高中数学第2章平面向量24向量的数量积启发性学案苏教版必修4

合集下载

版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版

版高中数学第二章平面向量24第2课时平面向量数量积的坐标运算学案苏教版

第2课时平面向量数量积的坐标运算学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示ijxy轴的正半轴同向的单位向量.设,轴、是两个互相垂直且分别与iijjij分别是多少?·思考1 ··,,ijaxybxyabij,(,取思考2 ,,,试将为坐标平面内的一组基底,设)=(,用),=2112ab. 表示,并计算·abab坐标间有何关系?若⊥,,则思考3axybxy).==((,),,梳理若向量2112ab=·数量积____________________________向量垂直平面向量的模知识点二ayxa |(1 思考若=,),试将向量的模|用坐标表示.1→ABBxyxAy (,如何计算向量,,思考2 若(的模?,))2211梳理向量的模及两点间的距离→AB=||→AxyBxyAB 为端点的向量(以,(),,)211222yyxx+--1122向量的夹角知识点三a·b ba xy b y baa x=θ的夹角,则),都是非零向量,θ=(,是),cos =(,与设,2121|a||b|xxyy+2112. =2222yyxx+·+1221类型一平面向量数量积的坐标运算abb a·b=10. 已知(1,2)与,同向,=例1a的坐标;求(1)ca b·ca·b c. ),求(及)(1)(2(2)若=,-2此类题目是有关向量数量积的坐标运算,灵活应用基本公式是前提,设向量一反思与感悟般有两种方法:一是直接设坐标,二是利用共线或垂直的关系设向量,还可以验证一般情况cbbcaa )··≠,即向量运算结合律一般不成立.(下·(·)ababa________. )·1,2),则(2向量+=(1,-1),==(-1 跟踪训练向量的模、夹角问题类型二BAxOyO.-(16,12),在平面直角坐标系5,15)中,是原点(如图).已知点(例2→→ABOA ||,|(1)求|;OAB. 求∠(2)利用向量的数量积求两向量夹角的一般步骤:反思与感悟 (1)利用向量的坐标求出这两个向量的数量积.22yax|+|=求两向量的模.(2)利用θ的值.θ代入夹角公式求cos ,并根据θ的范围确定(3)baba的取值范λ的夹角α=(λ,1),若与为钝角,求2 跟踪训练已知(1=,-1),围.向量垂直的坐标形式类型三baabab的值为垂直,则实数λλ1,0)(3,2)((1)例3 已知=-,=-,若向量+与-2 _____. 3→→kABCABABCACk是直角三角形,求(2,3),,若△=(1,的值.(2)在△中,)=利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关反思与感悟于三角形的问题中,未明确哪个角是直角时,要分类讨论.→→→OCtOCBCABxOyA,--1),在平面直角坐标系若中,已知((1,4),)⊥(-2,3),,(2跟踪训练3t________.则实数=baba的夹角为,-2),则________1.已知与=(3,-1),.=(1????1331→→??ABCBABC=,________.2.已知向量==,则∠,????2222mnmnmn),则λ-2,2),若(+=)⊥(________. 3.已知向量=(λ+1,1),=(λ+abab a·b b=____________. =5|=14.已知平面向量,且,,若,则向量=(4,-3),|ab=(-1,2)=(4,3),.5.已知ab的夹角的余弦值;与(1)求abab),求实数λ(的值.-λ )⊥(2+(2)若1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.a x,(若可以对比学习、注意区分两向量平行与垂直的坐标形式,3.二者不能混淆,记忆.=1 4 yb xy ab xyxy ab xxyy=-=0,⊥+?0.,则,,)=()∥?221112112224.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.5答案精析 问题导学 知识点一jjiiij 0. =1×1×cos 0=1·,思考1 ·==1×1×cos 0=1,·jyxaxiyjbi =,++=,思考2 ∵221122yyjyyjxxxyjxiyjxixyxyabxii . ()·(+=++)∴=··=(+)++2121122222121111ybabxxya 0. ?=·+思考3 =⊥0?2112yxxy +梳理2112yabxxy 0⊥+?=2211 知识点二yxiyjxa +,∈∵,=R ,思考122222222jiyyjxyxaxiyji ·jxixyi ·j . )++((=)∴2=(+2+ +)=22i ·jji 1,0=1,又∵,==222222yaxyxa =|++=∴,∴|,22yax .∴||+=→→→yyyOAxyxxABOBx -,,)-(,,思考2 ∵)==(-)-=(11221221→22yxABxy.-|+-=∴|1212题型探究ba λλ)(>0)=λ,=(λ,21 例解 (1)设a ·b λ=10则有,=λ+4a =(2,4)λ∴=2,∴.a ·bb ·c 10,=1×2-2×1=0,(2)∵=aab ·c 0)=0,∴=(ca ·b .=(20,-(10))1)=10(2,-11 跟踪训练→OA =(16,12)例2 解 (1)由,→AB ,=-12)(-21,3)-=(-516,15→22OA =|20|=1612+,得→22AB 152.|-|=+3= 6→→ABAO ·→→ABOABAO. =(2)cos ∠cos =, →→ABAO ||||→→→→ABABAOOA 300. =-=-[16×(-其中21,3)··21)+12×3]==-(16,12)·(-2300OAB .故cos ∠==2220×15OAB ∴∠=45°.ba ,1)∵,=(1,-1),=(λ 跟踪训练2 解2baab 1. =|=1+λλ,∴|-|=2|,·ba 为钝角,又∵的夹角,α ,1<0λ-?? ∴2?,2·1+λλ≠1- ,λ<1?? 即?2+1≠0.λλ+2??1. λ≠-<1∴λ且 1,1).∴λ的取值范围是(-∞,-1)∪(-1 (1)例3 - 7133±211. -(2)或或 2331 -跟踪训练3当堂训练π3 3.-1. 2.30° 434????,- 4. ??552552 (2)(1)5. 925 720XX —019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案

2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。

向量的教案5篇

向量的教案5篇

向量的教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!向量的教案5篇教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本店铺为您分享的向量的教案5篇,感谢您的参阅。

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4
所以a·b=(-3i+4j)·(5i-12j)=-3×5+4×(-12)=-63.
答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.

高中数学苏教版教材目录

高中数学苏教版教材目录

高中数学苏教版教材目录(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1.1正弦定理1.2余弦定理451.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化6参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告7。

2.4《平面向量的数量积》教案(新人教必修4)

2.4《平面向量的数量积》教案(新人教必修4)

§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。

(完整版)《平面向量的数量积》教学设计及反思

(完整版)《平面向量的数量积》教学设计及反思

《平面向量的数量积》教学设计及反思交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。

教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:1.了解向量的数量积的抽象根源。

2.了解平面的数量积的概念、向量的夹角3.数量积与向量投影的关系及数量积的几何意义4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】1.平面向量数量积的概念和性质2.平面向量数量积的运算律的探究和应用【难点】平面向量数量积的应用四、课时安排:2课时五、教学方案及其设计意图:1.平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。

首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ⋅F,这里的θ是矢量F和s的夹角,也即是两个=scos⋅向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。

这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。

2.平面向量数量积(内积)的定义已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a⋅b = |a||b|cosθ无法得到,因此另外进行了规定。

人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)

人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)

高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。

2.4.1[平面向量数量积的物理背景及其含义]课件(苏教版必修4)

2.4.1[平面向量数量积的物理背景及其含义]课件(苏教版必修4)
2.4.1 平面向量数量积的
物理背景及其含义
学法指导
• • • • 1.多动脑筋 2.数形结合 3.总结基本题型 4.限时训练
复习:数乘
b a
(1)| b | | | | a | (2)当 0时 a , b同向;
当 0时 a , b反向.
复习:向量的夹角
a
O
a b
O
θ
θ
例题:
a 8, b 7, C 60,求 BC CA 在△ABC中,
解:
| BC | 8 | CA | 7
A
7
B
60
120

120
8
C
BC CA | BC | | CA | cos120 1 8 7 ( ) 28 2
例题:
a 4, b 9, C 30,求 BC CA 在△ABC中,
• 总结规律:a, b反向 a b | a || b |
a和a的夹角为 0, cos0 1 练习
(1) | a | 2, a a 2 2 4 (2) | a | 10, a a 10 10 100 (3) | a | 8, a a 8 8 64
a | a |2
2
作业
• A.小结 • B.P121 A1(前两个), A2
1. 2.
3.
a· b=|a| |b| cosθ
数量积几何意义 重要性质
b
0
Oa
0
b
O
a

2
b
Oa

b
我们学过功的概念,即一个物体在力F的作用下产生 位移s
F θ S
力F所做的功W可用下式计算

新课标数学必修4第2章平面向量教案

新课标数学必修4第2章平面向量教案

第二章平面向量第1课时平面向量的实际背景及基础概念【知识与技能】1.理解平面向量、有向线段的概念,掌握向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量共线向量等概念3.会辨认图形中的相等向量;4.清楚认识现实生活中的向量和数量两个不同概念,把握其本质区别,提高辨识能力. 【过程与方法】向量的概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量关系的运算.向量不同于数量,它是一种新的量,既有大小又有方向,关于数量的运算在向量范围内不一定适用.因此,本章在介绍向量概念时,说明了向量与数量的区别.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本节是本章的入门课,概念较多,但难度不大.可根据在原有的位移、力等物理概念来学习向量的概念,结合图形来区分平行向量、相等向量、共线向量等概念.一、教学目标1.理解向量、零向量、单位向量、相等向量的意义,并能用数学符号表示向量;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量、和相等向量的意义,并会判断向量的平行、相等、共线;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生进行唯物辩证思想.二、教学重点⑴向量的概念,相等向量的概念,向量的几何表示.⑵向量是一种新的量,其特征有两个:既有大小,又有方向.让学生认识到方向性的存在是认识向量概念的关键,还要让学生理解向量和数量的区别联系,建立一种新的量的思维体系.⑶相等向量只与方向、大小有关,与位置没有关系,进一步理了解学习的向量是自由向量,为以后运用向量解决平面数形问题奠定基础.三、教学难点⑴向量概念的理解.由于向量是一种新的量,与以前的数量是不同的体系,两者之间既有联系又有区别;⑵引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生在比较中找出相近概念的区别与联系,而且由于向量同时具有几何图象的特征,在学习时还要在图形中辩清它们相等、平行,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份、地位和作用.四、教学具准备直尺、投影仪.五、教学过程㈠设置情境问:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标?答:不能,因为没有给定发射的方向.问:现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?答:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向.㈡向量的概念:力、速度、加速度等也是既有大小也有方向的量,我们把既有大小又有方向的量叫做向量.数学中用点表示位置,用射线表示方向.常用一条有向线段表示向量.在数学中,通常用点表示位置,用射线表示方向.(1)意义:既有大小又有方向的量叫向量。

高中数学必修四第二章平面向量课后习题Word版(2021年整理)

高中数学必修四第二章平面向量课后习题Word版(2021年整理)

(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。

【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。

2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。

高中数学:第二章 平行向量241(二) Word版含答案

高中数学:第二章 平行向量241(二) Word版含答案

2.4.1平面向量数量积的物理背景及其含义(二)学习目标 1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明.知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确.运算律实数乘法向量数量积判断正误交换律ab=ba a·b=b·a正确结合律(ab)c=a(bc)(a·b)c=a(b·c)错误分配律(a+b)c=ac+bc(a+b)·c=a·c+b·c正确消去律ab=bc(b≠0)⇒a=c a·b=b·c(b≠0)⇒a=c错误知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质.多项式乘法向量数量积(a+b)2=a2+2ab+b2(a+b)2=a2+2a·b+b2(a-b)2=a2-2ab+b2(a-b)2=a2-2a·b+b2(a+b)(a-b)=a2-b2(a+b)·(a-b)=a2-b2 (a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a1.向量的数量积运算满足(a·b)·c=a·(b·c).(×)2.已知a≠0,且a·c=a·b,则b=c.(×)3.λ(a·b)=λa·b.(√)类型一向量数量积的运算性质例1设a,b,c是任意的非零向量,且它们相互不共线,给出下列结论:①a·c-b·c=(a-b)·c;②(b·c)·a-(c·a)·b不与c垂直;③|a|-|b|<|a-b|;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确结论的序号是________.考点平面向量数量积的运算性质和法则题点向量的运算性质与法则★答案★①③④解析根据向量积的分配律知①正确;因为[(b·c)·a-(c·a)·b]·c=(b·c)·(a·c)-(c·a)·(b·c)=0,∴(b·c)·a-(c·a)·b与c垂直,②错误;因为a,b不共线,所以|a|,|b|,|a-b|组成三角形三边,∴|a|-|b|<|a-b|成立,③正确;④正确.故正确结论的序号是①③④.反思与感悟向量的数量积a·b与实数a,b的乘积a·b有联系,同时有许多不同之处.例如,由a·b=0并不能得出a=0或b=0.特别是向量的数量积不满足结合律.跟踪训练1对于任意向量a,b,c,下列说法中正确的是()A.|a·b|=|a||b| B.|a+b|=|a|+|b|C.(a·b)c=a(b·c) D.|a|=a2考点平面向量数量积的运算性质和法则题点向量的运算性质与法则★答案★D解析因为a·b=|a||b|cos〈a,b〉,所以|a·b|≤|a||b|,所以A错误;根据向量加法的平行四边形法则,|a+b|≤|a|+|b|,只有当a,b同向时取“=”,所以B错误;因为(a·b)c是向量,其方向与向量c相同,a(b·c)是向量,其方向与向量a的方向相同,所以C错误;因为a·a=|a||a|cos 0=|a|2,所以|a|=a2,所以D正确.类型二 平面向量数量积有关的参数问题 命题角度1 利用向量数量积处理垂直问题例2 已知|a |=3,|b |=2,向量a ,b 的夹角为60°,c =3a +5b ,d =m a -3b ,求当m 为何值时,c 与d 垂直.考点 平面向量数量积的应用 题点 已知向量夹角求参数解 由已知得a·b =3×2×cos 60°=3. 若c ⊥d ,则c·d =0,∴c ·d =(3a +5b )·(m a -3b )=3m a 2+(5m -9)a ·b -15b 2=27m +3(5m -9)-60=42m -87=0, ∴m =2914,即当m =2914时,c 与d 垂直.反思与感悟 由两向量垂直求参数一般是利用性质:a ⊥b ⇔a ·b =0.跟踪训练2 已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )·b ,且b ⊥c ,则t =________. 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ 2解析 由题意,将b·c =[t a +(1-t )b ]·b =0整理,得t a ·b +(1-t )=0,又a ·b =12,所以t =2.命题角度2 由两向量夹角的取值范围求参数的取值范围例3 已知e 1与e 2是两个互相垂直的单位向量,若向量e 1+k e 2与k e 1+e 2的夹角为锐角, 则k 的取值范围为________. 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ (0,1)∪(1,+∞)解析 ∵e 1+k e 2与k e 1+e 2的夹角为锐角, ∴(e 1+k e 2)·(k e 1+e 2)=k e 21+k e 22+(k 2+1)e 1·e 2=2k >0,∴k >0.但当k =1时,e 1+k e 2=k e 1+e 2,它们的夹角为0,不符合题意,舍去. 综上,k 的取值范围为k >0且k ≠1.反思与感悟 向量a ,b 的夹角为锐角,得到a·b >0;反之,a·b >0不能说明a ,b 的夹角为锐角,因为a ,b 夹角为0°时也有a·b >0.同理,向量a ,b 的夹角为钝角,得到a ·b <0;反之,a ·b <0不能说明a ,b 的夹角为钝角,因为a ,b 夹角为180°时也有a ·b <0.跟踪训练3 若向量e 1,e 2满足|e 1|=|e 2|=1,e 1,e 2的夹角为60°,向量2t e 1+e 2与向量e 1-e 2的夹角为钝角,求实数t 的取值范围.考点 平面向量数量积的应用 题点 已知向量夹角求参数解 设向量2t e 1+e 2与向量e 1-e 2的夹角为θ,由θ为钝角,知cos θ<0,故(2t e 1+e 2)·(e 1-e 2)=2t e 21+(-2t +1)e 1·e 2-e 22=t -12<0,解得t <12. 又当θ=π时,也有(2t e 1+e 2)·(e 1-e 2)<0,但此时夹角不是钝角,设向量2t e 1+e 2与向量e 1-e 2反向,则2t e 1+e 2=k (e 1-e 2)(k <0),又e 1与e 2不共线,从而⎩⎪⎨⎪⎧2t =k ,1=-k ,解得t =-12,即当t =-12时,向量2t e 1+e 2与向量e 1-e 2的夹角为180°,故t 的取值范围是⎩⎨⎧⎭⎬⎫t ⎪⎪t <12,且t ≠-12.1.下面给出的关系式中正确的个数是( )①0·a =0;②a ·b =b ·a ;③a 2=|a |2;④|a ·b |≤a ·b ;⑤(a ·b )2=a 2·b 2. A .1 B .2 C .3 D .4考点 平面向量数量积的运算性质与法则 题点 向量的运算性质与法则 ★答案★ C解析 ①②③正确,④错误,⑤错误,(a ·b )2=(|a ||b |·cos θ)2=a 2·b 2cos 2θ,故选C. 2.已知|a |=2,|b |=1,a 与b 之间的夹角为60°,那么向量a -4b 的模为( ) A .2 B .2 3 C .6 D .12考点 平面向量数量积的运算性质和法则 题点 向量的运算性质与法则 ★答案★ B解析 ∵|a -4b |2=a 2-8a ·b +16b 2 =22-8×2×1×cos 60°+16×12=12, ∴|a -4b |=2 3.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94考点 平面向量数量积的应用题点 已知向量夹角求参数 ★答案★ B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,AB →=a ,BC →=b ,且a·b >0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .等腰直角三角形 D .钝角三角形考点 平面向量数量积的应用 题点 数量积在三角形中的应用 ★答案★ D解析 由AB →·BC →>0知,BA →·BC →<0,即角B 为钝角.5.已知|a |=1,|b |=2,且(a +b )与a 垂直,则a 与b 的夹角是________. 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★3π4解析 ∵(a +b )·a =a 2+a ·b =0, ∴a ·b =-a 2=-1, 设a 与b 的夹角为θ,∴cos θ=a·b|a||b|=-11×2=-22,又θ∈[0,π],∴θ=3π4.1.数量积对结合律不一定成立,因为(a ·b )·c =|a ||b |·cos 〈a ,b 〉·c 是一个与c 共线的向量,而(a ·c )·b =|a ||c |cos 〈a ,c 〉·b 是一个与b 共线的向量,若b 与c 不共线,则两者不相等. 2.在实数中,若ab =0,则a =0或b =0,但是在数量积中,即使a ·b =0,也不能推出a =0或b =0,因为其中cos θ有可能为0.3.在实数中,若ab =bc ,b ≠0,则a =c ,在向量中a ·b =b ·c ,b ≠0⇏a =c .一、选择题1.已知|a |=1,|b |=1,|c |=2,a 与b 的夹角为90°,b 与c 的夹角为45°,则a ·(b ·c )的化简结果是( )A .0B .aC .bD .c考点 平面向量数量积的运算性质和法则 题点 向量的运算性质和法则 ★答案★ B解析 b ·c =|b ||c |cos 45°=1. ∴a ·(b ·c )=a .2.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则λ等于( ) A.32 B .-32 C .±32 D .1 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ A解析 ∵(3a +2b )·(λa -b )=3λa 2+(2λ-3)a·b -2b 2 =3λa 2-2b 2=12λ-18=0,∴λ=32.3.(2017·嘉峪关高一检测)已知向量a ,b 为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6B.π3C.2π3D.5π6 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ B解析 设a 与b 的夹角为θ. 因为(a -2b )⊥a ,(b -2a )⊥b , 所以(a -2b )·a =a 2-2a ·b =0, (b -2a )·b =b 2-2a ·b =0.所以a 2=2a ·b ,b 2=2a ·b ,所以a 2=b 2, 所以|a |=|b |,所以cos θ=a·b |a||b|=a·b |a|2=a·b a 2=a ·b 2a ·b =12.因为θ∈[0,π],所以θ=π3.所以a ,b 夹角为π3.4.在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是( ) A .矩形 B .菱形 C .直角梯形D .等腰梯形考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ B解析 由AB →=DC →知四边形ABCD 是平行四边形,由AC →·BD →=0知AC ⊥BD ,即对角线垂直,所以四边形ABCD 是菱形.5.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150° 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ C解析 由题知,(2a +b )·b =2a ·b +b 2 =2|a |2cos 〈a ,b 〉+a 2=0, ∴cos 〈a ,b 〉=-12,又∵〈a ,b 〉∈[0°,180°], ∴a ,b 的夹角为120°.6.已知向量AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.37 B .13 C .6 D.127 考点 平面向量数量积的应用 题点 已知向量夹角求参数 ★答案★ D解析 ∵AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3, ∴AB →·AC →=|AB →|·|AC →|cos 120° =2×3×⎝⎛⎭⎫-12=-3. ∵AP →·BC →=(AC →+λAB →)·(AC →-AB →) =AC →2-λAB →2+(λ-1)AB →·AC →=0,∴32-λ×22+(λ-1)×(-3)=0, 解得λ=127,故选D.7.(2017·惠州高一检测)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .正三角形D .等腰直角三角形考点 平面向量数量积的应用 题点 数量积在三角形中的应用 ★答案★ A解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0, 又因为AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0, 即|AB →|=|AC →|,所以△ABC 是等腰三角形. 二、填空题8.已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为 ________. 考点 平面向量数量积的应用 题点 利用数量积求向量的夹角 ★答案★ π3解析 因为(a +2b )·(5a -4b )=0,|a |=|b |=1, 所以6a ·b -8+5=0,即a ·b =12.又a ·b =|a ||b |cos θ=cos θ, 所以cos θ=12,因为θ∈[0,π],所以θ=π3.9.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a ||b |=________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用★答案★233解析 ∵a ⊥b ,∴a ·b =0, (a +2b )·(a -2b )=a 2-4b 2, |a +2b |= a 2+4a ·b +4b 2= a 2+4b 2, |a -2b |=a 2-4a ·b +4b 2=a 2+4b 2,∴a 2-4b 2=a 2+4b 2·a 2+4b 2·cos 120°, 化简得32a 2-2b 2=0,∴|a ||b |=233. 10.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,则|a |2+|b |2+|c |2的值是________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ 4解析 方法一 由a +b +c =0,得c =-a -b . 又(a -b )·c =0, ∴(a -b )·(-a -b )=0, 即a 2=b 2.则c 2=(a +b )2=a 2+b 2+2a ·b =a 2+b 2=2, ∴|a |2+|b |2+|c |2=4.方法二 如图,作AB →=BD →=a .BC →=b ,则CA →=c , ∵a ⊥b ,∴AB ⊥BC , 又∵a -b =BD →-BC →=CD →, (a -b )⊥c ,∴CD ⊥CA , ∴△ABC 是等腰直角三角形,∵|a |=1,∴|b |=1,|c |=2,∴|a |2+|b |2+|c |2=4.11.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 的夹角的大小为________.考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★2π3解析 由题意可知,|a +x b |2≥|a +b |2, 即a 2+2a ·b ·x +b 2·x 2≥a 2+2a ·b +b 2, 设a 与b 的夹角为θ,则4+4cos θ·x +x 2≥4+4cos θ+1, 即x 2+4cos θ·x -1-4cos θ≥0,因为对一切实数x ,|a +x b |≥|a +b |恒成立, 所以Δ=16cos 2θ+4(1+4cos θ)≤0, 即(2cos θ+1)2≤0,所以2cos θ+1=0,cos θ=-12.又因为θ∈[0,π],所以θ=2π3. 12.已知平面上三个向量a ,b ,c 的模均为1,它们相互之间的夹角为120°.若|k a +b +c |>1(k ∈R ),则k 的取值范围为________. 考点 平面向量数量积的应用 题点 向量模与夹角的综合应用 ★答案★ {k |k <0或k >2} 解析 因为|k a +b +c |>1, 所以(k a +b +c )·(k a +b +c )>1, 即k 2a 2+b 2+c 2+2k a ·b +2k a ·c +2b ·c >1. 因为a ·b =a ·c =b ·c =cos 120°=-12,所以k 2-2k >0,所以⎩⎪⎨⎪⎧ k >0,k -2>0或⎩⎪⎨⎪⎧k <0,k -2<0,解得k <0或k >2,即k 的取值范围是{k |k <0或k >2}. 三、解答题13.设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围. 考点 平面向量数量积的应用 题点 已知向量夹角求参数解 设向量2t e 1+7e 2与e 1+t e 2的夹角为θ.根据题意,得cos θ=(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2||e 1+t e 2|<0, ∴(2t e 1+7e 2)·(e 1+t e 2)<0.化简,得2t 2+15t +7<0,∴⎩⎪⎨⎪⎧ 2t +1>0,t +7<0或⎩⎪⎨⎪⎧2t +1<0,t +7>0,解得-7<t <-12. 当θ=π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角.设2t e 1+7e 2=λ(e 1+t e 2),λ<0,由e 1与e 2不共线,得⎩⎪⎨⎪⎧ 2t =λ,7=λt ,λ<0,∴⎩⎪⎨⎪⎧ λ=-14,t =-142. ∴实数t 的取值范围是⎝⎛⎭⎫-7,-142∪⎝⎛⎭⎫-142,-12. 四、探究与拓展14.若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1B .1 C. 2 D .2考点 平面向量数量积的运算性质和法则题点 求向量的数量积的最值★答案★ B解析 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c=3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.15.已知a ,b 均是非零向量,设a 与b 的夹角为θ,是否存在这样的θ,使|a +b |=3|a -b |成立?若存在,求出θ.考点 平面向量数量积的应用题点 利用数量积求向量的夹角解 假设存在满足条件的θ,∵|a +b |=3|a -b |,∴(a +b )2=3(a -b )2,∴|a |2+2a ·b +|b |2=3(|a |2-2a ·b +|b |2),∴|a |2-4a ·b +|b |2=0,∴|a |2-4|a ||b |cos θ+|b |2=0, ∴⎩⎪⎨⎪⎧cos θ>0,Δ=16|b |2cos 2θ-4|b |2≥0, 解得cos θ∈⎣⎡⎦⎤12,1.又∵θ∈[0,π],∴θ∈⎣⎡⎦⎤0,π3.。

苏州新区二中必修四第二章《平面向量》测试(含答案解析)

苏州新区二中必修四第二章《平面向量》测试(含答案解析)

一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .1C .1D 12.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)3.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52 C .3 D .72 4.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +5.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知向量12AB ⎛⎫= ⎝⎭,5AC =,3AB BC ⋅=,则BC =( )A .3B .C .4D .8.已知ABC ∆为等边三角形,则cos ,AB BC =( )A .B .12-C .12D 9.直线0ax by c 与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( )A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-10.ABC 中,5AB =,10AC =,25AB AC =,点P 是ABC 内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( )A .332B .37C .39D .4111.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( ) A .22B .122+C .222+D .4212.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56π B .23π C .3πD .6π 二、填空题13.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.14.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________15.在ABC 中,90,6C CA CB ∠=︒==,P 为ABC 所在平面内一动点,则()CP AP BP ⋅+的最小值为________.16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________.20.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.三、解答题21.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题:(1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ;(2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.22.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值. 23.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是3105的直线方程.24.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.25.已知()()cos ,sin ,2sin ,2cos OP OQ θθθθ==+-,其中[)0,2θ∈π,求PQ 的最大值,并指出PQ 取得最大值时OP 与OQ 夹角的大小. 26.已知a =(1,2)b =(-3,2),当k 为何值时. (1)ka b +与3a b -垂直; (2)ka b +与3a b -平行.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC +=, 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=-.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为231-. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 2.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C-,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303=,2sin301,所以()3,1B -- ,)3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y -<<-<<,()(),3,13AP AB x y x y ⋅=⋅-=--,当3x =-1y =-时AP AB ⋅最大为((()3314-⨯---=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-, 故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 3.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.4.D解析:D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.5.B解析:B 【分析】求出2a b -)=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答. 6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.B解析:B 【分析】首先设出点A (0,0)、C (x ,y )的坐标,由已知条件5AC =,3AB BC ⋅=列出关于x 、y 的方程组,然后根据向量的差的计算性质表示出向量BC 的坐标形式,并表示出向量BC 的模,将以上列出的关于x 、y 的式子整体带入即可求得BC .【详解】 设(0,0)A ,(),C x yBC AC AB =-()13,,2x y ⎛⎫⎝- =⎪⎪⎭13,2x y ⎛⎫-- ⎪ ⎪⎝⎭= 3AB BC ⋅=1313,,322x y ⎛⎫⎛⎫∴⋅--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 即38x y += (1)5AC =又2225x y ∴+= (2) 2213()22C x y B ⎛⎫-+- ⎪ ⎝=⎪⎭ 22(3)1x y x y =+-++将(1)(2)代入上式解得:258132BC =-+=故选B 【点睛】本题考查了向量的坐标运算以及向量模的计算,其中考查了整体代换的思想方法,属于中档题目,计算中选择合适的解题方法,尽量要避免通过解方程求解点C 的坐标然后再求解向量BC 的模,否则就会大大的增加计算量,甚至出现解题错误.8.B解析:B 【分析】判断,AB BC 两向量夹角容易出错,是23π,而不是3π【详解】由图发现,AB BC 的夹角不是B 而是其补角23π,21cos ,cos32AB BC π<>==- 【点睛】本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图.9.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-, ()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.10.B解析:B 【分析】以A 为原点,以AB 所在的直线为x轴,建立平面直角坐标系,根据向量的坐标运算求得3)y x =-,当该直线与直线BC 相交时,||AP 取得最大值.【详解】解:ABC 中,5AB =,10AC =,25AB AC =,510cos 25A ∴⨯⨯=,1cos 2A =,60A ∴=︒,90B =︒; 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, 如图所示,5AB =,10AC =,60BAC ∠=︒,(0,0)A ∴,(5,0)B ,(5C,,设点P 为(,)x y ,05x ,03y ,3255AP AB AC λ=-, (x ∴,3)(55y =,20)(55λ-,(32λ=-,)-,∴32x y λ=-⎧⎪⎨=-⎪⎩,3)y x ∴-,①直线BC 的方程为5x =,②,联立①②,得5x y =⎧⎪⎨=⎪⎩此时||AP 最大,||AP ∴=故选:B .【点睛】本题考查了向量在几何中的应用问题,建立直角坐标系是解题的关键,属于中档题. 11.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】 ∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 2M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立,又OC 的最大值是圆M 的直径22∴d 最大值为222.故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.12.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果.【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE ,所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅ 2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭ 2214sin 12θ⎛⎫=-- ⎪⎝⎭, 当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-.【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所 解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =EF ,,AE AF 的长度,在AEF 中利用余弦定理求解.【详解】如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-, 所以3AD CB =,设3CB =3AD =,因为AB AC =,所以平行四边形ABCD 是菱形,所以CB AD ⊥,所以223333,223AB AC EF ⎛⎫⎛⎫==+== ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以22332126AE AF ⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以2222121113993cos 21421212AE AF EF EAF AE AF +-+-∠===⋅⋅. 故答案为:1314【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】建立坐标系利用向量的坐标运算公式将用的坐标表示利用配方法求得最小值【详解】由题意可建立如图所示的直角坐标系易知设则故当且仅当时取得等号∴所求最小值为故答案为:【点睛】本题考查向量的数量积的坐 解析:9-【分析】建立坐标系,利用向量的坐标运算公式将()CP AP BP ⋅+用(),P x y 的坐标表示,利用配方法求得最小值.【详解】由题意可建立如图所示的直角坐标系,易知()()()6,0,0,6,0,0A B C ,设(),P x y ,则(,),(6,),(,6)CP x y AP x y BP x y ==-=-, 故2233()(26)(26)229922CP AP BP x x y y x y ⎛⎫⎛⎫⋅+=-+-=-+--- ⎪ ⎪⎝⎭⎝⎭. 当且仅当32x y ==时取得等号, ∴所求最小值为9-,故答案为:9-.【点睛】本题考查向量的数量积的坐标运算和配方法求最值,关键在于建立坐标系,用(),P x y 的坐标表达所求的向量的数量积,属中档题.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题解析:25-【分析】 由已知得()c a b =-+,再两边平方22+2+25a a b b⋅=,求得0a b ⋅=,代入可求得答案.【详解】 因为0a b c ++=,所以()c a b =-+,又因为5c =,所以()225a b +=,即22+2+25a a b b ⋅=,又3a =,4b =, 所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-,故答案为:25-.【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311 【解析】 由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN=AB +n (AN AB -)=(1-n )14AB n AC +=m 211AB AC +. 由14n=211,得m=1-n=311. 18.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题 解析:9【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案.【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C ,∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈, ∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 .【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题. 19.【分析】以为基底向量表示再由数量积的运算律定义计算即可【详解】∵∴D 为OB 的中点从而∴∵∴∴故答案为:【点睛】本题考查平面向量的数量积需要根据题意确定基底向量再根据平面向量基本定理表示所求的向量数量 解析:1564【分析】以,OA OB 为基底向量表示CD CO ,,再由数量积的运算律、定义计算即可.【详解】 ∵1()2CD CO CB =+,∴D 为OB 的中点,从而12OD OB =, ∴97191161621616CD CO OD OA OB OB OA OB =+=-+=+ ∵1OA =,OB =2AOB π∠=,∴0OA OB ⋅= ∴9197()()16161616CD CO OA OB OA OB ⋅=+⋅- 221(817)256OA OB =-1(8173)256=-⨯1564=. 故答案为:1564. 【点睛】 本题考查平面向量的数量积,需要根据题意确定基底向量,再根据平面向量基本定理表示所求的向量数量积,进而根据数量积公式求解.属于中档题.20.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin 22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值.【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=, 所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=, 所以点C 在以1+cos sin ,22P θθ⎛⎫ ⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上,所以c 的最大值为+cos +sin 222OP R θθθ==, 所以c 的最大值为cossin 22θθ+, 故答案为:cossin 22θθ+. 【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题. 三、解答题21.(1)1122AD a b =+;(2)证明过程见详解. 【分析】(1)根据题干中所给的方法,结合向量的线性运算,可分别求解;(2)根据题干中所给的方法,由向量的线性运算,用a ,b 表示出AD ,即可得出结论成立.【详解】(1)因为D 为BC 的中点,方法一: 12AD AB BD AB BC =+=+,∵BC AC AB =-, ∴11221)22(221AD AB AC AB AB AC a b =+-=+=+; 方法二: 21AC CD AC AD CB =+=+,∵CB AB AC =-, ∴111221)2(221AD AC AB AC AB AC a b =+-=+=+; 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且BD DC =,∴21FD CD AB CB ==,21FD AE AB ==. ∵//ED AC ,BD DC =.∴12ED BD AC BC ==,得12ED AF AC ==. ∴11212212AD AE ED AE AF AB AC a b =+=+=+=+; (2)因为D 为直线BC 上任意一点(除B 、C 两点),BD kDC =,显然1k ≠-; 所以1k BD BC k =+,11CB k CD =+, 方法一: 1AD AB BD AB BC k k =+++=,∵BC AC AB =-, ∴1111111()k k k AD AB AC AB AB AC a b k k k k k +++++=+-=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法二:11A AC CD AC CB D k =++=+,∵CB AB AC =-, ∴11111111()k k k k AD AC AB AC A k k B AC a b k ++=+-=+++=++; 即存在唯一实数对11k λ=+,1k k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法三:若点D 位于点B 左侧,如图,过点D 作//DM AB ,过点A 作//AM BC ,交DM 于点M ,则AMDB 为平行四边形,1k AM BD BC k ==+,所以11()AD AB AM AB BC AB k k k k AC AB =++=-+++=111111k k AB AC a b k k k k ++++=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于点C 右侧,如图,过点D 作//DN AC ,过点A 作//AN BC ,交DN 于点N ,则ANDC 为平行四边形, 11AN CD BC k ==+,因此11A AC AN AC CB D k =++=+111111(1)k k k AB AC AB AB AC a b k k k k k +++=+++-+=+=, 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于BC 之间,则0k >;如图所示,过点D 作AC 的平行线,交AB 于点P ,过点D 作AB 的平行线,交AC 于点Q ,则四边形APDQ 为平行四边形.∵//DQ AB 且BD DC =,∴11QD CD AB C k B =+=,11Q k D AP AB =+=, ∵//PD AC ,BD DC =.∴1PD BD AC BC k k =+=,得1k k PD AQ AC =+=. ∴111111AD AP AQ AB AC k k a b k k k k =+=++=++++; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 综上,存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=. 【点睛】思路点睛:利用平面向量的一组基底表示向量时,只需根据向量的线性运算法则,结合平面向量基本定理,逐步求解即可.22.(1)223-;(2)2-. 【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解.【详解】(1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒,在POB 中,由余弦定理,得 222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=- ∴84362PB =-=,又222PA OA ==∴1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-=- ⎪⎝⎭(2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 23sin 4sin αααα=--+-+2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.23.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P 到直线的距离等于3105,即331010cd -+==∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系 24.(1)232)6π.【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ 【详解】解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ 则2()3cos ||||42383a ab aa ab θ+====+⨯0θπ ∴6πθ=.【点睛】 本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 25.π-【分析】利用向量模的坐标表示求出2PQ ,由余弦函数的单调性知当θπ=时2PQ 取最大值18即PQ 取最大值OP 、OQ 的坐标,由cos ,OP OQ OP OQ OP OQ⋅<>=⋅即可求得两向量的夹角.【详解】222(2sin cos )(2cos sin )PQ θθθθ=+-+--22228sin cos 4sin 4cos 2sin cos sin cos 4cos 4sin 2sin cos θθθθθθθθθθθθ=+++--++--+108cos θ=- 又[)0,2θπ∈,所以当θπ=时,cos θ取得最小值1-,2PQ 取最大值18,即当θπ=时,PQ 取最大值此时(1,0)OP =-,(23)OQ =,,cos ,1OP OQOP OQ OP OQ ⋅<>===⨯⋅,所以PQ 取得最大值时OP 与OQ 夹角为π- 【点睛】 本题考查向量数量积的坐标表示、向量模的坐标表示、向量夹角的计算,属于中档题. 26.(1)19; (2)13-. 【分析】(1)由题意,求得(3,22),3(10,4)ka b k k a b +=-+-=-,根据因为ka b +与3a b -垂直,列出方程,即可求解;(2)根据ka b +与3a b -平行,列出方程,即可求解.【详解】(1)由题意,向量(1,2),(3,2)a b ==-,则(3,22),3(10,4)ka b k k a b +=-+-=-,因为ka b +与3a b -垂直,所以()(3)10(3)4(22)0ka b a b k k +⋅-=--+=,即2380k -=,解得19k =.(2)若ka b +与3a b -平行,则满足4(3)10(22)0k k ---+=,即2480k -+=,解得13k =-.【点睛】本题主要考查了向量的坐标运算,以向量垂直和平行的判定及应用,其中解答中熟练应用向量的坐标运算公式,根据向量垂直和平行,列出方程求解是解答的关键,着重考查了推理与运算能力.。

必修4 2.4向量的数量积复习3.

必修4 2.4向量的数量积复习3.

-5-
在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康托尔
-6-
在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康托尔
3.平面向量的数量积
复习课 5.15
复 1.掌握两向量的夹角,及数量积的运算 习 2.牢记并会灵活运用数量积的性质 目 3.准确掌握数量积的运算律. 标
1.两向量的夹角必须要求
自 2.平面向量的数量积 学 已知两个非零向量 a 和 b,它们的夹角为 θ, 指 则他们的数量积可记作 . 导
5.(2012· 安徽)设向量 a=(1,2m),b=(m+1,1),c=(2,m).若(a+c)⊥b, 则|a|=________.
5.已知向量 p=(2sin x, 3cos x),q=(-sin x,2sin x),函数 f(x)=p· q. (1)求 f(x)的单调递增区间; (2)在锐角△ABC 中,a,b,c 分别是角 A,B,C 的对边,且 f(C)=1, 求 sinA+cosB 的取值范围
→ → → → → → → 已知点 A, B, C 满足|AB|=3, |BC|=4, |CA|=5, 则AB· BC+BC· CA → → +CA· AB的值是________.
-2-
在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康托尔
探究(二)求向量的夹角与向量的模 例 2 (1)(2012· 课标全国)已知向量 a, b 夹角为 45° , 且|a|=1, |2a-b|= 10, 则|b|=________. → → → → (2)(2013· 山东)已知向量AB与AC的夹角为 120° ,且|AB|=3,|AC|=2.若 → → → → → A P =λAB+AC,且AP⊥BC,则实数 λ 的值为________.

20170625第二章 平面向量复习学案

20170625第二章 平面向量复习学案

第二章 平面向量复习学案20170625【本章整合】【要点梳理】 一、向量的概念1.向量:数学中,我们把既有大小,又有方向的量叫做向量.数量:我们把只有大小没有方向的量称为数量.2.有向线段:带有方向的线段叫做有向线段.3.向量的长度(模):向量AB 的大小,也就是向量AB的长度(或称模),记作AB .4.零向量:长度为0的向量叫做零向量,记作0,零向量的方向是任意的. 单位向量:长度等于1个单位的向量,叫做单位向量.5.平行向量:方向相同或相反的非零向量叫做平行向量.若向量a 、b 是两个平行向量,那么通常记作a ∥b .平行向量也叫做共线向量.我们规定:零向量与任一向量平行,即对于任一向量a ,都有0∥a .6.相等向量:长度相等且方向相同的向量叫做相等向量.若向量a 、b 是两个相等向量,那么通常记作a =b .【例1】若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b .其中正确的是( ).A .①④⑤B .③C .①②③⑤D .②③⑤【例2】如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线【例3】如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是( ). A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身) C .BD →的长度恰为DA →长度的3倍 D .CB →与DA →不共线 二、向量的加、减法1.已知非零向量a 、b ,在平面内任取一点A ,作AB=a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b AB BC AC =+=.向量的加法:求两个向量和的运算叫做向量的加法.这种求向量的方法称为向量加法的三角形法则.2.对于零向量与任一向量a ,我们规定:a +0=0+a =a3.公式及运算定律: ①12231++...+n A A A A A A=0②|a +b |≤|a |+|b |③a +b =b +a ④(a +b )+c = a +(b +c )4.相反向量:①我们规定,与a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .a 和-a 互为相反向量.②我们规定,零向量的相反向量仍是零向量.③任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0. ④如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0.⑤我们定义a -b = a +(-b ),即减去一个向量等于加上这个向量的相反向量. 【例4】向量(AB →+MB →)+(BO →+BC →)+OM →等于( ). A .BC → B .AB → C .AC → D .AM →【例5】△ABC 中,点D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( ).A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠0【例6】若平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,用a 、b 表示向量BC →为( )A .a +bB .-a -bC .-a +bD .a -b【例7】已知等腰直角△ABC 中,∠C =90°,M 为斜边中点,设CM →=a ,CA →=b ,试用向量a 、b 表示AM →、MB →、CB →、BA →.三、数乘向量1.向量的数乘:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作λa ,它的长度与方向规定如下:①|λa|=|λ||a|,②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,的方向与a 的方向相反;λ=0时,λa =0.2.运算定律:①λ(ua )=(λu )a ②(λ+u )a =λa +u a ③λ(a +b ) =λa +λb ④(-λ)a =-(λa ) =λ(-a ) ⑤λ(a -b ) =λa -λb3.定理:对于向量a (a ≠0)、b ,如果有一个实数λ,使b =λa ,那么a 与b 共线.相反,已知向量a 与b 共线,a ≠0,且向量b 的长度是向量a 的长度的μ倍,即| b |=μ|a |,那么当a 与b 同方向时,有b = u a ;当a 与b 反方向时,有b =-u a .则得如下定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .【例8】点C 在线段AB 上,且AC →=25AB →,若AC →=λBC →,则λ等于( ).A .23B .32C .-23D .-32【例9】在△ABC 中,已知D 为AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( ).A .23B .13C .-13D .-23【例10】已知G 是△ABC 内的一点,若GA →+GB →+GC →=0 .求证:G 是△ABC 的重心.四、平面向量基本定理1.如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.我们把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.2.向量a 与b 的夹角:已知两个非零向量a 和b .作OA =a ,OB=b ,则A O B θ∠=(0°≤θ≤180°)叫做向量a 与b 的夹角.当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .3.补充结论:已知向量a 、b 是不共线的两个向量,且m 、n ∈R ,若m a +n b =0,则m =n =0. 【例11】已知向量e 1、e 2不共线,实数x 、y 满足(x -y )e 1+(2x +y )e 2=6e 1+3e 2,则x -y 的值等于( ).A .3B .-3C .6D .-6【例12】如图,在△AOB 中,OA →=a 、OB →=b ,设AM →=2MB →,ON →=3NA →,而OM 与BN 相交于点P ,试用a 、b表示向量OP →.五、正交分解与坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差).即若a =11(,)x y ,b =22(,)x y , 则a +b =1212(,)x x y y ++,a -b =1212(,)x x y y --.3.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.即若a =11(,)x y ,则λa =11(,)x y λλ.4.当且仅当x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线. 5.从一点引出三个向量,且三个向量的终点共线,则OC OA OB λμ=+,其中λ+μ=1.【例13】(1)设向量a 、b 的坐标分别是(-1,2)、(3,-5),求a +b ,a -b ,2a +3b 的坐标;(2)设向量a 、b 、c 的坐标分别为(1,-3)、(-2,4)、(0,5),求3a -b +c 的坐标.【例14】平面内给定三个向量a =(3,2)、b =(-1,2)、c =(4,1), (1)求满足a =m b +n c 的实数m 、n ;(2)若(a +k c )∥(2b -a ),求实数k .【例15】已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.【例16】若向量|a |=|b |=1,且a +b =(1,0),求向量a 、b 的坐标.六.数量积(内积)1.已知两个非零向量a 与b ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a •b 即a •b =|a ||b |cos θ.其中θ是a 与b 的夹角,|a |cos θ(|b |cos θ)叫做向量a 在b 方向上(b 在a 方向上)的投影.我们规定,零向量与任一向量的数量积为0.2.a •b 的几何意义:数量积a •b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.数量积的运算定律:①a •b = b •a ②(λa )•b =λ(a •b )=a •(λb ) ③(a + b )•c =a •c + b •c ④(a +b )² = a ²+2a •b +b ² ⑤(a -b )² = a ²-2a •b +b ² ⑥(a +b )•(a -b )= a ²-b ². 4.两个向量的数量积等于它们对应坐标的乘积的和,即a •b =1212x x y y +.则: ①若a =(,)x y ,则|a |²=22x y +,或|a|=.如果表示向量a 的有向线段的起点和中点的坐标分别为11x y (,)、22x y (,),那么a =2121x x y y --(,),|a. ②设a =11x y (,),b =22x y (,),则a ⊥b 12120x x y y ⇔+=⇔a •b =0. 5.设a 、b 都是非零向量,a =11x y (,),b =22x y (,),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示可得:cos ||||a ba b θ⋅==.【例17】若|a |=4,|b |=3,a •b =-6,则a 与b 的夹角等于( ). A .150° B .120° C .60°D .30°【例18】若|a|=4,|b|=2,a 和b 的夹角为30°,则a 在b 方向上的投影为( ). A .2 B . 3 C .2 3D .4【例19】已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a -3b ,d =m a +b ,若c ⊥d ,求实数m 的值.【例20】已知a =(1,2),b =(1,λ)分别确定λ的取值范围,使得: (1)a 与b 夹角为90°;(2)a 与b 夹角为钝角;(3)a 与b 夹角为锐角.第二章 平面向量复习学案20170625答案解析【例1】若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b .其中正确的是( ).A .①④⑤B .③C .①②③⑤D .②③⑤答案:D 解析:|a |与|b |大小关系不能确定,故①错,a 与其单位向量平行②正确.a ≠0, ∴|a |>0,③正确.|b |=1,故④错.由定义知⑤正确. 【例2】如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线答案:C 解析:当菱形ABCD 与其他两个菱形不共面时,BD 与EH 异面,故选C . 【例3】如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是( ).A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身)C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线答案:D 解析:易知△ABC 和△ACD 均为正三角形.对于A ,向量AB →=DC →;对于B ,|AB →|=|DC →|=|DA →|=|CB →|=|CA →|;对于C ,△BAD 是顶角为120°的等腰三角形,则|BD →|=3|DA →|;对于D ,CB →∥DA →成立,故D 是错误的.【例4】向量(AB →+MB →)+(BO →+BC →)+OM →等于( ).A .BC →B .AB →C .AC →D .AM →答案:C 解析:原式=AB →+BC →+MB →+BO →+OM →=AC →+0=AC →. 【例5】△ABC 中,点D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( ).A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠0 答案:D【例6】若平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,用a 、b 表示向量BC →为( ).A .a +bB .-a -bC .-a +bD .a -b答案:B 解析:解法一:BC →=BA →+AC →=OA →-OB →+(-2OA →)=-OA →-OB →=-a -b .解法二:∵b +BC →=OC →=-a ,∴BC →=-a -b .【例7】已知等腰直角△ABC 中,∠C =90°,M 为斜边中点,设CM →=a ,CA →=b ,试用向量a 、b 表示AM →、MB →、CB →、BA →.解:如图所示, AM →=CM →-CA →=a -b ,MB →=AM →=a -b ,CB →=CA →+AB →=b +2AM →=b +2a -2b =2a -b , BA →=-2AM →=-2(a -b )=2b -2a .【例8】点C 在线段AB 上,且AC →=25AB →,若AC →=λBC →,则λ等于( ).A .23B .32C .-23D .-32答案:C 解析:∵AC →=25AB →=25(AC →+CB →),∴AC →=23CB →=-23BC →,∴λ=-23,故选C .【例9】在△ABC 中,已知D 为AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( ).A .23B .13C .-13D .-23答案:A 解析:解法一:∵A 、D 、B 三点共线,∴13+λ=1,∴λ=23.解法二:∵AD →=2DB →,∴AD →=23AB →,∴CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →=13CA →+λCB →,∴λ=23,故选A .【例10】已知G 是△ABC 内的一点,若GA →+GB →+GC →=0.求证:G 是△ABC 的重心.解:如图,∵GA →+GB →+GC →=0,∴GA →=-(GB →+GC →)()以GB →,GC →为邻边作平行四边形BGCD ,则GD →=GB →+GC →,∴GD →=-GA →, 又∵在平行四边形BGCD 中,BC 交GD 于E ,∴BE →=EC →,GE →=ED →, ∴AE 是△ABC 的边BC 的中线,且|GA →|=2|GE →|,∴G 为△ABC 的重心.【例11】已知向量e 1、e 2不共线,实数x 、y 满足(x -y )e 1+(2x +y )e 2=6e 1+3e 2,则x -y 的值等于( ).A .3B .-3C .6D .-6答案:C 解析:由623x y x y -=⎧⎨+=⎩,解得33x x =⎧⎨=-⎩,∴x -y =6,故选C .【例12】如图,在△AOB 中,OA →=a 、OB →=b ,设AM →=2MB →,ON →=3NA →,而OM 与BN 相交于点P ,试用a 、b 表示向量OP →.解:OM →=OA →+AM →=OA →+23AB →=OA →+23(OB →-OA →)=a +23(b -a )=13a +23b .∵OP →与OM →共线,令OP →=tOM →,则OP →=t ⎝⎛⎭⎫13a +23b . 又设OP →=(1-m )ON →+mOB →=34a •(1-m )+mb∴⎩⎨⎧ t 3=34(1-m )23t =m,∴⎩⎨⎧m =35t =910.∴OP →=310a +35b .【例13】(1)设向量a 、b 的坐标分别是(-1,2)、(3,-5),求a +b ,a -b ,2a +3b 的坐标;(2)设向量a 、b 、c 的坐标分别为(1,-3)、(-2,4)、(0,5),求3a -b +c 的坐标. 解:(1)a +b =(-1,2)+(3,-5)=(-1+3,2-5)=(2,-3);a -b =(-1,2)-(3,-5)=(-1-3,2+5)=(-4,7);2a +3b =2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(-2+9,4-15)=(7,-11).(2)3a -b +c =3(1,-3)-(-2,4)+(0,5)=(3,-9)-(-2,4)+(0,5)=(3+2+0,-9-4+5)=(5,-8). 【例14】平面内给定三个向量a =(3,2)、b =(-1,2)、c =(4,1), (1)求满足a =m b +n c 的实数m 、n ;(2)若(a +k c )∥(2b -a ),求实数k .解:(1)∵a =mb +nc ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n ,2m +n ).∴⎩⎪⎨⎪⎧-m +4n =32m +n =2,解得⎩⎨⎧m =59n =89.(2)∵(a +kc )∥(2b -a ),又a +kc =(3+4k ,2+k ),2b -a =(-5,2), ∴2×(3+4k )-(-5)×(2+k )=0.∴k =-1613.【例15】已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.解:设E (x 1,y 1)、F (x 2,y 2),依题意有:AC →=(2,2)、BC →=(-2,3)、AB →=(4,-1).因为AE →=13AC →,所以AE →=⎝⎛⎭⎫23,23.因为BF →=13BC →,所以BF →=⎝⎛⎭⎫-23,1.因为(x 1+1,y 1)=⎝⎛⎭⎫23,23,所以E ⎝⎛⎭⎫-13,23. 因为(x 2-3,y 2+1)=⎝⎛⎭⎫-23,1,所以F ⎝⎛⎭⎫73,0.∴EF →=⎝⎛⎭⎫83,-23. 又因为4×⎝⎛⎭⎫-23-83×(-1)=0,所以EF →∥AB →. 【例16】若向量|a |=|b |=1,且a +b =(1,0),求向量a 、b 的坐标. 解:设a =(m ,n ),b =(p ,q ),则有⎩⎪⎨⎪⎧m 2+n 2=1p 2+q 2=1m +p =1n +q =0,解得⎩⎪⎨⎪⎧ m =p =12q =-32n =32或⎩⎪⎨⎪⎧m =p =12q =32n =-32.故a =(12,32)、b =(12,-32)或a =(12,-32)、b =(12,32).【例17】若|a |=4,|b |=3,a •b =-6,则a 与b 的夹角等于( ). A .150° B .120° C .60° D .30°答案:B 解析:cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°. 【例18】若|a|=4,|b|=2,a 和b 的夹角为30°,则a 在b 方向上的投影为( ). A .2 B . 3 C .2 3D .4答案:C 解析:a 在b 方向上的投影为|a |cos <a ,b >=4×cos30°=23.【例19】已知|a |=1,|b |=2,a 与b 的夹角为60°,c =2a -3b ,d =m a +b ,若c ⊥d ,求实数m 的值.解:a •b =|a ||b |cos60°=1.因为c ⊥d ,所以c •d =0,即(2a -3b )•(ma +b ) =2ma 2+(2-3m )a •b -3b 2=2m -12+2-3m =0,解得m =-10. 【例20】已知a =(1,2),b =(1,λ)分别确定λ的取值范围,使得: (1)a 与b 夹角为90°;(2)a 与b 夹角为钝角;(3)a 与b 夹角为锐角. 解:设<a ,b >=θ,(1)由a ⊥b 得λ=-12.(2)cos θ=1+2λ5(1+λ2),由cos θ<0且cos θ≠-1得λ<-12.(3)由cos θ>0且cos θ≠1,得λ>-12,且λ≠2.。

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4

高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(1)字母表示下的运算. 利用|a|2=a2,将向量的模的运算转化为向量与 向量的数量积的问题.
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.

cos
θ
= |aa|·|bb|

-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.

连云港市灌云县四队中学高中数学教案:向量的数量积(2) (苏教版必修4)

连云港市灌云县四队中学高中数学教案:向量的数量积(2) (苏教版必修4)

7 2
3 2


3 2
7 2

3 7 2 2

7 3 , ). 2 2


∴k
当 B 90 时, AB BC 0 , BC AC AB (1 2, k 3) (1, k 3) ,
四队中学教案纸 备课 时间 教学 目标 重点 难点 教学
( 学科: 高一数学 )
教时
向量的数量积(2)
教学 3 2 课时
课题
计划
要求学生掌握平面向量数量积的坐标表示, 掌握向量垂直的坐标表示的充要条件。 1.平面向量数量积的坐标表示及由其推出的重要公式; 2.向量数量积坐标表示在处理有关长度、角度、垂直问题中的应用。
a b ③夹角: cos | a || b |
x1 x2 y1 y2
2 2 x y12 x2 y2 2 1

④垂直的充要条件:∵ a b a b 0 ,即 x1 x2 y1 y2 0 (注意 与向量共线的坐标表示的区别) 3.例题分析:
教学过程
(一)复习: 1.两平面向量垂直的充要条件; 2.两向量 共线的坐标表示;
3. x 轴上单位向量 i , y 轴上单位向量 j ,则: i i 1 , j j 1 , i j j i 0 . (二)新课讲解: 1.向量数量积的坐标表示:设 a ( x1 , y1 ), b ( x2 , y2 ) ,则 a x1 i y1 j , b x2 i y2 j , ∴ a b ( x1 i y1 j )( x2 i y2 j ) x1 x2 i x1 y2 i j y1 x2 j i y1 y2 j x1 x2 y1 y2 . 从而得向量数量积的坐标表示公式: a b x1 x2 y1 y2 . 2.长度、夹角、垂直的坐标表示: ①长度: a ( x, y )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 向量的数量积(2) 数量积坐标运算
一.学习目标:
1.掌握平面向量数量积的坐标表示;
2.会求向量的长度以及两点间距离公式;
3.掌握两向量垂直的等价形式及两向量夹角公式的坐标表示.
二.学习重、难点:
1.重点:平面向量数量积的坐标表示;
2.难点:两向量垂直的等价形式及两向量夹角公式的坐标表示和运用。

三.课堂活动:
活动一:(掌握平面向量数量积的坐标表示)
设→→j i ,为分别为x 轴和y 轴上的单位向量,即),0,1(=→i ),0,1(=→j 且→a ,→b 为两个非零向量,),,(11y x a =→),,(22y x b =→则a b →→= .
例1.(1) 已知(1,2)a =,(2,-3)b =,求 ()()3-+2a b a b ⋅.
(2)已知+(2,8),-(8,16)a b a b a b =-=-,求的值.
活动二:(会求向量的长度(模))
向量的长度:设),(y x a =→,=→2a ,即→
a = .
思考:能否用向量方法推导出两点),(),,(2211y x B y x A 间的距离公式:221221)()(y y x x AB -+-=?
推导过程:
例2.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。

(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(2)设实数t 满足(OC t AB -)·OC =0,求t 的值。

思考感悟: ______________ ______________ 活动三:(掌握两向量垂直的等价形式及两向量夹角公式的坐标表示)
1.两向量垂直的等价形式的坐标表示.
设),,(11y x a =→),,(22y x b =→则⇔⊥→→b a = (用坐标表示)
a b →→⇔ (用坐标表示) 2.两向量夹角公式的坐标表示.
设),,(11y x a =→),,(22y x b =→
与夹角为θ,则有=θcos (用坐标表示)
例3.(1)已知)1,2(),3,4(=-=→a ,则与夹角的余弦值是 .
(2)已知=⊥=-=→m m OA 则若,),,3(),2,1( .
变式.(1)设)1,2(),3,4(=-=→a ,若t 与+的夹角为45°,求实数t 的值.
(2)设)()(),1,1(),3,1(b a b a m b m a -⊥+-=-+=若,求m 的值.
思考感悟: ______________ ______________ 例4.在ABC ∆中,设()()2,3,1,AB AC k ==,且ABC ∆是直角三角形,求k 的值.
思考感悟: ______________ ______________
四.小结反思: _____________ _____________
五:巩固练习
1.已知(1,2)a =,(3,4)b =,_____a b ⋅=;2_____a =;______a =.
2.已知(6,2)a =,(3,)b k =-,当____k =时,a b ⊥.
3.给定两个向量=-⊥+-==x b a b x a b a 则)且(),(),1,2(),4,3( .
4.已知b a k b a 与且),5,(),0,3(==的夹角为π43
,则k 的值为 .
5.已知向量(-6,8)a =
(1)求与向量a 平行的单位向量的坐标;
(2)求与向量a 的夹角为90︒的单位向量的坐标.
6.a b 别求对于下列两种情形,分),2,3(,13-==的坐标. (1)⊥ (2)//。

相关文档
最新文档