湘教版七年级八年级数学知识点总结

合集下载

数学湘教版总结知识点

数学湘教版总结知识点

数学湘教版总结知识点一、数与代数1. 数的性质数与代数是数学的基础,数与代数是数学的基本概念,也是学习数学的起点。

数的性质是数学中非常重要的一个知识点,它包括整数的性质、有理数的性质等。

学生在学习这一部分内容时,需要掌握数的基本性质、各种数的相互关系和数的运算规律等。

2. 代数式代数式是数学中的一种基本概念,它是用代数符号表示的代数运算式。

代数式包括整式、分式、多项式等,学生在学习代数式的过程中,需要理解代数式的基本概念、代数式的基本运算法则等,同时还需要掌握代数式的化简、展开、因式分解等基本操作。

3. 一元一次方程一元一次方程是数学中的一种常见的代数式,它是形如ax+b=0的代数式。

一元一次方程的解法非常重要,它包括平凡方程、等式两边同时乘以相同的数等。

学生在学习一元一次方程时,需要掌握一元一次方程的解法和应用技巧,同时还需要理解一元一次方程的几何意义和实际应用等。

4. 一元二次方程一元二次方程是数学中的一种常见的代数式,它是形如ax^2+bx+c=0的代数式。

一元二次方程的解法非常重要,它包括公式法、配方法等。

学生在学习一元二次方程时,需要掌握一元二次方程的解法和应用技巧,同时还需要理解一元二次方程的几何意义和实际应用等。

5. 不等式不等式是数学中的一种常见的代数式,它是用“大于”、“小于”、“大于等于”、“小于等于”等不等号来表示的。

不等式的解法是数学中比较重要的一个知识点,学生在学习不等式时,需要掌握不等式的解法和应用技巧,同时还需要理解不等式的几何意义和实际应用等。

6. 整式的加减整式的加减是数学中非常基本的一个知识点,它是数学中整式的基本运算之一。

整式的加减包括同类项的合并、异类项的合并、常数项的合并等,学生在学习整式的加减时,需要掌握整式的加减法则、整式的化简、展开等基本操作,同时还需要理解整式的几何意义和实际应用等。

7. 整式的乘法整式的乘法是数学中非常基本的一个知识点,它是数学中整式的基本运算之一。

湘教版初一数学知识点

湘教版初一数学知识点

湘教版初一数学知识点篇1:湘教版初一数学知识点※1、如果选用同一个长度单位量得两条线段ab,cd的长度分别是m、n,那么就说这两条线段的比ab:cd=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;篇2:湘教版初一数学知识点(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

(4)多重对称后的图形等于平移后的图形。

(5)平移由方向和距离决定。

(6)平移后,对应线段平行(或共线)且相等,对应角度相等,对应点连接的线段平行且相等。

这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移篇3:湘教版初一数学知识点重要考点1.代数表达式的乘除法公式应用(六篇)和逆应用(数的计算)。

(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an(5)a0 (a≠0) (6)a-p= =2.单项式、单项式和多项式的乘法定律。

3、整式的乘法公式(两条)。

平方差公式:(a+b)(a-b)=完全平方公式:(a+b)2 (a-b)2常用公式:(x+m)(x+n)=5,单项除以单项,多项式除以单项(换算单项除以单项)。

6、互为余角和互为补角和7、两直线平行的条件:(角的关系线的平行) ①相等,两直线平行;② 相等,两直线平行;③ 互补,两直线平行.8.平行线的性质:两条直线平行。

(线的平行度9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)) 10、变量中的形象法,注意:(1)横向和纵向物体。

(完整word版)湘教版初中数学知识点总复习资料

(完整word版)湘教版初中数学知识点总复习资料

教材知识梳理•系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)第三单元函数第9讲平面直角坐标系与函数第10讲一次函数第11讲反比例函数的图象和性质3.反比例函数的图象特征4.待定系数(1)(2)(3)由两条曲线组成,叫做双曲线;图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.k例:若(a,b)在反比例函数y 的图x象上,则(-a,- b)在该函数图象上.(填在"、"不在")只需要知道双曲线上任意一点坐标,设函数解析式,代入求岀反比例函数系数k即可.知识点二:反比例系数的几何意义及与一次函数的综合k(1)意义:从反比例函数y= x(k工0图象上任意一点向x轴和y轴作垂线,垂线5.系数k的与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:几何意义3 & crw-H(1 )确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性, 可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.6.与一次函(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解数的综合(3) 在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可也可逐一选项判断、排除.(4) 比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定岀解集的范围.知识点三:反比例函数的实际应用,般步(1题意找岀自变量与因变量之间的乘积关系;(2设岀函数表达式;(3) 依题意求解函数表达式;(4) 根据反比例函数的表达式或性质解决相关问题第12讲二次函数的图象与性质例:已知反比例函数图象过点(一3,-1),则它的解析式是y=3/x.失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k < 0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比3 3例函数解析式为:y 至yx—涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:& AOC=S △ OPE> S A BOD.知识点一:二次函数的概念及解析式关键点拨与对应举例1. 一次函数的定义形如y= ax2+ bx+ c (a,b,c是常数,a丰0的函数,叫做二次函数.例:如果函数y=(a- 1)x2是二次函数,那么a的取值范围是a工2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h) 2+k(a工0),其中二次函数的顶点坐标是(上也);③交点式:y=a(x-x 1)(x-x 2),其中X1,X2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形第17讲相似三角形分割 那么线段AB 被点C 黄金分割.其中点 C 叫做线段AB 的黄金分割 ----------------- 1 ------- 1点,AC 与AB 的比叫做黄金比. A C B害9,那么较长线段长为 5冬-1)cm .知识点二:相似三角形的性质与判定F(1)两角对应相等的两个三角形相似 (AAA). 如图,若/ A = Z D ,/ B = Z 丘,则厶ABC AB CE5.相似 三角 形的 判定 DEF.(2) 两边对应成比例,且夹角相等的两个三 角形相似. 如图,若/ A = Z D , AC AB nt ————,则△ ABC^A DEF.DF DE(3) 三边对应成比例的两个三角形相似•女口AB AC BC 图,右 ,则厶AB3A DEF. DE DF EF DB FA_ FBi CE _判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(1)对应角相等,对应边成比例. 6.相似 三角形的 性质 7.相似三 角形的 基本模 型 ⑵周长之比等于相似比,面积之比等于 相似比的平方•(3)相似三角形对应高的比、 对应角平分线的比和对应中线的比等于 相似比•IIA DABffCD B E知识点一:锐角三角函数的定义 1.锐角三 角函数 正弦: sinA —余弦: cosA =正切: tanA — 斜边 Z A 的对边 a 斜边 cZ A 的邻边 b c 度数三角函数sinA例:⑴已知△ ABC DEF , △ ABC 的周长 为3, △ DEF 的周长为2,则厶ABC 与厶DEF 的面积之比为9: 4.(2)如图,DE // BC ,AF 丄 BC, 已知 S A ADE:S △ ABC=1:4, 则 AF:AG =1 : 2.2.特殊角 的三角函 数值cosAtanA知识点二:解直角三角形DB△ BOE®ACFD第18讲解直角三角形Z A 的对边_ a ZA 的邻边=b .C --------- 5 -------------------30°_3 245° 60°-2 2_2 2(1 )熟悉利用利用相似求解问题的基本图 形,可以迅速找到解题思路,事半功倍 . (2)证明等积式或者比例式的一般方法:经常把等积式化为比例式, 把比例式的四条 线段分别看做两个三角形的对应边.然后, 通过证明这两个三角形相似,从而得出结 果.关键点拨与对应举例根据定义求三角函数值时, 一定根据题目图形来理解, 严格按照三角函数 的定义求解,有时需要通过辅助线来 构造直角三角形.(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;⑵将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3) 选择合适的边角关系式,使运算简便、准确;(4) 得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n—3)条对角线,并且这些对角线把多边形分成了(n —2)个三角形;n边形对角线条数为n n 3.2多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1) 若一个多边形的内角和为1440°,则这个多边形的边数为10.(2) 从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为丸边形.2.多边形的内角和、外角和(1 )内角和:n边形内角和公式为(n —2) 180 °(2)外角和:任意多边形的外角和为360°.3.正多边形(1 )定义:各边相等,各角也相等的多边形.n 2 180°(2)正n边形的每个内角为nn ,每一个外角为360 ° /n.(3 )正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:3.解直角三角形的概念在直角三角形中,除直角外,一共有五个兀素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.(1)三边之间的关系:a2+ b2= c2;(2)锐角之间的关系:/ A +Z B = 90°4.解直角三角形的(3)边角之间的关系: a _ . f bsinA = =cosB=:, cosA = sinB=;, c c常用关系atan A=-. b 知识点三:解直角三角形的应用科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦•例:在Rt △ ABC中,已知a=5,sinA=30 °,贝U c=10,b=5.5.仰角、俯角、坡度、坡角和方向角(1) 仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2) 坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用a表示,则有i= tan a (如图②)(3) 方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点0出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角. (如图③)解直角三角形中“双直角三角形”的基本模型:(1) 叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1) 5.平行四边形的性质D C(3)(4)边:两组对边分别平行且相等.即AB // CD 且AB = CD, BC // AD 且AD = BC. 角:对角相等,邻角互补.即/ BAD =Z BCD,/ ABC =Z ADC ,/ ABC +Z BCD = 180。

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳
一、整数和有理数
1.整数的概念和表示方法
2.整数的加法和减法运算
3.整数的乘法和除法运算
4.有理数的概念和表示方法
5.有理数的加法和减法运算
6.有理数的乘法和除法运算
二、代数式与等式
1.代数式的概念和表示方法
2.代数式的加减法运算
3.代数式的乘法运算
4.代数式的除法运算
5.等式的概念和性质
6.等式的变形与解方程
三、变量与函数
1.变量的概念和应用
2.一元一次方程的解法
3.一元一次方程组的解法
4.二次根式的概念和性质
5.二次根式的运算
6.一元二次方程的解法
四、图形的性质与变换
1.直线、线段和射线的概念
2.角的概念和性质
3.三角形的性质和分类
4.四边形的性质和分类
5.圆的概念和性质
6.图形的平移、旋转和对称
五、图形的计量
1.长度的计量和单位换算
2.面积的计算和单位换算
3.体积的计算和单位换算
4.直角三角形的边长关系
5.圆的周长和面积计算
六、相似与全等
1.相似图形的概念和性质
2.相似三角形的判定条件
3.相似三角形的性质和运用
4.全等图形的概念和判定
5.全等三角形的性质和运用
七、统计与概率
1.数据的收集和整理
2.数据的统计和分析
3.数据的表示和解读
4.概率的概念和计算
以上是湘教版初中数学知识点的一个精华版归纳。

在学习中应重点理解和掌握这些知识点,通过练习题巩固理解,并注重解题方法和思维的培养,以提高数学解题能力。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结第一章有理数与小数1. 有理数的概念与性质1)有理数的概念:有理数是整数和分数的统称,可以表示为a/b的形式,其中a是整数,b是非零整数。

2)有理数的性质:有理数的四则运算封闭性、交换律、结合律等。

2. 小数的概念与性质1)小数的概念:小数是指小数点后有限位、或无限循环的无限位的数。

2)小数的性质:小数的大小比较、小数的加减法、小数与整数的运算等。

3. 有理数的加减法1)有理数的加法:同号相加、异号相减。

2)有理数的减法:减去一个有理数等于加上与被减数相反数的和。

4. 有理数的乘法与除法1)有理数的乘法:同号相乘得正,异号相乘得负。

2)有理数的除法:除以一个有理数等于乘以这个有理数的倒数。

5. 有理数的绝对值1)绝对值的概念:一个数a的绝对值是非负数,记作|a|,如果a≥0,则|a|=a;如果a<0,则|a|=-a。

2)绝对值的性质:绝对值的非负性、非负数的绝对值等于该数自身、负数的绝对值等于该数的相反数等。

第二章平方根和立方根1. 平方数与立方数1)平方数的概念:一个数的平方等于它本身的积,这个数就是平方数。

2)立方数的概念:一个数的立方等于它本身的三次方,这个数就是立方数。

2. 平方根与立方根1)平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根,记作√a。

2)立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作³√a。

3. 平方根与立方根的性质1)平方根与立方根的非负性:平方根和立方根都是非负数。

2)平方根与立方根的相等性:如果a≥0,那么a的平方根和a的立方根相等。

3)平方根与立方根的大小关系:如果a≥b≥0,那么√a≥√b,³√a≥³√b。

4. 平方根的运算1)平方根的开平方运算:利用平方根的非负性和加减法性质进行运算。

2)平方根的化简:求一个数的平方根的过程。

5. 立方根的运算1)立方根的开立方运算:利用立方根的非负性和加减法性质进行运算。

湘教版数学初中必考知识点归纳

湘教版数学初中必考知识点归纳

湘教版数学初中必考知识点归纳湘教版数学作为初中数学教材的一个重要版本,涵盖了丰富的数学知识点,以下是一些必考的知识点归纳:# 数与式- 有理数:正数、负数、零的概念,有理数的四则运算。

- 代数式:整式、分式、多项式的概念,代数式的加减乘除运算。

- 因式分解:提取公因式法、公式法、十字相乘法等。

# 方程与不等式- 一元一次方程:解法、应用题。

- 一元二次方程:直接开平方法、配方法、公式法、因式分解法。

- 不等式:不等式的基本性质,解一元一次不等式。

# 函数- 平面直角坐标系:坐标系的基本概念,点的坐标表示。

- 一次函数:图象、性质、应用。

- 反比例函数:图象、性质、应用。

# 几何- 线段、角:线段的性质,角的分类和性质。

- 三角形:三角形的分类,三角形的内角和定理,全等三角形的判定。

- 四边形:平行四边形、矩形、菱形、正方形的性质和判定。

- 圆:圆的性质,圆周角定理,切线的性质。

# 统计与概率- 数据的收集与处理:数据的分类、整理、描述。

- 统计图:条形统计图、折线统计图、饼图的绘制和解读。

- 概率:概率的基本概念,概率的计算方法。

# 解题技巧- 审题:仔细阅读题目,理解题意。

- 画图:利用图形帮助理解题目,寻找解题思路。

- 转化:将复杂问题转化为简单问题,运用已知知识解决问题。

# 考试策略- 时间管理:合理分配答题时间,确保每题都有足够的时间思考。

- 检查:完成所有题目后,留出时间检查答案,避免低级错误。

通过系统地学习和掌握这些知识点,学生可以在数学考试中取得优异的成绩。

同时,数学的学习不仅仅是为了应对考试,更重要的是培养逻辑思维和解决问题的能力。

(完整)初中数学总结(湘教版),推荐文档

(完整)初中数学总结(湘教版),推荐文档

七年级上第一章有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等 第二章代数式考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结篇1:湘教版七年级数学知识点总结1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4.单项式的次数:单项式中所有字母的指数之和称为单项式的次数。

5.多项式的次数:多项式中次数项的次数就是这个多项式的次数。

6.余角:两个角之和为90度,这两个角叫做余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。

这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12.有效数字:一个近似值,从左边第一个不为0的数字开始,到精确的1为止。

所有数字都是有效数字。

13.概率:一个事件的概率就是这个事件发生的概率。

14.三角形:由不在同一直线上的三条线段首尾相连组成的图形称为三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17.全等图形:两个可以重叠的图形称为全等图形。

篇2:七年级数学知识点湘教版一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

2024年湘教版初一数学知识点总结(3篇)

2024年湘教版初一数学知识点总结(3篇)

2024年湘教版初一数学知识点总结____年湘教版初一数学知识点总结一、数的认识1. 数的基础概念:整数、自然数、零、数轴2. 数的表示方法:数字符号、数位、数的读法3. 比较大小:比较两个整数大小的方法4. 数的分类:正数、负数5. 数的相反数和绝对值:相反数的概念、绝对值的概念与计算二、算术运算1. 四则运算:加法、减法、乘法、除法的计算与应用2. 运算律:加法结合律、乘法结合律、加法交换律、乘法交换律、分配律3. 小数的运算:小数的加减法、乘法、除法4. 分数的运算:分数的加减法、乘法、除法5. 括号的运算:带括号的四则运算6. 整数的运算:整数的加减法、乘法、除法三、比例与比例运算1. 比例的概念:比例与比例的意义2. 比例的性质:比例的等价性、比例的反比例性质3. 比例的应用:比例在实际问题中的应用4. 倍数与倍比:倍数的概念、倍比的意义四、数的倍数与公约数、公倍数1. 倍数的概念:倍数的定义与判断2. 公约数与公倍数:公约数的概念、公倍数的概念3. 最大公约数与最小公倍数:最大公约数的求法、最小公倍数的求法4. 分数的化简:约分与分数的最简形式五、分数的加减法与混合运算1. 分数的加法:同分母分数的加法、异分母分数的加法2. 分数的减法:同分母分数的减法、异分母分数的减法3. 带分数的加减法:带分数的加法、带分数的减法4. 分数与整数的加减法:分数与整数的加法、分数与整数的减法六、小数与百分数1. 小数与分数的关系:小数与分数的相互转换2. 小数与百分数的关系:小数与百分数的相互转换3. 百分数的意义与运用:百分数的定义、百分数在实际问题中的应用4. 百分数的计算:百分数的增减、乘除法七、实数的认识1. 无理数的概念:无理数与有理数的关系2. 实数的有序性:实数的大小比较、实数的大小性质3. 实数的运算:实数的加法、减法、乘法、除法4. 实数的应用:实数在实际问题中的应用八、图形的认识与表示1. 二维图形:点、线、线段、射线、角、平行线、垂直线、平行四边形、三角形、四边形、多边形、圆等的概念与性质2. 三维图形:立体图形的概念与种类3. 简单图形的绘制与测量:直线的绘制与测量、角的绘制与测量、实物对应的图形九、图形的运动1. 图形的平移:平移的概念与性质、平移的表示方法2. 图形的旋转:旋转的概念与性质、旋转的表示方法3. 图形的对称:对称的概念与性质、对称的表示方法4. 图形的相似:相似的概念与性质、相似的判定方法十、图形的应用1. 图形的投影:图形的正射投影与斜投影2. 图形的计算:图形面积的计算、图形周长的计算、体积的计算3. 图形的应用:图形在实际问题中的应用2024年湘教版初一数学知识点总结(2)2024年湘教版初一数学知识点总结(3)湘教版初一数学主要包括以下几个知识点:1. 小数与分数小数与分数之间的相互转换是初中数学的基础。

七年级知识点湘教版数学

七年级知识点湘教版数学

七年级知识点湘教版数学七年级的数学学科是学生们接触到抽象化的数学概念的时候。

在这个学段,学生们不再单纯地对数字进行加减乘除的操作,而是开始学习到代数式,比例,几何等概念。

本文旨在总结七年级知识点湘教版数学的相关内容,帮助学生们更好地掌握该领域的知识。

一、数与代数式1.自然数的概念与性质,加减乘除的计算及其在实际生活中的应用。

2.整数的概念、运算法则及性质,以及负数的概念。

3.正数、负数的加减法则。

4.变量及其代数式的概念,一元一次方程的解法及应用。

二、比与比例1.比及其应用,比的性质及其运算,比的分离与合并。

2.比例的概念、性质及其应用,比例的倒数及其性质。

3.比例与百分数的关系,如何将一个比例转换成百分数,百分数的应用。

三、图形的认识与应用1.平面图形的基本概念与性质,形状、面积、周长的测量及其计算。

2.三角形的性质及其判定、面积计算及其应用;3.矩形、正方形、梯形、菱形、圆的性质及其判定、面积计算及其应用。

四、数据与统计1.数据及其统计方式的分类及其确定方法。

2.统计指标的计算方法。

3.对图表中的数据进行分析,并进行简单的信息统计与讨论。

以上仅是七年级知识点湘教版数学的一部分,但已经包括了主要的内容。

在学习过程中,我们可以利用多种学习资源,如老师的讲解、教材的学习、辅导书籍、线上视频等,以此来更深入,更系统化地学习。

我们还可以结合实际生活中的问题,通过小组讨论,老师引导等方式,来更好地将数学知识运用于生产生活中,使其更加接地气,让学生们更好地领悟到数学知识的实际用处。

总之,七年级数学学科的每个知识点都需要彻底掌握,才能在以后的学习中更好地理解和操作。

通过不断地练习和思考,相信学生们一定能够掌握好该学科,进一步提升自己的数学素养。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结一、数与整式1. 自然数、零和负整数概念及其在实际问题中的应用2. 分数和百分数的概念及其在实际问题中的应用3. 有理数的概念及其在实际问题中的应用4. 整数运算规则(加减乘除)5. 分数的加减乘除及应用6. 百分数与有理数的关系及应用二、方程与不等式1. 一元一次方程的概念及解的概念2. 一元一次方程的解的判断及解的求解方法3. 方程的实际运用4. 一次不等式及其解集的概念5. 不等式的解集表示及解集的性质6. 解不等式及其应用三、比例与单位换算1. 比例的概念及比例的种类2. 比例间的关系及建立比例的方法3. 比例的运算规则(比例恒等式)4. 倒数比例概念及在实际问题中的应用5. 比例与百分比的关系及应用6. 单位换算(长度、面积、体积、质量、时间、速度等)四、数形转化与图形初步1. 数形转化的概念及应用(长度、面积、体积等)2. 基本平面图形的认识(点、直线、线段、射线、角等)3. 平面图形的特征及性质(多边形、正方形、矩形、三角形等)4. 平行四边形、梯形、圆形的特征及性质5. 立体图形的认识及简单应用(长方体、正方体等)五、关系与函数1. 二元一次方程及其应用2. 点坐标及平面直角坐标系3. 各种图像的方程及表示方法4. 直线方程的求解及应用5. 图表、图形与算式的相互转换6. 函数的概念及函数关系六、数据的收集整理与统计1. 数据搜集及其方法(直接搜集、调查法等)2. 数据整理与表示方法(统计表、统计图等)3. 数据的中心倾向及分散程度的度量(平均数、中位数、众数、极差等)4. 数据的分布形态(偏态、峰态等)七、几何作图1. 直线、线段、角度等图形的作图方法2. 平行线和垂直线的作图方法3. 一些简单曲线的作图方法(圆、椭圆、抛物线等)4. 尺规作图的基本原理及一些常见作图方法5. 旋转图形的作图方法以上是湘教版七年级数学的主要知识点总结,每个知识点都涉及了相关的概念、规则、性质以及应用等方面,希望可以对你提供一些帮助。

湘教版七年级八年级数学知识点总结

湘教版七年级八年级数学知识点总结

一、代数与函数
1.算式的运算:加法、减法、乘法、除法。

2.整式的加减法:同类项的加减法。

3.平方表达式的简化:完全平方公式。

4.一元一次方程的解:利用加减法、乘除法解一元一次方程。

5.简单的函数:函数的概念和简单的函数表示。

二、图形与几何
1.平面图形的认识:多边形、圆、弧等。

2.平面图形的周长与面积:矩形、平行四边形和直角三角形。

3.简单的三角形与全等三角形:简单的三角形分类、全等三角形的判定。

4.勾股定理:利用勾股定理解决问题。

三、数据与统计
1.数据的整理与分析:频数、频率、平均数。

2.数据的图表表示:折线图、条形图。

湘教版八年级数学知识点总结:
一、代数与函数
1.一元一次方程与线性方程组的解:一元一次方程的解法、线性方程组的解法。

2.二次根式:二次根式的性质和运算。

3.整式与分式的乘除:整式与整式的乘法、分式与整式的乘法、分式
与分式之间的除法。

4.函数与方程:函数的概念和表示、一元一次方程与函数的关系。

二、图形与几何
1.二次函数与抛物线:抛物线的性质和图像。

2.三角形的面积:任意三角形面积计算、正方形、等边三角形和等腰
梯形面积计算。

3.相似三角形与三角形的认识:相似三角形的判定和性质。

三、数据与统计
1.频数表、频率表和统计图:频数表、频率表的制作、统计图的绘制。

2.概率与实验:概率的基本概念、概率的计算、实验与事件。

初中数学知识点总结湘教版

初中数学知识点总结湘教版

初中数学知识点总结湘教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。

- 整数的四则运算规则及其应用。

- 分数的意义、性质和运算。

- 小数的意义、性质和运算。

2. 代数表达式- 字母表示数的概念。

- 单项式和多项式的定义及运算。

- 代数式的基本变形,如合并同类项、分配律等。

3. 一元一次方程与不等式- 一元一次方程的建立、解法及其应用。

- 不等式的概念和基本性质。

- 一元一次不等式的解法和解集表示。

4. 二元一次方程组- 二元一次方程组的建立。

- 代入法和消元法解二元一次方程组。

- 理解方程组的解及解集的含义。

5. 函数的初步认识- 函数的概念及其表示方法。

- 线性函数、二次函数的图像和性质。

- 函数的基本运算,如函数的和、差、积、商等。

二、几何1. 图形初步- 点、线、面、体的基本概念。

- 直线、射线、线段的性质和区别。

- 角的概念、分类及其性质。

2. 平面图形- 平行线的性质和判定。

- 三角形的分类、性质和内角和定理。

- 四边形的分类、性质和对角线关系。

- 圆的基本性质、圆周角定理和垂径定理。

3. 几何变换- 平移、旋转、轴对称等基本几何变换。

- 通过几何变换解决图形的相似和全等问题。

4. 空间图形- 空间图形的基本概念和性质。

- 立体图形的表面积和体积计算。

- 棱柱、棱锥、圆柱、圆锥的结构特征。

三、统计与概率1. 统计- 数据的收集、整理和描述。

- 频数、频率的意义和计算。

- 统计图表的绘制和解读,如条形图、折线图、饼图等。

2. 概率- 随机事件的概念和分类。

- 概率的初步认识和计算。

- 通过实验和模拟理解概率的基本概念。

四、实践与应用1. 数学实践活动- 结合实际问题进行数学建模。

- 运用所学数学知识解决实际问题。

2. 数学应用题- 一元一次方程和不等式的应用。

- 二元一次方程组在实际问题中的应用。

- 函数知识在解决实际问题中的应用。

以上是湘教版初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率以及实践与应用四个方面。

初中数学湘教版知识点总结

初中数学湘教版知识点总结

初中数学湘教版知识点总结一、整数与有理数1. 整数的概念整数包括正整数、负整数和零,表示为......2. 整数的加法整数的加法包括同号数相加、异号数相加,以及加法交换律、结合律......3. 整数的减法整数的减法可以通过加法的逆运算来实现,例如a-b=a+(-b)......4. 整数的乘法整数的乘法也包括同号数相乘、异号数相乘,以及乘法交换律、结合律......5. 整数的除法整数的除法同样也可以通过乘法的逆运算来实现,例如a÷b=a×(1/b)......6. 有理数的概念有理数包括整数和分数,在数轴上可以表示为有限小数或循环小数......7. 有理数的比较有理数的比较可以通过数轴上的位置来确定大小关系,也可以通过化简、通分等方法来比较大小......二、整式与方程1. 代数式代数式是由变量和数的运算符号组成的符号串,可分为单项式、多项式、恒等式......2. 整式整式是由代数式经过加、减和乘运算得到的式子,根据乘法交换律和结合律可以进行展开和化简操作......3. 方程方程是表示两个代数式相等的式子,可以通过变形、消元等方法解得未知数......4. 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程......5. 二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,通过消元、代入等方法可以解得未知数的值......三、图形的认识1. 点、线和面图形由点、线和面组成,可以通过这些基本要素来构建各种图形......2. 直线、射线和线段直线是由点无限延伸而成,射线是由点有一个方向延伸而成,线段是由有限个点构成的线段......3. 角角是由两条射线共同起点构成的几何图形,可以通过度数来表示大小......4. 三角形三角形是由三条边和三个角构成的图形,可以根据边长、角度大小等属性进行分类......5. 四边形四边形是由四条边和四个角构成的图形,可以根据边长、对角线长度等属性进行分类......四、比例1. 比例的概念比例是指两个量之间的对应关系,可以用等号表示为a:b=c:d......2. 比例的性质比例具有重要性质,如比例中各个比例项的积相等、比例中的对应项成比例、比例可逆等......3. 比例的应用比例广泛应用于实际生活中,如用比例来解决生活中的问题、制作比例尺模型等......五、数的运算1. 分数的加减分数的加减可以通过找到公共分母、通分等方法来实现,然后进行数的加减运算......2. 分数的乘除分数的乘除可以通过找到公共倍数、通分等方法来实现,然后进行数的乘除运算......3. 分数的化简分数的化简是指将分子分母的公因数约去,使得分数的值不变而更简便......六、数据的处理1. 平均数平均数是指一组数值的总和除以其个数所得的值,可以用来表示数值的集中趋势......2. 中位数中位数是指一组数值按大小顺序排列后正中间的数,可以用来表示数值的集中趋势......3. 众数众数是指一组数值中出现频次最多的数,可以用来表示数值的集中趋势......七、统计与概率1. 数据的收集与整理数据的收集与整理是指对一组数据进行采集、整理、分类、汇总等操作,以便后续的统计运算......2. 错误数据的处理错误数据是指在数据收集过程中产生的错误值,可以通过排除或更正的方式来处理......3. 概率的概念概率是指在一次试验中某一事件发生的可能性,可以通过频率、古典概率等方法来计算......八、平面与立体图形1. 平面图形平面图形是指位于同一平面中的图形,包括多边形、圆、椭圆、直线、曲线等......2. 立体图形立体图形是指具有厚度、体积的图形,包括立方体、长方体、正方体、棱锥、棱柱、圆柱、圆锥、球体等......3. 图形的相似与全等图形的相似是指对应角相等、对应边成比例,图形的全等是指对应边相等、对应角相等......九、乘法和因式分解1. 一次多项式一次多项式是指多项式中的最高次项的次数为一,可以表示为y=kx+b......2. 二次根式二次根式是指形如√a、√(a+√b)、(√a+√b)/c等形式的根式......3. 乘法定理乘法定理是指两个多项式相乘后展开的规律,可以化简为每一项与每一项相乘的和......4. 因式分解因式分解是指将一个多项式拆解为两个或多个因式的乘积,可以用来求多项式的零点、化简等......以上就是初中数学湘教版的知识点总结。

湘教版七年级八年级数学知识点总结

湘教版七年级八年级数学知识点总结

湘教版七年级八年级数学知识点总结第一章分式考点一、分式1、分式的概念分式是由分子和分母组成的有理式,其中分母中含有字母。

2、分式的性质1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变。

2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3)最简分式:分子分母没有公因式的分式叫做最简分式。

4)约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

5)通分:把几个异分母分式分别化成与原来分式相等的同分母的分式,叫做分式的通分。

3、分式的运算法则分式的运算法则为:有乘方的先算乘方,有括号先算括号里面的,再算乘除,最后算加减。

运算顺序从左往右。

化简和计算的结果必须是整式或最简分式。

分式乘除:a/b × c/d = ac/bd,a/b ÷ c/d = ad/bc。

分式乘方:(a/b)^n = a^n/b^n(n为正整数)。

同分母分式相加减:a/b ± c/b = (a ± c)/b。

异分母分式相加减:a/b ± c/d = (ad ± bc)/bd。

4、分式方程分母中含有未知数的方程叫做分式方程。

解分式方程的步骤为:将分式方程转化成一元一次方程,解一元一次方程,检验(代入最简公分母中,等于分式无解是增根,不等于分式有解),写出结果。

考点二、整数的乘法整式的乘法规则有:a^n × a^m = a^(n+m)(n,m为正整数)。

a^m ÷ a^n = a^(m-n)(m,n为正整数,且a≠0)。

mn)^n = m^n × n^n(m,n为正整数)。

a+b)(a-b) = a^2 - b^2.a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 - 2ab + b^2.整式的除法规则为:a^m ÷a^n = a^(m-n)(m,n为正整数,且a≠0)。

湘教初中数学知识点总结

湘教初中数学知识点总结

湘教初中数学知识点总结湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。

- 有理数的分类:正有理数、负有理数和零。

- 有理数的运算:加法、减法、乘法、除法和乘方。

2. 整数- 整数的性质:加法交换律、结合律;乘法交换律、结合律、分配律。

- 素数与合数:素数是只能被1和自身整除的大于1的整数;合数是除了1和自身外还有其他因数的整数。

3. 分数与小数- 分数的基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。

- 小数的四则运算:小数的加法、减法、乘法和除法。

4. 代数式- 单项式与多项式:单项式是只含有乘法运算的代数式;多项式是由若干个单项式通过加减法组成的代数式。

- 代数式的加减运算:合并同类项。

- 代数式的乘法运算:单项式与单项式、单项式与多项式、多项式与多项式的乘法。

5. 一元一次方程- 方程的解法:移项、合并同类项、系数化为1。

- 实际问题中的一元一次方程:根据问题描述列出方程并求解。

6. 二元一次方程组- 方程组的解法:代入法、消元法。

- 线性方程组的应用:根据实际问题列出方程组并求解。

7. 不等式- 不等式的性质:基本性质,如不等式的两边同时加上或减去同一个数,不等号方向不变。

- 一元一次不等式:解法,包括移项、合并同类项、系数化为1。

- 一元一次不等式的解集:表示方法,如区间表示法。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的定义和分类:邻角、对顶角、同位角等。

- 三角形的性质和分类:等边三角形、等腰三角形、直角三角形和一般三角形。

- 四边形的性质和分类:平行四边形、矩形、菱形、正方形和梯形。

2. 图形的变换- 平移:图形沿直线移动,大小和形状不变。

- 旋转:图形绕一点旋转一定角度,大小和形状不变。

- 轴对称:图形关于某条直线对称。

3. 圆的基本性质- 圆的定义:平面上所有与定点等距离的点的集合。

- 圆的半径、直径、弦、弧、切线等基本概念。

湘教版初中数学知识点总结

湘教版初中数学知识点总结

湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的概念与性质- 有理数的加法、减法、乘法、除法运算- 有理数的乘方与开方- 绝对值的概念及性质- 有理数的比较大小2. 整数- 整数的概念- 整数的四则运算- 整数的性质,如奇数、偶数、质数、合数等3. 分数与小数- 分数的表示法、性质和运算- 小数的表示法、性质和运算- 分数与小数的相互转换4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法、除法运算- 代数式的因式分解5. 一元一次方程- 方程的概念及解法- 一元一次方程的解法- 方程的应用题6. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解二元一次方程组 - 二元一次方程组的应用题7. 不等式与不等式组- 不等式的概念与性质- 一元一次不等式的解法- 一元一次不等式的解集表示- 不等式组的解法8. 函数- 函数的概念及表示方法- 正比例函数与反比例函数- 一次函数与二次函数的图像与性质 - 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形与圆的面积计算 - 长方体、正方体与圆柱的体积计算3. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似多边形与相似比4. 解析几何- 坐标系的概念与应用- 直线的方程表示- 圆的方程表示- 坐标系中的几何问题求解5. 三角函数- 三角函数的定义- 三角函数的基本关系- 三角函数的图像与性质- 三角函数的应用三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读,如条形图、折线图、饼图等 - 统计量的概念,如平均数、中位数、众数、方差等2. 概率- 概率的基本概念- 随机事件的概率计算- 概率的加法公式与乘法公式- 条件概率与独立事件的概念以上是湘教版初中数学的主要知识点总结,涵盖了初中数学的核心内容。

湘教版初中数学知识点归纳

湘教版初中数学知识点归纳

湘教版初中数学知识点归纳湘教版初中数学知识点归纳七年级上册第一章有理数1.1 具有相反意义的量1.2 数轴、相反数与绝对值1.3 有理数大小的比较1.4 有理数的加法和减法1.5 有理数的乘法和除法1.6 有理数的乘方1.7 有理数的混合运算第二章代数式2.1 用字母表示数2.2 列代数式2.3 代数式的值2.4 整式2.5 整式的加法和减法第三章一元一次方程3.1 建立一元一次方程模型3.2 等式的性质3.3 一元一次方程的解法3.4 一元一次方程模型的应用第四章图形的认识4.1 几何图形4.2 线段、射线、直线4.3 角第五章数据的收集与统计5.1 数据的收集与抽样5.2 统计图七年级下册第一章二元一次方程组1.1 建立二元一次方程组 1.2 二元一次方程组的解法 1.3 二元一次方程组的应用 1.4 三元一次方程组第二章整式的乘法2.1 整式的乘法2.2 乘法公式第三章因式分解3.1 多项式的因式分解3.2 提公因式法3.3 公式法第四章相交线与平行线4.1 平面上两条直线的位置4.2 平移4.3 平行线的性质4.4平行线的判定4.5垂线4.6 两条平行线间的距离第五章轴对称与旋转5.1 轴对称5.2 旋转5.3 图形变换的简单应用八年级上册第一章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程第二章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作图第三章实数3.1 平方根3.2 立方根3.3 实数第四章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组第五章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法八年级下册第一章直角三角形1.1 直角三角形的性质与判定(1)1.2 直角三角形的性质与判定(2)1.3 直角三角形全等的判定1.4 角平分线的性质第二章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形第三章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和评议的坐标表示第四章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图像4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用第五章频数及其分布5.1 频数与频率5.2 频数直方图九年级上册第一章反比例函数1.1 反比例函数1.2 反比例函数的图像和性质1.3 反比例函数的应用第二章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程根的判别式2.4 一元二次方程根与系数的关系2.5 一元二次方程的应用第三章图形的相似3.1 比例函数3.2 平行线分线段成比例3.3 相似的图形3.4 相似三角形的判定与性质3.5 相似三角形的应用3.6 位似第四章锐角三角函数4.1 正弦和余弦4.2 正切4.3 解直角三角形4.4 解直角三角形的应用第五章用样本推断总体5.1 总体平均数与方差的估计5.2 统计的简单应用九年级下册第一章二次函数1.1 二次函数1.2 二次函数的图像与性质1.3 不共线三点确定二次函数的表达式1.4 二次函数与一元二次方程的连续1.5 二次函数的应用第二章圆2.1 元的对称性2.2 圆心角、圆周角2.3 垂径定理2.4 过不共线三点作圆2.5 直线与圆的位置关系2.6 弧长和扇形面积2.7 正多边形与圆第三章投影与视图3.1 投影3.2 直棱柱、圆锥的侧面展开图3.3 三视图第四章概率4.1 随机事件与可能性4.2 概率及其计算4.3 用频率估计概率。

湘教版数学知识点总结

湘教版数学知识点总结

湘教版数学知识点总结一、整数1. 整数的概念整数是正整数、负整数和0的统称。

在数轴上,0的左侧是负整数,0的右侧是正整数。

2. 整数的加法和减法同号两数相加、异号两数相减。

在计算中,可以先化为同号后再进行运算。

3. 整数的乘法和除法同号相乘为正,异号相乘为负。

异号相除为负。

整数除法时,要注意被除数不能为0。

4. 整数的混合运算在整数中的混合运算中,要先进行括号内的运算,再进行乘除运算,最后进行加减运算。

5. 整数的应用在生活中,整数运算常常用于计算温度的变化、海拔的升降等。

实际生活中要熟练运用整数进行计算。

二、小数1. 小数的概念小数是整数与分数之间的数。

小数是有限小数和无限小数的统称。

2. 小数的加法和减法在小数的加减法中,要对齐小数点,然后进行加减运算。

3. 小数的乘法和除法在小数的乘除法中,要把小数化为整数,然后进行乘除运算。

最后确定小数点的位置。

4. 小数的应用小数在生活中广泛应用,如用小数表示长度、重量、价格等。

在生活中要灵活运用小数进行计算。

三、分数1. 分数的概念分数是一个整数与另一个不为0的整数之比。

2. 分数的加法和减法分数的加减法,要让分母相同,然后进行加减运算。

3. 分数的乘法和除法分数的乘法,把分数看成真分数或带分数又或把分数看成一个整体进行乘法。

4. 分数的大小比较分数的大小比较,可以先找到两个分数的公共分母,再比较分子的大小。

5. 分数与整数的关系分数通常可以化为带分数或整数,也可以将整数化为分数。

6. 分数的应用在生活中,分数广泛应用于表示比例、概率、百分比等。

在生活中要熟练应用分数进行计算。

四、小数和分数的互化1. 小数转分数小数转分数,可以根据小数的位数化为整数分母为10、100、1000……加上分数的形式。

2. 分数转小数分数转小数,可以进行带分数的除法运算,或者化为百分数再转化为小数。

五、比例1. 比例的概念比例是两个相同单位的量之比,可以说是两个相同量的分数。

湘教版八年级数学知识点

湘教版八年级数学知识点

湘教版八年级数学知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

初二下册数学知识点归纳第一章一元一次不等式和一元一次不等式组一、不等关系1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0二、不等式的基本性质1、掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac2、比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a即:a>b<===>a-b>0a=b<===>a-b=0aa-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三、不等式的解集:1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3、不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左初二数学下册知识点归纳一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章分式考点一、分式1、分式的概念一般地,用A、B表示两个整式,A÷B就可以表示成AB 的形式,如果B中含有字母,式子AB就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

(3)最简分式:分子分母没有公因式的分式叫做最简分式(4)约分:把一个分式的分子与分母的公因式约去叫做分式的约分(5)通分:把几个异分母分式分别化成与原来分式相等的同分母的分式,叫做分式的通分。

3、分式的运算法则法则:有乘方的先算乘方,有括号先算括号里面的,再算乘除,最后算加减。

运算顺序从左往右。

化简和计算的结果必须是整式或最简分式。

a c ac a c a d ad 分式乘除:;;b d bd b d bc bcna an分式乘方:()(n为整数);nb ba b a b 同分母分式相加减:;c c c4、分式方程异分母分式相加减:abcda dbdb c概念:分母中含有未知数的方程叫做分式方程。

解分式方程的步骤:(1)分式方程转化成一元一次方程。

(即:去分母两边同乘最简公分母,等式的性质,每一项都要乘)(2)解一元一次方程(3)检验(代入最简公分母中,等于0分式无解是增根,不等于0分式有解)(4)写出结果考点二、整数的乘法m n m n整式的乘法:a a a(m,n都是正整数)(同底数幂相乘,底数不变指数相加)m n mn(a a(m,n都是正整数))(幂的乘法,底数不变指数相乘)n n n(ab)a b(n都是正整数)(积的乘方,每一个因式的乘方)22(a b)(a b)a b(平方差的逆运算)2222 (a b)a ab b,2222(a b)a ab b(完全平方公式的逆运算)m n n都是正整数(同底数相除,底数不变指数相减)m整式的除法:a a a(m,n,a0)注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

10 p a p为正整数(6)( 0, )a 1(a 0); apa(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解(11分)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:ab ac a(b c)2 b2 a b a b(2)运用公式法: a ( )( ) (平方差公式)2 2ab b (a b)2 2a ,2 2ab b2 (a b) 2a (完全平方公式)(3)分组分解法:ac ad bc bd a(c d)b(c d) (a b)( c d)2 p q a pq a p a q (4)十字相乘法: a( ) ( )( )3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数: 2 项式可以尝试运用公式法分解因式; 3 项式可以尝试运用公式法、十字相乘法分解因式; 4 项式及 4 项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

考点四、科学记数法和近似数1、有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法:把一个数写做na 10 的形式,其中1 a 10 ,n 是整数,这种记数法叫做科学记数法。

第二章三角形考点一、三角形1 、三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

8、三角形的面积1三角形的面积=×底×高2考点二、命题、定理、证明1、命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理:用推理的方法判断为正确的命题叫做定理。

5、证明:判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

考点三、等腰三角形1、等腰三角形的定义有两边相等的三角形叫做等腰三角形。

在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

2、等腰三角形的性质①等腰直角三角形是轴对称图形,顶角的角平分线底边上的高底边上的中线所在的直线是对称轴。

②等腰三角形的两底角相等,即等边对等角。

③等腰三角形的顶角的角平分线底边上的高底边上的中线三线重合,即三线合一(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b2<a180 A④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=22、等腰三角形的判定判定1:定义如果一个三角形中有两条边相等,那么这个三角形是等腰三角形。

判定2:如果一个三角形有两个角相等,那么这两个角所对的边也相等,即这个三角形是等腰三角形(简称:等角对等边)。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

结考点四、线段的垂直平方线1、线段的垂直平分线的概念:垂直且平分一条线段的直线,叫做这条线段的垂直平分线2、线段的垂直平分线的性质:线段垂直平分线上的点,到线段两段的距离相等。

3、线段的垂直平分线的推论:到线段两段距离相等的点,在线段的垂直平分线上。

(两点确定一条直线)考点五、全等三角形1、全等三角形的概念能够完全重合的两个图形叫做全等图形。

能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、三角形全等的判定(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(4)角角边定理:有两角和其中一个角的对边分别对应相等的两个三角形全等(可简写成“角角边”或“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

相关文档
最新文档