容与概念集合是数学中的一个基本概念,它是指把具有共同特征的对象放在一起,形成一个整体。

集合中的对象可以是数字、图形、坐标、字母、词语等等。

集合的概念主要包括集合的定义、集合的表示方法、集合的运算以及集合的特性等内容。

首先,集合的定义是指将具有共同特征的对象放在一起,形成一个整体。

一个集合可以由具有某种共同特征的元素构成,而元素通常可以是个体、事物、概念或其他的对象。

例如,如果我们把所有的奇数放在一起,这个集合就是由所有的奇数构成的。

其次,集合的表示方法有两种常见的方式,一种是列举法,另一种是描述法。

列举法是将集合中的元素逐个列举出来,用大括号{}括起来,元素之间用逗号隔开。

例如,集合{1, 2, 3, 4, 5}就是一个由元素1、2、3、4、5构成的集合。

描述法是用描述语言表达集合中的元素的共同特征。

例如,描述法可以表示为集合{ x x 是正整数,且x < 6},表示由小于6的正整数构成的集合。

再次,集合的运算包括并集、交集、差集、补集以及笛卡尔积等。

并集是指将两个或多个集合中的元素放在一起,构成一个新的集合。

交集是指两个或多个集合中共有的元素组成的集合。

差集是指一个集合减去另一个集合后剩下的元素组成的集合。

补集是指一个集合中不属于另一个集合的元素组成的集合。

笛卡尔积是指两个集合中的所有元素按照一定的规则组合起来构成一个新的集合。

这些运算在集合论中起着重要的作用,能够帮助我们研究集合之间的关系。

最后,集合还有一些特性,如互斥、包含、等价、自反、对称、传递等。

互斥是指两个集合没有任何的共同元素。

包含是指一个集合中的所有元素都是另一个集合中的元素。

等价是指两个集合具有相同的元素。

自反是指一个集合中的每个元素与自身相等。

对称是指如果一个集合中的一个元素与另一个集合中的一个元素相等,那么这两个集合互相具有这个元素。

传递是指如果一个集合中的一个元素与另一个集合中的一个元素相等,而后一个元素又与第三个集合中的一个元素相等,那么第一个元素与第三个集合中的元素也相等。

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳
高中数学中的集合知识点包括:
1. 集合的基本概念:集合是由若干个元素组成的整体,元素在集合中不重复。

2. 集合的表示方法:列举法、描述法、集合的特性。

3. 集合的运算:交集、并集、补集、差集等。

4. 集合的关系:包含关系、相等关系、子集关系等。

5. 集合的性质:空集的特点、全集的特点等。

6. 集合的应用:解决实际问题时,常常需要运用集合的概念和相关知识进行分析和解决。

7. 一元二次不等式的解集:将一元二次不等式的解集用集合的概念表示。

在学习集合知识时,需要注意以下几个方面:
1. 掌握集合的基本概念,了解集合的表示方法和运算规则。

2. 熟练掌握集合的运算法则,理解不同集合的交集、并集、补集等概念。

3. 注意理解集合的关系,如包含关系、相等关系、子集关系等。

4. 学会应用集合的知识解决实际问题,善于将问题抽象成集合的形式进行分析和解决。

5. 需要深入理解一元二次不等式的解集的概念,熟练掌握如何用集合的形式表示解集。

总之,集合是高中数学中的一个重要知识点,掌握集合理论和应用技巧对于学好数学
非常有帮助。

集合与元素的关系

集合与元素的关系

集合与元素的关系
一、元素与集合的关系
元素a与一个给定的集合A只有两种可能:
1、a属于集合A,表述为a是集合A的元素,记作a∈A
2、a不属于集合A,表述为a不是集合A的元素,记作a∉A
二、元素的概念
集合是数学的基本概念之一,具有某种特定属性的事物的全体称为"集",而元素就是组成集的每个事物。

研究集的运算及其性质的数学分支叫做集论或集合论集合的定义很广,不仅限于数学,在生产生活中对于集合的使用也是很广泛的,而组成特定集合的具有特定属性的事物全部都可以称做元素,所以元素的定义也很广泛,某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

三、集合的特性
1.确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2.互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。

有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3.无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。

集合上可
以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。

但就集合本身的特性而言,元素之间没有必然的序。

(新人教A)高三数学集合的概念

(新人教A)高三数学集合的概念

§1.集合的概念【知识要点】1. 集合:一组对象的全体形成一个集合.集合里的各个对象叫做这个集合的元素.元素与集合的关系用∈或∉表示.2. 集合的表示法:列举法、描述法、图示法、区间法.3. 集合的特性:集合中的元素具有确定性、互异性、无序性.4. 子集、交集、并集、补集(1) 对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,那么集合A叫做集合B 的子集,记作B A ⊆(或A B ⊇),显然.A A ⊆规定空集是任何集合的子集,即A ⊆Φ.如果A 是B 的子集,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作)(A B B A ⊃⊂或.(2) 集合相等:若,A B B A ⊆⊆且则B A =.(3) 交集:由所有属于集合A ,且属于集B 的元素组成的集合,叫做A 、B 的交集,记作B A I ,即B A I ={x |A x ∈且B x ∈}.(4) 并集:由所有属于集合A 或集合B 的元素组成的集合,叫做A 、B 的并集,记作B A Y ,即B A Y ={x |A x ∈或B x ∈}.(5) 补集:集合A 是集合S 的子集,由S 中所有不属于A 的元素组成的集合,叫做S中子集A 的补集,记作A C S , 即A C S ={x |A x S x ∉∈且,}.【高考要求】理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的述语和符号,能正确地表示一些较简单的集合.【课前训练题】一、 选择题1.集合A 与集合B 表示同一个集合的是( )(A ) A={(2,1)} B={(1,2)}(B ) A=Φ B={0}(C ) A={y |R x x y ∈=,2} B={(y x ,)|R x x y ∈=,2}(D) A={x |R t t x ∈+=,12} B={y |R s s y ∈+-=,1)1(2}2.设集合A={(y x ,)|Z y x y x ∈≤+,,122},则集合A 的非空真子集数为( )(A ) 14个 (B ) 15个 (C ) 30个 (D ) 31个 3. 已知集合M={x │Z k k x ∈+=,412},N={x │Z k k x ∈+=,214},则( ) (A ) M=N (B ) N M ⊃ (C ) N M ⊂ (D ) Φ=N M I4.已知P={x |021≥--x x },Q={x |0)2)(1(≥--x x },S={x |12)2)(1(≤--x x },则下面结论正确的是( )(A ) S Q P == (B ) S Q P ⊂⊂(C ) Q S P ⊂⊆ (D ) Q S P =⊂二、 填空题5. 由实数αα22cos sin ,1,1,,+--xx x x 组成的集合用列举法表示为 6. 已知集合,,C A B A ⊆⊆若B={0,1,2,3,4},C={0,2,4,8},则满足条件的集合A的子集最多有 个.7. 若集合A 是单元素集,且,11,A aa A a ∈+-∈则=A 【例题分析】例1 用适当方法表示下列集合:(1) 两对角线分别在坐标轴上,且边长为1的正方形的所有顶点;(2) 所有第四象限角的集合;(3) 直角坐标系中,不在坐标轴上的点的集合;(4) 函数)12(log 2-≤≤-=x x y 的值域.例2 已知集合)}lg(,,{xy xy x M =,},,0{y x N =,且N M =,求y x ,的值.例3 设b a ,是整数,集合),{(y x E =|}63)1(2y b x ≤+-,点(2,1)E ∈,但点(1,0)E E ∉∉)2,3(,,求b a ,的值.例4 已知集合x A {=|0122=++x ax }(1) 若Φ=A ,求a ; (2)若A 中只有一个元素,求a 的值; (3)若A 中至多只有一个元素,求a 的值.【小结归纳】1. 对集合的认识,主要看清集合的元素是什么,元素所具有的性质是什么,特别不要将点集和数集混淆.2. 利用相等集合的定义解题,要注意集合中元素的三大特性,特别要注意集合中元素的互异性,对计算的结果要加以检验.3. 含有n 个元素的集合,其子集个数为n 2,非空子集个数为12-n 个,非空真子集个数为 22-n .4. 注意空集Φ的特殊性.在解题时,若未指明集合非空时,要考虑到为空集的可能性.5. 要注意数学思想方法在解题中的运用.如化归与转化、分类讨论、数形结合的思想方法在解题中的应用.【巩固训练题】一、选择题1. 满足{1,2}⊆⊂X {1,2,3,4,5}的集合X 的个数为( )(A ) 4个 (B ) 6个 ( C ) 7个 (D ) 8个2. 下面有四个命题:(1)集合N 中最小的元素是1;(2)若N a N a ∈∉-则,;(3)若∈a ,,N b N ∈则b a +的最小值是2;(4)x x 442=+方程的解集可表示为{2,2}.其中正确命题的个数是( )(A ) 0 (B ) 1 (C ) 2 (D ) 33. 已知x A {=|Z n n x ∈=,3cosπ},x B {=|Z m m x ∈-=,632sin π},那么B A 和的关系是( )(A ) B A ⊂ (B ) B A ⊃ (C ) B A = (D ) B A ≠4. 同时满足(1)}5,4,3,2,1{⊆M ,(2)若M a ∈,则M a ∈-6的非空集合M 有( )(A ) 32个 (B ) 15个 (C ) 7个 (D ) 6个5. 对于非空集合M 和N ,把所有属于M 但不属于N 的元素形成的集合称为M 与N 的差集,记作M-N ,那么M-(M-N )总等于( )(A ) N (B ) M (C ) M I N (D ) M Y N二、填空题6. 设M={),(y x |}4=+ny mx ,且{(2,1),(-2,5)}⊂M ,则=m ,=n .7. 集合),{(y x A =|}422=+y x ,),{(y x B =|})4()3(222r y x =-+-,其中0>r ,若B A I 中有且仅有一个元素,则r 的值是8. 若全集)(),(,x g x f R I =均为二次函数,x P {=|}0)(<x f ,x Q {=|}0)(≥x g ,则不等式组{0)(0)(<<x g x f 的解集可用P 、Q 表示为 三、解答题8. 已知集合x A {=|}12+=x y ,y B {=|}12+=x y ,),{(y x C =|}12+=x y ,试讨论集合A 、B 、C 三者之间的关系.10. 设非空集合x A {=|}01)2(2=++++b x b x (R b ∈),求集合A 中所有元素的和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用集合的三大特基本运算 并集 交集 补集
集合知识的体系构建
利用集合的三大特性论述集合的概念
确定性
把一些能够确定的不同对象看作一个 整体,我们就说这个整体是由这些无序的
互异性
对象构成的集合(set)(简称为集),而构 成集合的元素(element)就是这些对象。
Company and Slogan
LOGO
集合知识的体系构建
集合概念 确定性 集合元素的三大特性 互异性 无序性 列举法 集合集合的表示方法 描述法 韦恩图法 子集 包含相等 集合间的基本关系 真子集 空集 并集 集合的基本运算 交集 补集
无序性
集合表示的三种方法
列举法 描述法 韦恩(Venn)图法
通过集合的表示方法让学生真正理解集合, 条件允许时教师可以对学生进行课堂提问,在 学生的回答的基础上引导其进行深入探讨,加 深理解,锻炼其逻辑思维能力。
集合间的基本关系 学生在已了解集合的含义、元素与集合之间的属
于关系的基础上去学习集合间的基本关系,要求学
生能用自然语言、图形语言(韦恩图、数轴表示法) 领会集合与集合之间包含和相等的含义,充分认识 空集的定义。
Company and Slogan
LOGO
集合基本运算 并集 交集 补集
集合A{1,2,3,}集合B{2,3,4},
集合A{x|-1≤x≤2},集合 B{x|1≤x≤3},求集合A 与集合B的交
A 1 2 3 A∪ B 4
求集合A与集合B的并
并集
补集
交集
总结有关集合问题的解题方法
数轴和Venn图是进行并、交、补运算的有力工具,数形 结合是解集合问题的常用方法,解题时要先把集合中各种 形式的元素化简,使之明确化,尽可能地借助数轴、直角 坐标系或Venn图等工具,将抽象的代数问题具体化、形象 化、直观化,然后利用数形结合的思想方法解决。
Company and Slogan
LOGO
总结有关集合问题的解题方法
研究集合问题,一定要理解集合的意义——抓住集合的代 表元素。要看代表元素是数还是数对,代表元素是数时,是函 数关系中自变量的取值,还是因变量的取值,可与方程、不等 式的解集、函数的定义域、值域联系;代表元素是数对时,可 与点的坐标、平面中的点集(曲线)联系。如:{x|y=lgx}-----函数的定义域;{y|y=lgx}-----函数的值域;{(x,y)|y=lgx}----函数图象上的点集。
相关文档
最新文档