八年级下月考试卷--数学(有答案

合集下载

2024年教科新版八年级数学下册月考试卷633

2024年教科新版八年级数学下册月考试卷633

2024年教科新版八年级数学下册月考试卷633考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、以下列条件构成的三角形中,不属于直角三角形的是()A. ∠A=∠B=45°B. ∠A=∠B+∠CC. AB=5,BC=12,AC=13D. ∠A=2∠B=3∠C2、【题文】要使二次根式有意义,字母的取值范围必须满足的条件是()A.B.C.D.3、正方形的网格中;每个小正方形的边长为1,则网格中三角形ABC中,边长是无理数的边数是()A. 0B. 1C. 2D. 34、如图;在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形的个数有()A. 3个B. 4个C. 5个D. 6个5、下列计算正确的是( )A. 5−3=2B. 8+2=4C. 27=33D. (1+2)(1−2)=16、已知△ABC≌△DEF,点A、B的对应点分别是点D、E,若∠A=40°,∠E=60°,则∠C的度数是()A. 100°B. 80°C. 60°D. 40°7、给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④评卷人得分二、填空题(共5题,共10分)8、某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是____.9、如图,把抛物线平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线交于点Q,则图中阴影部分的面积为________________.10、已知关于x的方程2x+mx−2=3的解是非负数,则m的取值范围为 ______ .11、在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.12、(2015•玉林)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是____.评卷人得分三、判断题(共9题,共18分)13、由2a>3,得;____.14、正数的平方根有两个,它们是互为相反数____15、-52的平方根为-5.()16、等腰梯形、直角梯形是特殊梯形.(判断对错)17、有意义的x的取值范围是x>.____(判断对错)18、判断:两组邻边分别相等的四边形是菱形.()19、判断:×===6()20、线段是中心对称图形,对称中心是它的中点。

河南省南阳市卧龙区2023-2024学年八年级下学期3月月考数学试题(解析版)

河南省南阳市卧龙区2023-2024学年八年级下学期3月月考数学试题(解析版)

八年级第二学期学习评价数学(1)一.选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里.每题3分,共30分)1. 下列式子是分式的是( )A.B.C. D.【答案】B 【解析】【分析】本题主要考查了分式的识别,对于两个整式A 、B ,且B 中含有字母,,那么形如的式子就叫做分式,据此求解即可.【详解】解:根据分式的定义可知,四个选项中,只有B 选项中的式子是分式,故选:B .2. 化简的结果是( )A. 2 B. C.D. 【答案】C 【解析】【分析】根据负整数指数幂的运算法则进行化简即可.【详解】解:,故选:C .【点睛】本题考查了负整数指数幂,任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(,为正整数).3. 下列分式中,最简分式是( )A.B.C.D.【答案】C 【解析】【分析】利用最简分式定义进行分析即可;【详解】解:、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;32a1x x +x y+xπ0B ≠AB12-2-1212-1122-=n -n n 1nnaa -=0a ≠n 211a a +-246a bc 22a a-2a b a ab++A ()1+aB 、该分式的分子、分母中含有公因数,不是最简分式,故此选项不符合题意;C 、该分式最简分式,故此选项符合题意;D 、该分式的分子、分母中含有公因式,不是最简分式,故此选项不符合题意;故选:C .【点睛】本题考查了最简分式的定义:一个分式的分子与分母没有公因式时,这个分式叫做最简分式,解题关键掌握最简分式的定义.4. 把下列分式中x ,y 的值都同时扩大到原来的5倍,那么分式的值保持不变的是( )A.B.C.D.【答案】A 【解析】【分析】根据分式的基本性质,x ,y 的值都同时扩大到原来的5倍,求出每个式子的结果,看结果是否等于原式.【详解】解:A 、,分式的值保持不变,符合题意;B 、,分式的值改变,不符合题意;C 、,分式的值改变,不符合题意;D 、,分式的值改变,不符合题意;故选:A .【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5. 春节游河南,探寻千年古韵,品味地道年味!有游客人,到龙门石窟游玩,需要住宿,如每个人住一间房,结果还有一个人无房住,则客房的间数是( )A.B.C.D.【答案】A 【解析】【分析】本题考查了列代数式,根据有一个人无房住可得住进房间的人数为人,再除以即可求出是2()a b +y x y-1x y-x y xy-2x y y -()55555y y yx y x y x y==---()11115555x y x y x y==⨯---()55515·5255x y x y x yx y xy xy---==⨯()()22255512555x y x yx yy yy ---==⨯m n 1m n-1m n-1m n+1m n+()1m -n客房的间数,读懂题意是解题的关键.【详解】解:由题意可得,客房间数为,故选:.6. 解分式方程,去分母后得到的方程是( )A. B. C. D. 【答案】B 【解析】【分析】本题主要考查了解分式方程,把方程两边同时乘以去分母即可得到答案.【详解】解:方程两边同时乘以去分母得,故选:B .7. 若,,则的值是( )A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】根据完全平方公式的变形求出的值,再计算异分母分式相加即可.【详解】∵,∴,∴,故选D .【点睛】本题考查了求代数式的值,涉及完全平方根公式,异分母分式相加,熟练掌握公式和运算法则是解题的关键.8. 如图,若,则表示的值的点落在( )的1m n-A 12113x x x+-=()1321x x -+=()13213x x-+=()13211x -+=1633x x x-+=3x 12113x x x+-=3x ()13213x x -+=2x y +=2xy =-y xx y+22x y +()2222x y x xy y +=++()()222222228x y x y xy +=+-=-⨯-=22842y x y x x y xy ++===--2a b =222a ab a b --A. 第①段B. 第②段C. 第③段D. 第④段【答案】C 【解析】【分析】把代入即可求出分式的值,再看值的点落在的位置.【详解】解:∵,∴,∵,∴表示的值的点落在段③,故选:C .【点睛】本题考查了分式的值,知晓把整体代入是解此题的关键.9. 已知关于m 的不等式组,且m 为整数,则关于x 的分式方程的解是( )A. B. C. D. 不能确定【答案】C 【解析】【分析】本题主要考查了求不等式组的整数解,解分式方程,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出其整数解,即m 的值,然后解分式方程即可得到答案.【详解】解:解不等式①得,解不等式②得:,∴不等式组的解集为,∵m 为整数,2a b =2a b =222a ab a b --2222224222433b b b b b b -===-2013<<222a ab a b--2a b =12020m m -<⎧⎨-<⎩12+=-x x m 5x =1x =3x =12020m m -<⎧⎨-<⎩①②12m >2m <122m <<∴原分式方程为,去分母得:,去括号得:,解得,经检验,是原方程的解,故选:C10. 漳州市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x 人,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补( )A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师人数比甲校教师的人数多20%【答案】A 【解析】【分析】根据乙学校教师有x 人推出的含义,再推出的含义,即可得解.【详解】设乙学校教师有x 人,则表示:甲校教师的人数比乙校教师的人数多20%,表示乙校教师比甲校教师人均多捐20元,因此可得出:已知“甲校教师比乙校教师人数多,且乙校教师比甲校老师人均多捐20元”;故选A .【点睛】本题考查分式方程的应用.准确理解方程中的等量关系,是解题的关键.二.填空题.(每小题3分,共15分)11. 若分式的值为0,则=______.【答案】1的的121x x +=-()121x x +=-122x x +=-3x =3x =600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%(120)x +%600006000020(120)x x-=+%20%11x x -+x【分析】分式的值为0,即是分子为0,分母不能为0,据此可以解答本题.【详解】解:∵,∴,∴.故答案为:1【点睛】本题考查分式的值为0的条件,关键在于理解值为0的条件.12. 某种花粉颗粒的直径约为,将用科学记数法可以表示为________.【答案】【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故答案为:.13. 若关于x 的方程无解,则m =_____.【答案】1或2【解析】【分析】去分母得(m -2)x +1=0,根据方程无解分情况讨论,求解即可.【详解】解:去分母,得mx +1﹣2x =0,化简得(m ﹣2)x +1=0,当=0时,x =0或x =1当方程有增根为x =0时,m 不存在;当方程有增根x =1时,得m ﹣2+1=0,即当方程有增根时m =1;当m ﹣2=0时,原方程无解,此时m =2,综上所述:m =1或2,故答案为:1或2.101x x -=+10x -=10x +≠1x =0.000031m 0.00003153.110-⨯10n a ⨯110a ≤<50.000031 3.110-=⨯53.110-⨯21201mx x x x +-=--2x x -【点睛】本题考查了分式方程的解,理解分式方程无解的含义是解题的关键.14. 已知,则________.【答案】【解析】【分析】本题主要考查了异分母分式加法计算,先把已知式子右边通分得到,进而得到,据此求出A 、B 的值即可得到答案.【详解】解:∵,∴,∴,∴,∴,∴,故答案为:4.15. 已知关于分式方程的解满足,则的取值范围是______.【答案】且【解析】【分析】本题考查了分式方程的解,解不等式组,先求出分式方程的解,根据,得到关于的一元一次不等式组,解不等式组求出的取值范围,又由最简公分母的值不等于,可得不符合条件的取值,最后综合即可得到最终的取值范围,正确求出分式方程的解是解题的关键.【详解】解:由分式方程得,,∵分式方程的解满足,的()()223222x ABx x x +=+---A B -=4()()223222x Bx A Bx x ++-=--231A B B -==,()()223222x AB x x x +=+---()()()()22223222B x x Ax x x -+=+---()()223222x Bx A Bx x ++-=--231A B B -==,51A B ==,514A B -=-=x ()()232223x kx x x +=+--+41x -<<-k 714k -<<0k ≠41x -<<-k k 0k k ()()232223x kx x x +=+--+217x k =-()()232223x k x x x +=+--+41x -<<-∴,即,解得,又∵,∴且,即且,解得且,∴的取值范围为且,故答案为:且.三.解答题.(本大题8小题,共75分)16. 计算:(1);(2)解方程:.【答案】(1);(2)【解析】【分析】本题主要考查了分式的除法计算,解分式方程:(1)先把除法变成乘法,然后约分即可得到答案;(2)按照去分母,去括号,移项,合并同类项的步骤解方程,然后检验即可得到答案.【详解】解:(1);(2)21471k --<<-21472117k k -⎧>-⎪⎪⎨-⎪<-⎪⎩714k -<<()()230x x -+≠20x -≠30x +≠21207k --≠21307k -+≠35k ≠0k ≠k 714k -<<0k ≠714k -<<0k ≠322243x z xz y y ÷-32222x x x x-=---232x yz-1x =322243x z xz y y ÷-322234x z y y xz -=⋅232x yz=-32222x xx x-=---去分母得:,去括号得:,移项得:,合并同类项得;,经检验,是原方程的解,∴原方程的解为.17. 先化简,再求值:,其中.【答案】,【解析】【分析】本题主要考查了分式的化简求值,零指数幂,先把除数的式子通分,然后把除法变成乘法,接着约分化简,最后代值计算即可.【详解】解:,∵,∴原式.18. 已知x =﹣4时,分式无意义,x =2时,此分式的值为零,求分式的值.【答案】5【解析】【分析】由分式无意义,可求出a 的值,由分式的值为0,可求出b 的值.把a 、b 的值代入分式中求值即可.【详解】解:∵分式无意义,∴2x +a =0即当x =﹣4时,2x +a =0.解得a =8()3222x x x -=---3224x x x -=--+2243x x x -++=-1x =1x =1x =11a a a a +⎛⎫⎛⎫÷- ⎪ ⎪⎝⎭⎝⎭020241a =+11a -111a a a a +⎛⎫⎛⎫÷-⎪ ⎪⎝⎭⎝⎭211a a a a+-=÷()()111a a a a a +=⋅+-11a =-020241112a =+=+=1121==-2x b x a -+3a ba b+-∵分式的值为0,∴x ﹣b =0,即当x =2时,x ﹣b =0.解得b =2∴.【点睛】本题考查分式意义的条件,关键在于通过分式无意义算出a 、b 的值.19. 已知x 为整数,且++化简结果为整数,求出所有符合条件的x 值.【答案】x 值的为1或2或4或5【解析】【分析】将原式化简成,由x 为整数且化简结果为整数可得出x −3=±2或±1,解之即可得出结论.【详解】解:==∵x 为整数且也是整数,∴x-3=±2或±1,则x =1或2或4或5.所以所有符合条件的x 值的为1或2或4或5.【点睛】本题考查了分式的化简,将原式化简成是解题的关键.20. 有甲、乙两筐水果,甲筐水果的质量为,乙筐水果的质量为(其中).售完后,两筐水果都卖了150元.(1)哪筐水果卖的单价高?(2)高的单价是低的单价的多少倍?【答案】(1)甲水果的单价卖得高; (2)高的单价是低的单价的倍.【解析】【分析】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8253832a b a b ++==--⨯23x +23x -22189x x +-23x -222218339x x x x ++++--2222626218999x x x x x x ---+=++---2269x x +-23x -23x -23x -()21kg m -()21kg m -1m >11m m +-(1)用甲框的单间减去乙框的单间,再进行整理即可得出答案;(2)根据题意列出算式,计算即可得到结果.【小问1详解】根据题意得:,所以甲水果的单价卖得高;【小问2详解】根据题意得:,答:高的单价是低的单价的倍.21. 当时,定义一种新运算:,例如:,.(1)直接写出_______________;(2)若,求出m 的值.【答案】(1)2;(2).【解析】【分析】(1)根据题目所给条件代值进去计算即可求出,(2)根据m 与2的大小关系进行分类讨论求解分式方程即可求出m 的值.【详解】解:(1)因为,所以;(2)时,,解得,不合题意,舍去.时,,2222150150150(1)150(1)1500(1)1(1)(1)(1)(1)m m m m m m m m +---==>---+-+()()222111501501501(1)1(1)1501m m m m m m m +-+÷==---- 11m m +-a b ¹2,(,)2,a b a b F a b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩2(3,1)131F ==-248(1,4)4(1)5F ⨯-==--(1,)F a a +=(),22,1()F m F m -=0m =1a a +>2(1,)21F a a a a+==+-m>222,22,12()(2)m F m F m m m -=-=--423m =<2m <()(222,22,22)1F m F m m m⨯-=-=--解得.综上,.【点睛】本题主要考查新定义与分式方程的求解,根据题目给定公式代值计算即可,第(2)问注意对m 的值进行分类讨论求解,注意求解出来的m 的值要根据分类讨论时的取值范围进行取舍.22. 甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?【答案】(1)每千克4元;(2)每千克的售价至少为8元【解析】【分析】(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意列出方程即可求出答案;(2)设每千克的售价为y 元,根据题意列出不等式即可求出答案.【详解】解:(1)设该商家第一次购买云南甘蔗的进价是每千克x 元,根据题意可知:=﹣25,x =4,经检验,x =4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y 元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y ﹣4)+125(y ﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.【点睛】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.23. 我们定义:如果两个分式与的差为常数,且这个常数为正数,则称是的“和雅式”,这个常数称为关于的“和雅值”.如分式,,,则是的“和雅式”,关于的“和雅值”为.0m =0m =6000.2x x +600x 6004A B A B A B 21x A x =+21B x -=+22222(1)21111x x x A B x x x x -++-=-===++++A B A B 2(1)已知分式,,判断是否为的“和雅式”,若不是,请说明理由;若是,请证明并求出关于的“和雅值”;(2)已知分式,,是的“和雅式”,且关于的“和雅值”是,求的值;(3)已知分式,,是的“和雅式”,且关于的“和雅值”是,为整数,且“和雅式”的值也为整数,求所代表的代数式及所有符合条件的的值之和.【答案】(1)不是,理由见解析(2)(3),【解析】【分析】(1)根据新定义进行判断;(2)根据新定义,列出方程求解;(3)根据新定义列出方程,再根据整除的意义求解.【小问1详解】解:C 不是的“和雅式”;理由:,不是的“和雅式”;【小问2详解】由题意得:,,,,解得:,,;12C x =+225644x x D x x ++=++C D C D M =()(1)x b x x --N =()x x a x-M N M N 1a b +29E P x =-3x Q x=-P Q P Q 1x P E x 239E x =+12D C D -= 12x +-2(2)(3)(2)x x x +++=1(3)2x x -++=22x x --+10=-<C ∴D 1M N -=∴()(1)x b x x ---()x x a x-1=()2a b x b ∴-+=20a b b ∴-+==2a =0b =2a b ∴+=【小问3详解】由题意得:,,,为整数,为整数,的值为:或,的值为:,,,,,所以所有符合条件的的值之和为.【点评】本题考查了分式的加减法,理解新定义和掌握分式的运算是解题的关键.1P Q -=∴(3)(3)E x x +--3x x-1=39E x ∴=+ 29E P x =-=33x-x 3x ∴-1±3±x ∴024*******∴+++=x 12。

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)1. 下列不等式中,是一元一次不等式的是( )A.B.C.D.2. 下列判断不正确的是( )A. 若,则 B. 若,则 C. 若,则D. 若,则3. 若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( )A. 13B. 13或17C. 10D. 174.用反证法证明命题“在中,若,则”,首先应假设( )A. B.C. D.5. 如图,,,,要根据“HL ”证明,则还需要添加一个条件是( )A. B.C.D.6. 有一个角是的直角三角形,斜边为1cm ,则斜边上的高为( )A.B.C. D.7. 如图,在中,,,BD 、CE 分别是、的角平分线,则图中的等腰三角形有( )A. 5个B. 4个C. 3个D. 2个8. 如图,,OE平分,交OA于点D,,垂足为若,则OD的长为 ( )A. 2B.C. 4D.9. 下面是教师出示的作图题.已知:线段a,h,小明用如图所示的方法作,使,AB上的高作法:①作射线AM,以点A为圆心、※为半径画弧,交射线AM于点B;②分别以点A,B为圆心、为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、⊕为半径在AM上方画弧,交直线DE于点C,连接AC,对于横线上符号代表的内容,下列说法不正确的是( )A.※代表“线段a的长” B. 代表“任意长”C. 代表“大于的长”D. ⊕代表“线段h的长”10. 已知点C在线段BE上,分别以BC、CE为边作等边三角形ABC和等边三角形DCE,连接AE与CD相交于点N,连接BD与AC相交于点M,连接OC、MN,则①;②≌;③;④是等边三角形;⑤OC平分;⑥;以上结论正确的个数是( )A. 3个B. 4个C. 5个D. 6个11. 若的解集是,则a的取值范围是______.12. 在实数范围内定义一种新运算“⊕”,其运算规则为:如:则不等式的解集是______ .13. 如图,在中,,,则的度数为______ .14.如图,已知的周长是21,OB,OC分别平分和,于D,且,的面积是______.15. 如图,在中,AC的垂直平分线DE交AC于点D,交BC于点E,,则的度数为______ .16. 如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则的周长的最小值为______.17. 解下列不等式,并把解集在数轴上表示出来.18. 一次数学竞赛中,共有20道题,规定答对一道题得6分,答错或不答一道题扣2分;80分以上含80分可以获奖,问若要获奖,至少要答对几道题?19. 在等边的三条边AB,BC,CA上,分别取点D,E,F,使得,连接DE,EF,FD,求证:是等边三角形.20. 如图,点C在线段AB上,,,,于点求证:≌;求证:CF平分21. 已知:如图中,,BD平分,CD平分,过D作直线平行于BC,交AB,AC于E,求证:是等腰三角形;求的周长.22. 如图1,在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、求证:≌;如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有,其中为任意锐角或钝角.请问结论≌是否成立?如成立,请给出证明;若不成立,请说明理由.拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点三点互不重合,点F为平分线上的一点,且和均为等边三角形,连接BD,CE,若,求证:是等边三角形.答案和解析1.【答案】D【解析】【分析】本题考查一元一次不等式的识别.主要依据一元一次不等式的定义进行辨别.含有一个未知数并且未知数的次数是一次的不等式叫一元一次不等式.【解答】解:A分母中含有未知数,所以不是一元一次不等式,不符合题意;B是一元二次不等式,不符合题意;C是二元一次不等式,不符合题意;D是一元一次不等式,符合题意.故选2.【答案】D【解析】解:A、在不等式的两边同时加2,不等式仍成立,即,正确,不符合题意;B、在不等式的两边同时乘以,不等号方向改变,即,正确,不符合题意;C、在不等式的两边同时乘以2,不等式仍成立,即,正确,不符合题意;D、当时,,原变形错误,符合题意.故选:根据不等式的基本性质进行判断.本题考查的是不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变;不等式两边乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】D【解析】解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为故选:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.【答案】A【解析】解:反证法证明命题“在中,若,则”时,首先假设,故选:根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.【答案】D【解析】【分析】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.根据垂直定义求出,再根据全等三角形的判定定理推出即可.【解答】解:条件是,理由是:,,,在和中,,,故选6.【答案】C【解析】解:如下图所示:,于点D,,,,,,,,故选项A错误,选项B错误,选项C正确,选项D错误.故选:根据题目画出相应的图形,由题意可以求得BC、AC的长,由,,可以求得CD 的长,从而可以解答本题.本题考查角的直角三角形,解题的关键是画出合适的三角形,灵活变化,找出所求问题需要的条件.7.【答案】A【解析】解:共有5个.,是等腰三角形;、CE分别是、的角平分线,,,是等腰三角形,,是等腰三角形;,,,又BD是的角平分线,,是等腰三角形;、CE分别平分,,,,,,,,,即是等腰三角形由可得,即是等腰三角形.综上所述,共有5个等腰三角形.故选:根据已知条件和等腰三角形的判定定理,对图中的三角形进行一一分析,即可得出答案.此题主要考查学生对角的平分线,等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.8.【答案】C【解析】解:过点E作于点H,如图所示:平分,,,,OE平分,,,,,,,,,,,,故选:过点E作于点H,根据角平分线的性质可得,再根据平行线的性质可得的度数,再根据含角的直角三角形的性质可得DE的长度,再证明,即可求出OD的长.本题考查了角平分线的性质,含角的直角三角形的性质,平行线的性质等,熟练掌握这些性质是解题的关键.9.【答案】B【解析】解:作法:①作射线AM,以点A为圆心、“线段a的长”为半径画弧,交射线AM于点B;②分别以点A,B为圆心、“大于二分之一AB的长”为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、“线段h的长”为半径在AM上方画弧,交直线DE于点C,连接AC,所以说法不正确的是故选:根据基本作图方法即可完成填空.本题考查作图-复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:三角形ABC和三角形DCE都是等边三角形,,,,,≌,,故①正确;,又,,,故③正确;,,,≌,故②正确;,又,是等边三角形,故④正确;如图,过C作,,≌,中BD边上的高与中AE边上的高对应相等,即,点C在的角平分线上,即CO平分,故⑤正确;如图,在BO上截取,则是等边三角形,,,又,,≌,,,故⑥正确;故选:依据等边三角形的性质,判定≌,≌,≌,再分别依据全等三角形的对应边相等,对应角相等,对应边上的高相等,即可得到正确的结论.本题主要考查了全等三角形的判定与性质,等边三角形的性质与判断的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.11.【答案】【解析】解:,且不等式的解集是,,解得:故答案为:根据不等式的基本性质3,结合题意可得,解之即可.本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质和解一元一次不等式的能力.12.【答案】【解析】解:,,不等式即为:,解得,故答案为:根据新定义运算,列出不等式,然后解不等式即可.本题考查了新定义运算,解一元一次不等式,根据新定义得出不等式是解题的关键.13.【答案】【解析】解:,,,,为的外角,,,,,即,故答案为:先根据等腰三角形的性质,得出,,根据三角形的外角得出,根据三角形内角和,结合,求出的度数即可.本题主要考查了等腰三角形的性质,三角形外角的性质,解题的关键是熟练掌握等边对等角.14.【答案】42【解析】【分析】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.过O作于E,于F,连接OA,根据角平分线性质求出,根据的面积等于的面积、的面积以及的面积之和,即可求出答案.【解答】解:如图,过O作于E,于F,连接OA,,OC分别平分和,,,,即,的面积是:故答案为:15.【答案】【解析】解:垂直平分线段AC,,,,,,故答案为:证明,利用三角形内角和定理求解即可.本题考查直角三角形的性质,线段的垂直平分线的性质等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】9【解析】解:连接AD,是等腰三角形,点D是BC边的中点,,,解得,是线段AC的垂直平分线,点A关于直线EF的对称点为点C,,,的长为的最小值,的周长最短故答案为:连接AD,AM,由于是等腰三角形,点D是BC边的中点,故,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.17.【答案】解:,,,,,,解集在数轴上表示为:去括号得,,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,去分母得,,去括号得,,移项得,,合并同类项得,,系数化为1得,解集在数轴上表示为:【解析】去分母,去括号,移项,合并同类项,系数化成1即可;去括号,移项,合并同类项,系数化成1即可;移项,合并同类项,系数化成1即可;去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【答案】解:设答对x题,那么答错或者不答的有题解得:答:至少要答对15题.【解析】根据题意,设答对x题,则答对获得的分数为6x,而答错损失的分数为,由这次竞赛获奖必须达到80分,列出不等式求解即可.此题主要考查了一元一次不等式的应用,根据题意得出正确的不等关系是解题关键.19.【答案】证明:是等边三角形,,,,,在和中,,≌,在和中,,≌,≌,,是等边三角形.【解析】根据等边三角形的性质得出,,,进一步证得,即可证得≌≌,根据全等三角形的性质得出,即可证得是等边三角形.此题考查了等边三角形性质,全等三角形的性质和判定的应用,熟练掌握全等三角形的判定与性质是解题的关键.20.【答案】证明:,,在和中,,≌,≌,,又,平分【解析】根据平行线性质求出,根据SAS推出≌;根据全等三角形性质推出,根据等腰三角形性质即可证明CF平分本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.21.【答案】证明:,,平分,,,,是等腰三角形;,,平分,,,,,,的周长为:【解析】首先根据平行线的性质可得,再根据角平分线的定义可得,可得,据此即可证得;同理可得,根据的周长,求解即可.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义等,熟练掌握等腰三角形的判定和性质是解题的关键.22.【答案】证明:如图1,直线m,直线m,,,,在和中,,≌解:≌成立,证明:当为钝角时,如图2,,,,,在和中,,≌当为锐角时,如图,,,,,在和中,,≌证明:如图3,和均为等边三角形,,,,,由得≌,,,,,,在和中,,≌和,,,,是等边三角形.【解析】由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为钝角时,由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为锐角时,用同样的方法可证明≌;先由和均为等边三角形,得,,,则,而,由得≌,则,,可推导出,即可证明≌和,得,,则,即可证明是等边三角形.此题重点考查同角的余角相等、三角形内角和定理、全等三角形的判定与性质、等边三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。

泰兴市西城中学八年级下第一次月考数学试卷含答案解析

泰兴市西城中学八年级下第一次月考数学试卷含答案解析

2022-2023江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷一.选择题1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用全面调查(普查)方式的是()A.对全国中学生心理健康现状的调查B.对冷饮市场上冰淇淋质量情况的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个D.1个4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.145.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个6.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.17.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.2 C.1.3 D.1.5二.填空题9.随机抽查了某校七年级63名学生的身高(单位:cm),所得到的数据中最大值是172,最小值是149、若取组距为4,则这些数据可分成组.10.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是.11.六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为.12.平行四边形ABCD的周长是56cm,对角线相交于点O,△BOC的周长比△AOB的周长小8cm,则AB=cm,BC=cm.13.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图,菱形ABCD的对角线AC,BD相交于点O,AC=16cm,BD=12cm,则菱形边AB上的高DH的长是cm.16.如图,在△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD,AB=12,AC=22,则MD的长为.17.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=2,D为BC的中点,P为线段AC上任意一点,则PB+PD的最小值为.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题19.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(春南京校级期中)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°的三角形.21.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x≤2000 18 0.15B 2000<x≤4000 a bC 4000<x≤6000D 6000<x≤8000 24 0.20E x>8000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.试问当△ABC满足什么条件时,四边形DBEF是菱形?为什么?23.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.2022-2023江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷参考答案与试题解析一.选择题1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列调查中,适宜采用全面调查(普查)方式的是()A.对全国中学生心理健康现状的调查B.对冷饮市场上冰淇淋质量情况的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、普查的难度较大,适合用抽样调查的方式,故A错误;B、调查过程带有破坏性,只能采取抽样调查的方式,故B错误;C、普查的难度较大,适合用抽样调查的方式,故C错误;D、事关重大应选用普查,正确.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A.4个B.3个C.2个D.1个【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选:C.【点评】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个【考点】利用频率估计概率.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故选:D.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.6.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】连接DE并延长交AB于H,由已知条件可判定△DCE≌△HAE,利用全等三角形的性质可得DE=HE,进而得到EF是三角形DHB的中位线,利用中位线性质定理即可求出EF的长.【解答】解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE(AAS),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB﹣AH=AB﹣DC=2,∴EF=1.故选:D.【点评】本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.7.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=2.5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OAPE+ODPF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为和4,∴S=ABBC=12,OA=OC,OB=OD,AC=BD=5,矩形ABCD∴OA=OD=2.5,∴S△ACD=S=6,矩形ABCD∴S△AOD=S△ACD=3,∵S△AOD=S△AOP+S△DOP=OAPE+ODPF=×2.5×PE+×2.5×PF=(PE+PF)=3,解得:PE+PF=.故选A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.2 C.1.3 D.1.5【考点】勾股定理;矩形的性质.【专题】几何综合题.【分析】根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选:B.【点评】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.二.填空题9.随机抽查了某校七年级63名学生的身高(单位:cm),所得到的数据中最大值是172,最小值是149、若取组距为4,则这些数据可分成6组.【考点】频数与频率.【分析】计算最大值与最小值的差,除以组距即可求得.【解答】解:(172﹣149)÷4=23÷4≈6组.故答案为:6.【点评】此题考查的是组数的确定方法,组数=极差÷组距.10.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是4.【考点】频数与频率.【分析】求出第5组到第7组的频数,利用总数减去第1组到底7组的频数,即可求得.【解答】解:第5组到第7组的频率是0.125,且容量是64,那么第5组到第7组的频数是64×0.125=8,那么第8组的频数是64﹣(5+7+11+13+8×3)=4.故答案为:4.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.11.六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断,根据概率的公式计算.【解答】解:等边三角形是轴对称图形,不是中心对称图形,正方形是轴对称图形,也是中心对称图形,矩形是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形,圆是轴对称图形,也是中心对称图形,菱形是轴对称图形,也是中心对称图形,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为=,故答案为:.【点评】本题考查的是概率的计算、中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.平行四边形ABCD的周长是56cm,对角线相交于点O,△BOC的周长比△AOB的周长小8cm,则AB=18cm,BC=10cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,对边相等,周长是56cm可得BC+AB=28cm,根据由于△BOC的周长比△AOB的周长小8cm,则AB比BC 大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为56cm,∴BC+AB=28cm,①又∵△BOC的周长比△AOB的周长小8cm,∴AB﹣BC=8cm,②由①②得AB=18cm,BC=10cm.故答案为:18,10.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.13.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=18.【考点】旋转的性质;等腰直角三角形.【专题】压轴题.【分析】由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,故答案为:18.【点评】本题考查了旋转的性质,等腰直角三角形的性质.关键是由旋转的性质得出△APP′为等腰直角三角形.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.【考点】勾股定理;全等三角形的判定与性质.【专题】计算题.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=AFBC=10.故答案为:10.【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.15.如图,菱形ABCD的对角线AC,BD相交于点O,AC=16cm,BD=12cm,则菱形边AB上的高DH的长是9.6cm.【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=16cm,BD=12cm,∴OA=AC=×16=8cm,OB=BD=×12=6cm,在Rt△AOB中,AB==10cm,∵DH⊥AB,∴菱形ABCD的面积=ACBD=ABDH,即×16×12=10DH,解得DH=9.6.故答案为9.6.【点评】本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.16.如图,在△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD,AB=12,AC=22,则MD的长为5.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】延长BD交AC于N,根据等腰三角形三线合一得到BD=DN,AN=AB,根据三角形中位线定理得到DM=NC,代入计算即可.【解答】解:延长BD交AC于N,∵AD是∠BAC的平分线,BD⊥AD,∴BD=DN,AN=AB=12,∵BM=CM,BD=DN,AC=22,∴DM=NC=(AC﹣AN)=5,则MD的长为5.【点评】本题考查的是三角形中位线定理和等腰三角形的性质的应用,掌握三角形的中位线平行于第三边且等于第三边的一半和等腰三角形三线合一是解题的关键.17.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=2,D为BC的中点,P为线段AC上任意一点,则PB+PD的最小值为.【考点】轴对称-最短路线问题.【分析】首先确定DC′=DP+PC′=DP+BP的值最小,然后根据勾股定理计算.【解答】解:作点B关于直线AC的对称点C′,连接DC′,交AC于P,连接BP,此时DP+BP=DP+PC′=DC′的值最小.∵D为BC的中点,∴BD=1,DC=1,∴BC=AB=2,连接CC′,由对称性可知∠C′CB=∠BC′C=45°,∴∠BCC′=90°,∴CC′⊥BC,∠CBC′=∠BC′C=45°,∴BC=CC′=2,根据勾股定理可得DC′==.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使PB+PD的值最小是关键.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【考点】一次函数图象上点的坐标特征;菱形的性质;坐标与图形变化-平移.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A 移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣ x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题19.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(春南京校级期中)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°的三角形.【考点】作图-旋转变换.【分析】(1)根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心,一对对应点与旋转中心连线的夹角即为旋转角;(2)根据网格结构分别找出找出△A1AC1顺时针旋转90°后的对应点的位置,然后顺次连接即可.【解答】解:(1)旋转中心的坐标是(0,0),旋转角是90°;(2)如图所示,△A1A2C2是△A1AC1以O为旋转中心,顺时针旋转90°的三角形,【点评】本题考查了利用旋转变换作图,旋转变换的旋转中心与旋转角的确定,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x≤2000 18 0.15B 2000<x≤4000 a bC 4000<x≤6000D 6000<x≤8000 24 0.20E x>8000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=36,b=0.30,c=120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;用样本估计总体;条形统计图;中位数.【分析】(1)首先根据A组的人数和所占的百分比确定c的值,然后确定a和b的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A组有18人,频率为0.15,∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.【点评】本题考查了统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.理解平均数、中位数和众数的概念,并能根据它们的意义解决问题.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.试问当△ABC满足什么条件时,四边形DBEF是菱形?为什么?【考点】菱形的判定.【分析】当AB=BC时,四边形DBFE是菱形.先根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明四边形DBFE是平行四边形;再根据邻边相等的平行四边形是菱形即可证明结论成立.【解答】解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,∴四边形DBFE是菱形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.【考点】梯形;平行四边形的性质;矩形的判定.【专题】几何综合题.【分析】(1)由题中所给平行线,不难得出四边形ABED和四边形AFCD都是平行四边形,而四边形AEFD也是平行四边形,三个平行四边形都共有一条边AD,所以可得出AD=BC的结论.(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.【解答】(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.【点评】本题考查了梯形、平行四边形的性质和矩形的判定,是一道集众多四边形于一体的小综合题,难度中等稍偏上的考题.有的学生往往因为基础知识不扎实,做到一半就做不下去了,建议老师平时教学中,重视一题多变,适当地变式联系,可以触类旁通.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【考点】平行四边形的判定与性质;菱形的判定;矩形的判定.【专题】证明题;动点型.【分析】(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.【点评】本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.25.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.【考点】四边形综合题.【专题】压轴题.【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;。

2022-2023学年山东省东营市广饶县四校联考八年级(下)月考数学试卷+答案解析(附后)

2022-2023学年山东省东营市广饶县四校联考八年级(下)月考数学试卷+答案解析(附后)

2022-2023学年山东省东营市广饶县四校联考八年级(下)月考数学试卷(4月份)(五四学制)1. 式子在实数范围内有意义的条件是( )A. B. C. D.2. 下列方程中,是关于x的一元二次方程的是( )A.为常数 B.C. D.3. 若的整数部分为x,小数部分为y,则的值是( )A. B. C. 1 D. 34. 以2、为根的一元二次方程是( )A. B. C. D.5. 下列二次根式中,是最简二次根式的是( )A. B. C. D.6. 要组织一次篮球联赛,赛制为单循环形式每两队之间都赛一场,计划安排21场比赛,则应邀请个球队参加比赛.( )A. 6B. 7C. 8D. 97. 下列等式中正确的是( )A. B. C. D.8. 菱形的周长为40,它的一条对角线长为12,则菱形的面积为( )A. 24B. 48C. 96D. 1929. 下列根式中,与是同类二次根式的是( )A. B. C. D.10. 方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 有实数根11. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,两点重合,MN是折痕.若,则CN的长为( )A.B.C.D.12. 张宇设计了一种运算程序,其输入、输出如下表所示,若输入的数据是27,则输出的结果应为( )输入0149162536…输出012345…A. 26B. 28C.D.13. 方程的解为______ .14. 计算:______.15. 如果,则的值是__________.16. 观察并分析下列数据:寻找规律,那么第10个数据应该是______.17. 某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是91,每个枝干长出______小分支.18. 计算:;;19. 解下列方程:用配方法解方程:;因式分解法20. 已知关于x的一元二次方程当时,求方程的实数根.若方程有两个不相等的实数根,求实数m的取值范围.21. 已知,试化简:22. 为落实素质教育要求,促进学生全面发展,我市某中学2011年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2013年投资万元.求该学校为新增电脑投资的年平均增长率;从2011年到2013年,该中学三年为新增电脑共投资多少万元?23. 观察下列运算:由得由得由得…通过观察上面的式子,请用n的代数式表示第n个式子;利用中规律计算:…24. 如图,在中,,AF平分,,,,垂足分别为D、求线段BF的长;请判断四边形CGEF形状,并说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了二次根式有意义的条件,正确把握二次根式有意义的条件是解题关键.直接利用二次根式有意义的条件分析得出答案.【解答】解:式子在实数范围内有意义的条件是:,解得:故选2.【答案】B【解析】解:若,则该方程不是一元二次方程,A项错误,B.符合一元二次方程的定义,B项正确,C.属于分式方程,不符合一元二次方程的定义,C项错误,D.整理后方程为:,不符合一元二次方程的定义,D项错误,故选:根据一元二次方程的定义,依次分析各个选项,选出是关于x的一元二次方程即可得到答案.本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.3.【答案】C【解析】解:的整数部分为1,小数部分为,,,故选:因为的整数部分为1,小数部分为,所以,,代入计算即可.关键是会表示的整数部分和小数部分,再进行二次根式的加减运算,即将被开方数相同的二次根式进行合并.4.【答案】B【解析】解:将,代入公式,可得到,即,故选由一元二次方程根与系数关系,设该方程一般形式中,有:;,即可得出答案.本题考查了根与系数的关系.解题时熟记一元二次方程的根与系数的关系:,5.【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项不符合题意;C、,不是最简二次根式,故本选项不符合题意;D、,不是最简二次根式,故本选项不符合题意;故选:满足下列两个条件的二次根式,叫做最简二次根式:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式.可以此来判断哪个选项是正确的本题考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.6.【答案】B【解析】解:设应邀请x个球队参加比赛,依题意,得:,整理,得:,解得:不合题意,舍去,故选:设应邀请x个球队参加比赛,根据单循环赛共赛21场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】D【解析】解:原式,故A错误;原式,故B错误;原式,故C错误;故选:根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.8.【答案】C【解析】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,菱形的周长为40,,一条对角线的长为12,当,,在中,,,菱形的面积,故选:根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.9.【答案】D【解析】解:A、与被开方数不同,不是同类二次根式,故A选项错误;B、与被开方数不同,不是同类二次根式,故B选项错误;C、与被开方数不同,不是同类二次根式,故C选项错误;D、,与被开方数相同,是同类二次根式,故D选项正确.故选根据同类二次根式的定义解答即可.此题主要考查了同类二次根式的定义:即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.【答案】C【解析】解:,所以方程无实数根.故选:先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.11.【答案】A【解析】解:连接AC、BD,如图,点O为菱形ABCD的对角线的交点,,,,在中,,,,在和中,,≌,,过点O折叠菱形,使B,两点重合,MN是折痕,,,,故选:连接AC、BD,利用菱形的性质得,,,再利用勾股定理计算出,由ASA证得≌得到,然后根据折叠的性质得,则,即可得出结果.本题考查了折叠的性质、菱形的性质、平行线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握折叠与菱形的性质,证明三角形全等是解题的关键.12.【答案】C【解析】解:,,,,,,,当输入的数是27时,输出的数应该是故选:根据表格数据可知输出的数是输入的数的算术平方根减去1,然后进行计算即可得解.本题是对算术平方根的考查,熟记算术平方根的定义,观察出输出的数是输入的数的算术平方根减去1是解题的关键.13.【答案】0或2【解析】解:由,得,解得,根据“两式相乘值为0,这两式中至少有一式值为0”进行求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.14.【答案】【解析】解:原式故答案为先利用积的乘方得到原式,然后利用平方差公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】5或【解析】【分析】本题考查的知识点为:二次根式的被开方数是非负数.根据被开方数大于等于0列式求出x的值,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,,,,解得,,,或,综上所述,的值是5或故答案为:5或16.【答案】【解析】解:,,,,,则第10个数据是:故答案是:把已知的式子写成的形式,然后根据被开方数的关系即可求解.本题考查了二次根式,正确把已知的式子写成的形式是关键.17.【答案】9【解析】解:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据题意得:整理,得,解得舍去,即每个枝干长出9小分支.故答案是:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据主干、枝干和小分支的总数是91,即可得出关于x的一元二次方程,此题得解.本题考查了一元二次方程的应用,根据主干、枝干和小分支的总数是91,列出关于x的一元二次方程是解题的关键.18.【答案】解:原式;原式;原式【解析】先把二次根式化为最简二次根式,然后合并即可;根据二次根式的乘除法则运算;先把二次根式化为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.【答案】解:,,,故,解得:,;,,,解得:,【解析】直接利用配方法解方程得出答案;直接利用十字相乘法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解一元二次方程的解法是解题关键.20.【答案】解:当时,方程为,方程有两个不相等的实数根,即,【解析】本题考查了一元二次方程的解法、根的判别式.令,用公式法求出一元二次方程的根即可;根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.21.【答案】解:,【解析】先根据二次根式的性质得出绝对值,再去掉绝对值符号,最后合并即可.本题考查了对二次根式的性质的应用,注意:当时,,当时,22.【答案】解:设该学校为新增电脑投资的年平均增长率为x,根据题意得:,解得:,不合题意,舍去答:该学校为新增电脑投资的年平均增长率为根据题意得:万元,答:从2011年到2013年,该中学三年新增电脑共投资万元.【解析】设该学校为新增电脑投资的年平均增长率为x,根据以后每年以相同的增长率进行投资,2013年投资万元,列出方程,求出方程的解即可;分别求出该中学每年为新增电脑投资的钱数,再把所得的结果相加即可.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,注意把不合题意的解舍去.23.【答案】解:第n个式子为:得;原式…【解析】利用平方差公式求解;先分母有理化,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.【答案】解:在中,,,,,,,,,≌,,,,设,在中,则有,解得,结论:四边形CGEF是菱形.理由:,,,,≌,,,,,,,四边形CGEF是平行四边形,,四边形CGEF是菱形.【解析】证明≌,推出,,推出,设,在中,则有,求出x即可解决问题.证明,即可解决问题.本题考查勾股定理,菱形的判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

2022-2023学年湖南省长沙市长沙县泉塘中学八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年湖南省长沙市长沙县泉塘中学八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年湖南省长沙市长沙县泉塘中学八年级(下)第一次月考数学试卷1. 式子在实数范围内有意义,则x的取值范围是( )A. B. C. D.2. 下列根式是最简二次根式的是( )A. B. C. D.3. 下列计算正确的是( )A. B.C. D.4. 在下列长度的四组线段中,不能组成直角三角形的是( )A. ,,B. ,C. a:b::2:D. ,,5. 直角三角形两边长分别是3、4,第三边是( )A. 5B.C. 5或D. 无法确定6. 下面四个命题:①对顶角相等;②同旁内角互补,两直线平行;③全等三角形的对应角相等;④如果两个实数的平方相等,那么这两个实数相等,其中逆命题是真命题的个数是( )A. 1B. 2C. 3D. 47. 古希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦-秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为如图,在中,,,所对的边分别为a,b,c,若,,,则的面积为( )A. B. C. D.8. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A. 8米B. 10米C. 12米D. 14米9. 如图,以的三边为直径分别向外作半圆,若斜边,则图中阴影部分的面积为( )A.B.C.D.10. 已知,中,,,,的平分线交BC于点D,则BD的长度为( )A.B. 2cmC.D. 3cm11. 比较大小:______12. 如果是一个整数,那么最小的正整数n是______.13. 化简:______.14. 在中,,,则______ .15. 一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是______.16. 如图,有一圆柱形油罐,底面周长为24m,高为从A处环绕油罐建梯子,梯子的顶端点B正好在点A的正上方,梯子最短需要______17. 计算题:;18. 已知,,则:______ ;______ ;______ .计算式子的值.19. 如图,已知在中,于D,,,求DC的长.求AB的长.20. 如图所示,四边形ABCD是矩形,把沿AC折叠到,与BC交于点E,若,,求BE的长.21. 如图1,荡秋千是中国古代北方少数民族创造的一种运动.有一天,小明在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度,将它往前推送水平距离时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索AD的长度?22. 如图,在四边形ABCD中,,,,求AC的长.判断的形状,并说明理由.求的度数.23. 如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点求证:;如果①求证:;②若设的三边分别为a、b、c,试用此图证明勾股定理.24. 阅读与思考.两点之间的距离公式:如果数轴上的点,分别表示实数,,两点,间的距离记作,那么对于平面上的两点,间的距离是否有类似的结论呢?运用勾股定理,就可以推出平面上两点之间的距离公式.如图1,已知平面上两点,,求A,B两点之间的距离;如图2,已知平面上两点,,求这两点之间的距离;一般地,设平面上任意两点和,如图3,如何计算A,B两点之间的距离?对于问题3,作轴,轴,垂足分别为点,;作轴,垂足为点;作,垂足为点C,且延长BC与y轴交于点,则四边形,是长方形.因为______,______,所以______.所以这就是平面直角坐标系中两点之间的距离公式.请你根据上面的公式求出下列两点之间的距离:,25. 【阅读材料】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如善于思考的小明进行了以下探索:若设其中a、b、m、n均为整数,则有,这样小明就找到了一种把类似的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:【问题解决】若,当a、b、m、n均为整数时,则______,______均用含m、n的式子表示若,且x、m、n均为正整数,分别求出x、m、n的值.【拓展延伸】化简______.答案和解析1.【答案】A【解析】解:根据题意得:,即时,二次根式有意义.故选:根据二次根式的性质,被开方数大于等于0,解不等式即可.主要考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【答案】A【解析】解:A选项:,是最简二次根式,故该选项符合题意;B选项:,不是最简二次根式,故该选项不符合题意;C选项:,不是最简二次根式,故该选项不符合题意;D选项:,不是最简二次根式,故该选项不符合题意;故选:当二次根式满足:①被开方数不含开的尽方的数或式;②根号内面没有分母.即为最简二次根式,由此即可求解.本题考查了最简二次根式,掌握最简二次根式的性质是关键.3.【答案】D【解析】解:A、无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确.故选:直接利用二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;B.,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;C.设,,,,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;D.,,,即,以a,b,c为边不能组成直角三角形,故本选项符合题意;故选:先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.5.【答案】C【解析】解:当第三边是斜边时,则第三边;当第三边是直角边时,则第三边故选:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.熟练运用勾股定理,注意此题的两种情况.6.【答案】B【解析】解:①对顶角相等的逆命题为相等的角为对顶角,错误,为假命题,不符合题意;②同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,正确,为真命题;③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,错误,为假命题,符合题意;④如果两个实数的平方相等,那么这两个实数相等的逆命题为如果两个实数相等,那么这两个实数的平方也相等,正确,为真命题,真命题有2个,故选:利用平行线的判定、全等三角形的性质、实数的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的判定、全等三角形的性质、实数的性质,属于基础知识,比较简单.7.【答案】B【解析】解:,,,故选:根据海伦-秦九韶公式即可解决此题.本题主要考查二次根式的应用,熟练掌握二次根式的化简以及运算是解决本题的关键.8.【答案】B【解析】解:如图,设大树高为,小树高为,过C点作于E,则EBDC是矩形,连接AC,,,,在中,,故选:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.【答案】C【解析】解:根据题意知:图中阴影部分的面积故选:利用勾股定理和圆的面积公式解答.本题主要是考查勾股定理的应用,比较简单,解题的关键是将图中阴影部分的面积转化为的形式.10.【答案】C【解析】解:过点D作于E,在中,由勾股定理得:,是角平分线,,,,则,即,解得,,,故选:作于E,根据勾股定理求出AB,根据角平分线的性质得到,根据三角形的面积公式计算求出CD,即可得到答案.本题考查的是勾股定理、角平分线的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么11.【答案】<【解析】解:,,故答案为:先变形,,再比较即可.本题考查了二次根式的性质和实数的大小比较的应用,主要考查学生的变形能力.12.【答案】5【解析】解:是一个整数,是一个整数,最小正整数n的值是:5,故答案为:直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.此题主要考查了二次根式的性质,正确化简二次根式是解题关键.13.【答案】【解析】解:因为,所以故答案为:根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是,然后再去绝对值.本题主要考查二次根式的化简,其中必须符合二次根式的性质.14.【答案】2【解析】解:,,,则故答案是:已知,,根据勾股定理可得,可求得,然后可求出的值.本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.15.【答案】10【解析】【分析】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.根据正方形的面积公式,结合勾股定理,能够得出正方形A,B,C,D的面积和即为最大正方形的面积.【解答】解:如图,根据勾股定理的几何意义,可得正方形A、正方形B的面积和为,正方形C、正方形D的面积和为,,即所以最大正方形E的面积为10,故答案是16.【答案】26【解析】【分析】本题考查了平面展开-最短路径问题,化“曲”为“平”,在平面内,利用两点之间线段最短和勾股定理是常用求解方法.化“曲”为“平”,画出圆柱的展开图,在平面内,得到两点的位置,再根据两点之间线段最短和勾股定理求解即可.【解答】解:将圆柱体的侧面展开,如图所示:则底面周长,,在中,,故答案为:17.【答案】解:原式;原式【解析】先化简各项二次根式,再合并同类项即可得出结论.先化简各项二次根式,再按照二次根式乘法计算得出结论.本题考查了二次根式的混合运算,掌握二次根式混合运算的顺序和运算法则是解题关键.18.【答案】 1【解析】解:,,,,,故答案为:,根据二次根式的加减,二次根式的乘法运算进行计算即可求解.根据的结论,结合完全平方公式进行计算即可求解.本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.19.【答案】解:于D,且,,在中,,;在中,,【解析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;有的数据和勾股定理求出AD的长,进而求出AB的长.本题考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么20.【答案】解:四边形ABCD为矩形,,,,,沿AC折叠到,与BC交于点E,,,,,,设,则,,在中,,,解得即BE的长为【解析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.根据矩形性质得,,,,再根据折叠性质得,而,则,所以,设,则,,然后在中利用勾股定理可计算出21.【答案】解:由题意得:,在中,由勾股定理得:,设绳索AD的长度为x m,则,,解得:,答:绳索AD的长度是【解析】设绳索AD的长度为x m,则,在中,由勾股定理得出方程,解方程即可.本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.22.【答案】解:,在中,由勾股定理,得;是等腰直角三角形,理由:,,,,又,是等腰直角三角形;是等腰直角三角形;,,【解析】在中,利用勾股定理即可求得答案;根据勾股定理的逆定理证明为直角三角形,,由,得到,进一步即可得到答案.由知,是等腰直角三角形,进而推出,于是求出的度数.本题考查勾股定理及其逆定理,等腰直角三角形,熟练掌握勾股定理及其逆定理是解题的关键.23.【答案】证明:,于点D,,,;①于点D,于点E,,由知:,在和中,,≌,;②由图可知:,,化简,得:【解析】根据直角三角形的定义和垂直的定义,可以证明结论成立;①根据AAS可以证明结论成立;②根据,代入字母计算即可证明结论成立.本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:因为,,所以,,由勾股定理得;因为,,所以,,由同理得;;;;由两点之间的距离公式得:【解析】【分析】首先求得,,再利用勾股定理计算即可;首先求得,,再利用勾股定理计算即可;利用坐标与图形的性质可得,,再利用勾股定理可得答案;直接利用公式代入计算即可.【解答】解:见答案;见答案;因为,,所以,所以故答案为:;;;由两点之间的距离公式得:【点评】本题是阅读理解题,主要考查了坐标与图形的性质,勾股定理,两点间距离公式的推导等知识,熟练掌握勾股定理是解题的关键.25.【答案】【解析】解:,,且a、b、m、n均为整数,,,故答案为:,2mn;,,,又、m、n均为正整数,或,即,,或,,;原式,故答案为:根据完全平方公式将等式右边展开,然后分析求解;根据完全平方公式将等式右边展开,然后列方程求解;根据完全平方公式和二次根式的性质进行变形化简.本题考查完全平方公式,二次根式的性质与化简,理解二次根式的性质,掌握完全平方公式的结构是解题关键.。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

八年级下第三次月考数学试卷(解析版)

八年级下第三次月考数学试卷(解析版)

八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

八年级月考数学试卷及答案

八年级月考数学试卷及答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. √02. 下列函数中,定义域为全体实数的是()A. y = √xB. y = |x|C. y = 1/xD. y = √(x^2 - 1)3. 已知二次方程 x^2 - 4x + 3 = 0 的两个实数根为 a 和 b,则 a + b 的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点 A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)5. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1二、填空题(每题5分,共25分)6. 若 a 和 b 是方程 x^2 - 5x + 6 = 0 的两个根,则 a^2 + b^2 的值为________。

7. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为 ________。

8. 在等腰三角形 ABC 中,AB = AC,若∠B = 50°,则∠A 的度数为 ________。

9. 下列式子中,正确的有(用序号表示)________。

(1)(a + b)^2 = a^2 + 2ab + b^2(2)(a - b)^2 = a^2 - 2ab + b^2(3)a^2 - b^2 = (a + b)(a - b)(4)(a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^410. 若 a、b、c 成等差数列,且 a + b + c = 12,a^2 + b^2 + c^2 = 42,则 b 的值为 ________。

三、解答题(每题10分,共30分)11. (1)已知二次函数 y = -2x^2 + 4x + 3,求该函数的顶点坐标。

(2)已知函数 y = 3x^2 - 2x - 1,求该函数的最大值。

12. (1)已知三角形 ABC 中,AB = 5,AC = 7,BC = 8,求三角形 ABC 的面积。

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年江西省宜春市宜丰中学八年级(下)月考数学试卷(3月份)1. 某中学合唱团的17名成员的年龄情况如下表:年龄单位:岁1415161718人数35441则这些队员年龄的众数和中位数分别是( )A. 15,15B. 15,C. 15,16D. 16,152. 已知等腰的周长为10,若设腰长为x,则x的取值范围是( )A. B. C. D.3. 若一次函数的图象不经过第二象限,则m的取值范围是( )A. B. C. D.4.如图,在中,,,,,,都是等边三角形,下列结论中:①;②四边形AEFD是平行四边形;③;④正确的个数是( )A. 1个B. 2个C. 3个D. 4个5.如图,在中,BD平分交AC于点D,且,F在BC上,E为AF的中点,连接DE,AF,若,,,则AB的长为( )A.B.C.D. 96. 在直角坐标系中,横纵坐标都是整数的点称为整点,设k为整数,当直线与的交点为整数时,k的值可以取( )A. 2个B. 4个C. 6个D. 8个7. 某校规定学生的数学成绩由三部分组成,期末考试成绩占,期中成绩占,平时作业成绩占,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是______.8. 如图,直线与直线相交于点A,则关于x的不等式的解集为______.9. 当光线射到x轴进行反射,如果反射的路径经过点和点,则入射光线所在直线的解析式为______ .10. 设,则代数式的值为______.11. 如图,已知,于B,于A,,点E是CD的中点,则AE的长是______.12. 如图,在平面直角坐标系中,直线l分别交x轴、y轴于A、B两点,点A的坐标为,点B的坐标为直线l与直线交于点点P是直线上,的一点,点Q是坐标平面内任意一点.若使以A、C、P、Q为顶点的四边形是菱形,则Q点的坐标为______ .13. 已知,,且试求正整数14. 如图,在四边形ABCD中,,对角线BD的垂直平分线与边AD、BC分别相交于点M、N,连接BM、求证:四边形BNDM是菱形;若四边形BNDM的周长为52,,求BD的长.15. 如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.城是否受到这次台风的影响?为什么?若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?16. 某地计划从甲、乙两个蔬菜基地向A,B两市运送蔬菜.甲、乙两个基地分别可运出80吨和100吨蔬菜.A,B两市分别需要蔬菜110吨和70吨.从甲,乙两基地运往A,B两市的运费单价如下表:A市元/吨B市元/吨甲基地1520乙基地1025设从甲基地运往A市x吨蔬菜时,总运费为y元.求y关于x的函数表达式及自变量的取值范围;当甲基地运往A市多少吨蔬菜时,总运费最省?最省的总运费是多少元?17. 在中,D为AB的中点,分别延长CA,CB到点E,F,使;过E,F分别作CA,CB的垂线,相交于求证:18. 观察下列方程及解的特征:的解为:;的解为:,;的解为:,;…解答下列问题:请猜想,方程的解为______;请猜想,方程______的解为,;解关于x的分式方程19. 请你用学习“一次函数”中积累的经验和方法研究函数的图象和性质,并解决问题.①当时,;②当时,______;③当时,______;显然,②和③均为某个一次函数的一部分.在平面直角坐标系中,作出函数的图象.根据函数图象写出函数的一条性质:______.一次函数为常数,的图象过点,若无解,结合函数的图象,直接写出k的取值范围.20. 我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.若三边长分别是2,和4,则此三角形__________常态三角形填“是”或“不是”;若是常态三角形,则此三角形的三边长之比为__________请按从小到大排列;如图,中,,,点D为AB的中点,连接CD,若是常态三角形,求的面积.21. 甲、乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程千米与行驶时间小时之间的函数图象,请结合图象回答下列问题:、B两市的距离是______ 千米,甲到B市后,______ 小时乙到达B市;求甲车返回时的路程千米与时间小时之间的函数关系式;甲车从B市开始往回返后,再经过几小时两车相距15千米?22. 【模型建立】如图1,等腰中,,,直线ED经过点C,过点A作于点D,过点B作于点E,求证:≌;【模型应用】如图2,已知直线:与x轴交于点A,与y轴交于点B,将直线绕点A 逆时针旋转至直线;求直线的函数表达式;如图3,平面直角坐标系内有一点,过点B作轴于点A、轴于点C,点P是线段AB上的动点,点D是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.答案和解析1.【答案】C【解析】解:根据图表数据,同一年龄人数最多的是15岁,共5人,所以众数是15岁,17名队员中,按照年龄从大到小排列,第9名队员的年龄是16岁,所以,中位数是16岁.故选:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.2.【答案】A【解析】解:依题意得:,解得故选:根据已知条件得出底边的长为:,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.3.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及一元一次不等式组的解法.根据题意得到关于m的不等式组,然后解不等式组即可.【解答】解:根据题意得,解得故选:4.【答案】D【解析】【分析】由,得出,故①正确;再由SAS证得≌,得,同理≌,得,则四边形AEFD 是平行四边形,故②正确;然后由平行四边形的性质得,则③正确;最后求出,故④正确;即可得出答案.本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、含角的直角三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明≌是解题的关键.【解答】解:,,,,,是直角三角形,,,故①正确;,都是等边三角形,,,和都是等边三角形,,,,,在与中,,≌,,同理可证:≌,,四边形AEFD是平行四边形,故②正确;,故③正确;过A作于G,如图所示:则,四边形AEFD是平行四边形,,,,故④正确;正确的个数是4个,故选:5.【答案】A【解析】解:平分交AC于点D,,,,,≌,,为AF的中点,是的中位线,,,,,,,,,负值舍去,,,故选:根据角平分线的定义得到,根据垂直的定义得到,根据全等三角形的判定和性质得到,根据三角形中位线定理和勾股定理即可得到结论.本题考查了三角形中位线定理,全等三角形的判定和性质,勾股定理,熟练掌握三角形中位线定理是解题的关键.6.【答案】C【解析】解:由题意得:,解得:,,交点为整数,可取的整数解有0,2,3,5,,共6个.故选:让这两条直线的解析式组成方程组,求得整数解即可.本题考查了两条直线相交或者平行问题,难度一般,解决本题的难点是根据分数的形式得到相应的整数解.7.【答案】分【解析】解:他的数学成绩是:分故答案为:分.根据数学成绩=期末考试成绩所占的百分比+期中考试成绩所占的百分比+平时作业成绩所占的百分比即可求得该学生的数学成绩.本题考查的是加权平均数的求法.正确计算加权平均数是解本题的关键.8.【答案】【解析】【分析】此题主要考查了一次函数与一元一次不等式,关键是能从图象中得到正确信息.以两函数图象交点为分界,直线在直线的下方时,【解答】解:把代入得,,根据图象可得:关于x的不等式的解集为:,故答案为:9.【答案】【解析】解:设反射光线的直线解析式为,反射的路径经过点和点,,解得,,反射光线的直线解析式为,根据入射光线和反射光线轴对称,故知入射光线的解析式为,故答案为首先设反射光线的直线解析式为,把A、B两点代入,求出k和b,然后根据轴对称的知识点求出入射光线的解析式.本题主要考查待定系数法求一次函数解析式和轴对称的知识点,解答本题的关键是运用好轴对称的知识,此题难度一般.10.【答案】24【解析】解:,即,故答案为:24将所求式子提取3后,拆项变形,分别得到的因式,将已知等式变形得到,把a与的值代入计算,即可求出值.此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.11.【答案】【解析】解:连接DB,延长DA到F,使连接FC,,,又点E是CD的中点,为的中位线,则,在中,,,,,,又,四边形DBCF是平行四边形,,故答案为:首先作出辅助线,连接DB,延长DA到F,使,连接根据三角形中位线定理可得,再利用勾股定理求出BD的长,然后证明可得到≌,从而得到,进而得到答案.此题主要考查了三角形中位线定理,勾股定理的综合运用,做题的关键是作出辅助线,证明12.【答案】或或或【解析】解:设直线AB的函数解析式为,点A的坐标为,点B的坐标为,,解得,即直线AB的函数解析式为,点C在直线AB上且在直线上,点C的横坐标为,纵坐标,线段AC的长是:,当时,的坐标为;当时,的坐标为;当时,的坐标为;当在AC的垂直平分线上时,直线AB的函数解析式为,点A的坐标为,点C的坐标为,,设直线解析式为且过点,,解得,直线解析式为,当时,,即的坐标为;由上可得,点Q的坐标为或或或根据题意,可以先求出直线AB的函数解析式,然后根据菱形的判定和分类讨论的数学思想,可以求得相应的点Q的坐标.本题考查一次函数图象上点的坐标特征、菱形的判定,解答本题的关键是明确题意,画出相应的图象,利用数形结合和分类讨论的数学思想解答.13.【答案】解:化简x与y得:,,,,将代入方程,化简得:,,,解得【解析】首先化简x与y,可得:,,所以,;将所得结果看作整体代入方程,化简即可求得.此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.14.【答案】证明:,直线MN是对角线BD的垂直平分线,,在和中,,≌,,,四边形BNDM是平行四边形,,四边形BNDM是菱形;解:菱形BNDM的周长为52,,又,,在中,由勾股定理得,,【解析】【分析】证≌,得出,由,证出四边形BNDM是平行四边形,进而得出结论;由菱形的周长得到菱形的边长,由菱形的性质及得到,在中由勾股定理得到OB的长,进而得到BD的长.本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.15.【答案】解:由A点向BF作垂线,垂足为C,在中,,,则,因为,所以A城要受台风影响;设BF上点D,,则还有一点G,有因为,所以是等腰三角形,因为,所以AC是DG的垂直平分线,,在中,,,由勾股定理得,,则,遭受台风影响的时间是:【解析】点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若则A城不受影响,否则受影响;点A到直线BF的长为200km的点有两点,分别设为D、G,则是等腰三角形,由于,则C是DG的中点,在中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.16.【答案】解:,由,解得;答:y关于x的函数表达式为,自变量的取值范围是;在中,,随x的增大而增大,而,当时,,答:当甲基地运往A市10吨蔬菜时,总运费最省,最省的总运费是2550元.【解析】弄清调动方向,再依据路程和运费列出元与吨的函数关系式即可;利用一次函数的增减性确定“最省的总运费”即可.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定总运费最省.17.【答案】解:如图,分别取AP、BP的中点M、N,并连接EM、DM、FN、根据三角形中位线定理可得:,,,,,、N分别为直角三角形AEP、BFP斜边的中点,,,已知,≌,,,、为顶角相等的等腰三角形,【解析】取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得≌,即可得各角的关系.即可证得结论.本题考查了全等三角形的判定及性质,涉及到直角三角形、等腰三角形的性质等知识点,是一道难度较大的综合题型,正确作出辅助线是解题的关键.18.【答案】,【解析】解:方程:,即方程:,,,故答案为:,;猜想关于x 的方程的解为:,,故答案为:;,,,,,可得:或,解得:,,经检验,,是原分式方程的根.观察阅读材料中的方程解的规律,归纳总结得到结果;仿照阅读材料中的方程解的规律,归纳总结得到结果;先把原方程变形后,利用得出的规律即可解答.本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键.19.【答案】函数图象关于y 轴对称 【解析】解:②时,,时,,③时,,时,,故答案为:,如图,由图象可得,函数图象关于y轴对称,故答案为:函数图象关于y轴对称.当时,如图,当直线与时,方程无解,此时,当时,满足题意.如图,当直线经过,时,将,代入得,解得,时满足题意,综上所述,若无解,且②当时,,进而求解.③当时,,进而求解.分别画出,时的函数图象.根据图象求解.分类讨论与时,函数图象与直线无交点的情况求解.本题考查一次函数的综合应用,解题关键是掌握一次函数的性质,掌握待定系数法求函数解析式,通过数形结合求解.20.【答案】解:是::中,,,点D为AB的中点,是常态三角形,当,时,解得:,则,故,则的面积为:当,时,解得:,则,故,则的面积为:故的面积为或【解析】【解答】解:,三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;是常态三角形,设两直角边长为:a,b,斜边长为:c,则,,则,故a::,设,,则,此三角形的三边长之比为:::故答案为:::;见答案【分析】直接利用常态三角形的定义判断即可;利用勾股定理以及结合常态三角形的定义得出两直角边的关系,进而得出答案;直接利用直角三角形的性质结合常态三角形的定义得出BD的长,进而求出答案.此题主要考查了勾股定理以及新定义,正确应用勾股定理以及直角三角形的性质是解题关键.21.【答案】120 5【解析】解:由图可得A、B两市的距离是,甲到B市后,再过小时乙到达B市;故答案为:120,5;如右图:两地的距离是120km,,,设线段BD的解析式为,由题意得:,解得:,;设EF的解析式为,由题意得:,解得:,的解析式为,当甲车还未追上乙车时,可得:,解得,小时,当甲车追上乙车后,可得:,解得;小时,当甲车返回A地后,,解得,小时,答:甲车从B市往回返后再经过小时或小时或小时两车相距15千米.根据路程=速度时间的数量关系,用甲车的速度甲车到达乙地的时间就可以求出两地的距离,根据时间=路程速度可以求出乙从A市去往B市需要的时间,从而可得答案;由的结论可以求出BD的解析式,由待定系数法就可以求出结论;运用待定系数法求出EF的解析式,再由两车之间的距离公式建立方程求出其解即可.本题考查了一次函数的应用,读懂题意,正确识图,能求出函数的解析式是解答本题关键.22.【答案】解:如图1所示:,,,又,,,又,,在和中,,≌;过点B作交AC于点C,轴,交y轴于点D,如图2所示:轴,x轴轴,,又,,又,,又,,又,,,在和中,,≌,,,又直线:与x轴交于点A,与y轴交于点B,令,得,,即,令,得,即,,,,,点C的坐标为,设的函数表达式为,点A、C两点在直线上,依题意得:,解得:,直线的函数表达式为;能成为等腰直角三角形,依题意得,①若点P为直角顶点时,如图3甲所示:设点P的坐标为,则PB的长为,,,,,又,,在和中,,≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;②若点C为直角顶点时,如图3乙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,点P与点A重合,点M与点O重合,即点D的坐标为;③若点D为直角顶点时,如图3丙所示:设点P的坐标为,则PB的长为,,同理可证明≌,,,点D的坐标为,又点D在直线上,,解得:,即点D的坐标为;综合所述,点D的坐标为或或【解析】本题综合考查了垂直的定义,平角的定义,全等三角形的判定与性质,一次函数求法,待定系数等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.由垂直的定义得,平角的定义和同角的余角的相等求出,角角边证明≌;证明≌,求出点C的坐标为,由点到直线上构建二元一次方程组求出,,待定系数法求出直线的函数表达式为;分三种情况讨论:①若点P为直角顶点时;②若点C为直角顶点时;③若点D为直角顶点时,设出P点坐标,构建≌,由其性质,得到点D坐标,根据点D在直线上可求出其坐标.。

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。

7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷1. 已知a ,b ,c ,d 是实数,若,,则( )A. B. C. D.2. 若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A. 8cmB. 13cmC. 8cm 或13cmD. 11cm 或13cm3. 如图,中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,,的周长为9cm ,则的周长是( )A. 10cmB. 12cmC. 15cmD. 17cm4. 不等式的解集在数轴上表示为( )A.B.C. D.5. 如图,,BP 和CP 分别平分和,AD 过点P ,且与AB 垂直.若,则点P 到BC 的距离是( )A. 8B. 6C. 4D. 26. 已知m ,n 为常数,若的解集为,则的解集是( )A. B.C.D.7. 在中,,,BC 边上的高,则另一边BC 等于( )A. 10B. 8C. 6或10D. 8或108. 如图,中,,,的平分线BE交AD于点F,AG平分给出下列结论:①;②;③;④正确结论是( )A. ①②B. ①②④C. ②④D. ②③④9. 不等式的正整数解是__________.10. 等腰三角形一腰上的高与另一腰的夹角为,则它的顶角为______.11. 对于任意实数a、b,定义一种运算:a※例如,2※请根据上述的定义解决问题:若不等式3※,则不等式的正整数解是______.12. 对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是______.13. 如图,在中,,,,线段,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当______时,和全等.14. 解不等式:15. 当x取何正整数值时,代数式与的值的差大于16. 如图,在中,,AD是BC边上的中线,于点求证:17. 如图,在中,,AD平分,于点E,点F在AC上,求证:18. 如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即,且P到OA,OB两条公路的距离相等.19. 如图,已知长方形ABCD中,,在边CD上取一点E,将折叠使点D恰好落在BC边上的点F,求CE的长.20. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?21. 如图,AD是的角平分线,DE、DF分别是和的高.试说明AD垂直平分EF;若,,,求DE的长.22. 学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.求A,B两种奖品的单价;学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由.23. 已知:如图,在中,,,,动点P从点B出发沿射线BC以的速度移动,设运动的时间为t秒.求BC边的长;当为直角三角形时,求t的值;当为等腰三角形时,求t的值.答案和解析1.【答案】A【解析】解:A选项,,,,故该选项符合题意;B选项,当,,时,,故该选项不符合题意;C选项,当,,时,,故该选项不符合题意;D选项,当,,时,,故该选项不符合题意;故选:根据不等式的性质判断A选项;根据特殊值法判断B,C,D选项.本题考查了实数大小比较,掌握不等式的两边同时加上或减去同一个整式或相等的整式,不等号的方向不变是解题的关键.2.【答案】D【解析】【分析】本题考查等腰三角形的性质及三角形的三边关系,对腰长和底边长进行分类讨论是解题的关键.分:当3cm是腰长时,当5cm是腰长时,两种情况进行讨论,再用三角形的三边关系验证即可.【解答】解:当3cm是腰长时,3,3,5能组成三角形,此时这个等腰三角形的周长是11cm;当5cm是腰长时,5,5,3能组成三角形,此时这个等腰三角形的周长是则这个等腰三角形的周长是11cm或故选:3.【答案】C【解析】分析:由中,边AB的垂直平分线分别交BC、AB于点D、E,,根据线段垂直平分线的性质,即可求得,,又由的周长为9cm,即可求得的值,继而求得的周长.解:中,边AB的垂直平分线分别交BC、AB于点D、E,,,ⅹ,的周长为9cm,,的周长为:,故选:此题考查了线段垂直平分线的性质,三角形的周长等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.4.【答案】C【解析】解:不等式的解集为,数轴表示为:,故选先求得不等式的解集为,根据等号判定圆圈为实心,选择即可.本题考查了不等式的解法和数轴表示,熟练掌握解不等式是解题的关键.5.【答案】C【解析】解:过点P作于E,,,,和CP分别平分和,,,,,,故选:过点P作于E,根据角平分线上的点到角的两边的距离相等可得,,那么,又,进而求出本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.6.【答案】D【解析】解:由的解集为,不等号方向改变,且,,;由得,所以;故选第一个不等式的方向改变,说明不等式两边除以的m小于0,由解集是,可以继续判断n 的符号;就可以得到第二个不等式的解集.本题考查解一元一次不等式,当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向.同理,当不等号的方向改变后,也可以知道不等式两边除以的是一个负数.7.【答案】C【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.分两种情况考虑,如图所示,分别在直角三角形ABD与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,,,,在和中,根据勾股定理得:,,此时;如图2所示,,,,在和中,根据勾股定理得:,,此时,则BC的长为6或故选:8.【答案】B【解析】解:,,,,,故①正确;是的平分线,,,,,又对顶角相等,,故②正确;,只有时,故③错误;,,平分,,故④正确.综上所述,正确的结论是①②④.故选:根据同角的余角相等求出,再根据等角的余角相等可以求出;根据等腰三角形三线合一的性质求出本题考查了三角形的内角和定理,直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.9.【答案】1,2,3【解析】【分析】先解不等式,求出其解集,再根据解集判断其正整数解.本题考查了一元一次不等式的整数解,会解不等式是解题的关键.【解答】解:,去括号,得移项,得合并同类项,得系数化为1,得故其正整数解为1,2,故答案为1,2,10.【答案】或【解析】【分析】此题主要考查等腰三角形的性质.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形外部时,顶角是;当高在三角形内部时,顶角是11.【答案】1【解析】解:※,,为正整数,故答案为:根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出是解题的关键.12.【答案】【解析】解:第一次的结果为:,没有输出,则,解得:故x的取值范围是故答案为:表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.13.【答案】5或10【解析】解:当或10时,和全等,理由是:,,,①当时,在和中,②当时,在和中,故答案为:5或当或10时,和全等,根据HL定理推出即可.本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,14.【答案】解:去括号得,,移项合并同类项得,,解得【解析】利用不等式的基本性质,先将不等式去括号,然后移项合并同类项,把系数化为1,得到x的取值范围.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.15.【答案】解:依题意得:,去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:,2,3,【解析】根据题意列出关于x的一元一次不等式,先去分母,然后通过移项、合并同类项、化系数为1进行解答即可.本题考查了解一元一次不等式.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为16.【答案】证明:,AD是BC边上的中线,是边BC上的高,AD是的角平分线,又,,又,【解析】由,判断出三角形ABC为等腰三角形,根据等腰三角形三线合一的性质可得,根据同角的余角相等可得:,再根据等量关系得到考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.【答案】证明:平分,,,,在和中,,≌,【解析】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.因为,,所以,又因为AD平分,所以,已知,则可根据SAS判定≌,根据全等三角形的性质即可得到结论.18.【答案】解:如图,点P为所作.【解析】作的角平分线和线段CD的垂直平分线,它们的交点为P点.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了线段垂直平分线的性质.19.【答案】解:四边形ABCD是矩形,,,根据题意得:,,,,设,则,在中由勾股定理得:,即,,,在中由勾股定理可得:,即,,,即【解析】要求CE的长,应先设CE的长为x,由将折叠使点D恰好落在BC边上的点F可得,所以,;在中由勾股定理得:,已知AB、AF的长可求出BF的长,又,在中由勾股定理可得:,即:,将求出的BF的值代入该方程求出x的值,即求出了CE的长.本题主要考查运用勾股定理、全等三角形、方程思想等知识,根据已知条件求指定边长的能力.20.【答案】解:设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:,解得:答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件个,依题意得:,解得:答:购进的“冰墩墩”挂件不能超过70个.【解析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价进货数量,结合购进“冰墩墩”摆件和挂件共180个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件个,利用总利润=每个的销售利润销售数量购进数量,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.21.【答案】证明:是的角平分线,,,,在和中,,,,而,垂直平分EF;,,,,,【解析】点拨先利用角平分线的性质得,利用“HL”证明得到,然后根据线段垂直平分线的判定方法即可得到结论;根据三角形的面积公式即可求得DE的长.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了直角三角形全等的判定方法、线段垂直平分线的判定.22.【答案】解:设A奖品单价为x元,B奖品单价为y元,根据题意,得,,奖品单价30元,B奖品单价15元;设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,,当时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少.【解析】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.设A奖品单价为x元,B奖品单价为y元,根据题意列出方程组,即可求解;设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,根据一次函数的性质,即可求解.23.【答案】解:在中,,;由题意知,①当为直角时,点P与点C重合,,即;②当为直角时,,,,在中,,在中,,即:,解得:,故当为直角三角形时,或;①当时,;②当时,,;③当时,,,,在中,,所以,解得:,综上所述:当为等腰三角形时,或或【解析】直接根据勾股定理求出BC的长度;当为直角三角形时,分两种情况:①当为直角时,②当为直角时,分别求出此时的t值即可;当为等腰三角形时,分三种情况:①当时;②当时;③当时,分别求出BP的长度,继而可求得t值.本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.。

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年湖北省荆州市部分地区八年级(下)月考数学试卷(3月份)1. 若二次根式有意义,则x的取值范围是( )A. B. C. D.2. 下列各组数不是勾股数的是( )A. 3,4,5B. 6,8,10C. 2,,3D. 5,12,133. 如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是( )A. 12 米B. 13 米C. 14 米D. 15 米4. 下列二次根式中能与合并的是( )A. B. C. D.5. 下列运算正确的是( )A. B.C. D.6. 估计的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7. 若是整数,则正整数a的最小值是( )A. 4B. 5C. 6D. 78. 计算的结果为( )A. B. C. D. 19.如图,中,,,,将沿DE翻折,使点A 与点B重合,则AE的长为( )A. 2B.C. 5D.10. 如图,车库宽AB的长为米,一辆宽为米即米的汽车正直停入车库,车门长为米,当左侧车门CD接触到墙壁时,车门与车身的夹角为,此时右侧车门GH开至最大的宽度FG的长为( )A. 米B. 米C. 米D. 米11. 在中,,,,则AB的长是______ .12. 比较大小:______填“>”或“<”或“=”13. 如图所示,一场暴雨过后,垂直于地面的一棵树在距地面2米的C处折断,树尖B恰好碰到地面,经测量米,折断前树高为______ 米.14. 已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为______.15. 已知,则的值为______ .16. 如图是一个按某种规律排列的数阵:根据数阵排列的规律,第11行从左向右数第10个数是______ .17. 计算;18. 先化简,再求值:,其中19. 如图,在中,,,,,垂足为的面积是______ .求BC、AD的长.20. 我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量,,,,求出空地ABCD的面积;若每种植1平方米草皮需要350元,问总共需投入多少元?21. 规定用符号表示一个实数的整数部分,例如,,,并且规定一个实数减去它的整数部分表示这个实数的小数部分,按此规定解答问题:______ ,的小数部分为______ ;已知a,b分别是的整数部分和小数部分,求a,b的值.22. 如图,有一艘货船和一艘客船同时从港口A出发,客船与货船的速度比为4:3,出发1小时后,客船比货船多走了10海里.客船沿北偏东方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距100海里.求两船的速度分别是多少?求货船航行的方向.23. 在学习了勾股定理后,数学兴趣小组在李老师的引导下,利用正方形网格和勾股定理,运用构图法进行了一系列探究活动:在中,AB,BC,AC三边的长分别为,,,求的面积.如图1,在正方形网格每个小正方形的边长为中,画出格点即三个顶点都在小正方形的顶点处,不需要求的高,借用网格就能计算出它的面积,这种方法叫做构图法.请利用图求出的面积;在平面直角坐标系中,①若点A为,点B为,求线段AB的长;②若点A为,点B为,请直接表示出线段AB的长;在图2中运用构图法画出图形,比较与大小.24. 阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,,,当且仅当时取等号,例如:当时,求的最小值.解:,,又,,当时取等号.的最小值为请利用上述结论解决以下问题:当时,当且仅当______ 时,有最小值为______ .当时,求的最小值.请解答以下问题:如图所示,某园艺公司准备围建一个矩形花圃,其中一边靠墙墙足够长,另外三边用篱笆围成,设平行于墙的一边长为x米,若要围成面积为450平方米的花圃,需要用的篱笆最少是多少米?答案和解析1.【答案】A【解析】解:二次根式有意义,,,故选:根据二次根式有意义的条件进行求解即可.本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.2.【答案】C【解析】解:A、,能构成勾股数,故该选项不合题意;B、,能构成勾股数,故该选项不合题意;C、,不是整数,故该选项合题意;D、,能构成勾股数,故该选项不合题意.故选:根据勾股数的定义:有a、b、c三个正整数,满足,称为勾股数.由此判定即可.本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.3.【答案】A【解析】解:如图,梯子的底端离建筑物5 米,梯子长为13米,米故选:根据题意画出图形,再利用勾股定理求解即可.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4.【答案】C【解析】解:A、己是最简二次根式,但和不是同类二次根式,无法合并,故此选项不合题意;B、,和不是同类二次根式,无法合并,故此选项不合题意;C、,和是同类二次根式,可以合并,故此选项符合题意;D、,和不是同类二次根式,无法合并,故此选项不合题意.故选:只有同类二次根式方可合并,将选项中的二次根式进行化简后,找到同类二次根式即可.本题考查了同类二次根式,熟练掌握同类二次根式的定义是解此题的关键.5.【答案】D【解析】解:A、,故此选项错误,不符合题意;B、,故此选项错误,不符合题意;C、,故此选项错误,不符合题意;D、,故此选项正确,符合题意.故选:直接利用二次根式的性质以及二次根式的加减运算法则计算,进而得出答案.本题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.6.【答案】B【解析】解:,,,故选:先根据二次根式的乘法进行计算化简,最后估算,即可求解.本题考查了二次根式的乘法,无理数的估算,正确的计算解题的关键.7.【答案】C【解析】解:;由是整数,得a最小值为6,故选:先将54写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出a的最小整数值.本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.8.【答案】A【解析】解:原式故选:根据积的乘方的逆运算对原式进行变形,再利用平方差公式进行计算即可.本题考查二次根式的混合运算,能正确利用平方差公式是解题的关键.9.【答案】D【解析】解:沿DE翻折,使点A与点B重合,,,设,则,,在中,,,解得,,故选:先利用折叠的性质得到,设,则,,在中,根据勾股定理可得到,求解即可.本题考查了折叠的性质及勾股定理的应用,理解题意,熟练掌握勾股定理解三角形是解题关键.10.【答案】B【解析】解:,,,,,,,故选:C作于O,先求出,再根据得出结论.本题考查了解直角三角形的应用问题,解题的关键是正确作出辅助线.11.【答案】【解析】解:,,,,故答案为:根据勾股定理求出AB即可.本题考查了勾股定理的应用,掌握在直角三角形中,两直角边的平方和等于斜边的平方是解题的关键.12.【答案】>【解析】【分析】本题考查了实数的大小比较,关键是得出,题目比较基础,难度适中.根据即可得出答案.【解答】解:因为,所以,故答案为:13.【答案】【解析】解:由勾股定理得,,所以故答案为:树高等于,在直角中,用勾股定理求出BC即可.本题考查了勾股定理的实际应用,解题的关键是在实际问题的图形中得到直角三角形.14.【答案】11或13【解析】解:①3是腰长时,能组成三角形,周长;②5是腰长时,能组成三角形,周长所以,它的周长是11或故答案为:11或因为腰长没有明确,所以分①3是腰长,②5是腰长两种情况求解.本题考查了等腰三角形的性质,关键是分①3是腰长,②5是腰长两种情况求解.15.【答案】【解析】解:依题意得:,,,,则故答案为:根据被开方数的非负性可得,从而得到,再代入,即可求解.本题主要考查了算术平方根的非负性,求算术平方根,熟练掌握算术平方根的非负性是解题的关键.16.【答案】【解析】解:观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的算术平方根,而每一行的个数依次为2、4、6、8、10,……,第10行最后一个数是,第11行倒数第10个数是观察数阵中每个算术平方根下数字的规律特征,依据规律推断所求数字.本题考查观察与归纳,要善于发现数列的规律性特征.17.【答案】解:原式;原式【解析】根据二次根式加减法则可进行求解;根据二次根式的混合运算法则可进行求解.本题主要考查二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.18.【答案】解:原式,当时,原式【解析】先将原式的分子、分母进行因式分解,再将除法化乘法,化简后代值求解即可.本题主要考查了分式化简求值,将原式进行因式分解化简是解题关键.19.【答案】150【解析】解:的面积是:故答案是:150;,,,,,,由直角三角形的面积公式直接求解即可;先根据勾股定理求出BC的长,再利用三角形面积公式得出,然后即可求出此题主要考查学生对勾股定理和三角形面积的灵活运用,解答此题的关键是三角形ABC的面积可以用表示,也可以用表示,从而得出,这是此题的突破点.20.【答案】解:连接AC,,,,,,,,;即空地ABCD的面积为元,即总共需投入50400元.【解析】直接利用勾股定理AC,再用勾股定理的逆定理得出,进而得出答案;利用中所求得出所需费用.此题主要考查了勾股定理及其逆定理的应用,将四边形化为三角形后,正确用勾股定理及其逆定理是解题关键.21.【答案】【解析】解:,,,的小数部分为,故答案为:3,;,,,,估算出无理数的范围,从而得到无理数的整数部分和小数部分;根据二次根式的混合运算化简,估算出无理数的范围,得到无理数的整数部分和小数部分.本题考查了二次根式的混合运算和无理数的大小的估计,正确进行无理数的大小的估计是解题的关键.22.【答案】解:设客船与货船的速度分别是4x海里/小时和3x海里/小时,根据题意得,解得,,,即客船与货船的速度分别是40海里/小时和30海里/小时;海里,海里,海里,,,,,即货船航行的方向为南偏东【解析】设客船与货船的速度分别是4x海里/小时和3x海里/小时,依据客船1小时比货船多走10海里,列方程求解即可;依据,可得是直角三角形,且,再根据货船航行方向,即可得到客船航行的方向.本题主要考查了方向角以及勾股定理的应用,正确得出AB的长是解题的关键.23.【答案】解:;①,②;如图,,,,,【解析】根据割补法求出三角形的面积即可;①根据两点间的距离即可求出答案;②根据两点间的距离即可求出答案;先画出图形,由图可知,,,根据,即可得出答案.本题考查网格与勾股定理,掌握勾股定理是解题的关键.24.【答案】3 6【解析】解:,,又,,当且仅当时取等号.的最小值为故答案为:3,6;,,,又,,当且仅当时取等号,的最小值为,的最小值为,即的最小值为;根据题意可得,垂直于墙的一边长为米,则篱笆的长为米,,,又,,当且仅当时取等号,的最小值为60,即需要用的篱笆最少是60米.根据例题中的公式计算即可;先化简,再运用公式计算即可;由题意得篱笆的长为米,再根据例题中的公式计算即可.本题考查了二次根式的性质,理解题中例题解法,熟练掌握二次根式的性质是解题的关键.。

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)1. 下列式子中,属于最简二次根式的是( )A. B. C. D.2. 代数式有意义的条件是( )A. B. C.且 D.3. 下列计算正确的是( )A. B.C. D.4. 在中,:::1:2,则下列说法错误的是( )A. B. C. D.5. 图中的点均为大小相同的小正方形的顶点,对于所画的两个四边形,下列叙述中正确的是( )A. 这两个四边形的面积和周长都相同B. 这两个四边形的面积和周长都不相同C. 这两个四边形的面积相同,但周长不相同D. 这两个四边形的周长相同,但面积不相同6. 一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动( )A. 0mB. 1mC. 2mD. 3m7. 在中,,AD为BC边上的高,,,则BC的长为( )A. 5B. 7C. 5或7D.8. 在中,,若,,则的面积是( )A. B. C. D.9. 如图,已知,,,,则点C 到BD 的距离为( )A. B. C. D.10. 如图所示,已知圆柱的底面周长为36,高,P 点位于圆周顶面处,小虫在圆柱侧面爬行,从A 点爬到P 点,然后再爬回C 点,则小虫爬行的最短路程为( )A. 26B.C.D.11. 在学习“勾股数”的知识时,爱动脑的小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.则当时,的值为( )a 68101214…b 815243548…c1017263750…A. 100B. 200C. 240D. 36012. 已知a ,b 均为正数,且,则的最小值为( )A. 8B. 9C. 10D. 1213. 你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢失,小明爸爸要在高,宽的栅栏门的相对角顶点间加一个加固木板,这条木板需______ m 长.14. 有两根木棒,分别长12cm,5cm,要再在14cm的木棒上取一段,用这三根木棒为边做成直角三角形,这第三根木棒要取的长度是______15. 将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是______.16. 如图,矩形纸片ABCD中,,,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为______ .17. 如图,是等腰直角三角形,BC是斜边,将绕点A逆时针旋转到的位置、如果,那么的长等于______ .18. 如图,在中,,,将沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的第13个三角形的直角顶点的坐标为______.19. 计算;;若,求代数式的值.细心观察如图,认真分析各式,然后解答下列问题:,是的面积;,是的面积;,是的面积;①请用含有为正整数的式子填空:______ ,______ .②求的值.20. 如图,每个小正方形的边长都是、B、C、D均在网格的格点上.是直角吗?请证明你的判断.直接写出四边形ABCD的面积找到格点E,并画出四边形一个即可,使得其面积与四边形ABCD面积相等.21. 如图,E、F是平行四边形ABCD的对角线AC上的两点,且,,连接BE、ED、DF、求证:四边形BEDF为平行四边形;若,,求BD的长.22. 图1是超市购物车,图2为超市购物车侧面示意图,测得,支架,两轮中心AB之间的距离为______ dm;若OF的长度为,支点F到底部DO的距离为5dm,试求的度数.23. 如图,在等腰中,垂足为已知,求AC与AB的长.点P是线段AB上的一动点,当AP为何值时,为等腰三角形.答案和解析1.【答案】D【解析】解:A、原式,故A不是最简二次根式,B、原式,故B不是最简二次根式,C、原式,故C不是最简二次根式,故选:根据最简二次根式的定义即可判断.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.2.【答案】C【解析】解:由题意得,且,即且故选:根据分式和二次根式有意义的条件求出x的取值范围即可.本题考查的是二次根式及分式有意义的条件,熟知以上知识是解题的关键.3.【答案】B【解析】解:,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:根据算术平方根和二次根式的运算法则去判断即可.此题主要考查了二次根式的性质和运算,熟练掌握二次根式的运算法则是解题的关键.4.【答案】A【解析】解:设、、分别为x、x、2x,则,解得,,、、分别为、、,,A错误,符合题意,,B正确,不符合题意;,C正确,不符合题意;,D正确,不符合题意;故选:根据三角形内角和定理分别求出、、,根据勾股定理、等腰三角形的概念判断即可.本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于是解题的关键.5.【答案】C【解析】解:设每相邻两个点间的距离是则①的周长,①面积;②的周长,②的面积综上所述,这两个四边形的面积相同,但周长不相同.故选:根据勾股定理、周长公式、面积公式计算每个图形的周长和面积,然后进行比较.考查了图形的周长和面积计算,勾股定理.注意数形结合在解题中的应用.6.【答案】B【解析】解:依照题意画出图形,如图所示.在中,,,在中,,,,故选:依照题意画出图形,在中,利用勾股定理可求出OA的长度,结合AC的长度可得出OC的长度,在中,利用勾股定理可求出OD的长度,再利用即可求出BD 的值.本题考查了勾股定理,依照题意画出图形,利用数形结合解决问题是解题的关键.7.【答案】C【解析】解:在中,,,,如图,当点C在点D右边时,;如图,当点C在点D左边时,,故BC的长为:5或故选:在中,根据,,求得,然后分情况讨论即可求得BC 的长.本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.8.【答案】A【解析】解:,,,,即,,,即的面积是,故选:根据勾股定理得到,根据完全平方公式求出,得到,得到答案.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么9.【答案】B【解析】解:,,,,,,是直角三角形,设点C到BD的距离为h,故选:先根据勾股定理求出BC,再根据勾股定理的逆定理可得是直角三角形,再根据三角形的面积公式即可求解.本题考查了勾股定理,勾股定理的逆定理,熟悉勾股定理,勾股定理的逆定理的计算是解题的关键.10.【答案】B【解析】解:如图,小虫爬行的最短路程故选:先将图形展开,再根据两点之间线段最短,由勾股定理可得出.此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.11.【答案】B【解析】解:从表中可知:a依次为6,8,10,12,14,16,18,20,22,24,,即,b依次为8,15,24,35,48,,即当时,,c依次为10,17,26,37,50,,即当时,,所以当时,故选:先根据表中的数据得出规律,根据规律求出b、c的值,再求出答案即可.本题考查了勾股数,能根据表中数据得出,是解此题的关键.12.【答案】C【解析】解:将转化为,代入得,,可理解为点到与的距离.如图:找到C关于x轴的对称点,可见,AB的长即为求代数式的最小值.,代数式的最小值为故选:将代数式转化为,理解为点到与的距离,利用勾股定理解答即可.本题考查利用轴对称求最短路线的问题,难度较大,解题关键是将求代数式的值巧妙地转化为几何问题.13.【答案】【解析】解:根据题意,结合图形可知:,,在中,故答案为:分析题意,如图进行点标注,则有米,米,在中,利用勾股定理可得本题考查的是勾股定理应用类型的题目,解题的关键是构造直角三角形.14.【答案】13或【解析】解:①12cm是直角边,第三根木棒要取的长度是;②12cm是斜边,第三根木棒要取的长度是;故答案为:13或分2种情况:①12cm是直角边;②12cm是斜边;根据勾股定理求出第三根木棒的长即可求解.考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.15.【答案】【解析】解:将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,当杯子中筷子最短是等于杯子的高时为12cm,最长时等于杯子斜边长度,即:,的取值范围是:,即故答案为:根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.16.【答案】【解析】解:在中,,,,由折叠的性质可得,≌,,,,设,则,,在中,解得,即根据勾股定理可得,由折叠的性质可得≌,则,,则,在中根据勾股定理求AG的即可.此题主要考查折叠的性质,综合利用了勾股定理的知识.认真分析图中各条线段的关系,也是解题的关键.17.【答案】【解析】解:,,,,即为等腰直角三角形,由勾股定理得因为是由旋转得到的,则这两个三角形全等,根据所以,可得为等腰直角三角形,由勾股定理即可求解.此题主要考查学生对旋转的性质及等腰三角形的性质的掌握情况.18.【答案】【解析】解:,,,,根据图形,每3个图形为一个循环组,,所以,第13个三角形的直角顶点在x轴上,横坐标为,所以,第13个三角形的直角顶点的坐标为,故答案为:利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.本题考查了坐标与图形的变化-旋转,仔细观察图形,判断出旋转规律“每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合”是解题的关键.19.【答案】【解析】解:计算;;,,;①根据上面的规律,可得,,故答案为:n,;②根据二次根式的性质,零指数幂,绝对值的性质求解即可;根据二次根式的性质,二次根式的乘除法则求解即可;先将变形为,再根据完全平方公式求解即可;①根据给定的规律填空即可;②先分母有理化,再求值即可.本题考查了二次根式的化简与求值,规律型,熟练掌握二次根式的性质是解题的关键.20.【答案】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一【解析】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一利用勾股定理,判断即可.利用分割法求解即可.取格点E,连接BE,DE即可.本题考查作图-应用与设计作图,勾股定理以及逆定理,四边形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】证明:连接BD交AC于O,四边形ABCD是平行四边形,,,,,,,,,在和中,,≌,,,又,四边形BEDF为平行四边形;解:由得:,,,,【解析】连接BD交AC于O,由平行四边形的性质得出,,,,由平行线的性质得出,证明≌得出,得出,即可得出结论;由得:,由勾股定理得出OB的长,即可得出结果.此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.22.【答案】6【解析】解:在中,由勾股定理得:,故答案为:6;过点F作,交DO延长线于H,如图所示:则,在中,由勾股定理得:,,是等腰直角三角形,,,的度数为在中,由勾股定理求出AB即可;过点F作,交DO延长线于H,由勾股定理得,再证是等腰直角三角形,得,进而得出答案.本题考查了勾股定理的应用、等腰直角三角形的判定与性质等知识,熟练掌握勾股定理和等腰直角三角形的性质是解题的关键.23.【答案】解:由勾股定理得,,设,则,在中,由勾股定理得,,解得,;当时,,为等腰三角形;当时,如图,,,,,,;当时,如图,过D作于点E,,设,则,,即,解得,综上,当或3或时,为等腰三角形.【解析】由勾股定理直接求得AC,设,由勾股定理列出x的方程,便可求得AB;分三种情况:;;分别进行解答便可.本题考查了勾股定理,等腰三角形的性质,分情况讨论是解题的关键.。

南昌市东湖区八年级下月考数学试卷(3月份)含答案解析

南昌市东湖区八年级下月考数学试卷(3月份)含答案解析

2022-2023江西省南昌市东湖区八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠33.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=14.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.256.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.368.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=.10.(3分)计算﹣3的结果是.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是.12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=cm.13.(3分)“等边三角形是锐角三角形”的逆命题是.14.(3分)若1<x<2,则|x﹣1|+的值为.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.18.(6分)已知:,,求的值.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=.(n为正整数)(2)化简计算: +++…+.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.2016-江西省南昌市东湖区八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:B.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选:D.3.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=1【解答】解:A、+不能合并,故A错误;B、2+不能合并,故B错误;C、3﹣=2,故C正确;D、==,故D错误;故选:C.4.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定【解答】解:当第三边是斜边时,则第三边==5;当第三边是直角边时,则第三边==.故选:C.5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.25【解答】解:根据题意知正方形的B面积为144,正方形C的面积为169,则字母A所代表的正方形的面积=169﹣144=25.故选:D.6.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b【解答】解:由数轴可得:∵﹣1<a<0,0<b<1,∴a﹣b<0,∴﹣+=﹣a﹣b﹣(a﹣b)=﹣2a.故选:C.7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.36【解答】解:∵,且是整数,∴是整数,即6n是完全平方数;∴n的最小正整数值为6.故选:C.8.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm【解答】解:AB就是蚂蚁爬的最短路线.但有三种情况:当:AD=3,DB=4+6=10.AB==.当AD=4,DB=6+3=9.AB=.当AD=6,DB=3+4=7AB=.所以第三种情况最短.故选:C.二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=1.【解答】解:∵最简二次根式与可以合并,∴1+2a=5﹣2a,∴4a=4,∴a=1,故答案为1.10.(3分)计算﹣3的结果是2.【解答】解:原式=3﹣=2.故答案为:2.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是24.【解答】解:∵三角形的三边长分别为6、8、10,而62+82=102,∴此三角形是直角三角形,6×8=24.∴S△=×12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=6cm.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,则∠A=30°,∠C=3×30°=90°,∵30°的角所对的直角边是斜边的一半,∴AB=3×2=6cm.13.(3分)“等边三角形是锐角三角形”的逆命题是锐角三角形是等边三角形.【解答】解:其逆命题是:锐角三角形是等边三角形.14.(3分)若1<x<2,则|x﹣1|+的值为1.【解答】解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴原式=x﹣1+2﹣x=1.故答案为:1.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:=(n+1).【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.【解答】解:(1)原式=3﹣2+=3﹣2+2=3;(2)原式=1﹣2+2﹣3(﹣1)+1=3﹣2﹣3+3+1=7﹣5.18.(6分)已知:,,求的值.【解答】解:=…(2分)=,…(4分)当x=+1,y=﹣1时,原式===.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.【解答】解:△DEF是等腰三角形.理由:∵DH是EF边上的中线,EF=30cm,∴EH=15cm,∵DE=17cm,DH=8cm,∴EH2+DH2=DE2,∴DH⊥EF,∴△DHE≌△DHF,∴DE=DF,∴△DEF是等腰三角形.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.【解答】解:(1)∵将长方形纸片ABCD折叠,使C点与A点重合,∴AE=CE,∴BE=BC﹣CE=BC﹣AE=8﹣AE,∵∠B=90°,∴AB2+BE2=AE2,即42+(8﹣AE)2=AE2,∴AE=5;(2)解:过点F作FG⊥BC于G∵EF是直角梯形AECD的折痕∴AE=CE,∠AEF=∠CEF.又∵AD∥BC∴∠AEF=∠AFE.∴AE=AF.在Rt△ABE中,设BE=x,AB=4,AE=CE=8﹣x.x2+42=(8﹣x)2,解得x=3.在Rt△FEG中,EG=BG﹣BE=AF﹣BE=AE﹣BE=5﹣3=2,FG=4,∴EF==2.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)【解答】解:△CMN是直角三角形.理由如下:设正方形ABCD的边长为4a,则AB=BC=CD=AD=4a.∵M是AB的中点,∴AM=BM=2a.∵AN=AD,AD=4a,∴AN=a,DN=3a.∵在Rt△AMN中,满足AM2+AN2=MN2,且AM=2a,AN=a,∴MN=a.同理可得:MC=a,NC=5a.∵MN2+MC2=(a)2+(a)2=25a2,NC2=(5a)2=25a2,∴MN2+MC2=NC2,∴△CMN是直角三角形.22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=+.(n为正整数)(2)化简计算: +++…+.【解答】解:(1)=+,故答案为: +;(2)+++…+=﹣1+﹣+﹣+…+﹣=﹣1.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【解答】解:(1)AC+CE=+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.。

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年河南省周口市项城四中等五校八年级(下)月考数学试卷(3月份)1. 下列式子中,是不等式的是( )A. B. C. D.2. 如图,,添加一个条件,可使用“HL”判定与全等.以下给出的条件适合的是( )A.B.C.D.3. 若,则下列不等式正确的是( )A. B. C. D.4.如图,在中,,点D是边BC的中点,如果,那么的度数为( )A. B. C. D.5. 如图,数轴上表示的不等式的解集是( )A. B. C. D.6. 下列命题的逆命题是真命题的是( )A. 若,,则B. 三边长为3,4,5的三角形为直角三角形C. 在一个角的内部,到角的两边距离相等的点在这个角的平分线上D. 若,则7. 如图,为促进某地旅游业的发展,当地旅游部门要在三条公路AB,AC,BC两两相交后围成的三角形区域内修建一个度假村,若这个度假村到三条公路的距离相等,则度假村应建在( )A. 三边的垂直平分线的交点上B. 三条角平分线的交点上C. 三条高线的交点上D. 三边中线的交点上8. 某经销商销售一批电话手表,第一个月以600元/块的价格售出60块,第二个月降价处理,以500元/块的价格将这批电话手表全部售出,这两个月的销售总额不少于86000元.则这批电话手表的总数量块应满足的不等式为( )A. B.C. D.9. 如图,在中,,,,点P,D分别为BC,AB上的动点,则的最小值是( )A. 2B. 3C. 4D.10. 如图,在中,BC的垂直平分线DN与的平分线AD相交于点D,于点E,于点F,则有下列结论:①;②;③;④其中正确结论的个数有( )A. 0个B. 1个C. 2个D. 3个11. 请写出一个解集为的不等式______.12. 用反证法证明命题“一个三角形中不能有两个角是钝角”时,应先假设一个三角形中______ .13. 不等式的正整数解有______ 个.14. 如图,在中,,,边AB的垂直平分线交BC于点D,交AB于点E,连接若,则______ .15. 如图,在中,,,,D是BC的中点,E是AC上一动点,将沿DE折叠到,连接,当是直角三角形时,CE的长为______ .16. 将下列不等式化成“”或“”的形式:;17. 如图,点D,E在线段BC上,,,,求证:为等边三角形.18. 请在内部找一点P,使点P到AC,BC的距离相等,且尺规作图,保留作图痕迹,不写作法19. 对于任意实数a,b,定义关于“⊗”的一种运算规则如下:例如:若的值不小于,求x的取值范围,并在数轴上表示出来. 20. 如图,在中,AD是BC边上的中线,于点E,于点F,且求证:≌;21.如图,在中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM 与EN相交于点若,则的周长为______ ;若,求的度数.22. 如图1,在中,,的平分线交于点O,过点O作分别交AB,AC于点E,直接写出线段EF与BE,CF之间的数量关系:______.如图2,若中的平分线BO与三角形外角平分线CO交于点O,过O点作交AB于点E,交AC于点则EF与BE,CF之间的数量关系又如何?说明你的理由.23.如图,在中,,,,P,Q是边上的两个动点.其中点P从点A出发,沿方向运动,速度为每秒1cm;点Q从点B出发,沿方向运动,速度为每秒2cm;两点同时开始运动,设运动时间为t秒.①斜边AC上的高为______ cm;②当时,PQ的长为______当点Q在BC边上运动时,出发几秒钟后,是等腰三角形?当点Q在CA边上运动时,直接写出所有能使成为等腰三角形的t的值.答案和解析1.【答案】A【解析】解:A、属于不等式,故本选项符合题意;B、是多项式,不属于不等式,故本选项不合题意;C、是方程,不属于不等式,故本选项不合题意;D、是单项式,不属于不等式,故本选项不合题意;故选:根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“”号表示不等关系的式子也是不等式可得答案.本题考查了不等式的定义,能熟记不等式的定义的内容是解此题的关键,注意:不等号有:>,<,,,2.【答案】A【解析】解:添加,理由如下:,在和中,,,故选:根据直角三角形全等的判定方法HL即可确定答案.本题考查了直角三角形的全等的判定,熟练掌握HL是解题的关键.3.【答案】D【解析】解:,,故A不符合题意;,,故B不符合题意;,,故C不符合题意;,,故D符合题意,故选:根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以或除以同一个正数,不等号的方向不变;③不等式的两边同时乘以或除以同一个负数,不等号的方向改变,分别判断即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.4.【答案】B【解析】解:,D是BC中点,是的角平分线,,,故选:根据等腰三角形的性质可得到AD是顶角的角平分线,再根据三角形内角和定理不难求得顶角的度数,最后根据角平分线的定义即可求解.此题主要考查等腰三角形的性质及三角形内角和定理,掌握等腰三角形的性质是解题的关键.5.【答案】C【解析】解:依题意得:数轴表示的解集是:,故选:本题先观察数轴表示的不等式的解集,再看选项是否与题意相符.若是,则该选项为正确的答案.本题考查的是数轴与不等式的结合.明确在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左是解题的关键.6.【答案】C【解析】解:A、若,,则的逆命题是若,则,,是假命题,不符合题意;B、三边长为3,4,5的三角形为直角三角形的逆命题是直角三角形的三边长为3,4,5,是假命题,不符合题意;C、在一个角的内部,到角的两边距离相等的点在这个角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,是真命题,符合题意;D、若,则的逆命题是若,则,是假命题,不符合题意;故选:根据有理数的乘法法则、勾股定理、角平分线的性质、绝对值的性质判断即可.本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】B【解析】解:这个度假村到三条公路的距离相等,度假村应建在三条角平分线的交点上.故选:根据角平分线的性质进行判断.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.8.【答案】C【解析】解:设这批电话手表有x块,则降价后售出块,依题意得:,故选:设这批电话手表有x块,则降价后售出块,利用销售总额=销售单价销售数量,结合销售总额超过了86000万元,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.本题考查了由实际问题抽象出一元一次不等式,正确的列出不等式是解题的关键.9.【答案】C【解析】解:作A关于BC的对称点,连接,则的长度就是的最小值,连接,,,,,,,,为等边三角形,,,的最小值是4,故选:作A关于BC的对称点,连接,,则的长度就是的最小值,,,由已知求得,得到为等边三角形,则本题考查的是最短线路问题及等边三角形的性质和判定,熟知两点之间线段最短的知识是解答此题的关键.10.【答案】D【解析】解:的垂直平分线过点D,,平分,,,,,在和中,,,,故①正确,符合题意;,,,故②正确,符合题意;,,,,即,,故③正确,符合题意;的度数不能确定,④不正确,不符合题意.故选:利用HL证明,可判断①正确;根据全等三角形的性质,可判断②正确;利用角度的计算可对③进行判断;由于的度数不能确定,则可对④进行判断.本题考查了全等三角形的判定与性质、角平分线的性质等知识,证明是解题的关键.11.【答案】答案不唯一【解析】解:由题意可得:答案不唯一故答案为:答案不唯一直接利用不等式的解集写出一个符合题意不等式即可.此题主要考查了不等式的解集,正确掌握不等式解法是解题关键.12.【答案】有两个角是钝角【解析】解:用反证法证明命题“一个三角形中不能有两个角是钝角”,应先假设这个三角形有两个角是钝角,故答案为:有两个角是钝角.根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.13.【答案】2【解析】解:不等式的正整数解为1,故答案为:从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.【答案】3【解析】解:是AB的垂直平分线,,,,又,,故答案为:根据线段垂直平分线上的点到两端点的距离相等可得,根据等边对等角可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半可得本题考查了直角三角形角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到两端点的距离相等的性质以及三角形的一个外角等于与它不相邻的两个内角的和,掌握含角的直角三角形的性质是解题的关键.15.【答案】或【解析】解:如图1,当时,,,,,A共线,,,,设,则,在中,则有,解得,如图2,当时,,,,,综上所述,满足条件的CE的值为或故答案为:或两种情形:如图1,当时,如图2,当时,由直角三角形的性质分别求解即可.本题考查翻折变换折叠问题,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.16.【答案】解:两边同时减去4x,得,即;两边同时加上2,得,两边同时乘,得【解析】根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,求解即可;根据不等式的性质①不等式的两边同时加上或减去同一个数或同一个含有字母的式子,不等号的方向不变,③不等式的两边同时乘以或除以同一个负数,不等号的方向改变,求解即可.本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.17.【答案】证明:,,在和中,,≌,,为等腰三角形.,为等边三角形.【解析】根据SAS证明≌,可得,所以为等腰三角形.再根据有一个角是60度的等腰三角形是等边三角形即可证明结论.本题考查的是全等三角形的判定和性质、等边三角形的判定,掌握全等三角形的判定定理和性质定理是解题的关键.18.【答案】解:如下图:点P即为所求.【解析】作的平分线和线段AC的垂直平分线的交点即可.本题考查了复杂作图,掌握角平分线和线段的垂直平分线的性质是解题的关键.19.【答案】解:的值不小于,,解得:不等式的解集在数轴上表示为:.【解析】利用新定义的规定得到关于x的不等式,解不等式即可得出结论.本题主要考查了一元一次方程的解法,一元一次不等式的解法,本题是新定义型,正确理解新定义的规定并熟练运用是解题的关键.20.【答案】证明:是BC边上的中线,,于点E,于点F,,在和中,,;,,是BC边上的中线,【解析】根据中点的定义得到,利用HL证明;根据全等三角形的性质得到,则,根据等腰三角形的性质即可得解.此题考查了全等三角形的判定与性质,利用是解题的关键.21.【答案】5【解析】解:,EN分别垂直平分边AC和边BC,,,的周长,,的周长,故答案为:5;,,,,,,,,根据线段垂直平分线的性质得到,,再根据三角形的周长公式计算即可;根据三角形内角和定理求出,根据对顶角相等求出,根据等腰三角形的性质得到,,根据三角形内角和定理计算,得到答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.【答案】【解析】解:平分,CO平分,,,,,,,,,,,,故答案为:;,理由是:平分,,,,,,同理可得:,,利用角平分线与平行线证明和是等腰三角形即可;利用角平分线与平行线证明和是等腰三角形即可.本题考查了等腰三角形的判定与性质,平行线的性质,结合图形找到角与边的关系是解题的关键.23.【答案】【解析】解:①设斜边AC上的高为h cm,,,,,,,解得,故答案为:②如图1,点P的速度为每秒1cm,点Q的速度为每秒2cm,,,当时,点Q在BC边上,,,,,故答案为:如图2,点Q在边BC上运动,,,是等腰三角形,且,,,,解得,出发秒后,是等腰三角形.点Q在边CA上运动,,当为等腰三角形,且时,如图3,则,,,,,,,解得;当为等腰三角形,且时,如图4,,解得;当为等腰三角形,且时,如图5,作于点D,则,由得,,,,,解得,综上所述,能使成为等腰三角形的t 的值为11或12或①设斜边AC 上的高为hcm ,由,,,根据勾股定理求得,则,求出h 的值即得到问题的答案;②当时,点Q 在BC 边上,,可求得,,则,于是得到问题的答案;由,是等腰三角形,得,则,解方程求出t 的值即可;由点Q 在边BC 上运动,得,再分三角情况讨论,一是,则,由等角的余角相等得,则,所以,则;二是,则;三是,作于点D ,则,,所以,,则,解方程求出相应的t 值即可.此题重点考查等腰三角形的判定与性质、根据面积等式求线段的长度、勾股定理、等角的余角相等、动点问题的求解、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。

八年级下册第1次月考试题--数学(含答案) (18)

八年级下册第1次月考试题--数学(含答案) (18)

八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.已知方程 的根为x=1,则k=( )
A.4B.﹣4C.1D.﹣1
【考点】分式方程的解.
【分析】分式方程去分母转化为整式方程,把x=1代入整式方程计算即可求出k的值.
【解答】解:分式方程去分母得:2kx+5=k+x,
把x=1代入得:2k+5=k+1,
解得:k=﹣4,
故选B
【点评】此题考查了分式方程的解,始终注意分式方程分母不为0这个条件.
【分析】由速度=总路程÷时间即可列式.
【解答】解:所用时间为:b﹣c.∴林林的骑车速度为 .
【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.
三、解答题:(第20-24题各7分,第25、26题各9分第27题10分63分)
20.化简 .
【考点】分式的乘除法.
【分析】首先将分式的与分母分解因式进而化简求出答案.
∴横坐标相同,纵坐标互为相反数,
∴P1和P2关于x轴对称的点,
故选C.
【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于x轴对称的点,横坐标相同,纵坐标互为相反数.
11.一个正方形在平面直角坐标系中三个顶点的坐标为(﹣2,﹣3),(﹣2,1),(2,1),则第四个顶点的坐标为( )
18.关于x的方程ax=3x﹣5有负数解,则a的取值范围是______.
19.林林家距离学校a千米,骑自行车需要b分钟,若某一天林林从家中出发迟了c分钟,则她每分钟应骑______千米才能不迟到.
三、解答题:(第20-24题各7分,第25、26题各9分第27题10分63分)
20.化简 .
21.解方程:
14.化简 得 .
【考点】约分.
【分析】先把分母因式分解,然后约分即可.
【解答】解:原式=
= .
故答案为 .
【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
15.计算: =﹣ .
【考点】分式的加减法.
【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.
【解答】解:原式= ×9÷1=3.
故答案为:3.
【点评】此题主要考查了零次幂、负整数指数幂,关键是掌握计算公式和计算顺序.
13.用科学记数法表示:﹣0.00002006=﹣2.006×10﹣5.
【考点】科学记数法—表示较小的数.
【分析】用科学记数法表示一个数的方法是
(1)确定a:a是只有一位整数的数;
10.已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2( )
A.关于原点对称B.关于y轴对称
C.关于x轴对称D.不存在对称关系
【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.
【分析】根据,横坐标相同,纵坐标互为相反数,即可求出P1和P2关于x轴对称的点.
【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),
A.(2,2)B.(3,2)C.(2,﹣3)D.(2,3)
二、填空题:
12. =______.
13.用科学记数法表示:﹣0.00002006=______.
14.化简 得______.
15.计算: =______.
16.方程 的解是x=______.
17.写出一个以x=2为根且可化为一元一次方程的分式方程是______.
4.下列化简正确的是( )
A. B. C. D.
5.分式 和 的最简公分母为( )
A.12x2yzB.12xyzC.24x2yzD.24xyz
6.化简分式 的结果是( )
A. B. C. D.
7.如果分式 的值为零,则x的值为( )
A.2B.﹣2C.0D.±2
8.若分式方程 有增根,则m等于( )
A.3B.﹣3C.2D.﹣2
【分析】根据分式有意义分母不为零可得2x﹣4≠0,再解即可.
【解答】解:由题意得:2x﹣4≠0,
解得:x≠2,
故选:B.
【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
3.下列计算正确的是( )
A.(﹣2)0=﹣1B. C.﹣2﹣3=﹣8D.
【考点】负整数指数幂;零指数幂.
八年级(下)第一次月考数学试卷(解析版)
一、选择题:
1.分式 中的x,y都扩大2倍,则分式的值( )
A.不变B.扩大2倍C.扩大4倍D.缩小2倍
2.使分式 有意义的x的取值范围是( )
A.x=2B.x≠2C.x=﹣2D.x≠﹣2
3.下列计算正确的是( )
A.(﹣2)0=﹣1B. C.﹣2﹣3=﹣8D.
22.化简:
23.已知 .试说明不论x为何值,y的值不变.
24.若方程 的解是非正数,求a的取值范围.
25.在制作某种零件时,甲做250个零件与乙做200个零件所用的时间相同,已知甲每小时比乙多做10个零件,则甲、乙每小时各做多少个零件?
26.某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格?
A.(2,2)B.(3,2)C.(2,﹣3)D.(2,3)
【考点】坐标与图形性质.
【分析】根据点的坐标求得正方形的边长,然后根据第三个点的坐标的特点将第四个顶点的坐标求出来即可.
【解答】解:∵正方形的两个顶点为:(﹣2,﹣3),(﹣2,1),
∴正方形的边长为:1﹣(﹣3)=4,
∵第三个点的坐标为:(2,1),
【解答】解:原式= •
=a.
【点评】此题主要考查了分式的乘除运算,正确分解因式再化简是解题关键.
21.解方程:
【考点】解分式方程.
【分析】本题的最简公分母是(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.
【解答】解:方程两边都乘(x﹣2),
得:3=2(x﹣2)﹣x,
∴x=7,
经检验,x=7是原方程的根.
解得x=5,经检验x=5是原方程的解.
【点评】解分式方程的关键是两边同乘以最简公分母,将分式方程转化为整式方程,易错点是忽视验根.
17.写出一个以x=2为根且可化为一元一次方程的分式方程是3﹣ =0.
【考点】分式方程的解.
【分析】根据分式方程的解,即可解答.
【解答】解:3﹣ =0,
故答案为:3﹣ =0.
【点评】本题考查了分式方程的解,解决本题的关键是熟记分式方程的解.
18.关于x的方程ax=3x﹣5有负数解,则a的取值范围是a>3.
【考点】一元一次方程的解.
【分析】把a看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.
【解答】解:由方程ax=3x﹣5得,
x= ,
【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
(3)分式方程里单独的一个数和字母也必须乘最简公分母.
27.(10分)(2014秋•肥东县期末)小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:
(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)
【考点】分式的基本性质.
【分析】根据分式的基本性质,即可解答.
【解答】解:A、 ,故本选项错误;
B、 ,故本选项错误;
C、 =﹣1,正确;
D、 =1,故本选项错误;
故选:C.
【点评】本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质.
5.分式 和 的最简公分母为( )
A.12x2yzB.12xyzC.24x2yzD.24xyz
∵方程有负数解,
∴ <0,
不等式等价于3﹣a<0,
解得a>3.
故答案为:a>3.
【点评】本题考查了一元一次方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
19.林林家距离学校a千米,骑自行车需要b分钟,若某一天林林从家中出发迟了c分钟,则她每分钟应骑 千米才能不迟到.
【考点】列代数式(分式).
【考点】最简公分母.
【分析】找分式的最简公分母,关键是要找出分母中各个同类项的最小公倍数.
【解答】解:﹣ 的分母为6x2y, 的分母为4xyz,
∵6,4的最小公倍数是12,
∴分式的最简公分母为12x2yz.
故选A.
【点评】本题考查了分式的最简公分母,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.
【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.
【解答】解:分式方程去分母得:x﹣3=m,
由分式方程有增根,得到x﹣1=0,即x=1,
把x=1代入整式方程得:m=﹣2,
故选D
【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
【解答】解:原式= =﹣ ,
故答案为:﹣
【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
16.方程 的解是x=5.
【考点】解分式方程.
【分析】观察可确定方程最简公分母为(x﹣3)(x﹣2),去分母,化为整数方程求解.
【解答】解:方程两边同乘(x﹣3)(x﹣2),得2(x﹣2)=3(x﹣3),
八年级(下)第一次月考数学试卷
相关文档
最新文档