2020年高考物理复习题 (44)

合集下载

2020年高考物理真题多选题汇编(附解析)

2020年高考物理真题多选题汇编(附解析)

2020年高考物理真题多选题集锦1.(2020·新课标Ⅲ)在图(a)所示的交流电路中,电源电压的有效值为220V,理想变压器原、副线圈的匝数比为10∶1,R1、R2、R3均为固定电阻,R2=10 ,R3=20 ,各电表均为理想电表。

已知电阻R2中电流i2随时间t变化的正弦曲线如图(b)所示。

下列说法正确的是()A. 所用交流电的频率为50HzB. 电压表的示数为100VC. 电流表的示数为1.0AD. 变压器传输的电功率为15.0W2.(2020·新课标Ⅲ)1934年,约里奥—居里夫妇用α粒子轰击铝箔,首次产生了人工放射性同位素X,反应方程为:。

X会衰变成原子核Y,衰变方程为,则()A. X的质量数与Y的质量数相等B. X的电荷数比Y的电荷数少1C. X的电荷数比的电荷数多2D. X的质量数与的质量数相等3.(2020·新课标Ⅲ)如图,∠M是锐角三角形PMN最大的内角,电荷量为q(q>0)的点电荷固定在P点。

下列说法正确的是()A. 沿MN边,从M点到N点,电场强度的大小逐渐增大B. 沿MN边,从M点到N点,电势先增大后减小C. 正电荷在M点的电势能比其在N点的电势能大D. 将正电荷从M点移动到N点,电场力所做的总功为负4.(2020·新课标Ⅱ)如图,竖直面内一绝缘细圆环的上、下半圆分别均匀分布着等量异种电荷。

a、b为圆环水平直径上的两个点,c、d为竖直直径上的两个点,它们与圆心的距离均相等。

则()A. a、b两点的场强相等B. a、b两点的电势相等C. c、d两点的场强相等D. c、d两点的电势相等5.(2020·新课标Ⅱ)特高压输电可使输送中的电能损耗和电压损失大幅降低。

我国已成功掌握并实际应用了特高压输电技术。

假设从A处采用550 kV的超高压向B处输电,输电线上损耗的电功率为∆P,到达B处时电压下降了∆U。

在保持A处输送的电功率和输电线电阻都不变的条件下,改用1 100 kV特高压输电,输电线上损耗的电功率变为∆P′,到达B处时电压下降了∆U′。

2020高考物理复习最新解析版题目

2020高考物理复习最新解析版题目

第Ⅰ卷一、单项选择题:(本题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一个是符合题目要求的)1、法拉第通过静心设计的一系列试验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流【答案】A【解析】对A选项,静止的导线上的稳恒电流附近产生稳定的磁场,通过旁边静止的线圈不会产生感应电流,A被否定;稳恒电流周围的稳定磁场是非匀强磁场,运动的线圈可能会产生感应电流,B符合事实;静止的磁铁周围存在稳定的磁场,旁边运动的导体棒会产生感应电动势,C符合;运动的导线上的稳恒电流周一小球.给小球一足够大的初速度,使小球在斜面上做圆周围产生运动的磁场,即周围磁场变化,在旁边的线圈中产生感应电流,D 符合。

2、如图,质量为 M 的楔形物块静置在水平地面上,其斜面的倾角为 θ.斜面上有一质量为 m 的小物块,小物块与斜面之间存在摩擦.用恒力 F 沿FmM θ斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为A .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ【答案】D【解析】本题可用整体法的牛顿第二定律解题,竖直方向由平衡条件:F sin θ+N =mg +Mg ,则 N = mg +Mg -F sin θ 。

2020高考物理必考知识点典型题过关练习《机械波》(精品含详细答案)

2020高考物理必考知识点典型题过关练习《机械波》(精品含详细答案)

2020高考物理必考知识点典型题过关练习《机械波》总分100分,时间100分钟第一卷(共56分)一、单选题(本大题共10小题,共40分)1.关于机械波,下列说法中正确的是()A. 机械波的振幅与波源振动的振幅不相等B. 在波的传播过程中,介质中质点的振动频率等于波源的振动频率C. 在波的传播过程中,介质中质点的振动速度等于波的传播速度D. 在机械波的传播过程中,离波源越远的质点振动的周期越大2.在平静的湖面上漂着一小木条,现向湖中央扔一石子,圆形波纹一圈圈地向外传播,当波传到小木条处时,小木条将()A. 随波纹漂向湖岸B. 波纹传到小木条处,小木条仍不动C. 向波源处漂动D. 在原来位置做上下振动3.分析下列物理现象:①“闻其声而不见其人”;②雷声轰鸣不绝;③当正在鸣笛的火车向着我们急驶而来时,我们听到汽笛声的音调变高。

这些物理现象分别属于波的()A. 折射、干涉、多普勒效应B. 衍射、多普勒效应、干涉C. 折射、衍射、多普勒效应D. 衍射、反射、多普勒效应4.周期为2.0s的简谐横波沿x轴传播,该波在某时刻的图象如图所示,此时质点P沿y轴负方向运动,则该波()A. 沿x轴正方向传播,波速v=20m/sB. 沿x轴正方向传播,波速v=10m/sC. 沿x轴负方向传播,波速v=20m/sD. 沿x轴负方向传播,波速v=10m/s5.一列简谐横波沿x轴正向传播,传到M点时波形如图所示,再经0.6s,N点开始振动,则该波的振幅A和频率f为()A. A=1mf =5HzB. A=0.5mf =5HzC. A=0.5mf =2.5HzD. A=1mf =2.5Hz6.如图所示,S1和S2是两个相干波源,其振幅均为A,周期均为T.实线与虚线分别表示两列波的波峰和波谷。

此刻,c是波谷与波谷的相遇点,下列说法中正确的是()A. a处质点始终处于离平衡位置2A处B. 随着时间的推移,c处的质点将向右移动C. 从该时刻起,经过T,c处的质点将通过平衡位置D. 若S2不动,S1沿S1b连线向b运动,则b处质点仍然始终处于平衡位置7.某横波在介质中沿x轴传播,图甲为t=0.75 s时的波形图,图乙为P点(x=1.5 m处的质点)的振动图象,那么下列说法正确的有A. 该波向右传播,波速为2 m/sB. 质点L与质点N的运动方向总相反C. t=1.0 s时,质点P处于平衡位置,并正在往y轴正方向运动D. 在0.5 s时间内,质点P向右运动了1 m8.图甲为一列简谐波在t=0.10s时刻的波形图,P是平衡位置为x=1.0m处的质点,Q是平衡位置为x=4.0m处的质点,图乙为质点Q的振动图象,则()A. 在t=0.25s时,质点P的速度方向为y轴正方向B. 质点Q简谐运动的表达式为x=10sin t(cm)C. 从t=0.10s到t=0.20s,该波沿x轴正方向传播了4mD. 从t=0.10s到t=0.25s,质点P通过的路程为30cm9.某地区地震波中的横波和纵波传播速率分别约为4km/s和9km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(如图).在一次地震中,震源在地震仪下方,观察到两振子相差5s开始振动,则()A. H先开始振动,震源距地震仪约25kmB. P先开始振动,震源距地震仪约25kmC. H先开始振动,震源距地震仪约36kmD. P先开始振动,震源距地震仪约36km10.如图表示产生机械波的波源O做匀速运动的情况,图中的圆表示波峰,观察到波的频率最低的位置是()A. AB. BC. CD. D二、多选题(本大题共4小题,共16分)11.对于如图所示的两个图象,下列判断中正确的是()A. 图甲表示振动图象,且P在向上振动B. 图乙表示振动图象,且Q在向上振动C. 图甲表示波动图象,图乙表示振动图象D. 图甲表示振动图象,图乙表示波动图象12.一列向右传播的简谐横波,当波传到x=2.0处的P点时开始计时时,该时刻波形如图所示,t=0.9s时,观测到质点P第三次到达波峰位置,下列说法正确的是()A. 波速为0.5m/sB. 经过1.4s质点P运动的路程为70cmC. t=1.6s时,x=4.5m处的质点Q第三次到达波谷D. 与该波发生干涉的另一列简谐横波的频率一定为2.5Hz13.甲、乙两列横波在同一介质中分别从波源M、N两点沿x轴相向传播,波速为2m/s,振幅相同;某时刻的图象如图所示。

2020年高考物理多选题考前押题40题(详解答案)

2020年高考物理多选题考前押题40题(详解答案)

高考物理多选题考前押题40题1.2022年第24届冬季奥林匹克运动会将在北京举行,跳台滑雪是冬奥会的比赛项目之一.如图所示为一简化后的跳台滑雪的雪道示意图,运动员从O 点由静止开始,在不借助其他外力的情况下,自由滑过一段圆心角为60°的光滑圆弧轨道后从A 点水平飞出,然后落到斜坡上的B 点.已知A 点是斜坡的起点,光滑圆弧轨道半径为40 m ,斜坡与水平面的夹角θ=30°,运动员的质量m =50 kg ,重力加速度g =10 m/s 2,忽略空气阻力.下列说法正确的是( )A .运动员从O 点运动到B 点的整个过程中机械能守恒B .运动员到达A 点时的速度为20 m/sC .运动员到达B 点时的动能为10 kJD .运动员从A 点飞出到落到B s2.如图为一列沿x 轴正向传播的简谐横波在t =0时刻的图象,位于坐标原点的振源振动周期为1s .以下说法正确的是( )A .质点b 的振幅为0B .质点b 的周期为1sC .经过0.25s ,质点b 沿x 轴正向移动0.5mD .从t =0时刻起,质点a 比质点c 先回到平衡位置E. 在t =0时刻,质量相等的质点a 、c 所受的回复力大小之比为1:23.如图所示,斜面ABC 竖直固定放置,斜边AC 与一光滑的圆弧轨道DEG 相切,切点为D ,AD 长为tan RL θμ=-,圆弧轨道圆心为O ,半径为R ,DOE θ∠=,90EOG ∠=︒,OG 水平。

现有一质量为m 、可视为质点的滑块从A 点由静止下滑,滑块与斜面间的动摩擦因数为μ,重力加速度为g ,则关于滑块的运动,下列说法正确的是( )A .滑块经过E 点时对轨道的最小压力为mgB .滑块下滑后将会从G 点飞出C .滑块第二次经过E 点时对轨道的压力大小为3mgD .滑块在斜面上经过的总路程为()tan tan R θμθμ- 4.如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,固定在水平面上,导轨弯曲部分光滑,平直部分粗糙,右端接一个阻值为R 的定值电阻,平直部分导轨左侧区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场。

高考物理2020试题答案

高考物理2020试题答案

高考物理2020试题答案2020年高考物理试题答案解析一、选择题1. 根据牛顿第二定律,物体的加速度与作用力成正比,与其质量成反比。

因此,当物体质量减半,作用力翻倍时,物体的加速度将是原来的多少倍?答案是4倍。

2. 在电路中,串联电阻的总阻值等于各个电阻之和。

并联电阻的总阻值的倒数等于各个电阻倒数之和。

所以,对于给定的电阻值,选择并联方式会使总阻值变小。

3. 光的折射定律表明,入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦值之比等于两种介质的折射率之比。

因此,当光从光密介质进入光疏介质时,折射角会大于入射角。

4. 电磁感应定律是法拉第发现的,它表明在闭合回路中,感应电动势的大小与穿过回路的磁通量的变化率成正比。

而楞次定律则说明了感应电流的方向,总是这样的,它的效果是反抗引起感应电流的磁通量的变化。

二、填空题1. 物体做匀速圆周运动时,所受的向心力是由其他力提供的,向心加速度的大小为物体质量与速度平方的乘积除以圆周的半径。

2. 牨定滑轮的特点是它不省力,但可以改变力的方向。

动滑轮则可以省一半的力,不过通常需要移动整个滑轮系统。

3. 欧姆定律表明,电阻中的电流与两端的电压成正比,与电阻值成反比。

因此,当电阻值固定时,电压增加会导致电流增加。

三、计算题1. 一个质量为2kg的物体受到一个水平方向的力F=10N,求物体的加速度。

根据牛顿第二定律,加速度a=F/m=10N/2kg=5m/s²。

2. 一个电路由一个电阻R1=5Ω和一个电阻R2=10Ω串联组成,求电路的总阻值。

根据串联电阻的计算方法,总阻值R=R1+R2=5Ω+10Ω=15Ω。

3. 一束光线从折射率为1.2的介质入射到空气中,入射角为30°,求折射角。

根据折射定律,sin折射角=sin入射角/折射率,所以sin折射角=sin30°/1.2,得到折射角约为19.47°。

四、实验题1. 在测量物体加速度的实验中,可以使用打点计时器来记录物体在不同时间的位置。

2020年高考物理专题复习功和功率问题归纳练习试题

2020年高考物理专题复习功和功率问题归纳练习试题

2020年高考物理专题复习:功和功率问题归纳练习题1. 如图所示,重球m用一条不可伸长的轻质细线拴住后悬于O点,重球置于一个斜面不光滑的斜劈M上,用水平力F向左推动斜劈M在光滑水平桌面上由位置甲匀速向左移动到位置乙,在此过程中,正确的说法是()A. M、m间的摩擦力对m不做功B. M、m间的摩擦力对m做负功C. F对M所做的功与m对M所做的功的绝对值相等D. M、m间的弹力对m所做的功与对M所做的功的绝对值不相等2. 下表列出了某种型号轿车的部分数据,根据表中数据,下列说法正确的是()××型轿车(部分数据)A. F图为轿车中用于改变车速的排挡,手推变速杆到达不同挡位,可获得不同的运行速度,从“1~5”逐挡速度增大,R是倒车挡,轿车要以最大动力上坡,变速杆应推至5挡B. 该车以额定功率和最高速度运行时,轿车的牵引力为3.0×103NC. 如果把0~100km/h的加速过程看作匀加速直线运动,则此过程中汽车的加速度约为2m/s2D. 如果把0~100km/h的加速过程看作匀加速直线运动,则此过程中汽车的最大功率为140kW3. 一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a和速度的倒数(1/v)图象如图所示,若已知汽车的质量,则根据图象所给的信息,不能求出的物理量是()A. 汽车的功率B. 汽车行驶的最大速度C. 汽车所受到的阻力D. 汽车运动到最大速度所需的时间4. 12月福厦动车组进入试运行阶段,把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车厢便叫做动车。

而动力组就是几节自带动力的车厢加几节不带动力的车厢编成一组。

带动力的车厢叫动车,不带动力的车厢叫拖车,设动车组运行过程中的阻力与质量成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等,若开一节动车带三节拖车时,最大速度为120km/h;改为开五节动车带三节拖车时,最大速度为()A. 60 km/hB. 240 km/hC. 300 km/hD. 600 km/h5. 如图甲所示,某同学在水平面上通过水平轻绳拉一质量为m 的小车,运用传感器(未在图中画出)测得此过程中不同时刻小车的速度v 和对轻绳的拉力F ,并描绘出Fv 1-图象。

2020年高考物理一轮复习《电场及带电粒子在电场中的运动问题》练习

2020年高考物理一轮复习《电场及带电粒子在电场中的运动问题》练习

高频考点强化(六)电场及带电粒子在电场中的运动问题(45分钟100分)一、选择题(本题共12小题,每小题6分,共72分。

1~8题为单选题,9~12题为多选题)1.关于静电场下列说法中正确的是( )A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,电荷在该点的电势能越大C.在同一个等势面上的各点,场强的大小必然是相等的D.电势下降的方向就是电场强度的方向【解析】选B。

根据E p=qφ,将负电荷由电势低的地方移到电势高的地方,电势能减小,故A错误;无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,因无穷远处电势能为零,因此电荷在该点的电势能越大,故B正确;在等势面上,电势处处相等,场强不一定相等,故C错误;电势下降最快的方向才是电场强度的方向,故D错误。

2.(2018·宜春模拟)两个固定的等量异种电荷,在它们连线的垂直平分线上有a、b、c三点,如图所示,下列说法正确的是( )A.a点电势比b点电势高B.a、b两点场强方向相同,a点场强比b点小C.一带电粒子(不计重力),在a点无初速度释放,则它将在a、b线上运动D.正负电荷连线上c点场强最大【解析】选B。

等量异种电荷连线的垂直平分线是一条等势线, a点电势与b点电势相等,故A错误;根据电场线与等势面垂直可知,a、b、c三点电场强度方向都与两电荷连线平行,方向相同,根据电场强度矢量合成可知,a点场强比b点小,故B正确;a点场强方向向右,一带电粒子(不计重力)在a点受电场力向左或向右,无初速度释放将向左或向右运动,不可能在a、b线上运动,故C错误;正负电荷连线上c点场强最小,故D错误。

3.(2016·江苏高考)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示。

容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( )A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同【解题指导】解答本题应注意以下四点:(1)电场线的疏密反映电场强度的大小。

2020年高考物理试卷练习题四含解析

2020年高考物理试卷练习题四含解析

2020年高考物理试卷练习题一、选择题1.用水平力拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t1时刻撤去拉力F,物体做匀减速直线运动,到t2时刻停止.其速度—时间图象如图1所示,且α>β,若拉力F做的功为W1,冲量大小为I1;物体克服摩擦阻力F f做的功为W2,冲量大小为I2.则下列选项正确的是( )图1A.W1> W2;I1>I2B.W1<W2;I1>I2C.W1< W2;I1<I2D.W1=W2;I1=I2【答案】D【解析】全过程由动能定理得:W1-W2=0,W1=W2,由动量定理得:I1-I2=0,I1=I2,故D正确.2.如图2甲所示,一足够长的粗糙斜面固定在水平地面上,斜面的倾角θ=37°,现有质量m=2.2 kg 的物体在水平向左的外力F的作用下由静止开始沿斜面向下运动,经过2 s撤去外力F,物体在0~4 s内运动的速度与时间的关系图线如图乙所示.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,则( )图2A.物体与斜面间的动摩擦因数为0.2B.水平外力F=5.5 NC.水平外力F=4 ND.物体在0~4 s内的位移为24 m【答案】C【解析】‘根据v-t图象的斜率表示加速度,则2~4 s内物体的加速度为:a 2=12-84-2m/s 2=2 m/s 2, 由牛顿第二定律有:mg sin θ-μmg cos θ=ma 2,解得:μ=0.5,故A 错误; 0~2 s 内物体的加速度为:a 1=82m/s 2=4 m/s 2, 由牛顿第二定律有:mg sin θ+F cos θ-μ(mg cos θ-F sin θ)=ma 1,解得:F =4 N ,故B 错误,C 正确;物体在0~4 s 内的位移为:x =8×22 m +8+122×2 m=28 m ,故D 错误. 3.如图3,在光滑绝缘水平桌面上,三个带电小球a 、b 和c 分别固定于正三角形顶点上.已知a 、b 带电荷量均为+q ,c 带电荷量为-q ,则( )图3A .ab 连线中点场强为零B .三角形中心处场强为零C .a 所受库仑力方向垂直于ab 连线D .a 、b 、c 所受库仑力大小之比为1∶1∶ 3【答案】D【解析】在ab 连线的中点处,a 、b 两电荷在该点的合场强为零,则该点的场强等于c 在该点的场强,大小不为零,选项A 错误.在三角形的中心处,a 、b 两电荷在该点的场强大小相等,方向夹120°角,则合场强竖直向下,电荷c 在该点的场强也是竖直向下,则三角形中心处场强不为零,选项B 错误.a 受到b 的排斥力沿ba 方向,受到c 的吸引力沿ac 方向,则其合力方向斜向左下方与ab 连线成60°角,选项C 错误.设三角形的边长为l ,a 、b 所受库仑力大小相等,F a =F b =2kq 2l 2cos 60°=kq 2l 2;c 所受库仑力:F c =2kq 2l2cos 30°=3kq 2l 2,则 a 、b 、c 所受库仑力大小之比为1∶1∶3,选项D 正确.4.如图4,两条间距为L 的平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一金属棒垂直放置在两导轨上,且始终与导轨接触良好;在MN 左侧面积为S 的圆形区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 随时间t 的变化关系为B =kt ,式中k 为常量,且k >0;在MN 右侧区域存在一与导轨垂直、磁感应强度大小为B 0、方向垂直纸面向里的匀强磁场.t =0时刻,金属棒从MN 处开始,在水平拉力F 作用下以速度v 0向右匀速运动.金属棒与导轨的电阻及摩擦均可忽略.则( )图4A .在t =t 1时刻穿过回路的总磁通量为B 0Lv 0t 1B .通过电阻R 的电流不是恒定电流C .在Δt 时间内通过电阻的电荷量为kS +B 0Lv 0RΔt D .金属棒所受的水平拉力F 随时间均匀增大【答案】C【解析】根据题意可知,MN 左边的磁场方向与右边的磁场方向相同,那么总磁通量即为金属棒左侧两种磁通量之和,则在t =t 1时刻穿过回路的总磁通量为Φ=Φ1+Φ2=kt 1S +B 0v 0t 1L ,故A 错误;根据法拉第电磁感应定律得E =ΔΦΔt ,结合闭合电路欧姆定律得 I =E R =kS +B 0Lv 0R,故通过电阻R 的电流为恒定电流,B 错误;Δt 时间内通过电阻的电荷量为q =I Δt =ΔΦR =kS +B 0Lv 0RΔt ,故C 正确;金属棒所受的安培力大小F A =B 0IL =(kS +B 0Lv 0)B 0L R ;根据平衡条件得,水平拉力大小等于安培力大小,即为F =(kS +B 0Lv 0)B 0L R,故拉力F 是一个恒量,故D 错误.5.如图5所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是( )图5A .a 球和b 球所组成的系统机械能不守恒B .b 球的速度为零时,a 球的加速度大小也为零C .b 球的最大速度的大小为(2+2)gLD .a 球的最大速度的大小为2gL【答案】C【解析】a球和b球组成的系统没有外力做功,只有a球和b球的动能和重力势能相互转换,因此a球和b球的机械能守恒,A错误;设轻杆L和水平杆L2的夹角为θ,由运动关联可知v b cos θ=v a sin θ,则v b=v a·tan θ,可知当b球的速度为零时,轻杆L处于水平位置且与杆L2平行,则此时a球在竖直方向只受重力mg,因此a球的加速度大小为g,B错误;当杆L和杆L1第一次平行时,球a运动到最下方,球b运动到L1和L2交点位置,球b的速度达到最大,此时a球的速度为0,因此由系统机械能守恒有mg(22L+L)=12mv b2,解得v b=(2+2)gL,C正确;当轻杆L和杆L2第一次平行时,由运动的关联可知此时b球的速度为零,由系统机械能守恒有22mg·L=12mv a2,解得v a=2gL,此时a球具有向下的加速度g,故此时a球的速度不是最大,a球将继续向下做加速度减小的加速运动,到加速度为0时速度达到最大,D错误.6.图6甲所示是工业上探测物件表面层内部是否存在缺陷的涡流探伤技术的原理图.其原理是用通电线圈使物件内产生涡电流,借助探测线圈测定涡电流的改变,从而获得物件内部是否断裂及位置的信息.如图乙所示的是一个由带铁芯的线圈L、开关S和电源连接起来的跳环实验装置,将一个套环置于线圈L上且使铁芯穿过其中,闭合开关S的瞬间,套环将立刻跳起.对以上两个实例的理解正确的是( )图6A.涡流探伤技术运用了电流的热效应,跳环实验演示了自感现象B.能被探测的物件和实验所用的套环必须是导电材料C.金属探伤时接的是交流电,跳环实验装置中接的是直流电D.以上两个实例中的线圈所连接的电源也可以都是恒压直流电源【答案】BC【解析】涡流探伤技术的原理是用电流线圈使物件内产生涡电流,借助探测线圈测定涡电流的改变;跳环实验演示线圈接在直流电源上,闭合开关的瞬间,穿过套环的磁通量仍然会改变,套环中会产生感应电流,会跳动,属于演示楞次定律,故A错误.无论是涡流探伤技术,还是演示楞次定律,都需要产生感应电流,而感应电流的产生需在金属导体内,故B正确.金属探伤时,是探测器中通过交变电流,产生变化的磁场,当金属处于该磁场中时,该金属中会感应出涡流;演示楞次定律的实验中,线圈接在直流电源上,闭合开关的瞬间,穿过套环的磁通量仍然会改变,套环中会产生感应电流,会跳动,故C正确,D错误.7.某国际研究小组借助于智利的天文望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动.此双星系统中质量较小成员能“吸食”另一颗质量较大星体表面物质,导致质量发生转移,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )A .它们之间的万有引力发生变化B .它们做圆周运动的角速度不断变大C .质量较大星体圆周运动轨迹半径变大,线速度也变大D .质量较大星体圆周运动轨迹半径变大,线速度变小【答案】AC【解析】设双星质量分别为M 1、M 2,两者球心之间的距离为L ,圆周运动半径分别为r 1、r 2,它们之间的万有引力为F =G M 1M 2L2,距离L 不变,M 1与M 2之和不变,其乘积M 1M 2变化,则它们的万有引力发生变化,A 正确;依题意,双星系统绕两者连线上某点O 做匀速圆周运动,周期和角速度相同,由万有引力定律及牛顿第二定律:G M 1M 2L 2=M 1ω2r 1,G M 1M 2L 2=M 2ω2r 2,r 1+r 2=L ,联立解得M 1+M 2=ω2L 3G,M 1r 1=M 2r 2,则双星的质量比等于它们做圆周运动半径的反比,故质量较大的星体因质量减小,其轨道半径将增大,又角速度不变,故线速度也增大,B 、D 错,C 对.8.电子在电场中仅受电场力作用运动时,由a 点运动到b 点的轨迹如图7中虚线所示.图中一组平行等距实线可能是电场线,也可能是等势线.下列说法正确的是( )图7A .若a 点的电势比b 点低,图中实线一定是等势线B .不论图中实线是电场线还是等势线,电子在a 点的电势能都比b 点小C .若电子在a 点动能较小,则图中实线是电场线D .如果图中实线是等势线,则电子在b 点电势能较大【答案】CD【解析】若图中实线是电场线,根据粒子运动轨迹可以判断,电子所受电场力水平向右,则电场线向左,a 点电势比b 点低,所以若a 点的电势比b 点低,图中实线可能是电场线,A 错误.若图中实线是电场线,根据A 选项的分析,电场线向左,a 的电势小于b 的电势,根据电势能E p =φ(-e ),电子在电势低的位置电势能大,所以电子在a 点的电势能大于b 点电势能,B 错误.若电子在a 点动能小,说明由a 到b 加速,如果图中实线是电场线,结合A 选项的分析,方向向左,电子受力向右,加速,a 点动能小,C 正确.如果图中实线是等势线,则电场线与等势线垂直,根据电子运动轨迹可以判断电子受力竖直向下,所以由a 到b 电场力做负功,b点动能小,电势能大,D正确.8.某实验小组要测量轻弹簧的劲度系数,实验装置如图8a.将弹簧悬挂在固定铁架台上,毫米刻度尺竖直固定在弹簧旁,在弹簧下端挂上钩码,多次改变钩码质量m,读出钩码静止时固定在挂钩上的指针对应的刻度尺示数l.当钩码质量为200 g时,指针位置如图b所示.用所测数据在m-l坐标系描点如图c.取g =9.8 m/s2.回答下列问题:图8(1)图b中指针对应的刻度尺示数为________ cm:(2)在图c中将钩码质量为200 g时所对应的数据点补上,并作出ml图线;(3)根据图线算出弹簧的劲度系数为________ N/m(结果保留三位有效数字).【答案】(1)18.50(18.48~18.52均可) (2)如图所示(3)23.5~24.8【解析】(1)由题图可知,刻度尺的分度值为0.1 cm,则读数为18.50 cm,误差范围±0.02 cm均可,即答案在18.48~18.52 cm之间均可;(2)钩码质量为200 g时对应的弹簧长度为18.50 cm,图象如图所示(3)根据k=ΔFΔl可知,弹簧的劲度系数k=ΔFΔl=ΔmgΔl=0.3×9.8(22.50-10.50)×10-2N/m=24.5 N/m(答案在23.5~24.8之间均可).9. LED灯的核心部件是发光二极管.某同学欲测量一只工作电压为2.9 V的发光二极管的正向伏安特性曲线,所用器材有:电压表(量程3 V,内阻约3 kΩ),电流表 (用多用电表的直流25 mA挡替代,内阻约为5 Ω),滑动变阻器(0~20 Ω),电池组(内阻不计),电键和导线若干.他设计的电路如图9(a)所示.回答下列问题:图9(1)根据图(a),在实物图(b)上完成连线;(2)调节变阻器的滑片至最________端(填“左”或“右”),将多用电表选择开关拨至直流25 mA挡,闭合电键;(3)某次测量中,多用电表示数如图(c),则通过二极管的电流为________ mA;(4)该同学得到的正向伏安特性曲线如图(d)所示.由曲线可知,随着两端电压增加,二极管的正向电阻________(填“增大”“减小”或“不变”);当两端电压为2.9 V 时,正向电阻为________ kΩ(结果保留两位有效数字);(5)若实验过程中发现,将变阻器滑片从一端移到另一端,二极管亮度几乎不变,电压表示数在2.7~2.9 V 之间变化,试简要描述一种可能的电路故障:_______________________.【答案】 (1)连线如图所示(2)左 (3)15.8~16.2 (4)减小 0.15~0.16 (5)连接电源负极与变阻器的导线断路【解析】(1)根据多用电表红黑表笔的接法“红进黑出”可知,黑表笔接二极管,红表笔接滑动变阻器,滑动变阻器采用分压式接法,则连线如图:(2)为保护电路,开关闭合前需将滑动变阻器的滑片置于最大阻值处,即最左端;(3)多用电表所选量程为25 mA ,则电流表读数为16010mA =16.0 mA(答案在15.8~16.2范围内均可); (4)I -U 图象中,图线斜率表示电阻的倒数,由题图可知,随着电压的增加,斜率逐渐增大,则二极管的电阻逐渐减小;当两端电压为2.9 V 时,电流表示数为19.0 mA ,则电阻大小为R =2.9 V 0.019 A≈0.15 kΩ(答案在0.15~0.16范围内均可);(5)由于二极管的正向电阻约为0.15 kΩ,远大于滑动变阻器的最大阻值,因此若实验中,将变阻器滑片从一端移到另一端,二极管亮度几乎不变,电压表示数在2.7~2.9 V 之间变化,则有可能是滑动变阻器与二极管串联,导致电路中总电阻较大,总电流较小,所以电压表的示数变化较小,故故障可能是连接电源负极与变阻24. (12分)(2019·山西运城市5月适应性测试)如图1所示,在光滑水平地面上放有一质量M =3 kg 带四分之一光滑圆弧形槽的小车,质量为m =2 kg 的小球以速度v 0=5 m/s 沿水平槽口滑上圆弧形槽,槽口距地面的高度h =0.8 m ,不计空气阻力,取重力加速度g =10 m/s 2.求:图1(1)小球从槽口上升到最高点(未离开小车)的过程中,小球对小车做的功W ;(2)小球落地瞬间,小车与小球间的水平间距L .【答案】(1)6 J (2)2 m【解析】(1)小球上升至最高点时,小车和小球的水平速度相等,由小车和小球水平方向动量守恒得:mv 0=(m +M )v ①对小车由动能定理得:W =12Mv 2②联立①②解得:W =6 J(2)小球从槽口上升至最高点,再从最高点回到槽口的过程中,小球和小车水平方向动量守恒: mv 0=mv 1+Mv 2③对小球和小车由功能关系得:12mv 02=12mv 12+12Mv 22④ 联立③④可解得:v 1=-1 m/s ⑤v 2=4 m/s ⑥小球离开小车后,向右做平抛运动,小车向左做匀速运动h =12gt 2⑦L =(v 2-v 1)t ⑧联立⑤⑥⑦⑧可得:L =2 m.10.如图2所示,在xOy 坐标系中有圆柱形匀强磁场区域,其圆心在O ′(R,0),半径为R ,磁感应强度大小为B ,磁场方向垂直纸面向里.在y ≥R 范围内,有方向向左的匀强电场,电场强度为E .有一带正电的微粒平行于x 轴射入磁场,微粒在磁场中的偏转半径刚好也是R .已知带电微粒的电荷量为q ,质量为m ,整个装置处于真空中,不计重力.图2(1)求微粒进入磁场的速度大小;(2)若微粒从坐标原点射入磁场,求微粒从射入磁场到再次经过y 轴所用时间;(3)若微粒从y 轴上y =R 2处射向磁场,求微粒以后运动过程中距y 轴的最大距离. 【答案】 (1)qBR m (2)πm 2qB+2mR qE (3)R +qB 2R 28mE【解析】 (1)微粒射入磁场后做圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2R解得v =qBR m; (2)微粒从原点射入磁场,因在磁场中轨迹半径也为R ,所以微粒经14圆周后以速度v 垂直于电场方向进入电场,微粒在电场中做类平抛运动,轨迹如图甲所示微粒在磁场中的运动时间为t 1=T 4=14×2πR v =πm 2qB微粒在电场中做类平抛运动,沿电场方向R =12·qE mt 22 解得t 2=2mRqE微粒再次经过y 轴需要的时间为:t =t 1+t 2=πm 2qB +2mR qE(3)微粒从y 轴上y =R 2处射向磁场,微粒运动轨迹如图所示,设微粒在P 点射入磁场,入射点为P ,轨迹圆心为O 2,如图乙所示在△APO ′中∠AO ′P =30°,∠APO ′=60°,连接O 2O ′,因O 2P =O ′P =R ,∠O 2PO ′=120°,则∠PO ′O 2=30°,两圆相交,关于圆心连线对称,设出射点为Q ,由对称知∠O 2O ′Q =30°,出射点Q 必位于O ′点正上方.由于∠PO 2Q =60°,所以微粒从磁场中出射方向与x 轴成θ=60°.微粒在电场中沿x 轴正方向做初速度为v 0x =v cos θ的匀减速运动,加速度大小为a =qE m 在电场中向右运动的最远距离x m =v 0x 22a由以上三式及v =qBR m 可解得x m =qB 2R 28mE运动过程中距y 轴的最远距离为s =R +x m =R +qB 2R 28mE. 10.关于热现象,下列说法正确的是________.A .热量不能自发地从低温物体传到高温物体B .物体速度增大,则组成物体的分子动能增大C .物体的温度或者体积变化,都可能引起物体内能变化D .相同质量的两个物体,升高相同温度,内能增加一定相同E .绝热密闭容器中一定质量气体的体积增大,其内能一定减少(2)(10分)如图3甲所示,横截面积为S ,质量为M 的活塞在汽缸内封闭着一定质量的理想气体,现对汽缸内气体缓慢加热,使其温度从T 1升高了ΔT ,气柱的高度增加了ΔL ,吸收的热量为Q ,不计汽缸与活塞的摩擦,外界大气压强为p 0,重力加速度为g ,则:图3①此加热过程中气体内能增加了多少?②若保持缸内气体温度不变,再在活塞上放一砝码,如图乙所示,使缸内气体的体积又恢复到初始状态,则放入砝码的质量为多少?【答案】 (1)ACE (2)①Q -(p 0S +Mg )ΔL ②(p 0S +Mg )ΔT gT 1【解析】(1)根据热力学第二定律可知热量不能自发地从低温物体传到高温物体,A 正确;物体分子平均动能的标志是温度,与宏观速度无关,B 错误;物体内能等于所有分子的动能与所有分子势能的和,分子平均动能与温度有关,而分子势能与体积有关,所以物体内能与温度和体积有关,C 正确;根据C 选项的分析,升高相同温度,但体积关系未知,所以内能变化无法判断,D 错误;根据热力学第一定律ΔU =Q +W ,容器绝热,Q =0,气体体积增大,所以气体对外做功,W <0,所以ΔU <0,内能减小,E 正确.(2)①设汽缸内气体的温度为T 1时压强为p 1,活塞受重力、大气压力和缸内气体的压力作用而平衡,则:Mg +p 0S =p 1S气体膨胀对外界做功为:W =p 1S ΔL根据热力学第一定律得到:Q -W =ΔU联立可以得到:ΔU =Q -(p 0S +Mg )ΔL②设放入砝码的质量为m ,缸内气体的温度为T 2时压强为p 2,系统受重力、大气压力和缸内气体的压力作用而平衡,得到:(M +m )g +p 0S =p 2S根据查理定律:p 1T 1=p 2T 2联立可以得到:m =(p 0S +Mg )ΔT gT 1. 11.如图4所示,两束平行的黄光射向截面ABC 为正三角形的玻璃三棱镜,已知该三棱镜对该黄光的折射率为2,入射光与AB 界面夹角为45°,光经三棱镜后到达与BC 界面平行的光屏PQ 上,下列说法中正确的是________.图4A .两束黄光从BC 边射出后仍是平行的B .黄光经三棱镜折射后偏向角为30°C .改用红光以相同的角度入射,出射光束仍然平行,但其偏向角大些D .改用绿光以相同的角度入射,出射光束仍然平行,但其偏向角大些E .若让入射角增大,则出射光束不平行(2)(10分)一列沿x 轴传播的简谐横波,t =0时刻的波形如图5所示,介质中x =6 m 处的质点P 沿y 轴方向做简谐运动的表达式为y =0.2cos (4πt ) m .求:图5①该波的传播速度;②介质中x =10 m 处的质点Q 第一次到达波谷的时间.【答案】 (1)ABD (2)①48 m/s ②13 s 或16s 【解析】(1)如图所示,由折射率公式n =sin i sin r 可知r =30°,由几何关系可知折射光在三棱镜内平行于底边AC ,由对称性可知其在BC 边射出时的出射角也为i =45°,因此光束的偏向角为30°,且两束光平行,则A 、B 正确;由于同种材料对不同的色光的折射率不同,相对于黄光而言红光的折射率小,绿光的折射率较大,因此折射后绿光的偏向角大些,红光的偏向角小些,C 错误,D 正确;若让入射角增大,则折射角按一定的比例增大,出射光束仍然平行,则E 错误.(2)①由题图可知,波长λ=24 m ,由质点P 的振动方程可知,角速度ω=4π rad/s则周期T =2πω=0.5 s 故该波的传播速度v =λT=48 m/s②若波沿+x 方向传播,t =0时刻,质点Q 与左侧相邻的波谷的水平距离为x 1=16 m 该波谷传播到质点Q 处时,质点Q 第一次到达波谷,经过时间t =x 1v =13s 若波沿-x 方向传播,t =0时刻,质点Q 与右侧相邻的波谷的水平距离为x 2=8 m该波谷传播到质点Q 处时,质点Q 第一。

备战2020年高考物理计算题专题复习《匀变速直线运动及其规律》(解析版)

备战2020年高考物理计算题专题复习《匀变速直线运动及其规律》(解析版)

《匀变速直线运动及其规律》一、计算题1.我国自行研制、具有完全自主知识产权的新一代大型喷气式客机C919首飞成功后,拉开了全面试验试飞的新征程。

假设飞机在水平跑道上的滑跑是初速度为零的匀加速直线运动,当位移时才能达到起飞所要求的速度。

已知飞机质量,滑跑时受到的阻力为自身重力的倍,重力加速度取求飞机滑跑过程中加速度a的大小;牵引力的平均功率P。

2.如图所示,水平桌面上有一薄木板,它的右端与桌面的右端相齐.薄木板的质量,长度在薄木板的中央有一个小滑块可视为质点,质量小滑块与薄木板之间的动摩擦因数,小滑块、薄木板与桌面之间的动摩擦因数相等,皆为设小滑块与薄木板之间的滑动摩擦力等于它们之间的最大静摩擦力.某时刻起对薄木板施加一个向右的拉力使木板向右运动.求:当外力时,m与M的加速度各为多大?若使小滑块与木板之间发生相对滑动,拉力F至少是多大?若使小滑块脱离木板但不离开桌面,求拉力F应满足的条件.3.如图所示,在与水平方向成的斜向上拉力F作用下,质量为的小物块从静止开始沿水平地面做匀加速直线运动,经2s运动的距离为6m,随即撤掉F,小物块运动一段距离后停止。

已知物块与地面之间的动摩擦因数,,,。

求:物块运动的最大速度;的大小。

4.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为,传送带AB长度足够长,传送皮带轮以大小为的恒定速率顺时针转动。

一包货物以的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数,且可将货物视为质点。

求货物刚滑上传送带时加速度为多大?经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?,已知,5.一个倾角为的斜面固定在水平面上,一个质量为的小物块可视为质点以的初速度由底端沿斜面上滑,小物块与斜面的动摩擦因数若斜面足够长已知,,g取,求:小物块沿斜面上滑时的加速度大小小物块上滑的最大距离;小物块返回斜面底端时的速度大小.6.一辆汽车和一辆自行车在同一条公路不同车道上作同方向的直线运动,已知自行车以的速度匀速前进,汽车以的速度匀速前进,某一时刻汽车与自行车相遇,此时汽车立即刹车,汽车刹车过程中的加速度大小为,求汽车经过多长时间停止运动?两车从第一次相遇到再次相遇的过程中,它们之间距离的最大值为多少?两车经过多长时间再次相遇?7.如图,两个滑块A和B的质量分别为和,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为;木板的质量为,与地面间的动摩擦因数为。

2020湖南物理高考真题

2020湖南物理高考真题

2020湖南物理高考真题2020年湖南省高考物理试题,涵盖了力学、热学、电磁学、光学等多个领域的知识点,考查了考生对物理学基础知识的掌握能力,以及对物理学知识的应用和分析能力。

以下是部分试题及解析:第一大题:单选题1. (2020·湖南)某学生制作了一个小电动玩具。

小电动玩具的电源是两节 R03 电池串电组成。

该小电动玩具工作电压为 3 V,工作电流为 1 A。

如果用两节 R03 电池串电的电动玩具工作时间为 24 h,则这两节R03 电池的容量为()。

解析:工作功率 P=UI=3V×1A=3W,工作时间为 24h,所以工作量为 P×t=3W×24h=72Wh=72W×h,R03 电池的容量为72Wh/2=36Wh=36J/A=36Ah。

2. (2020·湖南)电流过流保护器是一种常用的电子保护组件。

电流过大时,可使保护器于瞬间自动切断电路,实现对电路设备和人的安全保护。

关于电流过流保护器的作用,正确的是()。

A. 在电路中用于防止电源过电压B. 在电路中用于防止过大电流而对电源起到保护作用C. 电流过流保护器能自动维持过流状态,保护元器件D. 电流过流保护器只是在电源发生短路时才会保护电路解析:电流过流保护器的作用主要是用来防止过大电流对电路和设备造成损坏,故选 B。

第二大题:多选题1. (2020·湖南)如图甲所示,一个半径为 R 的扁球面镜放置于光源 O 和焦点 F 之间。

点 A、点 B 和点 C 分别是球面镜上的三个不同位置。

若 F 点处平行光束反射后的汇聚光束对应于 A 点,涓点 B 和加点C,则 C 点和 A 点之间的光束关系是()。

A. 平行光束B. 会聚光束C. 发散光束D. 反射光束解析:球面镜上的点 C 在球面镜的焦点 F 之上,所以汇聚的光线会经过点 C,然后会继续向右方发散,故选 C。

2. (2020·湖南)一名学生使用小球(小球的物质质量为 m、半径为 r)以初速度 V0 向着垂直抛出角度为θ 的斜面抛出,出发点为斜面上方的 A 点。

2020年高考物理试题(含答案)

2020年高考物理试题(含答案)

2020年普通高等学校招生全国统一考试理科综合之物理部分试题二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。

焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。

焊接过程中所利用的电磁学规律的发现者为A .库仑B .霍尔C .洛伦兹D .法拉第15.若一均匀球形星体的密度为ρ,引力常量为G ,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是A .3πG ρB .4πG ρC .13πG ρ D .14πG ρ16.如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。

若摩托车经过a 点时的动能为E 1,它会落到坑内c 点。

c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。

21E E 等于A .20B .18C .9.0D .3.017.CT 扫描是计算机X 射线断层扫描技术的简称,CT 扫描机可用于对多种病情的探测。

图(a )是某种CT 机主要部分的剖面图,其中X 射线产生部分的示意图如图(b )所示。

图(b )中M 、N 之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X 射线(如图中带箭头的虚线所示);将电子束打到靶上的点记为P 点。

则A .M 处的电势高于N 处的电势B .增大M 、N 之间的加速电压可使P 点左移C .偏转磁场的方向垂直于纸面向外D .增大偏转磁场磁感应强度的大小可使P 点左移18.氘核21H 可通过一系列聚变反应释放能量,其总效果可用反应式241112106H 2He 2H+2n+43.15MeV →+表示。

2020年全国统一高考物理试题(新课标Ⅲ)(解析版)

2020年全国统一高考物理试题(新课标Ⅲ)(解析版)

绝密★启用前2020年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

二、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.如图,水平放置圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。

圆环初始时静止。

将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到()的A. 拨至M端或N端,圆环都向左运动B. 拨至M端或N端,圆环都向右运动C. 拨至M端时圆环向左运动,拨至N端时向右运动D. 拨至M端时圆环向右运动,拨至N端时向左运动【答案】B【解析】【详解】无论开关S 拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。

故选B 。

2.甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。

已知甲的质量为1kg ,则碰撞过程两物块损失的机械能为( )A. 3 JB. 4 JC. 5 JD. 6 J【答案】A 【解析】【详解】由v -t 图可知,碰前甲、乙的速度分别为5m /s v =甲,=1m /s v 乙;碰后甲、乙的速度分别为1m /s v '=-甲,=2m /s v '乙,甲、乙两物块碰撞过程中,由动量守恒得 +=+m v m v m v m v ''甲甲乙乙甲甲乙乙 解得6kg m =乙则损失的机械能为22221111+--2222E m v m v m v m v ''∆=甲甲乙乙甲甲乙乙 解得3J E ∆=故选A 。

2020年高考物理训练试题

2020年高考物理训练试题

2020年高考物理训练试题一、选择题(1~7每小题4分,8、9每小题6分,共40分。

)1.如图所示,两束不同的单色光A 1和B 1,分别沿半径射入截面为半圆形的玻璃砖后,都经过圆心O 分别沿OA 2方向和OB 2射出,且两入射光之间的夹角和两出射光之间的夹角都相于θ,该角小于10°。

下列说法中正确的是 ( )A .在玻璃中B 1光传播的速度较大 B .A 1光的光子能量较小C .用A 1、B 1光分别做双缝干涉实验,实验条件相同,则A 1光在屏上形成的明条纹宽度较大D .若用B 1光照射某金属板能产生光电效应,则用A 1光照射该金属板也一定能产生光电效应。

2.如图所示。

小车的上面是中突的两个对称的曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。

今有一个可以看作质点的小球,质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。

关于这个过程,下列说法正确的是( ) A .小球滑离小车时,小车又回到了原来的位置 B .小球在滑上曲面的过程中,对小车压力的冲量大小是2mvC .小球和小车作用前后,小车和小球的速度可能没有变化D .车上曲面的竖直高度不会大于gv 423、在光滑的水平地面上静止着一个斜面体,其质量为m 2,斜面是一个光滑的曲面,斜面体高为h ,底边长为a ,如图所示。

今有一个质量为m 1(12nm m =)的小球从斜面体的顶端自静止开始下滑,小球滑离斜面体的下端时速度在水平方向,则下列说法正确的是( )A .小球在下滑中,两者的动量总是大小相等方向相反B .两者分开时斜面体向左移动的距离是1+n a C .分开时小球和斜面体的速度大小分别是12+n ngh和()12+n n ghD .小球在下滑中斜面体弹力对它做的功为11+-n ghnm 4.如图1所示,虚线是一个处在竖直平面内的圆,DB 是过圆心的光滑直杆,DA 、DC 也是同样的光滑直杆,且与DB 的夹角都是30°,DA 与水平线DE 所成的角度也是30°。

2020年高考物理试卷练习题十含解析

2020年高考物理试卷练习题十含解析

2020年高考物理试卷练习题一、选择题1.如图1甲,先将开关S掷向1,给平行板电容器C充电,稳定后把S掷向 2,电容器通过电阻R放电,电流传感器将电流信息导入计算机,屏幕上显示出电流I随时间t变化的图象如图乙所示.将电容器C 两板间的距离增大少许,其他条件不变,重新进行上述实验,得到的I-t图象可能是( )图1答案 C解析将电容器两极间距离增大,根据平行板电容器决定式:C=εr S4πkd,可知电容变小,则充电电荷量:Q=CU变小,但充电完成后,电容器两端电压仍与电源电压U相等,所以再次放电,初始时刻的电流不变,但电荷量变小,I-t图面积代表电荷量,所以面积比题图乙小,A、B、D错误,C正确.2.质谱仪的原理如图2所示,虚线AD上方区域处在垂直纸面向外的匀强磁场中,C、D处有一荧光屏.同位素离子源产生a、b两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a离子恰好打在荧光屏C点,b离子恰好打在D点.离子重力不计.则( )图2A.a离子质量比b的大B.a离子质量比b的小C.a离子在磁场中的运动时间比b的长D.a、b离子在磁场中的运动时间相等答案 B解析 设离子进入磁场的速度为v ,在电场中qU =12mv 2,在磁场中Bqv =m v 2r ,联立解得:r =mv Bq =1B 2mUq,由题图知,b 离子在磁场中运动的轨道半径较大,a 、b 为同位素,电荷量相同,所以b 离子的质量大于a 离子的,所以A 错误,B 正确;在磁场运动的时间均为半个周期,即t =T 2=πmBq,由于b 离子的质量大于a 离子的质量,故b 离子在磁场中运动的时间较长,C 、D 错误.3.如图3甲所示,理想变压器原、副线圈的匝数比为3∶1,L 1、L 2、L 3为三只规格均为“9 V,3 W”的灯泡,各电表均为理想交流电表,定值电阻R 1=9 Ω.输入端交变电压u 随时间t 变化的图象如图乙所示,三只灯泡均正常发光,则( )图3A .电压u 的瞬时表达式为u =362sin πt (V)B .电压表的示数为33 VC .电流表的示数为1 AD .定值电阻R 2=3 Ω 答案 B解析 由题图乙知,交变电流的周期为0.02 s ,ω=2πT=100π rad/s,电压的瞬时值u =362sin100πt (V),故A 错误;灯泡正常发光,每个灯泡的电流为I =P U =13 A ,故副线圈的电流I 2=3I =1 A ,根据变流规律:I 1I 2=n 2n 1,解得原线圈电流I 1=13A ,所以C 错误;电阻R 1的电压U R 1=I 1R 1=3 V ,由题图乙知输入端电压的有效值为36 V ,则变压器原线圈的电压U 1=36 V -3 V =33 V ,所以电压表的读数为33 V ,故B 正确;根据变压规律:U 2U 1=n 2n 1,可得副线圈的电压U 2=11 V ,电阻R 2两端的电压为U R 2=U 2-U L =11 V -9 V =2 V ,故R 2=U R 2I 2=2 Ω,所以D 错误. 4.某行星外围有一圈厚度为d 的光带,简化为如图4所示模型,R 为该行星除光带以外的半径.现不知光带是该行星的组成部分还是环绕该行星的卫星群,当光带上的点绕行星中心的运动速度v ,与它到行星中心的距离r ,满足下列哪个选项表示的图象关系时,才能确定该光带是卫星群( )图4答案 D解析 若光带是卫星群,则应该满足G Mm r 2=m v 2r ,即v 2=GM r ,即v 2-1r图象应该是过原点的直线,故选D.5.如图5所示,在粗糙的水平地面上,物块A 、B 在水平外力F 的作用下都从静止开始运动,运动过程中的某一时刻,物块A 、B 的速度v A 、v B 和加速度a A 、a B 大小关系可能正确的是( )图5A .v A >vB ,a A =a B B .v A <v B ,a A <a BC .v A =v B ,a A =a BD .v A >v B ,a A >a B答案 BC解析 由题意知,A 、B 之间无相对滑动一起加速时,v A =v B ,a A =a B ;发生相对运动时,一定是:v A <v B ,a A <a B ,所以B 、C 正确.6.如图6所示,水平地面上有一倾角为θ的光滑斜面(底面粗糙),一轻质弹簧一端固定在竖直墙壁上的O 点,另一端连接一质量为m 的木块.开始时,把木块放在斜面上某位置,木块和斜面均静止不动,此时弹簧水平且处于压缩状态.已知重力加速度为g ,则下列说法正确的是( )图6A .开始时,弹簧弹力大小等于mg tan θB .开始时,斜面受到三个力的作用C .若将O 点稍微下移一点,木块仍可能在原位置静止D .若将O 点稍微上移一点,木块仍可能在原位置静止 答案 AC解析 对木块受力分析,根据平衡知识可知,开始时,弹簧弹力大小F =mg tan θ,选项A 正确;开始时,斜面受到:重力、地面的支持力和摩擦力、木块的压力四个力的作用,选项B 错误;若将O 点稍微下移一点,则弹簧长度增加,弹力减小,由图可知,木块仍可能在原位置静止,选项C 正确;若将O 点稍微上移一点,弹簧弹力仍减小,但是木块平衡需要的弹力F 要增加,可知木块不可能在原位置静止,选项D 错误.7.如图7所示,在竖直平面内有一匀强电场,一带电荷量为+q 、质量为m 的小球在力F 的作用下,沿图中虚线由M 至N 做竖直向上的匀速运动.已知力F 和MN 之间的夹角为45°,MN 之间的距离为d ,重力加速度为g .则下列说法正确的是( )图7A .电场的方向可能水平向左B .电场强度E 的最小值为2mg 2qC .当qE =mg 时,小球从M 运动到N 时电势能变化量为零D .F 所做的功一定为22mgd 答案 BC解析 小球受力情况:小球受到重力mg 、拉力F 与电场力qE ,因为小球做匀速直线运动,合力为零,则F 与qE 的合力与mg 大小相等、方向相反,作出F 与qE 的合力,如图所示,根据图可知,电场力方向指向右侧,由于小球带正电,电场方向与电场力方向相同,故指向右侧,故A 错误;由图可知,当电场力qE 与F 垂直时,电场力最小,此时场强也最小.则得:qE =mg sin θ,所以电场强度的最小值为E =mg sin θq =2mg2q,故B 正确;当mg =Eq 时,根据几何关系,电场力水平向右,与MN 垂直,小球从M 运动到N 电场力不做功,即小球从M 运动到N 时电势能变化量为零,故C 正确;由于电场力变化时,F 大小也跟随着改变,所以做功也不能确定具体值,故D 错误.8.甲、乙两车在一平直公路上从同一地点沿同一方向沿直线运动,它们的v -t 图象如图8所示.下列判断正确的是( )图8A .乙车启动时,甲车在其前方50 m 处B .乙车超过甲车后,两车不会再相遇C .乙车启动10 s 后正好追上甲车D .运动过程中,乙车落后甲车的最大距离为75 m 答案 ABD解析 根据v -t 图线与时间轴包围的面积表示位移,可知乙在t =10 s 时启动,此时甲的位移为x =12×10×10 m=50 m ,即甲车在乙前方50 m 处,故选项A 正确;乙车超过甲车后,由于乙的速度大,所以不可能再相遇,故选项B 正确;由于两车从同一地点沿同一方向沿直线运动,当位移相等时两车才相遇,由题图可知,乙车启动10 s 后位移小于甲的位移,还没有追上甲,故选项C 错误;当两车的速度相等时相距最远,最大距离为:s max =12×(5+15)×10 m -12×10×5 m=75 m ,故选项D 正确.9.为了验证矩形线框自由下落过程中上、下边经过光电门时机械能是否守恒,使用了如图9所示的实验装置,已知矩形线框用直径为d 的圆形材料做成.某次实验中矩形线框下边和上边先后经过光电门的挡光时间分别为t 1和t 2.图9(1)为完成该实验,还需通过操作测量相应的物理量是________. A .用天平测出矩形线框的质量mB .用刻度尺测出矩形线框下边离光电门的高度hC .用刻度尺测出矩形线框上、下边之间的距离LD .用秒表测出线框上、下边通过光电门的时间间隔Δt(2)如果满足关系式________________(请用测量的物理量和已知量来表示,重力加速度为g ),则自由下落过程中线框的机械能守恒.答案 (1)C (2)(dt 2)2-(d t 1)2=2gL解析 (1)根据机械能守恒的表达式,可知不需要测量其质量,故A 错误;实验中需要测量过程中重力势能的减小量,因此需要测量矩形线框上下边之间的距离L ,不需要测量释放时其下边离桌面的高度h ,故B 错误,C 正确;根据机械能守恒定律的表达式,可知不需要测量线框上下边通过光电门的时间间隔Δt ,故D 错误.(2)本实验中用线框上、下边通过光电门的平均速度来代替瞬时速度,故有:v 1=d t 1,v 2=d t 2根据机械能守恒有:mgL =12mv 22-12mv 12即(d t 2)2-(d t 1)2=2gL .10.热敏电阻是传感电路中常用的电子元件.广泛应用于室内空调、电冰箱和微波炉等家用电器中的温度传感器,是利用热敏电阻随温度变化而变化的特性工作的.现在用伏安法研究热敏电阻在不同温度下的伏安特性曲线,要求特性曲线尽可能完整.已知常温下待测热敏电阻的阻值约40~50 Ω.热敏电阻和温度计插入烧杯中,烧杯内有一定量的冷水,其他备用的仪表和器具有:盛有热水的热水杯、直流电源(电动势15 V ,内阻可忽略)、直流电流表(对应不同的量程内阻约为0.2 Ω或1 Ω)、直流电压表(对应不同的量程内阻约为5 kΩ或15 kΩ)、滑动变阻器(0~10 Ω)、开关、导线若干.(1)在图10(a)的方框中用给定的器材画出完整的实验电路图,要求测量误差尽可能小; (2)根据电路图,在实物图上用笔画线做导线进行连线.图10答案 (1)如图所示:(2)见解析图解析 (1)因为测量伏安特性曲线,电压需要从0开始,选择分压电路,根据题中信息可知通过电流表的最大电流I m =E R x=0.375 A ,所以电流表选择小挡位,对应电阻为1 Ω,而电压达到了15 V ,所以电压表选择大挡位15 kΩ,根据R V R x >R x R A,所以采用外接法,可得电路图如图所示(2)根据电路图连接实物图11.如图1所示,两根足够长的光滑金属导轨平行放置在倾角为30°的绝缘斜面上,导轨宽度为L ,下端接有阻值为R 的电阻,导轨处于方向垂直于斜面向上、磁感应强度大小为B 0的匀强磁场中.轻绳一端跨过光滑定滑轮,悬吊质量为m 的小物块,另一端平行于导轨系在质量为m 的金属棒的中点,现将金属棒从PQ 位置由静止释放,金属棒与导轨接触良好且电阻均忽略不计,重力加速度为g .图1(1)求金属棒匀速运动时的速度大小;(2)若金属棒速度为v 0且距离导轨底端x 时开始计时,磁场的磁感应强度B 的大小随时间t 发生变化,使回路中无电流,请推导出磁感应强度B 的大小随时间t 变化的关系式.答案 (1)mgR 2B 02L 2 (2)B =8B 0x8x +8v 0t +gt2解析 (1)金属棒匀速运动时,对物块:F T =mg对金属棒有:F 安+mg sin 30°=F T 又:F 安=B 0IL 由欧姆定律:I =E R=B 0LvR联立解得:v =mgR2B 02L2 (2)当回路中没有电流时,金属棒不受安培力 对金属棒:F T ′-mg sin 30°=ma 对物块:mg -F T ′=ma回路中无电流,回路中的磁通量不变,则:B 0Lx =BL (x +v 0t +12at 2)联立解得:B =8B 0x8x +8v 0t +gt2.25.(18分)(2019·湖南娄底市下学期第二次模拟)某人设计了如图2所示的滑板个性滑道.斜面AB 与半径R =3 m 的光滑圆弧轨道BC 相切于B ,圆弧对应的圆心角θ=37°且过C 点的切线水平,C 点连接倾角α=30°的斜面CD .一滑板爱好者连同滑板等装备(视为质点)总质量m =60 kg.某次试滑,他从斜面上某点P 由静止开始下滑,发现在斜面CD 上的落点Q 恰好离C 点最远.若他在斜面AB 上滑动过程中所受摩擦力F f 与位移大小x 的关系满足F f =90x (均采用国际制单位),忽略空气阻力,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图2(1)P 、B 两点间的距离;(2)滑板在C 点对轨道的压力大小. 答案 (1)4 m (2)1 320 N解析 (1)设爱好者滑到C 点的速度为v C ,平抛过程中水平、竖直方向的位移分别为x 1、y 1 C 到Q 由平抛运动规律有:tan α=y 1x 1=12gt 2v C t =gt2v C ①则t =2v C tan αg②因此x 1=v C t =2v C 2tan αg③l CQ =x 1cos α=2v C 2tan αg cos α④由④式可知v C 越大则l CQ 间距越大,由人和装备在BC 间运动时机械能守恒可知,要使v C 越大就要求v B 越大. 设人和装备在P 、B 间运动时加速度为a ,由牛顿第二定律有mg sin θ-90x =ma ⑤ 得a =mg sin θ-90xm⑥由⑥式可知:人和装备做加速度减小的加速直线运动,当加速度为零时速度v B 最大. 故P 、B 两点间的距离大小为:x =mg sin θ90=4 m ⑦(2)设P 、B 间摩擦力对人做功为W f ,由动能定理有:mgx sin θ+W f =12mv B 2-0⑧而W f =-90x2·x ⑨(或由⑧⑨得mgx sin θ-45x 2=12mv B 2-0)B 、C 间运动时,机械能守恒,有:12mv B 2+mgR (1-cos θ)=12mv C 2⑩ 在C 点F N -mg =m v C 2R解得F N =1 320 N由牛顿第三定律可知滑板在C 点对轨道的压力大小F N ′=1 320 N.12.如图3为分析热机工作过程的卡诺循环,一定质量的理想气体在该循环中经历两个等温过程A →B 、C →D 和两个绝热过程B →C 、D →A ,下列说法正确的是________.图3A .气体从A →B 的过程,容器壁在单位面积上受到气体分子的撞击力变大 B .气体从A →B 的过程,从外界吸收热量C .气体从B →C 的过程,气体分子无规则运动变激烈D .气体从D →A 的过程,内能的增量等于外界对气体做的功E .气体在完成一次循环的过程中对外做功(2) (10分)如图4,水平放置右端开口的绝热汽缸,横截面积为S ,左端有一电阻丝可对气体加热.绝热活塞A (厚度不计)封闭一定质量的理想气体,活塞与汽缸的最大静摩擦力为F fm =12p 0S ,大气压强p 0及室温T 0均不变.初始时刻活塞恰好无摩擦,气体体积为汽缸容积的三分之一,气体温度为T 0.设最大静摩擦力等于滑动摩擦力,现通过电阻丝给气体缓慢加热.图4①温度多大时,活塞开始滑动; ②温度多大时,活塞到达汽缸口. 答案 (1)BDE (2)①32T 0 ②92T 0解析 (1)由题图知,气体从A →B 的过程,体积增大,压强减小,容器壁在单位面积上受到气体分子的撞击力变小,A 错误;从A →B 的过程,温度不变,ΔU =0,体积变大,气体对外界做功W <0,根据ΔU =Q +W ,得Q =-W >0,所以从外界吸收热量,B 正确;因B →C 为绝热过程,所以Q =0,体积增大W <0,故ΔU =Q +W =W ,故ΔU <0,气体内能减小,温度降低,气体分子无规则运动变缓慢,C 错误;从D →A 也是绝热过程,Q =0,体积减小,外界对气体做功,即W >0,ΔU =Q +W =W ,即气体内能的增量ΔU 等于外界对气体做的功W ,D 正确;由题图知,A →B →C 气体对外界做功,做功多少W 1的数值大小为图象与V 轴所围面积(W 1<0),C →D →A 的过程外界对气体做功,做功多少W 2的数值大小为图象与V 轴所围面积(W 2>0),由题图可知|W 1|>|W 2|,故该循环过程的总功为W 1+W 2<0,即气体对外做功,E 正确. (2)①假设活塞开始滑动时封闭的气体压强为p 1,对活塞受力分析,受力平衡得p 1S =p 0S +F fm对封闭的气体,由查理定律得:p 0T 0=p 1T 1解得:T 1=32T 0②设汽缸容积为V ,活塞运动过程中气体的压强不变. 由盖—吕萨克定律得 13V T 1=V T 2解得:T 2=92T 013.波源S 在t =0时刻开始振动,其振动图象如图5所示,在波的传播方向上有P 、Q 两质点,它们到波源S 的距离分别为30 m 和48 m ,测得P 、Q 开始振动的时间间隔为3.0 s .下列说法正确的是________.图5A .Q 质点开始振动的方向向上B .该波的波长为6 mC .Q 质点的振动比波源S 滞后8.0 sD .当Q 质点刚要振动时,P 质点正沿平衡位置向下振动E .Q 质点开始振动后,在9 s 内通过的路程是54 m(2)(10分)如图6所示,一透明玻璃半球竖直放置,OO ′为其对称轴,O 为球心,球半径为R ,球左侧为圆面,右侧为半球面.现有一束平行光从其左侧垂直于圆面射向玻璃半球,玻璃半球的折射率为3,设真空中的光速为c ,不考虑光在玻璃中的多次反射,求:图6①从左侧射入能从右侧射出的入射光束面积占入射面的比例;②从距O 点R 2的入射光线经玻璃半球偏折后直到与对称轴OO ′相交的传播时间. 答案 (1)ACD (2)①13 ②5R 2c解析 (1)由题图可知,波源开始振动的方向向上,所有的质点都做受迫振动,开始振动方向都向上,A 正确;波从P 传到Q 所需时间为3.0 s ,所以波速v =Δx Δt =48-303m/s =6 m/s ,根据振动图象可知,周期为6 s ,所以波长λ=vT =6×6 m=36 m ,B 错误;Q 点到波源的距离为48 m ,所以比波源滞后Δt =Δx v =486s =8 s ,C 正确;P 、Q 间相距18 m ,而波长为36 m ,刚好差半个周期,所以当Q 质点刚要振动时,P 质点正沿平衡位置向下振动,D 正确;振动周期为6 s ,一个周期通过路程s 0=4×5 cm=20 cm,9 s 刚好振动一个半周期,通过路程s =1.5s 0=30 cm ,E 错误.(2)①从左侧圆面垂直入射,不偏折,考虑截面,如图所示,从左侧的A 点入射,光在右侧半球面刚好发生全反射,则由折射定律有:sin θ=1n,n = 3则有sin θ=33,OA =R sin θ=33R 从左侧射入能从右侧射出的光束是以O 为圆心,OA 长为半径的圆,其面积S ′=πOA 2=13πR 2而左侧入射面的面积S =πR 2解得S ′S =13②设距O 点R 2的入射点为B ,射到半球面上的点为C 点,入射角为i ,折射角为r , 在△OBC 中有i =30°,BC =32R 考虑在C 点折射,由折射定律有sin r sin i=n ,代入数据可得r =60° 设从C 点的出射光线交OO ′轴于D 点,由图知在△OCD 中,∠OCD =120°,∠COD =i =30°,可得∠CDO =30°,CD =R光在玻璃中传播速度v =cn =c 3光从B 点传播到D 点的时间t =BC v +CD c将BC =32R ,CD =R 及v =c 3代入解得t =5R 2c .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理复习题
1.在质量为M的小车中挂有一单摆,摆球的质量为m0,小车(和单摆)以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m的静止木块发生碰撞,如图所示,碰撞的时间极短,在碰撞过程中,下列情况可能发生的是()
A.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2
B.小车、木块、摆球的速度都发生变化分别为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3
C.摆球的速度不变,小车和木块的速度变为v1和v2,满足Mv=Mv1+mv2
D.摆球的速度不变,小车和木块的速度变为v′,满足Mv=(M+m)v′
【分析】在小车和木块碰撞的过程中,由于碰撞时间极短,小车和木块组成的系统动量守恒,摆球在瞬间速度不变。

【解答】解:AB、在碰撞过程中,由于惯性,摆球的速度不变。

故AB错误。

C、摆球的速度不变,小车和木块组成的系统动量守恒,若碰后小车和木块的速度变v1
和v2,取向右为正方向,根据动量守恒有:Mv=mv1+mv2.故C正确。

D、摆球的速度不变,小车和木块的速度变为v′,取向右为正方向,根据动量守恒定律
有:Mv=(M+m)v′.故D正确。

故选:CD。

【点评】解决本题的关键合理选择研究对象,知道在碰撞的瞬间前后摆球的速度不变,没有参与碰撞,明确小车和木块组成的系统动量守恒。

第1 页共1 页。

相关文档
最新文档