中考数学方案选择应用题含答案

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

方案型应用题 中考数学重难点专题 全国通用版 含答案(原卷+解析版)

方案型应用题 中考数学重难点专题 全国通用版 含答案(原卷+解析版)

其余按原价的七折销售;第二种,全部按原价的八折优惠,在购买相同数量的肥皂的情况下,要使第一种
方案比第二种方案合算,最少需要购买肥皂( )
A.3 块
B.4 块
C.5 块
D.6 块
8.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球 4 小时,经服务
生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为( )
2.小明要去超市买甲、乙两种糖果,然后混合成 5 千克混合糖果,已知甲种糖果的单价为 a 元/千克,乙种
糖果的单价为 b 元/千克,且 a>b.根据需要小明列出以下三种混合方案:(单位:千克)
甲种糖果
乙种糖果
混合糖果
方案 1
2
3
5
方案 2
3
2
5
方案 3
2.5
2.5
5
则最省钱的方案为( )
A.方案 1
B.方案 2
C.方案 3
D.三个方案费用相同
3.小明去商店购买 A、B 两种玩具,共用了10 元钱, A 种玩具每件1元, B 种玩具每件 2 元.若每种玩具至
少买一件,且 A 种玩具的数量多于 B 种玩具的数量.则小明的购买方案有( )
A. 5 种
B. 4 种
C. 3 种
D. 2 种
4.某电信公司有 A、B 两种计费方案:月通话费用 y(元)与通话时间 x(分钟)的关系,如图所示,下列
-3-
三、解答题
21.有甲、乙两种客车,2 辆甲种客车与 3 辆乙种客车的总载客量为 180 人,1 辆甲种客车与 2 辆乙种客车 的总载客量为 105 人. (1)请问 1 辆甲种客车与 1 辆乙种客车的载客量分别为多少人? (2)某学校组织 240 名师生集体外出活动,拟租用甲、乙两种客车共 6 辆,一次将全部师生送到指定地点.若 每辆甲种客车的租金为 400 元,每辆乙种客车的租金为 280 元,请给出最节省费用的租车方案,并求出最 低费用.

中考真题方程应用题

中考真题方程应用题
A.9.5千公里B. 千公里C.9.9千公里D.10千公里
【答案】C
分析:由题意设这对轮胎能行驶的最长路程是x公里,则损耗的轮胎为
1/11 x,1/9 x,因为只有两只轮胎,所以有
1/11 x+1/9 x=2,而求出这对轮胎能行驶的最长路程.
解答:解:设这对轮胎能行驶的最长路程是x千公里,由题意得:
A.21元B.19.8元C.22.4元D.25.2元
【答案】A
14.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,设这件衣服的进价为x元,根据题意,下面所列的方程正确的是
A.x·50%×80%=240B.x·(1+50%)×80%=240
C.240×50%×80%=xD.x·(1+50%)=240×80%
C.30x-8=31x-26D.30x+8=31x-26
【答案】D
8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()
A、50(1+x)2=182B.50+50(1+x)+50(1+x)2=182
C、50(1+2x)=182D.50+50(1+x)+50(1+2x)=182
【答案】C
4.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯?
(A) 64 (B) 100(C) 144 (D) 225。
【答案】B
设乙桶内的果汁最多可装满x个大杯,则甲桶内的果汁最多可装满4/5x个大杯.

中考数学应用题专题含答案26题专项

中考数学应用题专题含答案26题专项

2012年中考数学应用题专题复习(26题)专项1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%15%.根据相关信息解决下列.根据相关信息解决下列问题:(1)降价前,降价前,甲乙两种药品每盒的出厂价格之和为甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,经过若干中间环节,甲种药品甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%15%、对乙种药品每盒加价、对乙种药品每盒加价10%10%后零售后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,元,为了促销,公司决定每售出一台乙型号手机,返还顾返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(元,而甲型号手机仍按今年的售价销售,要使(22)中所有方案获利相同,)中所有方案获利相同,a a 应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%90%和和95%95%..(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%93%,且购买鱼苗的总费用最低,应如何选购鱼苗?,且购买鱼苗的总费用最低,应如何选购鱼苗?5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系(吨)之间的函数关系. . (1)小明家五月份用水8吨,应交水费吨,应交水费__________________元;元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?份节约用水多少吨?6、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km 9km,甲以匀速行驶,花了,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O O ––A A ––B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min min)时的行程,请回答下列问)时的行程,请回答下列问题:题:⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象;的图象; ⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?7、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x 元,每月的销售量为y 件.(1)求y 与x 的函数关系式并写出自变量x 的取值范围;的取值范围;(2)(2)设每月的销售利润为设每月的销售利润为W ,请写出W 与x 的函数关系式;的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?8、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,现有一现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.元.(1)(1)设设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;的函数关系式;(2)(2)如果放养如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x O y x 205010 20 第5题 (吨)(元)的函数关系式.的函数关系式.(3)(3)该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润((利润利润=Q =Q =Q-收购总额-收购总额-收购总额))?1、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;)问符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(明在(11)中哪种方案费用最低?最低费用是多少元?)中哪种方案费用最低?最低费用是多少元?2、 “保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A 、B 两型污水处理设备,共10台,其信息如下表:台,其信息如下表:单价单价((万元万元//台) 每台处理污水量每台处理污水量((吨/月) A 型12 240 B 型 10 200(1)(1)设购买设购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 的函数关系式.的函数关系式.(2)(2)经预算,市污水处理厂购买设备的资金不超过经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金? ?3、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.件行李.⑴请你帮助学校设计所有可行的租车方案;⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?最省?4、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.吨.(1)(1)受天气、受天气、场地等各种因素的影响,需要提前完成销售任务需要提前完成销售任务..在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务天完成销售任务..那么原计划零售平均每天售出多少吨?零售平均每天售出多少吨?(2)(2)在(在(在(11)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.算实际获得的总利润.5、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.件,其中甲种玩具的件数少于乙种玩具的件数.商商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?元,求商场共有几种进货方案?6、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,吨的部分,自来水公司按每吨自来水公司按每吨2元收费;元收费;超过超过5吨的部分,按每吨2.6元收费。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。

17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。

那么等腰三角形的底长为2x = 12。

18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。

第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。

然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。

最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。

20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。

设张三的年龄为x,李四的年龄为y。

那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。

所以10年后张三的年龄是30岁,李四的年龄是40岁。

第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。

证明过程略。

第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。

祝你考试顺利!。

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习例1. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.例2. 某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩, 解得:4256x y =⎧⎨=⎩; 答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 型计算器:(70)a -台,则3040(70)2500a a +-,解得:30a ,答:最少需要购进A 型号的计算器30台.例3.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例4.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:3020680 50401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例5. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(9)x -元/条, 根据题意得:312042009x x=-, 解得:35x =,经检验,35x =是原方程的解,926x ∴-=.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200)a -条B 型芯片,根据题意得:2635(200)6280a a +-=,解得:80a =.答:购买了80条A 型芯片.例6. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1(1)81x x x +++=, 整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍去), 2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.例7. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【解答】解:(1)设租用甲车x 辆,则乙车(10)x -辆.根据题意,得4030(10)3401620(10)170x x x x +-⎧⎨+-⎩, 解,得47.5x .又x 是整数,4x ∴=或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为420006180018800⨯+⨯=元;②甲5辆,乙5辆;总费用520005180019000⨯+⨯=元;③甲6辆,乙4辆;总费用为620004180019200⨯+⨯=元;④甲7辆,乙3辆.总费用为720003180019400⨯+⨯=元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.例8. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+,化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意,答:该品牌饮料一箱有10瓶.例9. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得:25000(1)7200x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200(120%)8640x +=⨯+=(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次.例10.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,210000(1)12100x⨯+=,解得10.1x=,22.1x=-(不合题意,舍去);答:捐款增长率为10%.(2)12100(110%)13310⨯+=元.答:第四天该单位能收到13310元捐款.。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、 08 年 5 月 12,四川省汶川等地发生强烈地震。在抗震救灾中,甲、乙两重灾区急需一批 大型挖掘机,甲地需 25 台,乙地需 23 台;A、B 两省获知情况后慷慨相助,分别捐赠挖掘机 26 台和 22 台并将其全部调往灾区.若从 A 省调运一台挖掘机到甲地要耗资万元,到乙地要 耗资万元;从 B 省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从 A 省调往甲 地 x 台, A、 B 两省将捐赠的挖掘机全部调往灾区共耗资 y 万元. (1)求出 y 与 x 之间的函数关系式及自变量 x 的取值范围; (2)若要使总耗资不超过 15 万元,有哪几种调运方案 (3)怎样设计调运方案能使总耗资最少最少耗资是多少万元
2、我市某化工厂现有甲种原料 290 千克,乙种原料 212 千克,计划利用这两种原料生产 A、 B 两种产品共 80 件,生产一件 A 产品需要甲种原料 5 千克,乙种原料千克;生产一件 B 种产 品需要甲种原料千克, 乙种原料千克, 该化工厂现有的原料能否保证生产顺利进行若能的话, 有几种方案请你设计出来。
(1)用含 x,y 的式子表示购进 C 型手机的部数; (2)求出 y 与 x 之间的函数关系式; (3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需 另外支出各种费用共 1500 元.①求出预估利润 P(元)与 x(部)的函数关系式; (注:预估 利润 P=预售总额 - 购机款 - 各种费用)②求出预估利润的最大值,并写出此时购进三款手机 各多少部.
4、某公司为了扩大经营,决定购进 6 台机器用于生产某种活塞.现有甲、 ?乙两种机器供选 择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机 器所耗资金不能超过 34 万元.
甲乙 价格(万元 / 台) 7 5 每台日产量(个) 100 60 (1)按该公司要求可以有几种购买方案 (2)若该公司购进的 6 台机器的日生产能力不能低于 380 个,那么为了节约资金应选择哪种 方案
A
B
(2)该公司如何建房获得利润最大
成本(万元 / 套) 25
28
(3)根据市场调查,每套 B 型住房的售价不会改变,每 售价(万元 / 套) 30
34
套 A 型住房的售价将会提高 a 万元( a>0),且所建的两
种住房可全部售出,该公司又将如何建房获得利润最大
手机型号
A 型 B 型 C型
3、一手机经销商计 进 价(单位:元 / 部) 900 1200 1100 划购进某品牌的 A
型、 B 型、 C 型三款 预售价(单位:元 / 部) 1200 1600 1300 手机共 60 部,每款
手机至少要购进 8
部,且恰好用完购机
款 61000 元.设购进 A 型手机 x 部, B 型手机 y 部.三款手机的进价和预售价如下表:
7、某批发商欲将一批海产品由 A 地运往 B 地, ?汽车货运公司和铁路货运公司均开办了海产
品运输业务.已知运输路程为 120 千米, ?汽车和火车的速度分别为 60 千米 / 时和 100 千米 /
时.两货物公司的收费项目和收费标准如下表所示:
运输工具 运输费单价
冷藏费单价
过路费 装 卸 及 管 理
5、双蓉服装店老板到厂家选购 A、 B 两种型号的服装,若购进 A 种型号服装 9 件, B 种型号 服装 10 件,需要 1 810 元;若购进 A 种型号服装 12 件, B 种型号服装 8 件,需要 1 880 元. (1)求 A、 B两种型号的服装每件分别为多少元 (2)若销售 1 件 A 型服装可获得 18 元,销售 1 件 B 型服装可获得 30 元.根据市场需求,服 装店老板决定,购进 A 型服装的数量要比购进 B 型服装数量的 2 倍还多 4 件,且 A 型服装最 多可购进 28 件,这样服装全部售出后,可使总的获利不少于 699 元.问有几种进货方案如何 进货
表:Βιβλιοθήκη 销售渠道每日销量 (吨)
每吨所获 纯 利润(元)
省城批发 4
1200
本地零售 1
2000
受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在 10 日内售出.
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售 22 吨草莓所
获纯利润 y (元)与运往省城直接批发零售商的草莓量 x (吨)之间的函数关系式;

出发地


C
D


A
35
40
B
30
45
(1)设 C县运到 A 县的化肥为 x 吨,求总运费 W(元)与 x(吨)的函数解 析式,并写出自变量 x 的取值范围; (2)求最低总运费,并说明总运费最低时的运送方案.
9、种植草莓大户张华现有 22 吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售
商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下
( 元 / 吨 · 千 ( 元 / 吨 · 小 (元) 费
米)
时)
(元)
汽车
2
5
200
0
火车
5
0
1600
注:“元 / 吨·千米”表示每吨货物每千米的运费; “元 /? 吨小时”表示每吨货物每小时的
冷藏费.
(1)设该批发商待运的海产品有 x(吨),?汽车货运公司和铁路货运公司所要收取的费用分
别为 y1(元)和 y2(元),试求出 y1 和 y2 和与 x 的函数关系式;
(2) 怎样安排这 22 吨草莓的销售渠道,才使张华所获纯利润最大并求出最大纯利润.
10、某房地产开发公司计划建 A、B 两种户型的住房共 80 套,该公司所筹资金不少于 2 090 万元,但不超过 2 096 万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案
方案选择的应用题
1、某高速公路收费站,有 m( m>0)辆汽车排队等候收费通过。假设通过收费站的车流量(每 分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。若开放一个 收费窗口,则需 20 分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过; 若同时开放两个收费窗口,则只需 8 分钟也可将原来排队等候的汽车以及后来接上来的汽车 全部收费通过。若要求在 3 分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也 随到随时收费通过,请问至少要同时开放几个收费窗口
(2)若该批发商待运的海产品不少于 30 吨,为节省运费, ?他应该选择哪个货运公司承担运
输业务
8、某市的 A 县和 B 县春季育苗,急需化肥分别为 90 吨和 60 吨,该市的 C 县和 D 县分别储存化肥 100 吨和 50 吨,全部调配给 A县和 B 县,已知 C、D两县 运化肥到 A、B 两县的运费(元 / 吨)如下表所示.
相关文档
最新文档