硝态氮与铵态氮的一些区别
土壤中硝态氮和铵态氮的含量
土壤中硝态氮和铵态氮的含量土壤中硝态氮和铵态氮是土壤微生物分解有机物的产物之一,对土壤生态系统的健康和可持续性发展具有重要的影响。
本文将从硝态氮和铵态氮的概念、产生机制、环境影响以及管理措施等方面对其进行阐述和讨论。
一、硝态氮和铵态氮的概念硝态氮和铵态氮都是土壤中的氮素形态。
硝态氮指的是土壤中以硝酸根离子(NO3-)形式存在的氮素,是通过土壤微生物分解过程中氨基酸的脱氨作用所产生的。
而铵态氮则是以铵离子(NH4+)形式存在于土壤中的氮素,是通过微生物分解过程中氨基酸、尿素等氮素化合物所产生的。
硝态氮和铵态氮在土壤中的含量和比例是不稳定的,它们之间在土壤氮循环中存在着动态平衡。
硝态氮具有较强的水溶性和向下渗透的能力,容易被移动到下层土壤和地下水中,而铵态氮则相对不易溶解和迁移。
二、硝态氮和铵态氮的产生机制硝态氮和铵态氮的产生机制主要涉及土壤微生物、土壤pH值、氧化还原环境等因素。
1.土壤微生物:土壤中的细菌、真菌、放线菌等微生物会分解土壤中的有机质,将其中的氮素转化为铵态氮或硝态氮。
其中,硝态氮是由硝化细菌氧化铵态氮而来的,而铵态氮则是由氨化细菌将有机质中的氮素转化而来。
2.土壤pH值:土壤的pH值也会对硝态氮和铵态氮的产生有影响。
当土壤pH较低时,土壤微生物的活性会降低,因此铵态氮和硝态氮的产生也会减缓。
而当土壤pH较高时,土壤中的硝化作用会增强,因此硝态氮的含量会相对较高。
3.氧化还原环境:土壤氧气含量和氧化还原环境也会影响硝态氮和铵态氮的产生。
当土壤氧气含量较高时,硝化作用会被加强,因此硝态氮的含量会相对较高。
反之,则铵态氮的含量会相对较高。
三、硝态氮和铵态氮的环境影响硝态氮和铵态氮的含量和比例会对土壤生态系统产生很大的影响。
1.作物生长:当土壤中硝态氮和铵态氮的含量合理时,有助于植物的生长和发育,提高产量和品质。
但当氮素含量过高时,会导致作物的过度生长或发生生理障碍。
2.土壤侵蚀:硝态氮的含量高时容易流失,会对土壤质量造成影响,甚至增加土壤侵蚀的强度。
硝态氮与铵态氮的区别
硝态氮与铵态氮的区别许多朋友微信留⾔让我给出葡萄幼果期的施肥建议,我并没有直接给出,⽽是从原理出发,让⼤家更加明⽩⼀些作物营养的知识,昨天我们讲了氮素形态的分类,今天我们聊聊铵态氮和硝态氮的区别。
⽆论是何种氮肥施⼊⼟壤中,我们作物最终主要吸收的是铵态氮和硝态氮两种氮素形态的氮肥,我们常见的复合肥⾥,有的氮肥是直接以铵态氮和硝态氮形式存在。
我们常见的尿素,则是在⼟壤中经过分解之后,主要以铵态氮形态的氮肥被作物吸收利⽤。
那两种形态的氮肥有什么区别呢,⼩编⼿⾥掌握的资料主要为以下⼏点:1、硝态氮快,铵态氮慢:许多听过农技知识培训的朋友应该知道,硝态氮我们常常把他⽐作成飞机,见效快。
铵态氮我们常常把他⽐作成轮船,见效慢⼀些。
2、不同作物对氮源的需求不同:栽培在⽔淹环境中的⽔⽣作物吸收的氮源主要为还原态的铵态氮,⽣长在旱地的旱作物,则见多利⽤氧化态的硝态氮。
3、硝态氮与铵态氮在⼟壤中移动和存储⽅式不⼀样:较⼩的⼟粒⼀般呈负电性,能吸持铵态氮,所以铵态氮施⽤后在⼟壤中移动范围⼩,连年单⼀使⽤铵态氮容易使氮肥集中在上层⼟壤累积,这也是上层⼟壤盐渍化严重,下层⼟壤根系发育不良的原因之⼀。
硝态氮因为呈负电性,⼟粒难以吸附,在⼟壤中移动范围较⼤,在不同⼟壤层分布相对均匀,有利于作物不断伸展的深层根系吸收,但也容易流失。
4、作物吸收利⽤不同:作物吸⼊体内的硝态氮可还原为铵态氮,硝态氮也可直接被作物叶⽚等器官储存,⽽铵态氮被作物吸⼊,在作物体内不能存储,⼀旦超过作物忍受量,尤其在苗期,会引起叶⽚的斑点、黄化等氨中毒。
5、硝态氮与铵态氮对于中微量元素的吸收影响:铵态氮因为呈正电荷形态存在,硝态氮呈负电荷形态存在,⽽中微量元素离⼦⼀般以正电荷形式存在。
同性相斥,异性相吸,铵态氮会抑制中微量元素的吸收,硝态氮能促进中微量元素的吸收。
6、对⼟壤PH影响不同:长期使⽤硫酸铵等铵态氮为主的⽣理酸性肥料,特别是南⽅⼟壤,严重会引起⼟壤酸化。
硝态氮与铵态氮的一些区别
硝态氮与铵态氮的一些区别复合肥硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
特点:1、易溶于水,溶解度大,为速效氮肥。
2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。
3、受热易分解放出氧气,是体积聚增,易燃易爆,运中不安全的。
4、不易被土壤胶体吸附水田不易用的。
铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
特点:1、易溶于水,肥效快,作物直接吸收。
2、容易吸收不易在土壤中流失。
3、在碱性土壤中容易挥发。
4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。
硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
尿素:施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。
然后NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。
另外尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快;当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。
尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。
硝态氮不宜用于水田是因为硝态氮极易溶于水,造成流失很大(特别是放水后)。
特别是湖塘改田,流失很严重。
所以硝态氮更适用于干旱地。
而且冬天温度低时硝态氮也能发挥作用。
铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮责不会。
铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。
铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。
硝态氮和铵态氮
硝态氮和铵态氮
【原创实用版】
目录
1.硝态氮和铵态氮的定义和特点
2.硝态氮和铵态氮的转化关系
3.硝态氮和铵态氮对环境的影响
4.硝态氮和铵态氮的监测和管理
5.硝态氮和铵态氮在农业中的应用
正文
硝态氮和铵态氮是氮循环中的两种重要形态。
硝态氮指的是氮元素在硝酸根离子 (NO3-) 形态存在,而铵态氮指的是氮元素在铵离子 (NH4+) 形态存在。
硝态氮和铵态氮在环境中的转化关系十分复杂。
在自然环境中,硝态氮可以通过反硝化作用转化为铵态氮,也可以通过硝酸盐的还原作用转化为氮气。
而铵态氮在土壤中可以通过氨化作用转化为硝态氮,也可以通过硝酸盐的氧化作用转化为氮气。
硝态氮和铵态氮对环境的影响各不相同。
硝态氮是水体中的主要污染物之一,其过量存在会导致水体富营养化,从而影响水生生物的生存。
而铵态氮在土壤中是植物的养分来源,但是过量的铵态氮会导致土壤酸化,从而影响土壤的生态功能。
对于硝态氮和铵态氮的监测和管理,我国有严格的标准和方法。
对于水体中的硝态氮和铵态氮,我国采用化学方法进行监测,并且根据监测结果制定相应的水环境质量标准。
对于土壤中的硝态氮和铵态氮,我国采用土壤检测方法进行监测,并且根据监测结果制定相应的土壤环境质量标准。
硝态氮和铵态氮在农业中都有广泛的应用。
硝态氮和铵态氮都是植物
的养分来源,可以促进植物的生长。
在农业生产中,我们通常通过施用化肥的方式来补充硝态氮和铵态氮。
但是,过量的氮肥施用会导致硝态氮和铵态氮的过量积累,从而影响农业生产的可持续性。
不同氮源对作物的影响
铵态氮与硝态氮的差异铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
酰胺态氮肥:主要有尿素植物可以大量吸收的氮,是铵态氮和硝态氮,也可吸收少量有机态氮,如尿素和结构比较简单的氨基酸。
铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。
它们所带的电荷不用,在土壤中的行为以及对植物的营养特点也不一样。
不能简单地说哪种形态好,哪种形态不好。
它们的好坏与施用条件和作物种类等有关。
铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。
硝态氮被植物吸收后,要经过硝酸还原酶和亚硝酸还原酶还原成铵态氮后,才能进一步合成氨基酸。
不同作物施用两种形态氮的反应往往不一。
水稻施用铵态氮的效果比硝态氮好。
因为水稻幼苗根中缺少硝酸还原酶,对硝态氮不能很好利用。
除水稻本身原因外,水田中施用硝态氮易于流失,而且在淹水条件下的反硝化作用也是氮素损失的原因。
因此,在水稻田施用硝态氮肥,有资料认为其肥效只有铵态氮肥的60%—70%。
而与此相反的是烟草和蔬菜,它们是喜硝态氮的作物。
硝态氮肥极易溶解,在土壤中活动性大,能迅速提供作物氮素营养,同时,又易于流失,肥效较短。
这种特性符合烟草的要求,叶片要生长快,在适当时候又能落黄“成熟”。
而且硝态氮有利于烟草体内形成柠檬酸、苹果酸等有机酸,烤出的烟叶品质好,燃烧性好。
蔬菜施用硝态氮产量高,如硝态氮低于肥料全氮的50%,产量明显下降。
因此,生产烟草、蔬菜专用肥时,氮肥中要有一定比例的硝态氮。
但由于在土壤水分、温度、通气条件适宜时,铵态氮可经硝化作用,氧化成硝态氮。
所以,烟草、蔬菜也不是绝对不能施用含铵态氮的肥料。
另外,施用硫酸铵等生理酸性肥料作物生长不好,往往不是由于铵态氮肥不宜,而是由于生理酸性造成的。
硝态氮和铵态氮
硝态氮和铵态氮硝态氮和铵态氮是植物生长必需的两种氮素形式。
它们在植物生长过程中发挥着重要的作用,但它们的性质、作用以及在农业生产中的应用方式却有所不同。
一、硝态氮和铵态氮的定义及区别硝态氮,又称硝酸态氮,是指植物可吸收的硝酸盐形态的氮。
它主要来源于土壤中的硝酸盐矿物和有机物的分解。
硝态氮在土壤中移动性强,易被植物吸收,但同时也易流失。
铵态氮,又称氨基态氮,是指植物可吸收的氨基形态的氮。
它主要来源于土壤中的氨基酸和氨态氮。
铵态氮在土壤中移动性较差,但不易流失。
二、硝态氮的性质和作用硝态氮是一种快速作用的氮素形式,能迅速满足植物生长的需求。
硝态氮在土壤中容易被植物吸收,对提高植物的早期生长速度和叶面积有很好的效果。
此外,硝态氮还能促进植物对其他矿质元素的吸收。
三、铵态氮的性质和作用铵态氮是一种慢速作用的氮素形式,对植物的生长具有持久的促进作用。
铵态氮在土壤中不易流失,可以保证植物长期稳定的氮素供应。
此外,铵态氮还能提高植物的抗逆性,促进植物的生长。
四、硝态氮和铵态氮在农业生产中的应用在农业生产中,硝态氮和铵态氮的应用各有侧重。
硝态氮适用于作物生长初期,可以迅速提高作物生长速度,为高产打下基础。
铵态氮适用于作物生长中后期,可以保证作物稳定的氮素供应,提高作物品质。
五、如何合理施用硝态氮和铵态氮要实现硝态氮和铵态氮的合理施用,首先要了解不同作物的氮素需求特点。
对于需氮量大的作物,如水稻、小麦等,可以适当增加硝态氮和铵态氮的施用量。
其次,要掌握硝态氮和铵态氮的施用时机,一般在作物生长初期施用硝态氮,生长中后期施用铵态氮。
最后,要注意硝态氮和铵态氮的施用比例,避免过量施用导致环境污染。
总之,硝态氮和铵态氮在植物生长过程中起着重要作用。
硝态氮铵态氮区别
硝态氮铵态氮区别The Standardization Office was revised on the afternoon of December 13, 2020硝态氮与铵态氮的区别一、硝态氮与铵态氮的特性(一)硝态氮肥氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
1、易溶于水,溶解度大,为速效氮肥。
2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。
3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。
4、不易被土壤胶体吸附。
硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。
硝态氮更适用于干旱地。
冬天温度低时硝态氮也能发挥作用。
(二)铵态氮肥氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
1、易溶于水,肥效快,作物直接吸收。
2、容易吸收,不易在土壤中流失。
3、在碱性土壤中容易挥发。
4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。
铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。
(三)硝、铵态氮肥氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
(四)酰胺态氮氮肥中氮素的形态是酰胺态。
例如尿素。
1、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。
2、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。
3、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。
4、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。
当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。
5、尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。
硝态氮、铵态氮区别
硝态氮与铵态氮的区别一、硝态氮与铵态氮的特性(一)硝态氮肥氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
1、易溶于水,溶解度大,为速效氮肥。
2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。
3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。
4、不易被土壤胶体吸附。
硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。
硝态氮更适用于干旱地。
冬天温度低时硝态氮也能发挥作用。
(二)铵态氮肥氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
1、易溶于水,肥效快,作物直接吸收。
2、容易吸收,不易在土壤中流失。
3、在碱性土壤中容易挥发。
4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。
铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。
(三)硝、铵态氮肥氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
(四)酰胺态氮氮肥中氮素的形态是酰胺态。
例如尿素。
1、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。
2、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。
3、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。
4、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。
当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。
5、尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。
二、铵态氮、硝态氮区别1、铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。
铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。
硝态氮肥和铵态氮肥比较
硝态氮肥和铵态氮肥比较展开全文硝态氮和铵态氮能够被植物直接吸收利用,他们施入土壤后的行为以及进入植物体内的代谢是不同的,因此作为植物氮源也各有利弊。
一、农业化学性质肥料施入土壤,与土壤、植物相互作用的性质,常被称为农化性质。
首先,硝酸根带负电荷,不易被以带负电荷为主的土壤胶体吸附;铵离子带正电荷,容易被土壤吸附,不仅吸附在土壤胶体表面,还可进入粘土矿物的晶格中,成为固定态铵离子。
因此,硝态氮主要存在于土壤溶液中,移动性大,容易被植物吸收利用,也容易随水流失。
而铵态氮主要被吸附和固定在土壤胶体表面和胶体晶格中,移动性较小,比较容易被土壤”保存”。
其次,不同形态的氮在土壤中会相互转化。
在适宜的温度、水分和通气条件下,在土壤微生物和酶的作用下,尿素水解为铵态氮,铵态氮氧化为硝态氮。
因此,早春低温季节尿素和铵态氮的转化比较慢,夏季高温季节转化快。
在旱地土壤中硝态氮往往多于铵态氮,而在水田土壤中硝态氮很少。
第三,在土壤湿度过大,通气不良和有新鲜有机物存在的情况下,硝态氮在微生物作用下可还原成氧化亚氮、氧化氮和氮气,这种反硝化作用是硝态氮损失的主要途径之一。
铵态氮从土壤中损失的主要途径是氨挥发。
因此,硝态氮肥适宜于气候比较冷凉的地区和季节,在旱地分次施用,肥效快而明显,但不宜在高温、多雨的水田地区施用;铵态氮肥适宜于水田,也适宜于旱地施用,但施用于土壤表面或撒施于水田,氨挥发的损失较大。
二、植物营养生理性质植物在吸收和代谢这两种形态的氮素上存在不同。
首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵在植物体内的积累对植物本身是有毒的。
硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可积累在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响。
即硝态氮在植物体内的积累实际上是氮素”贮备”。
这是作物营养生长期间的共性。
第二,植物吸收铵离子时分泌H+,而吸收硝酸根时会释放OH-和HCO3-,因而影响根系环境的pH值,这在溶液培养时更为明显。
教你1分钟读懂硝态氮与铵态氮的区别
教你1分钟读懂硝态氮与铵态氮的区别一、铵态氮、硝态氮、酰胺态氮的来源产品来源铵态氮铵态氮包括碳酸氢铵、硫酸铵、氯化铵、氨水等硝态氮硝态氮包括硝酸钠、硝酸钙、硝酸铵等。
酰胺态氮酰胺态氮——尿素[CO(NH2)2],含氮46.7%,是固体氮中含氮最高的料。
二、铵态氮、硝态氮、酰胺态氮的特点产品特点铵态氮1、铵态氮为正电荷,而土壤是负电荷,容易被土壤胶体易被吸附,从而不易流失(比如雨水多、漫灌等)。
2、植物吸收铵态氮的途径分为2种:①直接以铵离子形式被植物吸收;②氧化转化成硝酸盐,以硝酸根形式被植物吸收。
3、在碱性环境中氨易挥发损失。
4、高浓度铵态氮对作物容易产生毒害。
5、作物吸收过量铵态氮对钙、镁、钾的吸收有一定的抑制作用。
硝态氮1、易溶于水,在土壤中移动较快。
2、NO3—吸收为主吸收,作物容易吸收硝酸盐。
3、硝酸盐料对作物吸收钙、镁、钾等养分无抑制作用。
4、硝酸盐是带负电荷的阴离子,不能被土壤胶体所吸附,易随水流失。
5、硝酸盐容易通过反硝化作用还原成气体状态(NO、N2O、N2),从土壤中逸失。
酰胺态氮造粒中温度过高会产生缩二脲(又称双缩脲),对作物有抑制作用。
缩二脲含量超过1%时,不能做种肥,苗肥和叶面肥,其他施用期尿素含量也不宜过多或过于集中。
酰胺态氮属于有机氮肥,经过土壤中的脲酶作用,水解成碳酸铵或碳酸氢铵后,才能被作物吸收利用,水解前,土壤中以分子形式存在,只有20%被土壤吸附,要注意深埋。
三、肥效、持效期、安全性比较:肥效(作物吸收速度)硝态氮>铵态氮>酰胺态氮持效期(土壤吸附时间)铵态氮>酰胺态氮>硝态氮安全性硝态氮>铵态氮>酰胺态氮。
硝态氮铵态氮比值
硝态氮铵态氮比值硝态氮和铵态氮是农业生产中常用的两种氮肥形态。
硝态氮(NO3-)是植物主要吸收的形态,而铵态氮(NH4+)则需要通过微生物转化为硝态氮后植物才能利用。
硝态氮和铵态氮的比值对作物生长和土壤肥力有着重要影响。
本文将从作物吸收、土壤转化和施肥管理等方面,探讨硝态氮铵态氮比值对农业生产的影响。
一、作物对硝态氮和铵态氮的吸收差异作物对硝态氮和铵态氮的吸收能力存在差异。
硝态氮是植物较为主要的氮素形态,大多数作物对硝态氮的吸收能力较强。
而铵态氮则需要通过微生物转化为硝态氮后,才能被植物吸收利用。
因此,在施用氮肥时,应根据不同作物的吸收特点,合理调整硝态氮和铵态氮的比例,以提高氮肥利用率和作物产量。
二、土壤中硝态氮和铵态氮的转化过程土壤中硝态氮和铵态氮之间存在着动态转化过程。
一方面,铵态氮可以通过微生物的作用被氧化成硝态氮,这个过程被称为硝化作用。
另一方面,硝态氮也可以通过还原作用转化为铵态氮,这个过程被称为反硝化作用。
土壤中硝态氮和铵态氮的转化速度受到多种因素的影响,包括土壤温度、湿度、pH值、有机质含量等。
合理施肥管理可以促进硝态氮和铵态氮的平衡转化,提高土壤氮素利用效率。
1. 影响作物生长和产量硝态氮和铵态氮的比例对作物生长和产量有着重要影响。
研究表明,适当增加硝态氮的供应可以提高作物的光合作用效率和干物质积累,从而增加产量。
然而,过高的硝态氮供应也可能导致作物生长不平衡,易发生氮素过量和营养失衡的问题。
因此,在施肥时应根据作物的需求和土壤条件,合理调整硝态氮和铵态氮的比例,以获得最佳的产量效益。
2. 影响土壤肥力和环境质量硝态氮和铵态氮的比值也对土壤肥力和环境质量有着重要影响。
过高的硝态氮供应会导致土壤酸化、有机质流失和土壤结构破坏等问题,进而影响土壤肥力。
同时,硝态氮也容易溶解于水中,造成水体污染,对水生生物产生不利影响。
因此,科学施肥管理应根据土壤条件和作物需求,合理控制硝态氮铵态氮比值,减少对环境的负面影响。
硝态氮铵态氮缩写
硝态氮铵态氮缩写硝态氮和铵态氮是土壤中两种重要的氮素形态,它们对于植物的生长发育和产量有着重要的影响。
在农业生产中,我们经常会听到硝态氮和铵态氮的缩写,分别为NO3-N和NH4-N。
下面将从不同角度分别介绍这两种氮素形态的特点和作用。
一、硝态氮硝态氮是指土壤中以硝酸根离子(NO3-)形式存在的氮素。
硝态氮的来源主要是土壤中的有机氮和氨态氮经过微生物作用后转化而来。
硝态氮的优点是吸收速度快,能够迅速被植物吸收利用,同时还能够促进植物的生长发育。
但是,硝态氮也有一些缺点,如易被淋失和挥发,容易造成土壤酸化等问题。
二、铵态氮铵态氮是指土壤中以铵离子(NH4+)形式存在的氮素。
铵态氮的来源主要是土壤中的有机氮和氨态氮经过微生物作用后转化而来。
铵态氮的优点是不易被淋失和挥发,能够在土壤中长期稳定存在,同时还能够提高土壤的pH值。
但是,铵态氮也有一些缺点,如吸收速度较慢,容易造成土壤盐碱化等问题。
三、硝态氮和铵态氮的作用硝态氮和铵态氮在植物生长发育中都有着重要的作用。
硝态氮能够促进植物的生长发育,提高产量和品质,同时还能够增加植物对病虫害的抵抗力。
铵态氮则能够提高土壤的肥力和水分保持能力,同时还能够促进植物的根系生长和吸收其他养分。
四、硝态氮和铵态氮的适用性硝态氮和铵态氮的适用性因土壤类型、作物品种和生长阶段等因素而异。
一般来说,硝态氮适用于生长迅速的作物,如蔬菜、水果等,而铵态氮适用于生长缓慢的作物,如树木、草坪等。
此外,在土壤pH值较低的情况下,铵态氮的利用效果更好。
综上所述,硝态氮和铵态氮是土壤中两种重要的氮素形态,它们对于植物的生长发育和产量有着重要的影响。
在农业生产中,我们需要根据不同作物的需求和土壤的特点选择合适的氮素形态,以提高产量和品质,同时还要注意土壤的肥力和环境保护。
氨态氮和硝态氮的区别
氨态氮和硝态氮的区别铵铵态氮肥和硝态氮肥有什么不一样2016-05-01 农业技术根据氮肥中氮素化合物的形态将氮肥分为铵态氮肥、硝态氮肥、酰胺态氮肥和氰氨态氮肥。
随着人们对硝态氮肥施用效果的肯定,近两年,肥料市场上掀起了一股硝基复合(混)肥的热潮,许多肥料厂家及商家对硝态氮肥发展前景十分看好。
事实上,无论是铵态氮还是硝态氮都可以作为植物生长和高产的良好氮源,究竟哪种肥料施用效果好,有发展前景,需要根据作物、土壤、肥料的性状来确定,更需要深入解读植物吸收铵态、硝态两种形态氮素营养的生理性质。
一、植物中氮素的主要来源植物可以利用的氮素形态主要是铵态氮、硝态氮,也能少量吸收一些简单的有机含氮化合物如氨基酸、酰胺(如尿素)等。
空气中含有近79%的氮气,只有某些微生物(包括与高等植物共生的固氮微生物)才能利用,大多数植物没有这一本领。
而植物吸收的氮素主要来自它们生存的介质——土壤。
土壤本身存在的氮素并不多,而且土壤中的氮素并不能被植物全部利用,植物能利用的仅是其中一小部分,即土壤中存在的铵态、硝态氮,而一些有机氮素,如简单的氨基酸、酰胺等也能被作物吸收利用,但其数量很少,又会被微生物转化成其他形态,难以在土壤长期存留;植物对其吸收也远不如无机氮容易,这些有机氮只能使植物存活,而不能使其丰产。
二、形态不同,会产生不同的效应植物在吸收和代谢两种形态的氮素上存在不同。
首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵在植物体内的积累对植物毒害作用较大。
硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响。
因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。
植物为什么不按其需要有计划地吸收,而要奢侈地吸收硝态氮,并“贮备”于液泡中呢?研究表明,硝态氮在营养器官生长时期大量累积是一切植物的共性,随着植物不断生长,体内的硝态氮含量越来越少。
碱解氮、硝态氮、铵态氮
碱解氮、硝态氮、铵态氮
碱解氮是指在土壤中进行碱解作用时释放出的氮源。
碱解是一种土壤化学反应,通过加入碱性物质(如氢氧化钠或碳酸钠)使固态氮化合物转化为可溶性盐类,从而释放出氮元素。
硝态氮是指土壤中以硝酸根离子(NO3-)形式存在的氮源。
硝态氮是植物主要吸收的形态,它可以通过土壤中的微生物氧化硝化作用转化而来。
铵态氮是指土壤中以铵离子(NH4+)形式存在的氮源。
铵态氮可以由有机氮的矿化作用产生,也可以由硝化作用后的硝酸盐还原而来。
铵态氮可以直接被植物吸收,也可以通过微生物的硝化作用转化为硝态氮。
硝态氮与氨态氮的区别吸收作用成分反应都不同
硝态氮与氨态氮的区别吸收作用成分反应都不同两种肥料的区别主要是:吸收不同,作用不同,成分不同,反应不同,效果也不同。
主要用于农作物的生产上使用,就是人们熟知的化肥。
具体需要用哪一种,需要看植物的种类。
近些年在市场上出售的都是复合肥,相对比较硝态氮,更受农民的欢迎。
1、吸收不同植物能够充分的利用氮素的形态是因为含有硝态氮,能够吸收很多的有机物和氧化物。
铵态氮和硝态氮有很多相似之处,但是其作用原理是不同的。
氨态氮吸收的能力比硝态氮要差,硝态氮能够将微生物进行转化,而铵态氮只能使植物存活,吸收较差。
2、反应不同两种肥料作用在植物上的形态有很多不同,氨态氮能够很好的融合有机酸,形成了氨基酸,对植物有一定的伤害,而硝态氮不会出现植物的不良反应。
硝态氮在作用到植物上之后,能够在植物的细胞中代谢,而氨态氮做不到。
3、成分不同铵态氮和硝态氮同时使用,能够促使植物更好的生长,但是二者的成分完全不同。
相对比较硝态氮含有的氮成分较多一些,硝态氮对于植物的生长和产量能够起到更好的作用。
在使用时应该选择高浓度,会更加显现出肥料的优越性。
4、效果不同硝态氮的反应比较活跃,并且见效快。
然而氨态氮,但相对比较要差。
但是农民在对于不同的作物要选择不同的氮源,一般生长在水里的植物要选择氨态氮。
而长在泥土里的植物大多都选择硝态氮。
5、作用不同氨态氮能够与有机酸相结合,并且能够更好的进行光合作用,而硝态氮需要在还原之后才能够更好的被吸收。
在使用氨态氮时应该以酸性土壤为主,这样对植物的生长才能够更加旺盛。
而选择使用硝态氮的土壤为碱性。
硝态氮、铵态氮、酰胺态氮的区分对比
硝态氮、铵态氮、酰胺态氮的区分对比一、铵态氮、硝态氮、酰胺态氮的来源产品来源铵态氮铵态氮包括碳酸氢铵、硫酸铵、氯化铵、氨水等硝态氮硝态氮包括硝酸钠、硝酸钙、硝酸铵等。
酰胺态氮酰胺态氮——尿素[CO(NH2)2],含氮46.7%,是固体氮中含氮最高的料。
二、铵态氮、硝态氮、酰胺态氮的特点产品特点铵态氮1、铵态氮为正电荷,而土壤是负电荷,容易被土壤胶体易被吸附,从而不易流失(比如雨水多、漫灌等)。
2、植物吸收铵态氮的途径分为2种:①直接以铵离子形式被植物吸收;②氧化转化成硝酸盐,以硝酸根形式被植物吸收。
3、在碱性环境中氨易挥发损失。
4、高浓度铵态氮对作物容易产生毒害。
5、作物吸收过量铵态氮对钙、镁、钾的吸收有一定的抑制作用。
硝态氮1、易溶于水,在土壤中移动较快。
2、NO3—吸收为主吸收,作物容易吸收硝酸盐。
3、硝酸盐料对作物吸收钙、镁、钾等养分无抑制作用。
4、硝酸盐是带负电荷的阴离子,不能被土壤胶体所吸附,易随水流失。
5、硝酸盐容易通过反硝化作用还原成气体状态(NO、N2O、N2),从土壤中逸失。
造粒中温度过高会产生缩二脲(又称双缩脲),对作物有抑制作用。
缩二脲含量超过1%时,不能做种肥,苗肥和叶面肥,其他施用酰胺态氮期尿素含量也不宜过多或过于集中。
酰胺态氮属于有机氮肥,经过土壤中的脲酶作用,水解成碳酸铵或碳酸氢铵后,才能被作物吸收利用,水解前,土壤中以分子形式存在,只有20%被土壤吸附,要注意深埋。
三、肥效、持效期、安全性比较:肥效(作物吸收速度)硝态氮>铵态氮>酰胺态氮持效期(土壤吸附时间)铵态氮>酰胺态氮>硝态氮安全性硝态氮>铵态氮>酰胺态氮。
注意事项:①温室环境下,应适当减少铵态氮的使用。
温室密封环境下,会增加氨害几率,且蔬菜属于喜硝作物;②硝态氮多适用于干旱地,水田应减少硝态氮肥的使用。
因为硝态氮土壤中难吸附固定,流失过多,且长期使用会使作物产生致癌的亚硝酸盐。
硝态氮肥和铵态氮肥施用方法
硝态氮肥和铵态氮肥施用方法
氮肥是农业生产中常用的肥料之一,常见的硝态氮肥和铵态氮肥是两种常用的氮肥类型。
它们在施用方法上有一些不同,下面就让我们来了解一下。
硝态氮肥是指硝酸盐形式的氮肥,如硝酸铵、硝酸钙等。
硝态氮肥施用方法主要包括基础追肥和追肥两种方式。
基础追肥是在作物生长初期,将硝态氮肥均匀施入土壤中,以供作物整个生长期使用。
追肥则是在作物生长中后期,根据作物生长的需要,适时追加硝态氮肥,帮助作物增加产量。
此外,硝态氮肥也可以通过喷施的方式施用,提高氮肥利用率,减少氮肥的流失。
铵态氮肥是指铵盐形式的氮肥,如尿素、硫酸铵等。
铵态氮肥施用方法与硝态氮肥略有不同。
由于铵态氮肥容易挥发和流失,因此在施用时需要注意一些事项。
首先,铵态氮肥不宜单独施用,可以与磷、钾肥混合使用,以减少氮肥的流失。
其次,铵态氮肥施用后需要及时覆盖土壤,以减少氮肥的挥发。
另外,铵态氮肥不宜与碱性物质混合,以免产生挥发性氨气。
在实际使用中,我们需要根据作物的品种、生长环境和土壤肥力等因素,合理选择硝态氮肥和铵态氮肥的施用方法。
同时,加强土壤管理,提高土壤肥力,也是提高氮肥利用率的重要措施。
总之,硝态氮肥和铵态氮肥是农业生产中常用的氮肥类型,它们有着不同的施用方法。
合理选择氮肥类型和施用方法,将有助于提高作物产量,减少农业生产中的资源浪费。
同时,加强土壤管理,也将对提高氮肥利用率起到积极的作用。
硝态氮和铵态氮的关系
硝态氮和铵态氮的关系
氮是植物生长所需的关键元素之一。
在土壤中,氮可以以不同的形式存在,其中最常见的是硝态氮和铵态氮。
这两种氮形式对植物的吸收和利用有着不同的影响。
硝态氮是一种水溶性的无机氮化合物,它在土壤中很容易被水分带走,因此在雨季和灌溉期间,硝态氮往往会被带走,从而减少了植物可利用的氮的数量。
另外,硝态氮在土壤中容易被微生物分解为氮气,这会导致土壤中氮的丢失。
但是,由于硝态氮可以被植物根系迅速吸收,因此它是一种高效的氮肥。
铵态氮是一种有机氮化合物,它通过微生物的分解作用在土壤中形成。
与硝态氮相比,铵态氮的溶解度较低,因此不会那么容易被带走。
此外,铵态氮还能够在土壤中与矿物质质地和有机质质地结合形成铵型矿物,这样就能够长期留存在土壤中。
由于铵态氮在土壤中稳定性较高,因此不容易被微生物分解,从而减少了氮的损失。
不过,铵态氮在土壤中会容易转化为硝态氮,因此过多的使用铵态氮肥会导致土壤中硝态氮的积累。
综合来看,硝态氮和铵态氮都是植物所需的重要氮源,但它们的表现和使用方式有所不同。
当土壤条件较为干燥或者需要快速增加氮素时,硝态氮是更为适合的选择;而当土壤有较高的有机质含量或者需要长期保持土壤中氮的供应量时,铵态氮则更为适合。
在施肥时,应根据不同土壤和作物的情况来选用适当的氮肥,以达到最佳效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硝态氮与铵态氮的一些区别
复合肥
硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
特点:1、易溶于水,溶解度大,为速效氮肥。
2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。
3、受热易分解放出氧气,是体积聚增,易燃易爆,运中不安全的。
4、不易被土壤胶体吸附水田不易用的。
铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
特点:1、易溶于水,肥效快,作物直接吸收。
2、容易吸收不易在土壤中流失。
3、在碱性土壤中容易挥发。
4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。
硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
尿素:施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。
然后NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。
另外尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快;当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。
尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。
硝态氮不宜用于水田是因为硝态氮极易溶于水,造成流失很大(特别是放水后)。
特别是湖塘改田,流失很严重。
所以硝态氮更适用于干旱地。
而且冬天温度低时硝态氮也能发挥作用。
铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮责不会。