三年高考(2016-2018)高考数学试题分项版解析 专题10 三角函数图象与性质 理(含解析)

合集下载

(2016-2018)数学(理科)真题分类解析:专题10-三角函数图象与性质(含答案)

(2016-2018)数学(理科)真题分类解析:专题10-三角函数图象与性质(含答案)

专题10三角函数图象与性质考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.三角函数的图象及其变换①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响掌握2017课标全国Ⅰ,9;2016北京,7;2016课标全国Ⅲ,14;2015湖南,9选择题填空题解答题★★★2.三角函数的性质及其应用理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性理解2017课标全国Ⅲ,6;2016课标全国Ⅱ,7;2015课标Ⅰ,8选择题填空题解答题★★★分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

【配套K12】三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质理含解析59

【配套K12】三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质理含解析59

专题10三角函数图象与性质考纲解读明方向分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间. 3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

2017年高考全景展示1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 2.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 【答案】D 【解析】试题分析:函数的最小正周期为221T ππ== ,则函数的周期为()2T k k Z π=∈ ,取1k =- ,可得函数()f x 的一个周期为2π- ,选项A 正确; 函数的对称轴为()3x k k Z ππ+=∈ ,即:()3x k k Z ππ=-∈ ,取3k = 可得y =f (x )的图像关于直线x =83π对称,选项B 正确; ()cos cos 33f x x x ππππ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()32x k k Z πππ+=+∈ ,即()6x k k Z ππ=+∈ ,取0k = 可得f (x +π)的一个零点为x =6π,选项C 正确;当,2x ππ⎛⎫∈⎪⎝⎭时,54,363x πππ⎛⎫+∈ ⎪⎝⎭ ,函数在该区间内不单调,选项D 错误;故选D .【考点】 函数()cos y A x ωϕ=+ 的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.(2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.3.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则(A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等. 4.【2017山东,理16】设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值. 【答案】(Ⅰ)2ω=.(Ⅱ)得最小值32-.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知()06f π=及03ω<<可得.(Ⅱ)由(Ⅰ)得())3f x x π=-从而()))4312g x x x πππ=+-=-. 根据3[,]44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值. 试题解析:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=--3cos 2x x ωω=-13(sin )2x x ωω=)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<,所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-.因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.2016年高考全景展示1.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.2.【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x = 对称,则()0f x A = 或()0f x A =-. 3.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象. 4.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B 【解析】试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.5.【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.t =,s 的最小值为3π 【答案】A 【解析】试题分析:由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A. 考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换6.【2016高考山东理数】函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.7.【2016高考新课标3理数】函数sin y x x =的图像可由函数sin y x x =的图像至少向 右平移_____________个单位长度得到. 【答案】32π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.。

三年高考高考化学试题分项版解析专题10物质结构(推断)(含解析)

三年高考高考化学试题分项版解析专题10物质结构(推断)(含解析)

专题10 物质结构(推断)1.【2016年高考江苏卷】短周期主族元素X、Y、Z、W原子序数依次增大,X原子的最外层有6个电子,Y是迄今发现的非金属性最强的元素,在周期表中Z位于IA族,W与X属于同一主族。

下列说法正确的是()A.元素X、W的简单阴离子具有相同的电子层结构B.由Y、Z两种元素组成的化合物是离子化合物C.W的简单气态氢化物的热稳定性比Y的强D.原子半径:r(X)<r(Y)<r(Z)<r(W)【答案】B【解析】【考点定位】本题主要是考查元素推断、元素周期律的应用等【名师点晴】正确推断出元素是解答的关键,注意元素周期律的灵活应用。

“位—构—性”推断的核心是“结构”,即根据结构首先判断其在元素周期表中的位置,然后根据元素性质的相似性和递变性预测其可能的性质;也可以根据其具有的性质确定其在周期表中的位置,进而推断出其结构。

该题难度不大。

2.【2016年高考新课标Ⅰ卷】短周期元素W、X、Y、Z的原子序数依次增加。

m、p、r是由这些元素组成的二元化合物,n是元素Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,0.01 mol·L–1r溶液的pH为2,s通常是难溶于水的混合物。

上述物质的转化关系如图所示。

下列说法正确的是()A.原子半径的大小W<X<YB.元素的非金属性Z>X>YC.Y的氢化物常温常压下为液态D.X的最高价氧化物的水化物为强酸【答案】C【解析】试题分析:短周期元素W、X、Y、Z的原子序数依次增加。

m、p、r是由这些元素组成的二元化合物,n是元素Z的单质,通常为黄绿色气体,则Z是氯元素,n是Cl2;0.01 mol·L–1 r溶液的pH为2,说明r是一元强酸,Cl2与两种元素组成的化合物反应会产生两种化合物,其中一种r是HCl,另一种物质q的水溶液具有漂白性,则说明W是H元素;m是H2O,q是HClO;两种元素组成的化合物p与Cl2光照反应产生HCl,同时产生s,s通常是难溶于水的混合物,根据转化关系图可知p是甲烷,则s可能是CH3Cl、CH2Cl2、CHCl3、CCl4中的几种物质。

三年高考(2016-2018)数学(理)真题分类解析:专题05-函数图象与方程

三年高考(2016-2018)数学(理)真题分类解析:专题05-函数图象与方程

专题05 函数图像与方程 考纲解读明方向1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用图象表示函数.2.在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在 “数”中的重要体现.分析解读函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与x 轴的交点的横坐标就是函数的零点,所以可以结合常见的二次函数、对数函数、三角函数等内容进行研究.本节内容在高考中分值为5分左右,属于难度较大题.在备考时,注意以下几个问题:1.结合函数与方程的关系,求函数的零点;2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断;3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.命题探究练扩展2018年高考全景展示1.【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.3.【2018年理数全国卷II】函数的图像大致为A. AB. BC. CD. D【答案】B点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.【2018年江苏卷】若函数在内有且只有一个零点,则在【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.6.【2018年全国卷Ⅲ理】函数在的零点个数为________. 【答案】 【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数。

2016-2018年高考数学(理)真题分类汇编(含解析):专题10-三角函数图象与性质

2016-2018年高考数学(理)真题分类汇编(含解析):专题10-三角函数图象与性质

专题10三角函数图象与性质2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.2017年高考全景展示1.【2017课标1,理9】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C22.【2017课标3,理6】设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减3.【2017天津,理7】设函数,,其中,.若,,且的最小正周期大于,则(A),(B),(C),(D),4.【2017山东,理16】设函数,其中.已知. (Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.2016年高考全景展示1.【2016高考新课标2理数】若将函数的图像向左平移个单位长度,则平移后图象的对称轴为()(A)(B)(C)(D)2.【2016高考新课标1卷】已知函数为的零点,为图像的对称轴,且在单调,则的最大值为( )(A)11 (B)9 (C)7 (D)53.【2016年高考四川理数】为了得到函数的图象,只需把函数的图象上所有的点( )(A)向左平行移动个单位长度(B)向右平行移动个单位长度(C)向左平行移动个单位长度(D)向右平行移动个单位长度4.【2016高考浙江理数】设函数,则的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关5.【2016年高考北京理数】将函数图象上的点向左平移()个单位长度得到点,若位于函数的图象上,则()A.,的最小值为B.,的最小值为C.,的最小值为D.,的最小值为6.【2016高考山东理数】函数f(x)=(sin x+cos x)(cos x–sin x)的最小正周期是()(A)(B)π (C)(D)2π7.【2016高考新课标3理数】函数的图像可由函数的图像至少向右平移_____________个单位长度得到.专题10三角函数图象与性质考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.三角函数的图象及其变换①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响掌握2017课标全国Ⅰ,9;2016北京,7;2016课标全国Ⅲ,14;2015湖南,9选择题填空题解答题★★★2.三角函数的性质及其应用理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性理解2017课标全国Ⅲ,6;2016课标全国Ⅱ,7;2015课标Ⅰ,8选择题填空题解答题★★★分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

配套K12三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质理含解析59

配套K12三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质理含解析59

专题10三角函数图象与性质考纲解读明方向分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间. 3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

2017年高考全景展示1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.2.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 【答案】D 【解析】试题分析:函数的最小正周期为221T ππ== ,则函数的周期为()2T k k Z π=∈ ,取1k =- ,可得函数()f x 的一个周期为2π- ,选项A 正确; 函数的对称轴为()3x k k Z ππ+=∈ ,即:()3x k k Z ππ=-∈ ,取3k = 可得y =f (x )的图像关于直线x =83π对称,选项B 正确; ()cos cos 33f x x x ππππ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()32x k k Z πππ+=+∈ ,即()6x k k Z ππ=+∈ ,取0k = 可得f (x +π)的一个零点为x =6π,选项C 正确;当,2x ππ⎛⎫∈⎪⎝⎭时,54,363x πππ⎛⎫+∈ ⎪⎝⎭ ,函数在该区间内不单调,选项D 错误;故选D .【考点】 函数()cos y A x ωϕ=+ 的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.(2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.3.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则(A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等. 4.【2017山东,理16】设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值. 【答案】(Ⅰ)2ω=.(Ⅱ)得最小值32-.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知()06f π=及03ω<<可得.(Ⅱ)由(Ⅰ)得())3f x x π=-从而()))4312g x x x πππ=+-=-.根据3[,]44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 22f x x x x ωωω=--3cos 22x x ωω=-13(sin cos )22x x ωω=-)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<,所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-.因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.2016年高考全景展示1.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.2.【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x = 对称,则()0f x A = 或()0f x A =-. 3.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象. 4.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B 【解析】试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.5.【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.2t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.t =,s 的最小值为3π【答案】A 【解析】试题分析:由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A. 考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换6.【2016高考山东理数】函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.7.【2016高考新课标3理数】函数sin y x x =的图像可由函数sin y x x =+的图像至少向 右平移_____________个单位长度得到. 【答案】32π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.。

【三年高考】(2016-2018)数学(理科)真题分类解析:专题10-三角函数图象与性质(含答案)

【三年高考】(2016-2018)数学(理科)真题分类解析:专题10-三角函数图象与性质(含答案)

专题10三角函数图象与性质考纲解读明方向分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

2017年高考全景展示1.【2017课标1,理9】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】试题分析:因为函数名不同,所以先将利用诱导公式转化成与相同的函数名,则,则由上各点的横坐标缩短到原来的倍变为,再将曲线向左平移个单位得到,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量而言.2.【2017课标3,理6】设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【答案】D【解析】试题分析:函数的最小正周期为,则函数的周期为,取,可得函数的一个周期为,选项A正确;函数的对称轴为,即:,取可得y=f(x)的图像关于直线x=对称,选项B正确;,函数的零点满足,即,取可得f(x+π)的一个零点为x=,选项C正确;当时,,函数在该区间内不单调,选项D错误;故选D.【考点】函数的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,则最小正周期为;奇偶性的判断关键是解析式是否为y=Asinωx或y=Acosωx+b的形式.(2)求f(x)=Asin(ωx+φ)(ω≠0)的对称轴,只需令,求x;求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.3.【2017天津,理7】设函数,,其中,.若,,且的最小正周期大于,则(A),(B),(C),(D),【答案】【考点】求三角函数的解析式【名师点睛】有关问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定,再根据周期或周期或周期求出,最后再利用最高点或最低点坐标满足解析式,求出满足条件的值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求或的值或最值或范围等.4.【2017山东,理16】设函数,其中.已知. (Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.【答案】(Ⅰ).(Ⅱ)得最小值.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到由题设知及可得.(Ⅱ)由(Ⅰ)得从而.根据得到,进一步求最小值.试题解析:(Ⅰ)因为,所以由题设知,所以,.故,,又,所以.(Ⅱ)由(Ⅰ)得所以.因为,所以,当,即时,取得最小值.【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.2016年高考全景展示1.【2016高考新课标2理数】若将函数的图像向左平移个单位长度,则平移后图象的对称轴为()(A)(B)(C)(D)【答案】B【解析】试题分析:由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.考点:三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.2.【2016高考新课标1卷】已知函数为的零点,为图像的对称轴,且在单调,则的最大值为( )(A)11 (B)9 (C)7 (D)5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①的单调区间长度是半个周期;②若的图像关于直线对称,则或.3.【2016年高考四川理数】为了得到函数的图象,只需把函数的图象上所有的点( )(A)向左平行移动个单位长度(B)向右平行移动个单位长度(C)向左平行移动个单位长度(D)向右平行移动个单位长度【答案】D【解析】试题分析:由题意,为了得到函数,只需把函数的图像上所有点向右移个单位,故选D.考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数的图象平移变换中要注意人“”的影响,变换有两种顺序:一种的图象向左平移个单位得,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,向左平移个单位得的图象.4.【2016高考浙江理数】设函数,则的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【答案】B【解析】试题分析:,其中当时,,此时周期是;当时,周期为,而不影响周期.故选B.考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数,再判断和的取值是否影响函数的最小正周期.5.【2016年高考北京理数】将函数图象上的点向左平移()个单位长度得到点,若位于函数的图象上,则()A.,的最小值为B.,的最小值为C.,的最小值为D.,的最小值为【答案】A【解析】试题分析:由题意得,,故此时所对应的点为,此时向左平移个单位,故选A.考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换6.【2016高考山东理数】函数f(x)=(sin x+cos x)(cos x–sin x)的最小正周期是()(A)(B)π (C)(D)2π【答案】B【解析】试题分析:,故最小正周期,故选B.考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.7.【2016高考新课标3理数】函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.。

三年高考(2017-2019)理数真题分项版解析——专题10 解三角形(解析版)

三年高考(2017-2019)理数真题分项版解析——专题10 解三角形(解析版)

专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin 4C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=, 故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C +=,可得()cos 60C ︒+=.由于0120C ︒︒<<,所以()sin 602C ︒+=,故()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)()82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos 02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭. 【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .【答案】(1(2)5. 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3+. 【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC 的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B -. 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cosA =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-= 【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =. 【解析】(1)由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2)2. 【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =.由正弦定理得sin sin a b A B =⇒7sin A∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2), ∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A =11()2727-+⨯=14.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC 边上的高为2.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化; 第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.【答案】(1)b sin A (2)26.【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A(2)由(1)及a c <,得cos A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =. (2)由题设可得π2CAD ∠=, 所以π6BAD BAC CAD ∠=∠-∠=.故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=.因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A ∠=60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】(1)14;(2)【解析】(1)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (2)因为7a =,所以3737c =⨯=. 由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. (1)根据正弦定理sin sin a cA C=求sin C 的值; (2)根据条件可知7,3,a c ==根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2S bc A =进行求解即可.。

三年高考(2016-2018)数学(理)真题分项版解析——专题05 函数图象与方程(解析版)

三年高考(2016-2018)数学(理)真题分项版解析——专题05 函数图象与方程(解析版)

专题05 函数图像与方程考纲解读明方向分析解读1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用图象表示函数.2.在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在 “数”中的重要体现.分析解读函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与x 轴的交点的横坐标就是函数的零点,所以可以结合常见的二次函数、对数函数、三角函数等内容进行研究.本节内容在高考中分值为5分左右,属于难度较大题.在备考时,注意以下几个问题:1.结合函数与方程的关系,求函数的零点;2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断;3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.命题探究练扩展2018年高考全景展示1.【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.3.【2018年理数全国卷II】函数的图像大致为A. AB. BC. CD. D【答案】B点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.6.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数。

教育最新K12三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质文含解析60

教育最新K12三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质文含解析60

专题10 三角函数图象与性质文考纲解读明方向分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II ,文13】函数()2cos sin f x x x =+的最大值为 .【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.2.【2017课标II ,文3】函数π()sin(2)3f x x =+的最小正周期为 A.4π B.2π C. π D.π2【答案】C 【解析】由题意22T ππ==,故选C. 【考点】正弦函数周期【名师点睛】函数sin()(A 0,0)y A x B ωϕω=++>>的性质 (1)max min =+y A B y A B =-,. (2)周期2.T πω=(3)由 ππ()2x k k ωϕ+=+∈Z 求对称轴 (4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间; 3.【2017天津,文7】设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==【答案】A【解析】试题分析:因为条件给出周期大于2π,1156388844T ππππ-===, 2233T ππωω==⇒=,再根据252238212k k πππϕπϕπ⨯+=+⇒=+ ,因为ϕπ<,所以当0k =时,12πϕ=成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了()sin y A x ωϕ=+的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当58x π=时,2538122πππ⨯+=,满足题意,251138122πππ⨯-=-,不合题意,B 选项错误;151138244πππ⨯-=-,不合题意,C 选项错误;15738242πππ⨯+=,满足题意;当118x π=时,2113812πππ⨯+=,满足题意;111718382424πππ⨯+=,不合题意,D 选项错误.本题选择A 选项.4.【2017山东,文7】函数cos2y x x =+ 最小正周期为 A.π2 B. 2π3C.πD. 2π 【答案】C 【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③对于形如sin cos y a x b x ωω=+的函数,一般先把其化为()y x ωϕ=+的形式再求周期.5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x –x cos x (x ∈R ).(Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为π,单调递增区间为Z k k k ∈++]32,6[ππππ. 【解析】试题分析:(Ⅰ)由函数概念32cos 32sin 3232cos 32sin )32(22πππππ--=f ,分别计算可得;(Ⅱ)化简函数关系式得)sin(ϕω+=x A y ,结合ωπ2=T 可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.2016年高考全景展示1. 【2016高考新课标2文数】函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A 【解析】试题分析:由图知,2A =,周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+, 因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22(Z)32k k ππϕπ+=+∈,令0k =得,6πϕ=-,所以2sin(2)6y x π=-,故选A.考点: 三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.2. 【2016高考天津文数】已知函数)0(21sin 212sin)(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D 【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.3.【2016高考新课标1文数】若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2s in(2x –π4) (D )y =2sin(2x –π3)【答案】D 【解析】试题分析:函数y 2sin(2x )6π=+的周期为π,将函数y 2sin(2x )6π=+的图像向右平移14个周期即4π个单位,所得函数为y 2sin[2(x ))]2sin(2x )463πππ=-+=-,故选D. 考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.4.[2016高考新课标Ⅲ文数]函数sin cos y x x =的图像可由函数2sin y x =的图像至少向右平移_____________个单位长度得到. 【答案】3π 【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少. 5.【2016高考山东文数】(本小题满分12分)设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【答案】(I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏ 【解析】试题分析:(I )化简()()()2sin sin cos f x x x x x π=---得()2sin 21,3f x x π⎛⎫=- ⎪⎝⎭由()222,232k x k k Z πππππ-≤-≤+∈即得()5,1212k x k k Z ππππ-≤≤+∈写出()f x 的单调递增区间(∏)由()f x 2sin 21,3x π⎛⎫=-⎪⎝⎭平移后得()2sin 1.g x x =进一步可得.6g π⎛⎫⎪⎝⎭(∏)由(I )知()f x 2sin 21,3x π⎛⎫=-⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-+ ⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =的图象,即()2sin 1.g x x =所以 2sin 166g ππ⎛⎫==⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.。

三年高考(2016-2018)(理)真题分类:专题10-三角函数图象与性质-(数学)

三年高考(2016-2018)(理)真题分类:专题10-三角函数图象与性质-(数学)

专题10三角函数图象与性质考纲解读明方向分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

2017年高考全景展示1.【2017课标1,理9】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】试题分析:因为函数名不同,所以先将利用诱导公式转化成与相同的函数名,则,则由上各点的横坐标缩短到原来的倍变为,再将曲线向左平移个单位得到,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量而言.2.【2017课标3,理6】设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【答案】D【解析】试题分析:函数的最小正周期为,则函数的周期为,取,可得函数的一个周期为,选项A正确;函数的对称轴为,即:,取可得y=f(x)的图像关于直线x=对称,选项B正确;,函数的零点满足,即,取可得f(x+π)的一个零点为x=,选项C正确;当时,,函数在该区间内不单调,选项D错误;故选D.【考点】函数的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,则最小正周期为;奇偶性的判断关键是解析式是否为y=Asinωx或y=Acosωx+b的形式.(2)求f(x)=Asin(ωx+φ)(ω≠0)的对称轴,只需令,求x;求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.3.【2017天津,理7】设函数,,其中,.若,,且的最小正周期大于,则(A),(B),(C),(D),【答案】【考点】求三角函数的解析式【名师点睛】有关问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定,再根据周期或周期或周期求出,最后再利用最高点或最低点坐标满足解析式,求出满足条件的值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求或的值或最值或范围等.4.【2017山东,理16】设函数,其中.已知. (Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.【答案】(Ⅰ).(Ⅱ)得最小值.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到由题设知及可得.(Ⅱ)由(Ⅰ)得从而.根据得到,进一步求最小值.试题解析:(Ⅰ)因为,所以由题设知,所以,.故,,又,所以.(Ⅱ)由(Ⅰ)得所以.因为,所以,当,即时,取得最小值.【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.2016年高考全景展示1.【2016高考新课标2理数】若将函数的图像向左平移个单位长度,则平移后图象的对称轴为()(A)(B)(C)(D)【答案】B【解析】试题分析:由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.考点:三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.2.【2016高考新课标1卷】已知函数为的零点,为图像的对称轴,且在单调,则的最大值为( )(A)11 (B)9 (C)7 (D)5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①的单调区间长度是半个周期;②若的图像关于直线对称,则或.3.【2016年高考四川理数】为了得到函数的图象,只需把函数的图象上所有的点( )(A)向左平行移动个单位长度(B)向右平行移动个单位长度(C)向左平行移动个单位长度(D)向右平行移动个单位长度【答案】D【解析】试题分析:由题意,为了得到函数,只需把函数的图像上所有点向右移个单位,故选D.考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数的图象平移变换中要注意人“”的影响,变换有两种顺序:一种的图象向左平移个单位得,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,向左平移个单位得的图象.4.【2016高考浙江理数】设函数,则的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【答案】B【解析】试题分析:,其中当时,,此时周期是;当时,周期为,而不影响周期.故选B.考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数,再判断和的取值是否影响函数的最小正周期.5.【2016年高考北京理数】将函数图象上的点向左平移()个单位长度得到点,若位于函数的图象上,则()A.,的最小值为B.,的最小值为C.,的最小值为D.,的最小值为【答案】A【解析】试题分析:由题意得,,故此时所对应的点为,此时向左平移个单位,故选A.考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换6.【2016高考山东理数】函数f(x)=(sin x+cos x)(cos x–sin x)的最小正周期是()(A)(B)π (C)(D)2π【答案】B【解析】试题分析:,故最小正周期,故选B.考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.7.【2016高考新课标3理数】函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.。

(2016-2018)三年高考数学文科真题分类专题10【三角函数图象与性质】解析卷

(2016-2018)三年高考数学文科真题分类专题10【三角函数图象与性质】解析卷

专题10【三角函数图象与性质】解析卷考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.三角函数的图象及其变换①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响掌握2017课标全国Ⅰ,9;2016北京,7;2016课标全国Ⅲ,14;2015湖南,9选择题填空题解答题★★★2.三角函数的性质及其应用理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性理解2017课标全国Ⅲ,6;2016课标全国Ⅱ,7;2015课标Ⅰ,8选择题填空题解答题★★★分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II,文13】函数的最大值为. 【答案】【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用求最值.2.【2017课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【解析】由题意,故选C.【考点】正弦函数周期【名师点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间;3.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】【解析】试题分析:因为条件给出周期大于,,,再根据,因为,所以当时,成立,故选A. 【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,,满足题意,,不合题意,B选项错误;,不合题意,C选项错误;,满足题意;当时,,满足题意;,不合题意,D选项错误.本题选择A选项.4.【2017山东,文7】函数最小正周期为A. B. C. D.【答案】C【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为|ω|2π,y =tan(ωx +φ)的最小正周期为|ω|π.③对于形如的函数,一般先把其化为的形式再求周期. 5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x –sin x cos x (x R ).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为,单调递增区间为.【解析】试题分析:(Ⅰ)由函数概念,分别计算可得;(Ⅱ)化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.2016年高考全景展示1.【2016高考新课标2文数】函数的部分图像如图所示,则()(A)(B)(C)(D)【答案】A【解析】试题分析:由图知,,周期,所以,所以,因为图象过点,所以,所以,所以,令得,,所以,故选A.考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.2.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y=Asin(ωx+φ)+k的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.3.【2016高考新课标1文数】若将函数y=2sin (2x+6π)的图像向右平移41个周期后,所得图像对应的函数为()(A)y=2sin(2x+4π) (B)y=2sin(2x+3π) (C)y=2sin(2x–4π) (D)y=2sin(2x–3π)【答案】D【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x而言的,不用忘记乘以系数.4.[2016高考新课标Ⅲ文数]函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.5.【2016高考山东文数】(本小题满分12分)设.(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【答案】()的单调递增区间是(或)()【解析】试题分析:()化简得由即得写出的单调递增区间()由平移后得进一步可得()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.。

2016-2018年高考数学理科真题分类专题10【三角函数图象与性质类题】解析卷

2016-2018年高考数学理科真题分类专题10【三角函数图象与性质类题】解析卷

2016-2018年高考数学理科真题分类专题10【三角函数图象与性质类题】考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.三角函数的图象及其变换①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响掌握2017课标全国Ⅰ,9;2016北京,7;2016课标全国Ⅲ,14;2015湖南,9选择题填空题解答题★★★2.三角函数的性质及其应用理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性理解2017课标全国Ⅲ,6;2016课标全国Ⅱ,7;2015课标Ⅰ,8选择题填空题解答题★★★分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】D
【解析】
试题分析:因为 函数名不同,所以先将 利用诱导公式转化成与 相同的函数名,则 ,则由 上各点的横坐标缩短到原来的 倍变为 ,再将曲线向左平移 个单位得到 ,故选D.
【考点】三角函数图像变换.
【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住 ;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量 而言.
(Ⅱ)由(Ⅰ)得
从而 .
根据 得到 ,进一步求最小值.
试题解析:(Ⅰ)因为 ,
所以
由题设知 ,
所以 , .故 , ,又 ,所以 .
(Ⅱ)由(Ⅰ)得
所以 .因为 ,
所以 ,当 ,
即 时, 取得最小值 .
【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.
【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.
6.【2016高考山东理数】函数f(x)=( sinx+cosx)( cosx–sinx)的最小正周期是()
(A) (B)π(C) (D)2π
【答案】B
【解析】
试题分析: ,故最小正周期 ,故选B.
考点:1.和差倍半的三角函数;2.三角函数的图象和性质.
【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.
3.【2016年高考四川理数】为了得到函数 的图象,只需把函数 的图象上所有的点( )
(A)向左平行移动 个单位长度(B)向右平行移动 个单位长度
(C)向左平行移动 个单位长度(D)向右平行移动 个单位长度
【答案】D
ቤተ መጻሕፍቲ ባይዱ【解析】
试题分析:由题意,为了得到函数 ,只需把函数 的图像上所有点向右移 个单位,故选D.
考点:三角函数图像的平移.
【名师点睛】本题考查三角函数的图象平移,在函数 的图象平移变换中要注意人“ ”的影响,变换有两种顺序:一种 的图象向左平移 个单 位得 ,再把横坐标变为原来的 倍,纵坐标不变,得 的图象,另一种是把 的图象横坐标变为原来的 倍,纵坐标不变,得 的图象,向左平移 个单位得 的图象.
4.【2018年全国卷Ⅲ理】函数 在 的零点个数为________.
【答案】
点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。
2017年高考全景展示
1.【2017课标1,理9】已知曲线C1:y=cosx,C2:y=sin (2x+ ),则下面结论正确的是
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
7.【2016高考新课标3理数】函数 的图像可由函数 的图像至少向
右平移_____________个单位长度得到.
【答案】
考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.
【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.
4.【2017山东,理16】设函数 ,其中 .已知 .
(Ⅰ)求 ;
(Ⅱ)将函数 的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数 的图象,求 在 上的最小值.
【答案】(Ⅰ) .(Ⅱ)得最小值 .
【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到
由题设知 及 可得.
4.【2016高考浙江理数】设函数 ,则 的最小正周期()
A.与b有关,且与c有关B.与b有关,但与c无关
C.与b无关,且与c无关D.与b无关,但与c有关
【答案】B
【解析】
试题分析: ,其中当 时, ,此时周期是 ;当 时,周期为 ,而 不影响周期.故选B.
考点:1、降幂公式;2、三角函数的最小正周期.
2.【2016高考新课标1卷】已知函数 为 的零点, 为 图像的对称轴,且 在 单调,则 的最大值为( )
(A)11(B)9(C)7(D)5
【答案】B
考点:三角函数的性质
【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:① 的单调区间长度是半个周期;②若 的图像关于直线 对称,则 或 .
掌握
2017课标全国Ⅰ,9;
2016北京,7;
2016课标全国Ⅲ,14;
2015湖南,9
选择题
填空题
解答题
★★★
2.三角函数的性
质及其应用
理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性
理解
2017课标全国Ⅲ,6;
2016课标全国Ⅱ,7;
2015课标Ⅰ,8
选择题
填空题
解答题
★★★
分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.
2018年高考全景展示
1.【2018年理天津卷】将函数 的图象向右平移 个单位长度,所得图象对应的函数
专题10三角函数图象与性质
考纲解读明方向
考点
内容解读
要求
高考示例
常考题型
预测热度
1.三角函数的图
象及其变换
①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;
②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响
2016年高考全景展示
1.【2016高考新课标2理数】若将函数 的图像向左平移 个单位长度,则平移后图象的对称轴为()
(A) (B)
(C) (D)
【答案】B
【解析】
试题分析:由题意,将函数 的图像向左平移 个单位得 ,则平移后函数的对称轴为 ,即 ,故选B.
考点:三角函数的图象变换与对称性.
【名师点睛】平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.
2.【2017课标3,理6】设函数f(x)=cos(x+ ),则下列结论错误的是
A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x= 对称
C.f(x+π)的一个零点为x= D.f(x)在( ,π)单调递减
【答案】D
【解析】
试题分析:函数的最小正周期为 ,则函数的周期为 ,取 ,可得函数 的一个周期为 ,选项A正确;
【答案】A
【解析】
试题分析:由题意得, ,故此时 所对应的点为 ,此时向左平移 个单位,故选A.
考点:三角函数图象平移
【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换
A.在区间 上单调递增B.在区间 上单调递减
C.在区间 上单调递增D.在区间 上单调递减
【答案】A
【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.
详解:由函数图象平移变换的性质可知:将 的图象向右平移 个单位长度之后的解析式为: .则函数的单调递增区间满足: ,即 ,令 可得一个单调递增区间为: .函数的单调递减区间满足: ,即 ,令 可得一个单调递减区间为: .本题选择A选项.
【思路点睛】先利用三角恒等变换(降幂公式)化简函数 ,再判断 和 的取值是否影响函数 的最小正周期.
5.【2016年高考北京理数】将函数 图象上的点 向左平移 ( )个单位长度得到点 ,若 位于函数 的图象上,则()
A. , 的最小值为 B. , 的最小值为
C. , 的最小值为 D. , 的最小值为
(2)求f(x)=Asin(ωx+φ)(ω≠0)的对称轴,只需令 ,求x;求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.
3.【2017天津,理7】设函数 , ,其中 , .若 , ,且 的最小正周期大于 ,则
(A) , (B) , (C) , (D) ,
【答案】
【考点】求三角函数的解析式
点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.
2.【2018年理北京卷】设函数f(x)= ,若 对任意的实数x都成立,则ω的最小值为__________.
【答案】
点睛:函数 的性质
(1) .(2)周期 (3)由 求对称轴,最大值对应自变量满足 ,最小值对应自变量满足 ,
(4)由 求增区间;由 求减区间.
3.【2018年江苏卷】已知 函数 的图象关于直线 对称,则 的值是________.
【答案】
【解析】分析:由对称轴得 ,再根据限制范围求结果.
详解:由题意可得 ,所以 ,因为 ,所以
点睛:函数 (A>0,ω>0)的性质:(1) ;
(2)最小正周期 ;(3)由 求对称轴;(4)由 求增区间;由 求减区间.
相关文档
最新文档