2014八年级《一次函数》检测题(2卷)

合集下载

一次函数 单元检测题1[2]

一次函数   单元检测题1[2]

一. 选择题( 本题共10小题, 每小题4分,共40分) 1.判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B. y x ,是变量, =y 21x --C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间.2.若点A (2,4)在函数2-=kx y 的图象上,则下列各点在此函数图象上的是( )A.(0,-2)B.(23,0)C.(8,20)D.(21, 21)3.下列说法正确的是( )A.正比例函数是一次函数B.一次函数是正比例函数C.变量y x ,,y 是x 的函数,但x 不是y 的函数D.正比例函数不是一次函数,一次函数也不是正比例函数4.下列函数关系式:①x y -=;②;112+=x y ③12++=x x y ;④xy 1=.其中一次函数的个数是( )A. 1个B.2个C.3个D.4个5.关于函数12+-=x y ,下列结论正确的是( )A.图象必经过点(-2,1)B.图象经过第一、二、三象限C.当x ﹥21时,y ﹤0 D. y 随x 增大而增大6.直线b kx y +=的图象如右图所示,那么这个一次函数的解析式为( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y 7.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )ABC D8.若正比例函数(1)y m x =-的图象经过点A 11(,)x y 和点B 22(,)x y ,当1x ﹤2x 时,1y ﹤2y ,则m 的取值范围是( )A. m ﹤0B. m >0C. m ﹤1D. m >1 9.一次函数2+=kx y 的图象经过点(1,1),那么这个一次函数中( ) A.y 随x 的增大而增大 B. y 随x 的增大而减小 C.图象经过原点 D.图象不过第二象限10.如图所示,直线b kx y +=与x 轴的交点为(-4,0),则y >0时,x 的取值范围是( )A. x >-4B. x >0C. x ﹤-4D. x ﹤0 二.填空题(本大题共小题,每空3分,共39分)1. 把直线12+=x y 向下平移2个单位得到的函数解析式为___________;向上平移3个单位得到的函数解析式为___________。

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。

北师大版数学八年级上册第四章《一次函数》检测题(解析版)

北师大版数学八年级上册第四章《一次函数》检测题(解析版)

第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。

北师大版八年级上数学:第4章《一次函数》单元试卷初二数学试卷.doc

北师大版八年级上数学:第4章《一次函数》单元试卷初二数学试卷.doc

北师大版八年级上册第四章一次函数章节检测题(满分:120分时间:120分钟)2•李人爷要圉成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆圉成的另外三边总长恰好为24米、要围的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x 之间的函数关系式是()A • y = — 2x+24(0<x<12)B. y = -|x +12(0<x<24)C - y=2x-24(0<x<12)D. y=|x-12(0<x<24)3 • —次函数y = mx + |m—1|的图彖过点(0,2),且y随x的增大而增大»则m等于()A • —1 B. 3 C. 1 D. -1 或34•下列四组点中可以在同一个正比例函数图象上的一组点是()A • (2,—3),(-4,6)B.(-2,3),(4,6)C.(-2,—3),(4,-6)D.(2,3),(- 4,6)5 •对于函数『=—$ + 3,下列说法错误的是()选择题(每小题3分,共30分)的函数的个数有()DAA •图彖经过点(2,2) B. y随着x的增人而减小C•图彖与y轴的交点是(6,0)£>•图彖与坐标轴围成的三角形面积是97• Pi(x「yi) ' P?(X2 ' y?)是一次函数y = —2x+5图象上的两点、FL x)<x2‘则y】与y2的大小关系是()A・yi<y2 B・ yi=y2C. yi>y2D・ yi>y2>03 18•已知一次函数y=3x+m和y=—㊁x+n的图象都经过点A(—2,0),且与y轴分别交于B,C 两点,那么AABC的面积是()A • 2 B・3 C・ 4 D 69 •如图、把/?rAABC 放在直角坐标系内、其中ZCAB=90° ,BC = 5,点A > B 的坐标分别为 (1,0),(4,0),将AABC 沿X 轴向右平移,当点C 落在直线y=2x-6上时,线段BC 扫过的面积 为()A • 4B ・ 8C ・ 16 D. 8^210 •如图,己知直线1 : y=*^x ”过点A (0、1)作y 轴的垂线交直线1于点B ,过点B 作直线1的垂 线交y 轴于点A,;过点A,作y 轴的垂线交直线1于点B 「过点B 】作直线1的垂线交y 轴于点 A2;…;按此作法继续下去,则点A2OI3的坐标为()二、填空题(每小题3分,共24分)11 •将直线y=2x 向上平移1个单位长度后得到的直线是—. 12 •函数y=芈#中,白变量x 的取值范围是—.13 • —次函数y = (m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是.A • (0,22013B. (0,2201414•直线y=3x—m—4经过点A(m,0) »则关于x的方程3x —m—4=0的解是_15已知某一次函数的图象经过点A((),2),B(1,3),C(a > 1)三点,则a的值是° 2 3 “犬16 •某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是—17 •经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式为—.18 •直线1与y=—2x+l平行,与直线y=—x + 2交点的纵坐标为1,则直线1的解析式为三、解答题(共66分)19 • (8分)己知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点. ⑴求k,b的值;(2)若一次函数y = kx + b的图象与x轴的交点为AQ,0),求a的值.20 • (8分)联通公司手机话费收费冇A套餐(月租费15元,通话费每分钟0」元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y】(元),B套餐为yY元),月通话时间为x分钟.(1)分别表示出yi与x,y2与x的函数关系式;(2)月通话时间多长时,A,〃两种套餐收费一样?(3)什么情况下A套餐更省钱?21 • (8分)设函数y=x + n的图象与y轴交于点A »函数y= — 3x —m的图象与y轴交于点B »两个函数的图象交于点C(-3,1),D为AB中点.⑴求m » n的值;(2)求直线DC的一次函数表达式.22 • (8分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC是线段,直线CD平行于x轴•)(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的表达式,并求该植物最高长多少厘米?23 - (10分)1号探测气球从海拔5 m处出发»以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以().5 m/min的速度上升,两个气球都匀速上升了50加加设气球上升时间为x niinifi W x W 50)(1)根据题意,填写下表:上升时间加加1030• ••X1号探测气球所在位置的海拨/加15• ••2号探测气球所在位置的海拨如30• •(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当3OWxW5O时,两个气球所在位置的海拨最多相差多少米?24 • (12分)如图,直线y=kx+6与x轴、y轴分别相交于点E,F,点E的坐标为(一8,0),点A的坐标为(一6,0),点P(x,y)是第二彖限内的直线上的一个动点.⑴求k的值;(2)在点P的运动过程屮,写出AOPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置(求P的坐标)时,AOPA的面积为卑?25 - (12分)阅读下面的材料:在平面几何屮,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k|x+b|(k¥O)的图彖为直线h,—次函数y=k2x+b2(k2H0)的图象为直线12,若kj = k2,且gHb?,我们就称直线h与直线b互相平行.解答下面的问题:⑴求过点P(1,4)且与已知直线y=—2x—1平行的直线1的函数表达式,并画出直线1的图象;(2)设直线1分别与y轴、x轴交于点A,B,如果直线m: y=kx+t(t>0)与直线1平行且交x 轴于点C,求出AABC的面积S关于t的函数表达式.y -642-2 O_2、答案:一、选择题(每小题3分,共30分)1 …5 BBBAC 6—10 CCCCC填空题(每小题3分,共24分)11 •将直线y=2x 向上平移1个单位长度后得到的直线是_y=2x + Z13• —次函数y = (m+2)x+l ,若y 随x 的增大而增大,则m 的取值范围是—m> -2_•14 •直线y=3x —m —4经过点A (m ,0) »则关于x 的方程3x —m —4=0的解是—*=2—. 15 -已知某一次函数的图象经过点A ((),2)、B (1 、3),C (a ,1)三点,则a 的值是_-/一16 •某农场租用播种机播种小麦,在甲播种机播种2天后一又调来乙播种机参与播种,直至完 成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的大数是17 •经过点(2,0)H 与坐标轴围成的三角形面积为2的直线解析式为_y=x_2我 尸_x + 2一 18 •直线1与y = —2x+l 平行,与直线y=—x+2交点的纵坐标为1,则直线1的解析式为 7= -2兀+ 3_・三、解答题(共66分)19 • (8分)已知:一次函数y=kx+b 的图象经过M (0,2) N (1,3)两点. (1) 求k ,b 的值;(2) 若一次函数y = kx + b 的图象与x 轴的交点为A (a ,0),求a 的值.[x=l解:(Q 由条伴得b=2、把' 、代入y = kx + 2 得*=«/[y=3(2)由(7)得 y=x + 2 ‘ i y = 0 ^4 » x= 一 2,即 a= - 220 • (8分)联通公司手机话费收费有力套餐(月租费15元,通话费每分钟0」元)和B 套餐(月12 •函数y=讥+3X —4 中,自变量x 的取值范圉是_全1空4_・租 费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为力(元),B 套餐为y2(元),月通话时间为 x 分钟.(1) 分别表示出yi 与x » y 2与x 的函数关系式; (2) 月通话时间多长时,A ,3两种套餐收费--样? (3) 什么情况下A 套餐更省钱? 解:(l )yi=0.1x +15,y 2=0.15x(2) 由 yj=y2 得 0.1x +15=0.15x 解得 x=300 (3) 宙通话时同多于300今钟讨'A 套餐省钱21 • (8分)设函数y=x+n 的图象与y 轴交于点A 、函数y = —3x —m 的图象与y 轴交于点B 、 两个函数的图象交于点C(-3,1),D 为AB 中点.⑴求m » n 的值;(2)求直线DC 的一次苗数表达式. 解:(l)m = 8 r = 4(2)由(7)得A(0,4),B(0 / 一8)・S 恙D^AB 的屮点,所以D(0 / 一2厂筱直钱CD 的恭达式22-(8分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的 关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴•)⑴该植物从观察时起,多少天以后停止长高?(2)求直线AC 的表达式、并求该植物最高长多少厘米?解/ (1)50夭后(2)破直钱AC 的素迟弍% y=kx + 6,舟(30T2)代入,12 = 30k + 6>解得/c=\ 奴达式签y =jx + 6,舉宙g “廈来23 • (10分)1号探测气球从海拔5加处出发,以1 mJmm 的速度上升.与此同时,2号探测气 球从海拔15 m 处出发,以0.5 m/rnin 的速度上升,两个气球都匀速上升了 50 min.设气球上升时间 为 x/«〃?(0WxW50)(1)根据题意,填写下表:上升时间加加10 30 • • • X1号探测气球所在位置的海拨加 15• • • 2号探测气球所在位置的海拨加30 • • •(2) 在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高 度?如果不能,请说明理由;拓 y = kx +b ;即 y= -x-2(3) 当30WxW50时,两个气球所在位置的海拨最多相差多少米?解:(1)35 x + 5 20 0.5x +15(2)饶.由x4-5=0.5x + 75得x=20»所”〕x +5=25,即%球上升20 min讨倍于诲按25 m处(3)宙30WxW50时、/号扎球龄終在2号汽球上方,殺向吃球的海按差為丿,则y=(x + 5)-(0.5x + 15) = 0.5x - 10 y的幡史而惓农,所“由x=50讨的值眾攵,h 15来24 • (12分)如图,直线y = kx+6与x轴、y轴分别相交于点E,F,点E的坐标为(一8,0),点A的坐标为(一6,0),点P(x,y)是第二象限内的直线上的一个动点.⑴求k的值;(2)在点P的运动过程中,写出AOPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置(求P的坐标)时,AOPA的面积为寻?解:(/)k=^3 1 3 9(2)由(Q得丿=庐 + 6 所“ S=2 X6Xqr + 6)所“ S=^x+18(-8<x<0)9 27 13 3 13 9 13 9 13(3)由S=^x +18=^得x= _丁,j=^X(-—) + 6=^,所M P(—"F,卫即卩运渤劃点(一丁,9 270讨,△OP4的而张禺w25 - (12分)阅读下面的材料:在平面儿何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k|x+b|(k|H0)的图象为直线h,—次函数y=k2x+b2(k2H0)的图象为直线12,若k.=k2,Hb|Hb2,我们就称直线h与直线12互相平行.解答下面的问题:⑴求过点P(1,4)且与已知直线y=-2x-l平行的直线1的函数表达式,并画出直线1的图象;(2)设直线1分别与y轴、x轴交于点A,B,如果直线m: y=kx+t(t>0)与直线1平行且交x 轴于点C、求出AABC的面积S关于t的函数表达式.解:(7)j= -2x + 6 / 囹路(2) 4 0<t<6时,S = 9—号f,‘ i &6 时» S=寺-9 4 6\6 4 2。

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .B 解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 4.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4A 解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 5.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.6.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-,.【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.8.函数2y x x =+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则 ∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D .D 解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+B 解析:B【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.二、填空题11.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k>0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.12.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.13.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(1)5P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 355a b c c=+,即355a b c +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22352205c c ⎛⎫-⨯= ⎪ ⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52.【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.14.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________. 【分析】先分别计算出P 在直线和直线上时a 的值然后结合题意即可解答【详解】解:当P 在直线y=2x+2上时a-1=2+2解得a=5;当P 在直线y=2x+4上时a-1=2+4解得a=7则当时点P 在两直线之解析:57a <<【分析】先分别计算出P 在直线22y x =+和直线24y x =+上时a 的值,然后结合题意即可解答.【详解】解:当P 在直线y=2x+2上时,a-1=2+2,解得a=5;当P 在直线y=2x+4上时,a-1=2+4,解得a=7则当57a <<时,点P 在两直线之间.故答案为:57a <<.【点睛】本题主要考查了一次函数与一元一次不等式,掌握一次函数图象经过的点,必能使解析式左右相等成为解答本题的关键.15.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理2222OA +OB =6+8=10,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.16.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.17.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83)【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+, ∴89k =-, ∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 18.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.19.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元 解析:43 【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知,当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43.【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3a-=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.解析:(1)y=2x+1;(2)(0,1)和(﹣12,0)【分析】(1)由待定系数法可求得直线l1的解析式;(2)令x=0可求得其与y轴的交点坐标,令y=0,可求得其与x轴的交点坐标.【详解】解:(1)∵直线l1:y=kx+b经过点A(12,2)和点B(2,5).∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.解析:(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系.23.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A店铺:"双11"当天购实所有商品可以享受8折优惠:B店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x(个),若王阿姨在“双11"当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?解析:(1)y A=480x+1600,y B=600x+1240;(2)在A店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;x 代入到(1)的式子中,即可得解;(2)把4【详解】(1)解:由题意得:.y A=1000×2×0.8+0.8×600x=480x+1600;y B=1000×2+600(x-1)-160=600x+1240;(2)解:当x=4时,y a=480×4+1600=3520;y B=600×4+1240=3640;∵3520<3640,∴在A店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.24.天府七中科创小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C 点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的图象,请结合图象,回答下列问题.(1)A、B两点之间的距离是________m,甲机器人前2min的速度为________m/min.(2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.25.某草莓种植基地迎来了收获旺季.草莓的销售有两种形式,即直接销售和加工销售,假设当天都能销售完并且没有损耗.已知直接销售是4元/kg ,加工销售是15元/kg ,该基地聘用采摘工人与加工工人共20人,每人每天可采摘60kg 或加工30 kg 草莓.(1)设采摘工人x 人,剩下的工人加工草莓,若基地一天的总销售额为y 元,请列出y 与x 的函数表达式;(2)为了使得一天的销售额最大,如何分配工人?试求出销售额的最大值.解析:(1)y =-90x +6600;(2)安排7名工人采摘,13名工人加工,最大值是5970元【分析】(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以; (2)根据题意和(1)中的函数解析式可以解答本题.【详解】解:(1)由题意可得,y =[60x -(20-x )×30]×4+30(20-x )×15=-90x +6600,即y 与x 的函数关系式是y =-90x +6600;(2)∵60x ≥30(20-x ),∴x ≥203, ∵x 是整数且x ≤20,∴7≤x ≤20,∵y =-90x +6600,-90<0,∴当x =7时,y 取得最大值,此时y =-90×7+6600=5970,20-x =13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是5970元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.26.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标. 解析:(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=, 解得:1b =-. ()2如图,过D 作DE y ⊥轴于E ,在24y x =+中,令0x =,则4y =,所以点B 的坐标为()04,. 在112y x =--中, 令0x =,则1y =-. 所以点C 的坐标为()01-,. 所以5BC =.15ABD ABC BCD S S S ∆∆∆=+=,即1111255152222AO BC DE BC DE ⨯+⨯=⨯⨯+⨯⨯=. 解得4DE =在112y x =--中,令4x =,得3y =-. 所以点D 的坐标为()43-,. 【点睛】本题主要考查了一次函数的图象问题,关键是掌握一次函数图象上点的坐标特征,并弄清题意,学会综合运用其性质解决问题.27.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?解析:(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?解析:(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同.。

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

一、选择题1.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .4.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+6.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .58.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)9.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④11.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小二、填空题13.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.14.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.15.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.16.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.17.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.18.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.19.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.20.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.三、解答题21.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长. (2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)25.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】利用图象求出甲的速度为60千米/小时,进而求出乙的速度为90千米/小时,再求出两车相遇的时间,利用两人所用时间相差13小时得出相遇时间是几点及乙车到达A地是几点.【详解】解:∵甲车的速度为601=60(千米/小时),乙车的速度为60113=90(千米/小时),所以①②对;根据题意,甲乙相遇的时间:(240-60×13)÷(90+60)=2215,乙9点20分出发,经过2215小时(88分钟)甲乙相遇,也就是10点48分,所以③错;乙车到达A地的时间:240÷90=83,83+13=3,9+3=12,所以④对故选C.【点睛】本题主要考查了一次函数的综合应用,根据已知利用两车时间差得出代数式是解题的关键.2.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.3.A解析:A根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32,故点C (0,32), 故选:C .【点睛】 本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.9.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.10.D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 11.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.12.A解析:A【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.二、填空题13.1325【分析】从图2的函数图象得知BD=x的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE⊥BC于E利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE⊥BC于E,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C、D重合,对应AC=y=,再由图2中(1,)知,BD=时,AD=,如图:作AE⊥BC于E,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.14.x<-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x<-1故答案为:x<-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x<-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.15.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253.故答案为:y=-23x+253. 【点睛】 本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.16.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:a+b=5c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.17.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2 解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 18.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.19.【分析】根据中点坐标公式求得C 点坐标作点A 关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 20.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.三、解答题21.(1)80m/min ;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解; ()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m .【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)5;(2)1612,55F ⎛⎫- ⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯,即1153422FG ⨯⨯=⨯⨯,125FG =,在Rt OFG △中,由勾股定理得:165OG ==, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.25.(1)34k =;(2)()918804S x x =+-<<;(3)16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭ 【分析】(1)把点E 的坐标()8,0-代入直线6y kx =+,即可求得答案;(2)根据三角形的面积公式列出解析式,根据题意求出自变量x 的取值范围;(3)根据“分得的两个三角形面积之比为1:2”的不确定性,进行分类讨论,再由同高三角形面积之比即为底之比可求得对角线交点的坐标,进而可求得直线HQ 的解析式,进而利用两一次函数解析式求得交点P 的坐标.【详解】解:(1)∵点()8,0E -在直线y kx b =+上∴086k =-+ ∴34k =. (2)∵34k = ∴直线的解析式为:364y x =+ ∵P 点在364y x =+上, ∴设3,4P x x b ⎛⎫+ ⎪⎝⎭∴OPA 以OA 为底的边上的高是364x + ∵点P 在第二象限 ∴336644x x +=+ ∵点A 的坐标为(6,0)-∴6OA = ∴366941824x S x ⎛⎫+ ⎪⎝⎭==+,即9184S x =+∵P 点在第二象限∴自变量x 的取值范围是:80x -<<∴OPA 的面积S 与x 的函数表达式为:()918804S x x =+-<<. (3)根据题意,PQ 是四边形EPOQ 的对角线∵不确定分得的两个三角形的比为1:2还是2:1∴有两种情况①当1121P EQPQO S S =时,1PQ 与x 轴交于1H ,如图:∵8EQ =∴18,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线1H Q 的解析式为324y x =-- ∴324364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴1632x y ⎧=-⎪⎨⎪=⎩ ∴116,23P ⎛⎫-⎪⎝⎭; ②当2212P EQP QO S S =时,2P Q 与x 轴交于2H ,如图:∵8EQ = ∴216,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线2H Q 的解析式为328y x =-- ∴328364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴64923x y ⎧=-⎪⎪⎨⎪=⎪⎩∴2642,93P ⎛⎫- ⎪⎝⎭∴综上所述,当点P 为16,23⎛⎫-⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2.【点睛】 本题考查了一次函数的知识,渗透了分类讨论、数形结合的数学思想,掌握待定系数法求一次函数解析式的一般步骤、根据三角形的面积公式列出解析式、根据三角形的面积关系求得点的坐标是解题的关键.26.(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,则233a b b =+⎧⎨-=⎩,解得:533a b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的表达式为533yx ; (2)在直线3(0)y kx k =-≠中, 令x=0,则y=-3,即直线3(0)y kx k =-≠必经过(0,-3),∵直线3(0)y kx k =-≠与线段AB 没有交点,AC :33y x =--,BC :533y x , 可得k 的取值范围是:-3<k <53且k≠0. 【点睛】本题考查了一次函数表达式,一次函数图象上点的坐标特征,理解直线3(0)y kx k =-≠与线段AB 没有交点是解题的关键.。

人教版初中数学八年级数学下册第四单元《一次函数》测试(包含答案解析)(2)

人教版初中数学八年级数学下册第四单元《一次函数》测试(包含答案解析)(2)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 4.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 5.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C的纵坐标为2880.其中错误..的个数是()A.1 B.2 C.3 D.46.若关于x、y的二元一次方程组42313312x y ax ya+=+⎧⎪⎨-=+⎪⎩的解为非负数,且a使得一次函数(1)3y a x a=++-图象不过第四象限,那么所有符合条件的整数a的个数是()A.2 B.3 C.4 D.57.已知56a=-,56b=+,则一次函数y=(a+b)x+ab的图象大致为()A.B.C.D.8.已知一次函数(6)1y a x=-+经过第一、二、三象限,且关于x的不等式组1()0232113axxx⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a的值的和为()A.9 B.11 C.15 D.189.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④10.直线y mx b=+与y kx=在同一平面直角坐标系中的图象如图所示,则关于x的不等式mx b kx+<的解集为()A .3x >-B .3x <-C .1x >-D .1x <- 11.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个12.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个二、填空题13.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 14.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.15.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.16.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.17.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.18.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.19.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.20.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.三、解答题21.要从甲、乙两仓库向A 、B 两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需要70吨水泥,B 工地需要110吨水泥.两仓库到A 、B 两工地的路程和每吨每千米的运费如下表:路程(千米) 运费(元/吨·千米) 甲仓库 乙仓库 甲仓库 乙仓库A 地 20 15 1.2 1.2B 地 2520 1 0.8 B 地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B 地水泥_______吨.(2)试用x 的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A 地多少吨水泥;若不能,说明理由.22.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.23.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值. (2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.25.己知,如图,在平面直角坐标系中,直线y kx b =+经过点(3-,4-),(6,2),且分别交x 轴、y 轴于A 、B 两点.(1)确定直线y kx b =+的表达式:(2)求A 、B 两点的坐标;(3)求AOB 的面积;(4)过AOB 的顶点B 的一条直线把AOB 分成面积相等的两部分,求这条直线表达式.26.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg0 1 2 3 4 5 弹簧长度y/cm 28 30 32 34 36 38是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正比例函数的大小变化规律判断k的符号.【详解】解:根据题意,知:y随x的增大而减小,则k<0,即m﹣2<0,m<2.故选:D.【点睛】本题考查了一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.2.B解析:B【分析】根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,即可判断A项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C;使x=0时,对应的纵坐标即可判断D.【详解】A. 因为k=-3,所以y随x的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y轴的交点坐标(0,-2),那么在y轴上的截距为-2,故此项不正确;D. y=-3x-2与x轴交于点(23,0),故此项不正确;故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.C解析:C【分析】根据题意得A,B两城相距300km,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;故选:C .【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.B解析:B【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;.【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误;故选:B .【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.5.B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 6.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩,解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.C解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a ++0>,ab==10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答. 8.A解析:A【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<,∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.9.D解析:D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.10.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.11.D解析:D【分析】根据甲、乙的图象去分析出甲、乙的行驶过程,从而求出速度,相遇时间等信息,去判断选项的正确性.【详解】解:通过乙的图象可以看出B 、C 两港之间距离是90海里,故①错误,甲从A 港出发,经过B 港,到达C 港,乙从B 港出发,到达C 港,甲比乙快,所以甲、乙只会相遇一次,故②正确,甲的速度:300.560÷=(海里/小时),乙的速度:90330÷=(海里/小时),甲比乙快30海里/小时,故③正确,A 港距离C 港3090120+=(海里),120602÷=(小时),即甲到C 港需要2小时,乙需要3小时,故④正确, ()3060301÷-=(小时),即甲追上乙需要1个小时,1个小时乙行驶了30海里,∴()1,30P ,故⑤正确,正确的有:②③④⑤.故选:D .【点睛】本题考查一次函数的应用,解题的关键是能够根据所给函数图象结合实际意义去进行分析得到想要的信息.12.B解析:B【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;乙用了50.5 4.5-=个小时到达目的地,故②错误;乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题13.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】 此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.14.或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题. 15.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键. 16.y=3x+3【分析】根据平行直线的解析式求出k 值再把点的坐标代入解析式求出b 值即可【详解】y=-x-1当y=0时x=-1∴线y =-x -1交x 轴于点(-10)∵y=kx+b 的图象平行于直线y=3x+2解析:y=3x+3【分析】根据平行直线的解析式求出k 值,再把点的坐标代入解析式求出b 值即可.【详解】y=-x-1,当y=0时,x=-1,∴线y =-x -1交x 轴于点(-1,0),∵y=kx+b 的图象平行于直线y=3x+2,∴k=3,又∵函数y =kx+b(k≠0)的与直线y =-x -1交x 轴于同一点,∴函数y =kx+b(k≠0)经过点(-1,0),∴-3+b=0,∴b=3,∴函数的表达式是y=3x+3,故答案为:y=3x+3.【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k 值相等是解题的关键.17.y=-2x 【分析】由题意可设y=kx (k≠0)把xy 的值代入该函数解析式通过方程来求k 的值【详解】解:由题意可设y=kx (k≠0)则2=-k 解得k=-2所以y 关于x 的函数解析式是y=-2x 故答案为:解析:y=-2x【分析】由题意可设y=kx (k≠0).把x 、y 的值代入该函数解析式,通过方程来求k 的值.【详解】解:由题意可设y=kx (k≠0).则2=-k ,解得,k=-2,所以y 关于x 的函数解析式是y=-2x ,故答案为:y=-2x .【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键. 18.(00)或(22)或(-2-2)【分析】作出图形分别以ABP 为直角顶点三种情况讨论利用勾股定理即可求解【详解】令则令则∴A(0)B(4)∵点P 在一次函数的图象上∴设点的坐标为(xx)==①当∠ABP解析:(0,0)或(2,2)或(-2,-2)【分析】作出图形,分别以A 、B 、P 为直角顶点三种情况讨论,利用勾股定理即可求解.【详解】令0x =,则4y =,令0y =,则4x =-,∴A(4-,0),B(0,4),∵点P 在一次函数 y x =的图象上,∴设点P 的坐标为(x ,x),2AB =224432+=,()222242816PB x x x x =+-=-+,2PA =()22242816x x x x ++=++, ①当∠ABP=90︒时,根据勾股定理得:222AB PB PA +=,即223228162816x x x x +-+=++, 解得:2x =∴点P 的坐标为(2,2);②当∠BAP=90︒时,根据勾股定理得:222AB PA PB +=,即223228162816x x x x +++=-+, 解得:2x =-∴点P 的坐标为(-2,-2);③当∠APB=90︒时,此时点P 与点O 重合,∴点P 的坐标为(0,0);综上,点P 的坐标为(0,0)或(2,2)或(-2,-2).【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,采用了分类讨论的思想,与方程相结合是解决问题的关键.19.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.20.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.三、解答题21.(1)100x -,70x -,10x +;(2)33920y x =-+;(3)能,75吨【分析】(1)用甲仓库一共可运出的100吨水泥减去x 得到甲仓库运往B 地的水泥吨数,用A 工地需要的水泥减去x 得到乙仓库运往A 工地的水泥吨数,用同样的方法得到乙仓库运往B地的水泥吨数;(2)设总运费是y 元,根据表格中的距离和运费列出总费用的表达式;(3)令(2)中的3695y =,解出x 的值即可.【详解】解:(1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥()100x -吨; 乙仓库运往A 地水泥()70x -吨,乙仓库运往B 地水泥()110100x --⎡⎤⎣⎦吨故答案是:100x -,70x -,10x +;(2)设总运费是y 元,()()()1.220125100 1.215700.82010y x x x x =⨯+⨯-+⨯-+⨯+,整理得:33920y x =-+;(3)令3695y =,则339203695x -+=,解得75x =,答:可以,此时甲仓库应运往A 地75吨水泥.【点睛】本题考查一次函数的实际应用,解题的关键是根据题意列出函数关系式进行求解. 22.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.23.(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系. 24.(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大, ()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点,则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.25.(1)223y x =-;(2)(3,0)A ,(0,2)B -;(3)3;(4)423y x =-. 【分析】(1)利用待定系数法即可得;(2)求出0y =时,x 的值即可得点A 的坐标,求出0x =时,y 的值即可得点B 的坐标; (3)先根据点A 、B 的坐标可得OA 、OB 的长,再利用直角三角形的面积公式即可得; (4)先根据三角形的中线与面积关系可得这条直线一定经过OA 的中点,再根据点A 的坐标求出中点的坐标,然后利用待定系数法即可得.【详解】(1)由题意,将点(3,4),(6,2)--代入y kx b =+得:3462k b k b -+=-⎧⎨+=⎩, 解得232k b ⎧=⎪⎨⎪=-⎩,则直线y kx b =+的表达式为223y x =-; (2)对于一次函数223y x =-, 当0y =时,2203x -=,解得3x =,即(3,0)A , 当0x =时,2y =-,即(0,2)B -;(3)(3,0),(0,2)A B -,3,2OA OB ∴==,又x 轴y ⊥轴,AOB ∴是直角三角形,则AOB 的面积为1132322OA OB ⋅=⨯⨯=; (4)设这条直线的表达式为y mx n =+,这条直线过AOB 的顶点B ,且把AOB 分成面积相等的两部分,∴这条直线一定经过OA 的中点,(0,0),(3,0)O A ,∴OA的中点的坐标为3(,0) 2,将点3(,0)2和点(0,2)B-代入y mx n=+得:322m nn⎧+=⎪⎨⎪=-⎩,解得432 mn⎧=⎪⎨⎪=-⎩,则这条直线的表达式为423y x=-.【点睛】本题考查了利用待定系数法求一次函数的表达式、求一次函数与坐标轴的交点坐标等知识点,熟练掌握待定系数法是解题关键.26.(1)x,y;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm,重物每增加1kg,弹簧长度增加2cm,据此可求当所悬挂重物为6kg时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm与所挂物体的质量xkg这两个变量之间的关系.其中所挂物体的质量x是自变量,弹簧的长度y是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm,∵重物每增加1kg,弹簧长度增加2cm,∴当所悬挂重物为6kg时,弹簧的长度为38+2=40cm;(3)∵重物每增加1kg,弹簧长度增加2cm,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm时,此时所挂重物的质量是9kg.【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.。

(常考题)人教版初中数学八年级数学下册第四单元《一次函数》检测卷(包含答案解析)(2)

(常考题)人教版初中数学八年级数学下册第四单元《一次函数》检测卷(包含答案解析)(2)

一、选择题1.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤- 2.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 3.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .4.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 5.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,02⎛⎫ ⎪ ⎪⎝⎭C .10,010⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 6.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 7.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D .8.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠ B .112y >,212y > C .若12y y =,则12||||x x =D .若12y y <,则12x x <9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D . 10.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D 5 11.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-512.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2) 二、填空题13.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 14.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.15.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.16.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.17.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.18.函数51yx=-的定义域是______.19.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上.则点C2020的纵坐标是____.20.某一列动车从A地匀速开往B地,一列普通列车从B地匀速开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图像进行探究,图中t的值是__.三、解答题21.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)客车的速度是千米/小时,出租车的速度为千米/小时;y1关于x的函数关系式为;y2关于x的函数关系式为.(2)求两车相遇的时间;(3)在两车的运动方式和客车行驶速度不变的情况下,求出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.22.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?23.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2,(1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3)在(2)的条件下,求出△AOB 的面积;24.已知一次函数3y kx =-的图象经过点()2,1A .(1)求这个一次函数的表达式;(2)在图中的直角坐标系画出这个函数的图象.25.淮北市榴园村,以石榴产业资源及“四季榴园”4A 级旅游风景区为基础,规划面积3.33平方公里,布局为“一区两园一带”.2020年8月26日,榴园村入选第二批全国乡村旅游重点村名单.在坐拥近千亩的塔山明清古石榴园内,有古树587株,平均树龄150岁,是迄今华东地区年代最久远的古代石榴园.榴园村甲农户有20吨石榴,乙农户有30吨石榴,现将这些石榴运到A B 、两个贮藏仓库.已知A 仓库可储存24吨,B 仓库可储存26吨,从甲农户运往A B 、两仓库的费用分别为20元/吨、25元/吨,乙农户运往A B 、两仓库的费用分别为15元/吨、18元/吨.设从甲农户运往A 仓库的石榴为x 吨,甲农户、乙农户的运费分别为y 甲元、y 乙元.(1)请直接写出y 甲,y 乙与x 之间的函数关系式.(不必写出x 的取值范围). (2)试讨论当x 满足怎样条件时,甲、乙两农户哪户的运费较少?26.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;(2)求不等式20x +<的解集;(3)若13y -≤≤,求x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.2.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.3.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.4.D解析:D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.5.A解析:A【分析】作点A关于x轴的对称点A',连接A'P,则AP=A'P,当A',P,D在同一直线上时,AP+DP 的最小值等于A'D的长,依据待定系数法即可得到直线A'D的解析式,进而得出点P的坐标为2,03⎛⎫ ⎪⎝⎭.【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩, ∴y=3x -2, 当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.6.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.7.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.8.D解析:D【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可.【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确; B 、∵x 2>0,∴21x >0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D .【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.9.D解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.10.B解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交=故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.11.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.12.C解析:C【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求.【详解】∵要使得△PAB 的周长最小,A ,B 为固定点,∴在x 轴上找到P 点,使得PA PB +最小即可,∴将A 沿x 轴对称至A 1,则()11,1A -,设直线A 1B 的解析式为:y kx b =+,将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-, 令0y =,解得:43x =, 即4,03P ⎛⎫ ⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.二、填空题13.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键. 14.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以 解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c ->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1,∴a +b =c +d ,故④正确;⑤∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且d c->-1,c >0, ∴c >d .故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键. 15.(00)【分析】先作点B 关于x 轴的对称点C 再连接AC 求出AC 的函数解析式再把y=0代入即可【详解】解:如图作点B 关于x 轴的对称点C 再连接AC点B 坐标为(﹣11)点B 关于x 轴的对称点C 的坐标为(-1-解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.16.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.17.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.18.x <1【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x >0解得x <1故答案是:x <1【点睛】本题考查了自变量的取值范围使函数解析式有意义列式求解即可是基础题解析:x <1.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x >0,解得x <1.故答案是:x <1.【点睛】本题考查了自变量的取值范围,使函数解析式有意义列式求解即可,是基础题,比较简单.19.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n的纵坐标为2n-1,∴点C2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n的纵坐标为2n-1是解题的关键.20.4【分析】根据题意和函数图象中的数据:AB两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB两地相距9解析:4【分析】根据题意和函数图象中的数据:AB两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB两地相距900千米,两车出发后3小时相遇,普通列车的速度是:90012=75千米/小时,动车从A地到达B地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.(1)60,100,y1=60x,y2=﹣100x+600;(2)154小时;(3)每小时120千米【分析】(1)根据函数图象中的数据可以得到客车和出租车的速度,然后即可写出y1、y2关于x的函数解析式;(2)根据题意和(1)中的函数关系式,可以求得两车相遇的时间;(3)根据题意,可以求得出租车为提前25分钟与客车相遇,应将速度提高为每小时多少千米.【详解】解:(1)由图象可得,客车的速度为:600÷10=60(千米/小时),出租车的速度为:600÷6=100(千米/小时),设客车的解析式为:1y kx =,把点(10,600)代入,则60010k =,∴60k =,∴y 1关于x 的函数关系式为y 1=60x ;设出租车的解析式为2y ax b =+,把点(0,600)和(6,0)代入,则60060b a b =⎧⎨+=⎩, ∴100600a b =-⎧⎨=⎩, ∴y 2关于x 的函数关系式为y 2=﹣100x+600;故答案为:60,100;y 1=60x ,y 2=﹣100x+600;(2)令60x =﹣100x+600,解得x =154, 即154时两车相遇; (3)∵154时=3小时45分钟,出租车提前25分钟与客车相遇, ∴出租车出发的时间为3小时20分钟, ∵3小时20分钟=133小时, ∴出租车的速度为:600÷133﹣60=120(千米/小时), 即出租车为提前25分钟与客车相遇,应将速度提高为每小时120千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4 【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.24.(1)23y x =-;(2)函数图象如图所示,见解析.【分析】(1)把A 坐标代入一次函数解析式求出k 的值,即可得到一次函数的解析式;(2)利用两点画出函数图象即可.【详解】(1)因为一次函数3y kx =-的图象经过点()2,1A ,所以231,k -=解得2,k =所以这个一次函数的表达式为23y x =-.(2)由()1知,一次函数23y x =-,令0,x =则3,y =-得点(0,3)-.所以该一次函数图象经过点(0,3)-和()2,1,其图象如图所示:【点睛】本题考查了待定系数法求一次函数的解析式,两点法画一次函数的图象.注意:一次函数图象上的点都满足一次函数解析式.25.(1) y A =500-5x,,y B =3x+468;(2)当0≤x <4时,B 地的费用较少;当x=4时,两地的费用相同;当4<x≤20时,A 地的费用较少.【分析】(1)甲农户运往A 仓库的石榴为x 吨,则运往B 仓(20-x )吨,乙农户运往A 仓库的石榴为(24-x )吨,运往B 仓(x+6)吨,根据费用等于吨数×每吨的费用,即可写出函数解析式;(2)把两个解析式进行比较,解不等式即可.【详解】解:(1)设甲农户运往A 仓库的石榴为x 吨,则运往B 仓(20-x )吨,乙农户运往A 仓库的石榴为(24-x )吨,运往B 仓(x+6)吨,则为y A =20x+25(20-x ),即y A =500-5x ;y B =15(24-x )+18(x+6),即y B =3x+468;(2)根据题意得:20024060xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤20,当y A>y B时,即500-5x>3x+468,解得:x<4,当y A=y B时,即500-5x=3x+468,解得:x=4,y A<y B时,即500-5x>3x+468,解得:x>4.则当0≤x<4时,B地的费用较少;当x=4时,两地的费用相同;当4<x≤20时,A地的费用较少.【点睛】本题考查了一次函数的应用,常用的方法就是转化为函数问题,正确表示出从甲农户和乙农户运送到A和B各自的吨数是关键.26.(1)x=﹣2;(2)x<2;(3)﹣3≤x≤1【分析】(1)利用描点法画出一次函数图像,结合图像求出答案;(2)根据图像判断不等式的解集;(3)根据图像求出自变量x的取值范围.【详解】解:对于函数y=x+2,列表:x0-2 y20(1)根据图像得出函数过(﹣2,0)和(0,2)两点∴方程20x +=的解为x=﹣2;(2)根据函数图像函数值小于0时x 的取值范围为x <﹣2,∴不等式20x +<的解集为x <﹣2;(3)根据图像判断,当13y -≤≤时x 的取值范围为﹣3≤x≤1.【点睛】本题考查一次函数的图像与性质,解题关键是正确画出一次函数图形,利用函数图像解题.。

二次根式和一次函数检测题

二次根式和一次函数检测题

2013~2014学年(下)月末练习八 年 级 数 学一、选择题:( )1、等式1112-=-∙+x x x 成立的条件是A .x ≥1B .x ≥-1C -1≤x ≤1 Dx ≥1或x ≤-1( )2、一次函数y =2x -2的图象不经过...的象限是: A .一象限B .二象限C .三象限D .四象限( )3、已知点(-1,),(2,),(3,)在反比例函数y=x k 12--的图像上.下列结论中确的是: A .B .C .D .( )4、若方程k (x 2-2x +1)-2x 2+x =0有实数根,则。

A 、k >-B 、k >-且k ≠2C 、k ≥-D 、k ≥-且k ≠2( )5、关于x 的一元二次方程(m-2)x 2+(2m —1)x+m 2—4=0的一个根是0,则 m的值是: A 、 2 B 、—2 C 、2或—2 D 、12( )6 .若x <2,化简x x -+-3)2(2的正确结果是 A .-1 B .1 C .2x -5 D .5-2x ( )7.要得到y=-32x-4的图像,可把直线y=-32x :(A )向左平移4个单位 (B )向右平移4个单位(C )向上平移4个单位 (D )向下平移4个单位( )8.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<13( )9、在同一直角坐标系中,函数y =kx +1和函数y =k x(k 是常数且k ≠0)的图象只可能是( )10、“五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为 A 、18018032x x -=- B 、18018032x x -=+ C 、18018032x x -=+ D 、18018032x x-=- 二、填空题:11、函数:①y=-2x+3;②x+y=1;③xy=1;④y=x +1;⑤y=21x 2+1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) 12、若关于x 的分式方程4155x ax x=---的增根,那么增根是 ,这时a = . 13、方程(2x-1)(x+1)=1化成一般形式是_______,其中二次项系数是______,一次项系数是______。

初中数学一次函数试题

初中数学一次函数试题

《一次函数》单元检测题姓名小组得分一.选择题(每题3分,共30分)1.下列函数关系式:①xy-=;②;112+=xy③12++=xxy;④xy1=.其中一次函数的个数是( )A. 1个B.2个C.3个D.4个2.函数y=-x-1的图像不经过()象限.A.第一 B.第二 C.第三 D.第四3.已知一次函数y=kx+b的图象如图所示,则k、b的符号是( )(A)k>0,b>0 (B)k>0,b<0(C)k<0,b>0 (D)k<0,b<04.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )(A) y=2x (B) y=2x-6 (C) y=5x-3 (D)y=-x-35.若直线y=3x+6与坐标轴围成的三角形的面积为S,则S等于().A.6 B.12 C.3 D.246.下列各曲线中不能表示y是x的函数是()7.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是()A.)2,0(- B.)0,23( C.(8,20) D.)21,21(8.已知点(-4,y1),(2,y2)都在直线y= -12x+2上,则y1 y2大小关系是( ) (A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较9.龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点。

用1S,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事相吻合的是()10 .已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则ab的值是( )(A) 4 (B) -2 (C)21(D)21-y0 x二.填空题(每小题3分,共30分)1.(1)直线12-=x y 经过第 象限,从左向右 ,y 随x 的增大而 .2.若函数82)3(--=mx m y 是正比例函数,则常数m 的值是 。

《一次函数》测试题及答案

《一次函数》测试题及答案

第十九章一次函数单元检测题班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A.①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)第十九章《一次函数》检测题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.以下函数中,就是一次函数的存有( )①y=x;②y=3x+1;③y=;④y=kx-2.a.1个b.2个c.3个d.4个2.在函数y=√x/(x-1)中,自变量x的取值范围是()a.x≥1b.x≤1且x≠0c.x≥0且x≠1d.x≠0且x≠13.下列图象中,y不是x的函数的是()a.b.c.d.4.下面关于函数的三种表示方法叙述错误的是()a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值c.用公式法则表示函数关系,可以便利地排序函数值d.任何函数关系都可以用上述三种方法来表示5.甲、乙两车从a地驶往b地,并以各自的速度匀速高速行驶,甲车比乙车早高速行驶2h,并且甲车途中歇息了0.5h,例如图就是甲乙两车高速行驶的距离y(km)与时间x(h)的函数图象.则以下结论:(1)a=40,m=1;(2)乙的速度就是80km/h;(3)甲比乙迟h到达b地;(4)乙车高速行驶小时或小时,两车恰好距离50km.正确的个数是()a.1b.2c.3d.46.若函数y=(k+1)x+k^2-1是正比例函数,则k的值为()a.1b.0c.±1d.-17.一次函数y=2x-6的图象经过()a.第一、二、三象限b.第二、三、四象限c.第一、二、四象限d.第一、三、四象限8.例如图,函数y=2x和y=ax+4的图象平行于点a(m,3),则不等式2x<ax+4的边值问题为【】a.x<3/2b.x<3c.x>-3/2d.x>39.若直线y=x+2k+1与直线y=1/2x+2的交点在第一象限,则k的值域范围就是()a.-5/2<k<1/2b.-1/6<k<5/2c.k>5/2d.k>-5/210.体育课上,20人一组展开足球比赛,每人箭点球5次,未知某一组的进球总数为49个,进球情况记录如下表中,其中入2个球的存有x人,入3个球的存有y人,若(x,y)恰好就是两条直线的交点座标,则这两条直线的解析式就是()a.y=x+9与y=2/3x+22/3b.y=-x+9与y=2/3x+22/3c.y=-x+9与y=-2/3x+22/3d.y=x+9与y=-2/3x+22/3二、填空题(每小题3分,共15分)11.未知函数y=?x+3,当x=_____时,函数值0.12.已知,一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.则2k+b的值是______.13.未知函数y=kx+b的部分函数值如表中右图,则关于x的方程kx+b+3=0的解法_____.x…?2?101…y…531?1…14.一次函数y=x+b(b<0)与y=x?1图象之间的距离等于3,则b的值为_____.15.例如图,在平面直角坐标系则中,直线y=x+2交x轴于点a,交y轴于点a1,若图中阴影部分的三角形都就是全等直角三角形,则从左往右第4个阴影三角形的面积就是_____,第2021个阴影三角形的面积就是_____.三、解答题(共55分)16.(本题10分后)未知一次函数.(1)若函数图象经过原点,求的值;(2)若随其的减小而减小,谋的值域范围.17.(本题10分)已知y+4与x成正比例,且x=6时,y=8.(1)算出y与x之间的函数关系式;(2)在所给的直角坐标系(如图)中画出函数的图象;(3)轻易写下当-4≤y≤0时,自变量x的值域范围.18.(本题11分)某商场计划销售a,b两种型号的商品,经调查,用1500元采购a 型商品的件数是用600元采购b型商品的件数的2倍,一件a型商品的进价比一件b型商品的进价多30元.(1)谋一件a,b型商品的市场价分别为多少元?(2)若该商场购进a,b型商品共100件进行试销,其中a型商品的件数不大于b型的件数,已知a型商品的售价为200元/件,b型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?19.(本题12分后)例如图,直线l1:y1=?x+m与y轴处设点a(0,6),直线l2:y=kx+1分别与x轴处设点b(?2,0),与y轴处设点c,两条直线交点记作d.(1)m= ,k= ;(2)谋两直线交点d的座标;(3)根据图象直接写出y1<y2时自变量x的取值范围.20.(本题12分后)某农产品生产基地斩获红薯192吨,准备工作运给甲、乙两地的承包商展开分销.该基地用大、大两种货车共18辆恰好能够一次性运完这批红薯,未知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表中:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800大货车500650(1)求这两种货车各用多少辆;(2)如果精心安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,谋w关于a的函数关系式;(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案1.b【解析】①②属一次函数;③自变量x在分母上,故不是一次函数;④当k=0时,就不是一次函数,故一共存有2个一次函数.故选b.2.c【解析】分析:根据分式和二次根式有意义的条件进行计算即可.揭秘:由题意得:x≥0且x?1≠0.Champsaur:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故挑选c.3.b【解析】【分析】函数存有两个变量x与y,对于x的每一个确认的值,y都存有唯一的值与其对应,融合选项即可做出推论.【详解】a、c、d对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有b选项对于x的每一个确认的值,存有两个y与之对应,不合乎函数的定义,故选b.4.d【解析】分析:根据函数的表示方法的优缺点分析解答即可.揭秘:a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化,恰当;b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值,正确;c.用公式法则表示函数关系,可以便利地排序函数值,恰当;d.并不是任何函数关系都可以用上述三种方法来表示,错误.故挑选d.5.c【解析】(1)由题意,得m=1.5?0.5=1.120÷(3.5?0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5?2)=80km/h(千米/小时),故(2)恰当;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得Champsaur:∴y=40x?20,根据图形获知:甲、乙两车中先抵达b地的就是乙车,把y=260代入y=40x?20得,x=7,∵乙车的高速行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7?(2+3.25)=h,∴甲比乙迟h到达b地,故(3)正确;(4)当1.5<x≤7时,y=40x?20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得Champsaur:∴y=80x?160.当40x?20?50=80x?160时,解得:x=.当40x?20+50=80x?160时,解得:x=.∴?2=,?2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故挑选c.6.a【解析】分析:先根据正比例函数的定义列举关于k的方程组,算出k的值即可.详解:∵函数y=(k+1)x+k2?1是正比例函数,∴{?(&k+1≠0@&k^2-1=0),解得:k=1.故挑选a.7.d【解析】分析:先根据一次函数的性质推论出来此函数图象所经过的象限,再展开答疑即可.详解:∵一次函数y=2x?6中,k=2>0,∴此函数图象经过一、三象限.∵b=?6<0,∴此函数图象与y轴正数半轴平行,∴此一次函数的图象经过一、三、四象限.故挑选d.8.a【解析】分析:先根据函数y=2x和y=ax+4的图象平行于点a(m,3),算出m的值,从而得出结论点a的座标,再根据函数的图象即可得出结论不等式2x<ax+4的边值问题.详解:∵函数y=2x和y=ax+4的图象相交于点a(m,3),∴3=2m,m=3/2,∴点a的座标就是(3/2,3),∴不等式2x<ax+4的解集为x<3/2;故挑选a.9.a【解析】分析:由两直线的解析式共同组成方程组,求出方程组的求解即为交点座标,再根据交点在第一象限确认k的值域范围.详解:由函数的解析式共同组成方程组可以得:{?(y=[emailprotected]=-1/2x+2)求解方程组得:{?(x=-4/3[emailprotected]=2/3k+5/3)又因为它们的交点在第一象限,所以{?(-4/3k+2/3>[emailprotected]/3k+5/3>0)Champsaur-5/2<k<1/2.故选a.10.c【解析】根据进球总数为49个得:2x+3y=49-5-3×4-2×5=22,整理得:y=-2/3x+22/3,∵20人一组展开足球比赛,∴1+5+x+y+3+2=20,整理得:y=-x+9,故挑选c.11.3【解析】分析:令y=0获得关于x的方程,从而可以求出x的值.详解:当y=0时,x+3=0,Champsaur:x=3.故答案为:3.12.?3或6.【解析】解:因为一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.①当k>0,把(2,?3)和(5,6)代入函数解析式y=kx+b,可以得:{?(&2k+b=-3@&5k+b=6),Champsaur:{?(&k=3@&b=-9),所以2k+b=6?9=?3;②当k<0,把(2,6)和(5,?3)代入函数解析式y=kx+b。

(必考题)初中数学八年级数学上册第四单元《一次函数》检测卷(有答案解析)

(必考题)初中数学八年级数学上册第四单元《一次函数》检测卷(有答案解析)

一、选择题1.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .无法比较 2.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 3.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 4.一次函数y=2x-1的图象大致是( )A .B .C .D . 5.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象6.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( ) A . B .C.D.7.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个8.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个9.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .m B .m - C .2m n - D .2m n - 10.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .11.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 12.甲、乙两车分别从A 、B 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB 中点C 路程y (千米)与甲车出发时间t (时)的关系图象如图所示,则下列说法错误的是( )A .乙车的速度为90千米/时B .a 的值为52C .b 的值为150D .当甲、乙车相距30千米时,甲行走了95h 或125h 二、填空题13.已知某汽车装满油后油箱中的剩余油量y (升)与汽车的行驶路程x (千米)之间具有一次函数关系(如图所示).为了行驶安全考虑,邮箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶_____千米,就应该停车加油.14.如图,在平面直角坐标系中,点M (﹣1,3)、N (a ,3),若直线y =﹣2x 与线段MN 有公共点,则a 的值可以为_____.(写出一个即可)15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.17.已知1(2)23k y k x k -=-+-是关于x 的一次函数,则这个函数的解析式是_______.18.在一次函数28(2)1k y k x -=-+中,随y 的x 增大而增大,则k =________.19.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______. 20.将直线2y x =向下平移1个单位,得到直线___________.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度()y cm 与所挂砝码的质量()x g 的一组对应值: ()x g 0 1 2 3 4 5 …()y cm 18 20 22 24 26 28 …(2)弹簧的原长是多少?当所挂砝码质量为3g 时,弹簧的长度是多少?(3)砝码质量每增加1g ,弹簧的长度增加_______cm .(4)请写出y 与x 之间的关系式(写成用含x 的式子表示y 的形式),并判断y 是不是x 的函数.23.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?x 时,求y与x之间的函数关系式;(2)当100(3)月用电量为150度时,应交电费多少元?25.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?26.A,B两个红十字会分别有100吨和120吨生活物资,准备直接运送给甲、乙两个灾区,甲地需160吨,乙地需60吨,A,B两地到甲、乙两地的路程以及每吨每千米的运费如图所示.(1)设A 红十字会运往甲地物资x 吨,完成下表.运量(吨) 运费(元)A 红十字会B 红十字会 A 红十字会 B 红十字会甲地x 160x - 1.330x ⨯ ()20 1.5160x ⨯⨯- 乙地(3)当A ,B 两红十字会各运往甲、乙两地多少吨物资时,总运费最省?最省运费是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y ;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.2.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 3.B解析:B【分析】根据正比例函数的性质可得出k >0,进而可得出-k <0,由1>0,-k <0利用一次函数图象与系数的关系,可找出一次函数y=x-k 的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,∴k >0,∴﹣k <0.又∵1>0,∴一次函数y =x ﹣k 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.4.B解析:B【分析】根据一次函数的性质进行判断即可.【详解】解:∵k=2>0,∴直线y=2x-1经过第一、三象限;∵b=-1,∴直线y=2x-1与y轴的交点在x轴下方,∴直线y=2x-1经过第一、三、四象限,∴B选项符合题意.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.5.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.6.B解析:B【分析】张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,即可解答.【详解】对于张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,于是可知它对应的是选项B,故选B.【点睛】此题考查函数图象,解题关键在于理解高度与时间关系成正相关关系.7.C解析:C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.8.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x 分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.9.D解析:D【分析】根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.10.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P 到A→B 的过程中,y=0(0≤x≤2),故选项C 错误,点P 到B→C 的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A 错误, 点P 到C→D 的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D 错误, 点P 到D→A 的过程中,y=12⨯2(12-x)=12-x(8<x ≤12), 由以上各段函数解析式可知,选项B 正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.11.B解析:B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.12.D解析:D【分析】根据题意和函数图象中的数据,先求出A 、B 两地的距离,再求出甲乙的速度,进而即可判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,A 、B 两地之间的距离为为30×2÷(32-2323++)=300(千米),乙车的速度为:(300÷2+30)÷2=90(千米/时),故选项A 正确; 甲车的速度为:(300÷2−30)÷2=60(千米/时),a =300÷2÷60=52,故选项B 正确; b=300÷2=150,故C 正确;当甲、乙车在相遇前相距30千米时,30030960905t -==+, 当甲、乙车在相遇后相距30千米时,300301160905t +==+, 故D 错误,故选D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出A 、B 两地的距离以及甲乙的速度,利用数形结合的思想解答. 二、填空题13.450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程此题得解【详解】解:设该一次函数解析式为y =kx +b 将(4001解析:450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【详解】解:设该一次函数解析式为y =kx +b ,将(400,10),(500,0)代入得400105000k b k b +=⎧⎨+=⎩, 解得0.150k b =-⎧⎨=⎩, ∴该一次函数解析式为y =−0.1x +50.当y =−0.1x +50=5时,x =450.故答案为:450.【点睛】本题考查了一次函数的应用,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.14.﹣16【分析】把y=3代入y=-2x 得到x=-15根据已知可得N 点应该在直线y=-2x 的左侧从而分析出a 的取值范围依此判断即可【详解】解:当y =3时x =﹣15若直线y =﹣2x 与线段MN 有公共点则N 点解析:﹣1.6【分析】把y=3代入y=-2x 得到x=-1.5,根据已知可得N 点应该在直线y=-2x 的左侧,从而分析出a 的取值范围,依此判断即可.【详解】解:当y =3时,x =﹣1.5.若直线y =﹣2x 与线段MN 有公共点,则N 点应该在直线y =﹣2x 的左侧,即a ≤﹣1.5.∴a 的值可以为﹣1.6.(不唯一,a ≤﹣1.5即可).故答案为:﹣1.6.【点睛】本题考查了一次函数图象上点的坐标特征,解决本题的关键是掌握一次函数的性质. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x 的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 17.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数, ∴1120k k ⎧-=⎨-≠⎩, 解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.18.-3【分析】根据一次函数图象的增减性来确定(2-k )的符号从而求得k 的取值范围【详解】解:∵在一次函数y=(2-k )x+1中y 随x 的增大而增大∴2-k >0∴k <2k=±3∴k=-3故答案是:-3【点解析:-3【分析】根据281k -=,一次函数图象的增减性来确定(2-k )的符号,从而求得k 的取值范围.【详解】解:∵在一次函数y=(2-k )x+1中,y 随x 的增大而增大,∴2-k >0,281k -=,∴k <2,k=±3,∴k=-3故答案是:-3.【点睛】本题考查了一次函数图象与系数的关系.关键是掌握在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.19.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之. 20.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)弹簧长度与所挂砝码质量;(2)18cm ;24cm ;(3)2;(4)218y x =+;y 是x 的一次函数.【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系;(2)由表可知,当物体的质量为0g 时,弹簧的长度即弹簧的原长是18cm ;当物体的质量为3g 时,弹簧的长度是24cm ;(3)由表中的数据可知,x=0时,y=18;x=1时,y=20,则砝码质量每增加1g ,弹簧的长度增加2cm .(4)根据表格,利用待定系数法,即可求出关系式.【详解】解:(1)上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;(2)因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm ;当所挂物体重量为3g 时,弹簧长24cm ;(3)根据上表可知,砝码质量每增加1g ,弹簧的长度增加2cm .故答案为:2.(4)设关系式为y kx b =+,则当x=0时,y=18;x=1时,y=20;∴1820b k b =⎧⎨+=⎩,解得182b k =⎧⎨=⎩, ∴关系式为:218y x =+;∴y 是x 的一次函数.【点睛】考查了一次函数的定义,常量与变量,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.23.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅6,5m DE ∴=∴=又在Rt DBE 中,222BD DE BE =+,即222,m BE BE ⎫=+∴=⎪⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是5CE DE m ==由CE BE BC +=,即55m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF 易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15)∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】解:()10100x <≤时,35y x = 月用电量为50度时,应交电费30元;()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)他们出发半小时时,离家30千米;(2)在服务区等了半个小时;y =80x -60(1.5≤x ≤3.25);(3)上午11点时,离目的地还有20千米.【分析】(1)根据函数图象,可求出线段OA 的函数表达式,即可求出出发半小时时离家的距离. (2)根据题意可列出(10060)800.5-÷=小时,即可进一步求出在服务区等待的时间.根据图象利用待定系数法即可求出BC 段的函数表达式.(3)将x=3代入BC 段的函数表达式,即可.【详解】(1)设线段OA 的函数表达式为y =kx ,当x =1时,y =60.所以k =60,即y =60x (0≤x ≤1).当x =0.5时,y =60×0.5=30(千米).即他们出发半小时时,离家30千米.(2)因为(10060)800.5-÷=(小时),所以在服务区等了2-1-0.5=0.5个小时,设线段BC 的函数表达式为1y k x b =+.因为B(1.5,60),B(2,100),代入得111.5602100k b k b +=⎧⎨+=⎩, 解得18060k b =⎧⎨=-⎩, 所以y =80x -60(1.5≤x ≤3.25)(3)当x =11-8=3(时),y =80×3-60=180(千米),所以200-180=20(千米).上午11点时,离目的地还有20千米.【点睛】本题考查一次函数的实际应用.根据函数图象求出各段的函数表达式是解答本题的关键. 26.(1)100x -,40x -,()351100x ⨯⨯-,()25 1.240x ⨯⨯-;(2)47100y x =+,自变量x 的取值范围是:40100x ≤≤;(3)当A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨时费用最省,为7260元.【分析】(1)根据题意及图中的信息可直接得出答案;(2)根据4个运费相加再化简即可得出答案;(3)根据一次函数的性质即可得出最大值,从而得出方案.【详解】解:(1) 运量(吨) 运费(元)(2)总运费47100x =+自变量x 的取值范围是:40100x ≤≤.(3)∵47100y x =+中,40k =>,∴y 随x 的增大而增大.∵40100x ≤≤,∴当40x =时,min 7260y =元此时A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨.【点睛】本题考查了一次函数的应用,熟练掌握一次函数的性质是解题的关键.。

八年级数学《一次函数》单元综合测试卷

八年级数学《一次函数》单元综合测试卷
1200 1000 800 600 400 200 O V /万 万 3
10
20
30
40
50 t /万
1 1 千米/分 B.2 千米/分 C.1 千米/分 D. 千米/分 2 3
二、仔细填一填(每题 4 分,共 40 分) 11.已知函数 y=4-2x 的图象经过(1,a),则 a 的值是_____________. 1 是正比例函数,则 m=_____________. 13.在一次函数 y=2x-2 的图像上,与 x 轴的距离等于 1 的点的坐标是 14.当 x=________时,函数 y=2x-4 与 y=3x-3 有相同的函数值. 15.写出一次函数 y=-2x+3 的图象上的一个点的坐标是:____________. 16.如果一次函数 y=kx+b 的图象如图所示,那么 k______0,b______0. 17.把直线 y=-2x 沿 y 轴向上平移 2 个单位长度,所得直线的函数关系式为___________. 18.一长方形的长比宽多 2 厘米,则这长方形的面积 S(厘米 2)与长 x(厘米)的函数关系式是 19.一次函数 y=-2x+4 的图象与 x 轴、y 轴所围成的三角形面积是________. 20. 正方形 A1B1C1O,A2B2C2C1,A3B3C3C2 按如图所示的方式放置.点 A1,A2,A3 和点 C1,C2,C3 分别在直线 x 轴上,已知点 B1(1,1),B2(3,2), 则 B3 的坐标是_______. 三、灵活地运用 21. (本题 6 分)已知一次函数 y=kx+b 的图像如图所示,求其函数关系式。 22. (本题 10 分)一次函数 y=kx+4 的图象经过点(-3,-2). (1)求这个函数表达式; (2)画出该函数的图象. (3)判断(-5,3)是否在此函数的图象上;

2014冀教版八年级数学下第21章一次函数测试题AB卷(两套含答案)

2014冀教版八年级数学下第21章一次函数测试题AB卷(两套含答案)

第21章一次函数测试题 (A)一、填空题1.在求的表面积公式24S R π=中,常量为________,自变量为_______。

2.已知正比例函数y=kx 的图像经过点(2,-1),则这个函数的解析式是________,当x=-4时,y=________。

3.一次函数23y x b =-+中,当x=6时,y=-2;当y=6,x=__________。

4.函数y=3x -b 和y=kx -4的图像交于点(-1,1),则k=________,b=_________。

5.正比例函数222(1)m m y m x --=-中,y 随x 的增大而减小,则m=___________。

6.一次函数2214(2)25x m y m xm --=-+-的图像在二、三、四象限,则m=________。

7.函数y=2x +1与y=2x -3的图像在同一直角坐标系中位置关系是__________。

8.函数y=-2x -3和y=-x -1的图像的交点坐标是_________。

9.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小。

请你写出一个符上述关系的函数关系式_____________。

10.在空中,自地面算起,每升高1千米,气温下降若干(℃),某地空中气温t (℃)与高度h (千米)间的函数的图像如图所示,观察图像可知,该地面气温为_________℃;当高度h_________千米时,气温低于0℃。

二、选择题11.下列各点中,在直线y=-2x +3上的点是( ) A .(-2,1) B .(2,-1) C .(-1,2) D .(1,-2)12.下列关系式中:y=-3x +1;14y x =+;25y x =+;230x +=;5x +y=-4;210y x -+=,y 是x 的一次函数的有( )A .3个B .2个C .4个D .5个13.对于正比例函数y=kx (k<0),当1233,0,2x x x =-==时,对应的1y 、2y 、3y 之间的关系是( )A .3y <2y ,1y <2yB .1y <2y <3yC .1y >2y >3yD .无法确定14.正比例函数y=(2k -3)x 的图像经过点(-3,5),则k 的值为( )A .59-B .73C .53D .2315.一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是( )A .x>2B .x<2C .x>3D .x<316.若函数y=(a +3)x +b -2的图像与x 轴交于正半轴,与y 轴交于负半轴,则( ) A .a>-3,b>2 B .a<-3,b<2 C .a>-3,b<2 D .a<-3,b>217.一次函数y=kx +b 的图像经过(m ,1)和(-1,m),其中m>l ,求k ,b 应满足( ) A .k>0, b>0 B. k<O ,b>0C. k>O,b<OD. k<O,b<O18.如图,直线y=kx+b与坐标轴的两个交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≥O的解为 ( )A.x≥OB.x≥2C. x≤0D. x≤219.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看20分钟报纸后,用15分钟返回家里,下面图形中表示小明父亲离家时间与距离之间关系的是( )20.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。

人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)

人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)

第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。

八年级一次函数

八年级一次函数

八年级一次函数单元检测题一、选择题(共40分,每题4分)1、点P (m+3,m+1)在直角坐标系的x 轴上,则P 点坐标为( ) A.(0,-2) B.(2,0)) C.(4,0) D.(0,-4)2.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A B C D 3.点M (1,2)关于x 轴对称的点坐标为( )A. (-1,2)B. (1,-2)C. (2,-1)D. (-1,-2)4.直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( ) A 、32+=x y B 、232+-=x y C 、23+=x y D 、1-=x y 5.如果直线b kx y +=经过一、二、四象限,则有( )A . k>0,b>0 B. k>0,b<0 C. k<0,b>0 D.k<0,b<06.下列函数①x y -=;②;112+=x y ③12++=x x y ;④xy 1=中,是一次函数的有( ) A 、4个 B 、3个 C 、2个 D 、1个7.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A 、y 1 >y 2B 、y 1 =y 2C 、y 1 <y 2D 、不能比较 8.若点M (a ,b )在第二象限,则点N (-b ,b -a )必在( )A .第一象限B .第二象限 C.第三象限 D.第四象限9.下列函数中,自变量x 的取值范围是x ≥2的是( )A ..y= C .D .10. 李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、填空题(每小题4分,共32分)11、已知一次函数y=kx+5的图象经过点(-1,2),则k=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 3 4 0.7 1 y(元) x(分)
2014八年级《一次函数》检测题(2卷)
时间:120分钟 总分:100分 姓名: 成绩
一、填空题(每题3分,共30分)
1.在圆的周长公式C=2πr 中,变量是________,常量是_________.
2.函数5y x =-中自变量x 的取值范围是___________.
3.将直线y =3x 向下平移5个单位,得到直线的解析式是_________.
4.正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.
5.若函数(1)3y m x =++图象经过点(1,2),则m = .
6.直线x y 39-=与x 轴交点的坐标是________,
7.平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是________.
8.已知函数y=2x —4,当 x << 时,函数图象在第四象限. 9.在某公用电话亭打电话时,需付电话费y (元)与通话时间
x (分钟)之间的函数关系用图象表示如图.小明打了2分
钟需付费______元;小莉打了4分钟需付费 元.
10.王华和线强同学在合作电学实验时,记录下电流I (安培)与
电阻R (欧)有如下对应关系.观察下表: R …… 2 4 8 10 16 ……
I …… 16 8 4 3.2 2 ……
你认为I 与R 间的函数关系式为__________;当电阻R =5欧时,电流I =_______安培.
二、选择题 (每题3分,共21分)
11.下列各图给出了变量y 与x 之间的函数是( ).
12.下列给出的四个点中,不在直线y =2x-3上的是( ).
A.(1, -1)
B.(0, -3)
C.(2, 1)
D.(-1,5) 13.若23y x b =+-是正比例函数,则b 的值是( ).
A.0
B.23
C.23-
D.3
2
-
14.关于函数12+-=x y ,下列结论正确的是( ).
A.图象必经过点(﹣2,1)
B.图象经过第一、二、三象限
C.当2
1
>x 时,0<y D.y 随x 的增大而增大
x y o A x y o B x y
o D x y o C
15.已知点(-4,y 1),(2,y 2)都在直线y= - 1
2
x+2上,则y 1 ,y 2大小关系是( ).
A.y 1 > y 2
B.y 1 = y 2
C.y 1 < y 2
D.不能比较
16.汽车由A地驶往相距120km 的B 地,它的平均速度是30km /h ,则汽车距B地路程s(km )与行
驶时间t (h )的函数关系式及自变量t 的取值范围是( ). A.S=120-30t (0≤t ≤4) B.S=120-30t (t>0) C.S=30t (0≤t ≤40) D.S=30t (t<4)
17.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15
分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( ).
A B C D 三、解答题(共49分)
18.(6分)甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元.求总邮资y (元)
与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资. 19.(6分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答:
(1)小华何时第一次休息?
(2)小华离家最远的距离时多少? (3)返回时平均速度是多少?
20.(6分)在同一坐标系内画出一次函数y 1=-x+1 与y 2=2x-2的图象, 并根据图象回答下列问 题:
(1)直接写出,当x 取何值时y 1 =y 2 (2)直接写出,当x 取何值时y 1 <y 2
21.(6分)已知直线y kx b
=+经过点(1,2)和点(1
-,4),求这条直线的解析式.
22.(8分)如图示:已知直线y=2x+3与直线y=-2x-1.
(1)写出两直线与y轴交点A,B的坐标;
(2)求两直线交点C的坐标; (3)求△ABC的面积.
23.(8分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元,另种是会员卡
租碟,办卡费每月12元,租碟费每张0.4元,小彬经常来店租碟,若每月租碟数量是x张.
(1)写出零星租碟方式应金额 y
1
(元)与租碟张数x(张)之间的函数关系式;
(2)写出会员卡租碟方式应金额 y
2
(元)与租碟张数x(张)之间的函数关系式;
(3)小彬选哪种租碟方式更合算?
24.(9分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码
与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:
鞋长x(cm)...22 23 24 25 26 (x)
y
A
B C
码数y … 34 36 38 40 42 … 请你代替小明解决下列问题:
(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪 一种图形上?
(2)猜想y 与x 之间满足怎样的函数关系式,并求出 y 与x 之间的函数关系式,验证这些点的
坐标是否满足函数关系式.
(3)当鞋码是30码时,鞋长是多长?
2014八年级《一次函数》检测题(3卷)
时间:120分钟 总分:100分 姓名: 成

一、选择题(每题3分,共30分)
1.下列说法中不正确的是( ).
A.一次函数不一定是正比例函数
B.不是一次函数就一定不是正比例函数
C.正比例函数是特殊的一次函数
D.不是正比例函数就一定不是一次函数
2.下列函数中,y 随x 的增大而增大的函数是( ).
A.y=2-x
B.y=-2x+1
C.y=x-2
D.y= -x-2 3.下列各点中,在函数y=-2x+5的图象上的是( ).
A.(0,―5)
B.(2,9)
C.(–2,–9)
D.(4,―3) 4.若一次函数y=kx-4的图象经过点(–2,4),则k 等于( ). A.–4 B.4 C.
–2 D.2 5.如果一次函数y=kx+b 的图象不经过第一象限,那么( ).
A.k>0,b >0
B.k>0,b <0
C.k<0,b>0
D.k<0,b <0 6.一次函数y=kx+b 图象如图:
A.k>0,b >0
B.k>0,b <0
C.k<0,b>0
D.k<0,b <0
22 23 24 25 26
34
36 38 40
42 x
y
O
7.一次函数y=kx+6,y 随x 的增大而减小,则这个一次函数的图象不经过( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.已知3m 22
x )2m m (y -+=,如果y 是x 的正比例函数,则m 的值为( ). A.2 B.-2 C 2,-2 D.0
9.直线y=-2x+4与两坐标轴的交点坐标分别为A,B,则三角形AOB 的面积为( ).
A. 4
B.8
C. 16
D. 6
10.下列图象中,不可能是一次函数y=ax-(a-2)的图象的是 ( ) .
二、填空题(每空4分,共20分)
11.若一次函数y=5x+m 的图象过点(-1,0)则m= . 12.函数y=-x-1的图像不经过 象限。

13.函数y=-3x+4中y 的值随x 的减小而 .
14.某函数y=kx 的图象过点(3,-2)则这个函数的表达式为 . 15.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与 的横坐标.
三、解答题(共50分)
16.(10分)一次函数y=-2x+b 的图象经过点(2,-8),写出这个函数的表达式.
17.(10分)已知y-2与x 成正比例,当x=3时,y=1,求y 与x 的函数表达式.
18.(10分)在同一坐标系中作出, y=2x+1,x y 3=的图像.
19.(20分)某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与
工作时间x(h)之间为一次函数关系,如图所示.
(1)求y与x的函数解析式.
(2)一箱油可供拖位机工作几小时?。

相关文档
最新文档