初二数学培优卷

合集下载

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.3.如果一个n边形的内角和等于它的外角和的3倍,则n=______.【答案】8【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,解得:n=8,故答案为:8.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.4.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=______.【答案】120【解析】【分析】根据角平分线的定义可得出∠CBF=12∠ABC、∠BCF=12∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.【详解】∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=12∠ABC,∠BCF=12∠ACB.∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣12(∠ABC+∠ACB)=120°.故答案为120°.【点睛】本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.5.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=12∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.二、八年级数学三角形选择题(难)7.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.8.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A .45°B .50°C .60°D .65°【答案】B【解析】分析:过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC ,然后根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠MBC+∠MCB 的度数,然后利用三角形内角和定理求出∠BMC 的度数,从而得解. 详解:如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M 、N ,∴BN 平分∠MBC ,CN 平分∠MCB ,∴NE=NG ,NF=NG ,∴NE=NF ,∴MN 平分∠BMC , ∴∠BMN=12∠BMC , ∵∠A=60°, ∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23 (∠ABC+∠ACB)=2 3×120°=80°. 在△BMC 中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°. ∴∠BMN=12×100°=50°; 故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.9.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A.270B.210C.180D.150【答案】B【解析】【分析】利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB与DE交于点G,AB与EF交于点H,∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.10.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.11.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B .【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【解析】【分析】 根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.三、八年级数学全等三角形填空题(难)13.在Rt△ABC中,∠BAC=90°AB=AC,分别过点B、C做经过点A的直线的垂线BD、CE,若BD=14cm,CE=3cm,则DE=_____【答案】11cm或17cm【解析】【分析】分两种情形画出图形,利用全等三角形的性质分别求解即可.【详解】解:如图,当D,E在BC的同侧时,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥DE,∴∠BDA=90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE,∵CE⊥DE,∴∠E=90°,在△BDA和△AEC中,ABD CAED EAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDA≌△AEC(AAS),∴DA=CE=3,AE=DB=14,∴ED =DA +AE =17cm .如图,当D ,E 在BC 的两侧时,同法可证:BD =CE +DE ,可得DE =11cm ,故答案为:11cm 或17cm .【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.14.如图,在△ABC 中,∠C=090,点D 在AB 上,BC=BD,DE ⊥AB 交AC 于点E ,△ABC 的周长为12,△ADE 的周长为6,则BC 的长为_______【答案】3【解析】【分析】连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.【详解】如图:连接BE ,DE ⊥AB ,090BDE ∴∠=,在Rt BDE ∆和Rt BCE ∆中,BE BE BD BC=⎧⎨=⎩, ∴Rt BDE ∆≅ Rt BCE ∆,DE CE ∴=,∴△ABC的周长=AB+BC+AC=2BC+AD+AE+DE=12,△ADE的周长= AD+AE+DE =6,∴BC=3,故答案为3.【点睛】本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE构造全等三角形是解答此题的关键.15.如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=______(用含α的式子表示)【答案】1206α︒-【解析】【分析】在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.【详解】解:如图所示,在AC上截取AD=AB,连接DI,点I是△ABC的角平分线的交点所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,在△ABI和△ADI中,AB=ADBAI=DAIAI=AI⎧⎪∠∠⎨⎪⎩∴△ABI≌△ADI(SAS)∴DI=BI又∵AB +BI =AC ,AB+DC=AC∴DI=DC∴∠DCI=∠DIC设∠DCI=∠DIC=β则∠ABI=∠ADI=2∠DCI=2β在△ABC 中,∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,∴180=3066β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI121802αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α︒-【点睛】本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.16.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.【答案】235或7或8 【解析】【分析】易证∠MEC =∠CFN ,∠MCE =∠CNF .只需MC =NC ,就可得到△MEC 与△CFN 全等,然后只需根据点M 和点N 不同位置进行分类讨论即可解决问题.【详解】①当0≤t<4时,点M在AC上,点N在BC上,如图①,此时有AM=2t,BN=3t,AC=8,BC=15.当MC=NC即8−2t=15−3t时全等,解得t=7,不合题意舍去;②当4≤t<5时,点M在BC上,点N也在BC上,如图②,若MC=NC,则点M与点N重合,即2t−8=15−3t,解得t=235;当5≤t<233时,点M在BC上,点N在AC上,如图③,当MC=NC即2t−8=3t−15时全等,解得t=7;④当233≤t<232时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t−8=8,解得t=8;综上所述:当t等于235或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.故答案为:235或7或8.【点睛】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.17.在ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.18.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=12∠BAC=12×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=12(180°﹣∠BAC)=12×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.四、八年级数学全等三角形选择题(难)19.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.20.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.21.如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰 Rt△ABE,连接 ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.②③④【答案】C【解析】【分析】①易证∠CBE=∠DAE ,即可求证:△ADE ≌△BCE ;②根据①结论可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△BCE (SAS );故①正确;②∵△ADE ≌△BCE ,∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故④正确;综上①②③④都正确,故选:C .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE ≌△CDE 是解题的关键.22.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )A .1324S S S S +=+B .1234S S S S +=+C .1423S S S S +=+D .13S S =【答案】A【解析】【分析】作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.【详解】四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,∴S 1+S 3=a+b+c+d= S 2+S 4故选A【点睛】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.23.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定【答案】C【解析】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.24.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524++;⑤当BD=32B时,ED=5AB;其中正确的有()A.5个 B.4个 C.3 个 D.2个【答案】B【解析】解:∵∠BAC=∠EAD=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△AEC≌△ADB,故①正确;∵△AEC≌△ADB,∴∠ACE=∠ABD=45°,∵∠ACB=45°,∴J IAO ECB=90°,∴EC⊥BC,故②正确;∵四边形ADCE的面积=△ADC的面积+△ACE的面积=△ADC的面积+△ABD的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD=2,∴EC=2,DC=BC-BD=422=32,∴DE2=DC2+EC2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为______cm .【答案】310【解析】解:连接BD ,在菱形ABCD 中,∵∠ABC =120°,AB =BC =AD =CD =10,∴∠A =∠C =60°,∴△ABD ,△BCD 都是等边三角形,分三种情况讨论:①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D 重合时,PA 最小,最小值PA =10;②若以边PB 为底,∠PCB 为顶角时,以点C 为圆心,BC 长为半径作圆,与AC 相交于一点,则弧BD (除点B 外)上的所有点都满足△PBC 是等腰三角形,当点P 在AC 上时,AP 最小,最小值为10310-;③若以边PC 为底,∠PBC 为顶角,以点B 为圆心,BC 为半径作圆,则弧AC 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点A 重合时,PA 最小,显然不满足题意,故此种情况不存在;综上所述,PA 的最小值为310(cm ).故答案为:310.点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.26.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).27.在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,36ABO ∠=︒,在x 轴或y 轴上取点C ,使得ABC ∆为等腰三角形,符合条件的C 点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个;若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点,但其中一个与点A 重合,故此时符合条件的点有3个;线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.28.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.29.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30︒,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=2 3 .故答案为2 3 .点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.30.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是AC的垂直平分线,∴AC=2AE=8,DA=DC,∵△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC的周长=AB+BC+AC=15+8=23cm,故答案是:23cm.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD ,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.32.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC 36060290150∠=-⨯-= , BP PC =,()PBC 180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD 是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC ,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC ⊥AB ,③正确,所以四个命题都正确,故选D .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.33.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.34.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l 表示小河,,P Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ).A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.35.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.36.等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°【答案】D【解析】分析:由等腰三角形的一个角是40度,可以分为若40°的角是顶角与若40°的角是底角去分析求解,小心别漏解.详解:若40°的角是顶角,则底角为:(180°﹣40°)=70°,∴此时另外两个角的度数是70°,70°;若40°的角是底角,则另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,∴此时另外两个角的度数是100°,40°.∴另外两个角的度数是:70°、70°或40°、100°.故选:D.点睛:此题考查了等腰三角形的性质.解题的关键是注意分类讨论思想的应用,注意别漏解.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是( )A.0B.1C.2D.3【答案】D【解析】【分析】把已知的式子化成12[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解即可.【详解】原式=12(2a2+2b2+2c2-2ab-2ac-2bc)=12[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)]=12[(a-b)2+(a-c)2+(b-c)2]=12×(1+4+1)=3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.38.已知n16221++是一个有理数的平方,则n不能取以下各数中的哪一个() A.30 B.32 C.18-D.9【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案。

初二数学培优试卷

初二数学培优试卷

初二数学培优试卷(一)1. 若a 、b 、c 是3个不同的正整数,且满足16=abc ,则ac b c b a +-可能的最大值是( ) A.249 B.253 C.263 D.2642. 满足2011422=-y x 的整数对()y x ,的组数是( ) A.0 B.1 C.2 D.33. 若11=-m m ,则m m+1的值等于( ) A.25 B.25- C.5- D.5 4.若关于x 的方程0322=+-m x x 的一个根大于2-且小于1-,另一个根大于2且小于3,则m 的取值范围是( )A.89<mB.8914-<<m C.59--<<m D.214--<<m 5.设23-=a ,32-=b ,25-=c ,则a ,b ,c 的大小关系是( )A.c a b <<B.c b a <<C.a b c <<D.a c b <<6.对于实数x ,符号[]x 表示不大于x 的最大整数,例如:[]314.3=,[]8-59.7-=.则关于x 的方程4773=⎥⎦⎤⎢⎣⎡+x 的整数根有( )个 A.4 B.1 C.2 D.37. ABC ∆的三边长2=BC ,3=CA ,4=AB ,a h ,b h ,c h 分别表示BC 、CA 、AB 边上的高,则()⎪⎪⎭⎫⎝⎛++++c b a c b a h h h h h h 111的值是( ) A. 641 B.439 C.538 D.738 8.在四边形ABCD 中,BC AD //,︒=∠80ABC ,BC AD AB 21==,AB CH ⊥于点H ,连接DH .则=∠CHD ( )A.︒30B.︒35C.︒40D.︒45 9.方程组⎩⎨⎧-=+-=+1812233z y x z y x 的正整数解()z y x ,,为 10.已知202020192020201920192018201920184343323221212222222222⨯++⨯+++⨯++⨯++⨯+= A ,则A 的整数部分是11.已知AD 是ABC ∆的中线,︒︒=∠=∠45,30ADC ABC .则=∠ACB12.已知四个实数d c b a ,,,,且d c b a ≠≠,.若四个关系式:22=+ac a ,22=+bc b ,42=+ac c ,42=+ad d 同时成立,则d c b a 2326+++的值等于13.已知2=+y x xy ,3=+zx xz ,4=+z y yz .求z y x 257-+的值.14. 已知0=++c b a ,1222=++c b a .(1)求ca bc ab ++的值;(2)求444c b a ++的值.15.已知d c b a ,,,为四个不同的实数,且c a ,是方程02=-+b ax x 的两个根,d b ,是方程02=++d cx x 的两个根.求d c b a ,,,的值.。

八年级数学全册全套试卷培优测试卷

八年级数学全册全套试卷培优测试卷

4.如图,小亮从 A 点出发前进 5m,向右转 15°,再前进 5m,又向右转 15°…,这样一 直走下去,他第一次回到出发点 A 时,一共走了______m.
【答案】120. 【解析】 【分析】 由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案. 【详解】 解:∵小亮从 A 点出发最后回到出发点 A 时正好走了一个正多边形, ∴该正多边形的边数为 n=360°÷15°=24, 则一共走了 24×5=120 米, 故答案为:120. 【点睛】 本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是 360°,用外角和求正 多边形的边数可直接用 360°除以一个外角度数.
∵∠A=65°,∠B=75°, ∴∠C=180°-∠A-∠B=180°-65°-75°=40°; 又∵将三角形纸片的一角折叠,使点 C 落在△ABC 外, ∴∠C′=∠C=40°, 而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°, ∴∠3+20°+∠4+40°+40°=180°, ∴∠3+∠4=80°, ∴∠1=180°-80°=100°. 故答案是:100°. 【点睛】 考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定 理以及外角性质.
3.∠A=65º,∠B=75º,将纸片一角折叠,使点 C•落在△ABC 外,若∠2=20º,则∠1 的度 数为 _______.
【答案】100° 【解析】 【分析】 先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得 到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°, ∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1. 【详解】 如图,

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ), ∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.【详解】(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

培优考试试卷数学初二

培优考试试卷数学初二

1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 如果x + 2y = 5,那么x - y的值可能是()A. 1B. 2C. 3D. 43. 下列图形中,面积最大的图形是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形4. 若a、b、c是等差数列,且a + b + c = 18,那么a + c的值是()A. 6B. 9C. 12D. 155. 下列方程中,解为x = 2的是()A. 2x - 1 = 3B. x + 1 = 2C. 2x + 1 = 5D. 2x - 3 = 16. 下列函数中,y = x^2的图象是()A. 抛物线向上开口B. 抛物线向下开口C. 双曲线D. 直线7. 在直角坐标系中,点P(-2,3)关于y轴的对称点是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,-3)8. 下列运算中,正确的是()A. (-3)^2 = 3^2B. (-3)^3 = -3^3C. (-3)^4 = 3^4D. (-3)^5 = -3^59. 若a、b、c、d是平行四边形的对边,则下列结论正确的是()A. a + b = c + dB. a - b = c - dC. a + c = b + dD. a - c = b - d10. 下列数列中,不是等比数列的是()A. 2,4,8,16,32B. 1,-2,4,-8,16C. 3,6,12,24,48D. 1,1/2,1/4,1/8,1/1611. 若x + y = 7,且x - y = 3,则x = ______,y = ______。

12. 若a、b、c是等差数列,且a + b + c = 18,那么a + c的值是 ______。

13. 下列图形中,面积最大的图形是 ______。

14. 在直角坐标系中,点P(-2,3)关于y轴的对称点是 ______。

15. 下列运算中,正确的是 ______。

初二数学培优试卷

初二数学培优试卷

初二数学试卷6题图A 班级 考场 考号 姓名11.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( ) A.⎩⎨⎧=+-=18050y x y x B.⎩⎨⎧=++=18050y x y x C.⎩⎨⎧=+-=9050y x y x D.⎩⎨⎧=++=9050y x y x12.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 13.将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°,则∠CFD ′等于( )A .31°B .28°C .24°D .22°14.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ).A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-215.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板 的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°16. 如图,△ABC 中,AD 是∠BAC 的平分线且AB=AC+CD .若∠BAC=60°,则∠ABC 的大小为( )A.40°B.60°C.80°D.100°17.如图所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=( )A .245° B .300° C .315° D .330°15题图 17题图 16题图 12题图13题图18. 如图,在△ABC 中,∠A=52°,∠ABC 与∠ACB 的角平分线交于D 1,∠ABD 1与∠ACD 1的角平分线交于点D 2,依次类推,…∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A 、56°B 、60°C 、68°D 、94°19. ABC ∆的三边,,a b c 都是正整数,且满足a b c ≤≤,如果4c =, 那么这样的三角形共有( ) 个A.4B.6C.8D.1020.锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A+∠B ,β=∠B+∠C ,γ=∠C+∠A ,那么α,β,γ这三个角中( )A.没有锐角B.有一个锐角C.有2个锐角D.有3个锐角 二、提空题(每题4分,共20分) 21.计算:. = . 22.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.23.如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .24.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB,OD⊥BC 于D ,且OD=3,则△ABC 的面积是 .25. △ ABC 中,∠A=50°,高BE 、CF (或其延长线)交于点O ,则∠BOC= . 三、解答题(共80分) 26. (10分)已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.18题图 P 2P 1N M O P B A 24题图 22题图 23题图27.(10分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.28.(10分)如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数?29.(10分)如图,射线OX ⊥OY,A 、B 为OX 、OY 上两动点,∠OAB 的平分线与∠ABO 的外角平分线所在直线交于点C.试问:∠C 的度数是否随点A 、B 的运动而发生变化?若变化,请说明理由;若不变化,求出∠C 的值班级 考场 考号 姓名30.(13分)建华小区准备新建50个停车位,以解决小区停车难的问题,已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元。

初二数学培优试卷及答案

初二数学培优试卷及答案

一、选择题(每题5分,共50分)1. 已知方程x^2 - 4x + 3 = 0,那么它的解是()A. x1 = 1,x2 = 3B. x1 = 2,x2 = 2C. x1 = 3,x2 = 1D. x1 = -1,x2 = -32. 若a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x - 1)B. y = √(x^2 - 1)C. y = √(x + 1)D. y = √(x^2 + 1)4. 已知一次函数y = kx + b,其中k ≠ 0,若函数图象经过点(2, 3),则k和b 的值分别为()A. k = 2,b = 1B. k = 1,b = 2C. k = -2,b = 1D. k = -1,b = 25. 已知等腰三角形ABC中,AB = AC,且∠BAC = 40°,则∠B和∠C的度数分别为()A. ∠B = ∠C = 50°B. ∠B = ∠C = 70°C. ∠B = ∠C = 40°D. ∠B = ∠C = 30°6. 下列各数中,能被3整除的是()A. 729B. 256C. 1234D. 9877. 已知直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 12cm,那么AC的长度为()A. 13cmB. 15cmC. 17cmD. 19cm8. 若一个数x满足不等式2x - 1 < 5,那么x的取值范围是()A. x < 3B. x ≤ 3C. x > 3D. x ≥ 39. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若函数图象开口向上,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 010. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点Q的坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)二、填空题(每题5分,共50分)1. 若方程2x - 3 = 5的解为x = 3,则方程3x + 4 = 11的解为x = _______。

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC ,连接DF.(1)试说明:△AED≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒, 45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x = 故 5.DE =()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,14.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65. 22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,Rt △ABC ≌Rt △CED (∠ACB =∠CDE =90°),点D 在BC 上,AB 与CE 相交于点F (1) 如图1,直接写出AB 与CE 的位置关系(2) 如图2,连接AD 交CE 于点G ,在BC 的延长线上截取CH =DB ,射线HG 交AB 于K ,求证:HK =BK【答案】(1)AB ⊥CE ;(2)见解析. 【解析】 【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK. 【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD ∵∠B+∠A=90° ∴∠B+ECD=90° ∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°, 又∵∠CDE=90°,∴∠HDG=∠CDG=45° ∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC , ∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS ) ∴∠H=∠E 又∵∠B=∠E ∴∠H=∠B , ∴HK=BK 【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.3.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.如图①,在ABC中,90BAC∠=︒,AB AC=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE⊥于D,CE AE⊥于E.(1)求证:BD DE CE=+.(2)若将直线AE绕点A旋转到图②的位置时(BD CE<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE,理由见解析.【解析】【分析】(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE.【详解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE , ∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ), ∴BD=AE ,AD=CE , ∵AE=AD+DE , ∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下: ∵∠BAC=90°,BD ⊥AE ,CE ⊥AE , ∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE , ∴∠ABD=∠CAE , ∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ), ∴BD=AE ,AD=CE , ∴AD+AE=BD+CE , ∵DE=BD+CE , ∴BD=DE-CE . 【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.5.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB=AC,∴BF=AC;(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,∵EF=EC,∴∠EFC=∠ECF,∵∠EFC+∠ECF=∠AEB=90°-2x,∴∠EFC=(90°-2x)÷2=45°-x,∵BF=AB,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x,∴∠EFD=∠BFA=90°-x,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°; (3)由(2)可知:EF =EC , ∴设EF =EC =x ,则AC=AE+EC=3+x , ∴AB=BF=AC=3+x , ∴BE=BF+EF=3+x+x=3+2x , ∵∠BAC =90º, ∴222AB AE BE +=, ∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去) ∴BF=3+x=3+1=4. 【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.7.(1)已知△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.【答案】(1)图形见解析(2) ∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角. 【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系. 试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD =BC 时,∠BDC =x ,∠ADB =180°-x >90°,此时只能有AD =BD ,∴∠A =∠ABD =12∠BDC =12∠C <∠C ,这与题设∠C 是最小角矛盾. ∴当∠C 是底角时,BD =BC 不成立.综上所述,∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.8.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.9.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D 时情况和过点B 一样的;③当分割三角形的直线过点A 时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.10.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值.【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122.. 【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.12.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.13.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a≠0,b≠0),于是得到abcd badc +=1100(a+b )+11(c+d )=1111(a+b ),即可得到结论.(3)设这个“和平数”为abcd ,于是得到d=2a ,a+b=c+d ,b+c=12k ,求得2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k ,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd ,badc (a ,b ,c ,d 分别取0,1,2,…,9且a ≠0,b ≠0),则abcd badc +=1100(a+b )+11(c+d )=1111(a+b );即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd ,则d=2a ,a+b=c+d ,b+c=12k ,∴2c+a=12k ,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k ,可知c+1=6k 且a+b=c+d ,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k ,可知c+2=6k 且a+b=c+d ,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.14.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了。

初二数学培优试题及答案

初二数学培优试题及答案

初二数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 42. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -23. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 134. 计算下列式子的结果:\(\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \ldots \times \frac{9}{10}\)A. 2B. 3C. 4D. 55. 一个圆的直径是10厘米,那么它的面积是:A. 25π平方厘米B. 50π平方厘米C. 100π平方厘米D. 200π平方厘米6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 107. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 08. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -29. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是:A. 5B. 6C. 7D. 810. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0二、填空题(每题4分,共20分)1. 一个数的立方是27,那么这个数是______。

2. 一个数的倒数是\(\frac{1}{4}\),那么这个数是______。

3. 一个数的绝对值是10,那么这个数可以是______或______。

4. 一个圆的半径是5厘米,那么它的直径是______厘米。

5. 一个数的平方根是3,那么这个数是______。

三、解答题(每题10分,共50分)1. 已知一个矩形的长是10厘米,宽是5厘米,求这个矩形的面积。

2. 已知一个直角三角形的两个直角边长分别是6厘米和8厘米,求这个直角三角形的斜边长。

初二教辅数学培优试卷

初二教辅数学培优试卷

一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -1/2B. -3C. 0D. 1/42. 已知a < b,则下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 03. 下列各数中,是奇数的是()A. 3.14B. 4C. -5D. 04. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么它的体积是()A. 12cm³B. 60cm³C. 15cm³D. 24cm³5. 下列图形中,是轴对称图形的是()A. 等边三角形B. 平行四边形C. 矩形D. 菱形二、填空题(每题5分,共20分)6. 已知x + y = 5,x - y = 1,那么x = ______,y = ______。

7. 若一个数的平方根是±3,则这个数是 ______。

8. 一个圆的半径是5cm,那么它的直径是 ______cm。

9. 在直角三角形中,若一个锐角的度数是45°,则另一个锐角的度数是______°。

10. 若a² + b² = c²,则三角形ABC是 ______三角形。

三、解答题(每题10分,共30分)11. (10分)解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 2\end{cases}\]12. (10分)计算下列各式的值:\[\frac{5}{6} - \frac{2}{3} + \frac{1}{2}\]13. (10分)已知一个长方形的长是10cm,宽是6cm,求这个长方形的面积。

四、应用题(每题10分,共20分)14. (10分)小明家住在楼上的第5层,他每上一层楼需要走15个台阶。

那么,小明从家走到第5层需要走多少个台阶?15. (10分)一辆汽车从A地出发,以每小时60公里的速度行驶,3小时后到达B地。

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)
八年级数学全册全套试卷(培优篇)(Word版 含解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC= ∠ACD− ∠ABC= ∠A=21°.
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°
【答案】D
【解析】
【分析】
当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°
故答案为21°.
2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠3的度数等于______________.
【答案】12°
【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.
【点睛】
此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.
8.如图,△ABC中,E是AC的中点,延长BC至D,使BC:CD=3:2,以CE,CD为邻边做▱CDFE,连接AF,BE,BF,若△ABC的面积为9,则阴影部分面积是()

最新最全八年级数学培优十三套试题(因式分解,分式,二次根式,一元二次方程)

最新最全八年级数学培优十三套试题(因式分解,分式,二次根式,一元二次方程)

ED 八年级数学培优试题一一、填空1. 因式分解:(1)2235294x xy y x y +-++-= . (2)2236x x xy y y +---=___________________ (3)41x +=____________________________________ (4)3234x x -+=_______________________________2..若对于任何实数x ,分式214x x c-+总有意义,则c 的取值范围是___________________3.若a b a c b ck c b a+++===,则k =______________ 4.已知:115a b a b +=+,则b aa b+=_______。

5.已知22431(1)(1)x x a x b x c -+=-+-+对任意数x 成立,则4a +2b +c =_______6.多项式22687x y x y +-++的最小值为_________。

7.已知实数,,a b c 满足10a b c ++=,且,则的值是______________ 8.已知实数,x y 满足224242x y x y +=+-,则2x y +=______________________9.已知2510m m --=,则22125m m m-+=__________________ 10.方程组:2222007x y z xy yz xzx y z ⎧++=++⎨++=⎩的解为_________________11.设100,x ==______________12.如图,已知五边形ABCDE 中,90ABC AED ∠=∠=,2AB CD AE BC D E ===+=,则五边形ABCDE 的面积为_____ 二、选择题 13.设199819992000,,199920002001a b c ===,则下列不等关系中正确的是( ) A 、a b c << B 、a c b << C 、b c a << D 、c a b <<1714111=+++++a c c b b a ba ca cbc b a +++++14.已知0,0a b ≠≠且1a +1b =4 则434323a ab b a ab b++-+-等于( ) A .114- B. 1910- C. 0 D. 191015.对于非负数a 1、a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5),N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4),则( )A. M >NB. M ≥NC. M <ND. M ≤N 三、解答题 16.若a cb a bc b a c c b a ++-=+-=-+,求abcc b c a b a ))()((+++的值 17.已知:3x y z a ++=(0a ≠,且,,x y z 不全相等),求()()()()()()()()()222a z a y a x a x a z a z a y a y a x -+-+---+--+--的值 18.已知2222014,2015,2018,a x b x c x +=+=+=且24=abc , 求111a b c bc ca ab a b c++---的值。

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word版 含解析)

八年级数学全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B CS S∆∆===<2020第三次操作333222377343A B C A B CS S∆∆===<2020第四次操作4443334772401A B CA B CS S∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBDBD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD AD DE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CD DG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.3.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE平分∠DAC,CE平分∠ACF,∴∠1=12∠DAC,∠2=12∠ACF,∴∠1+∠2=12(∠DAC+∠ACF),又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°,∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.4.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.5.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

八年级数学全册全套试卷培优测试卷

八年级数学全册全套试卷培优测试卷
5.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.
【详解】
∵AD⊥BC于D,BE⊥AC于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
A.化归思想B.分类讨论C.方程思想D.数形结合思想
【答案】A
【解析】
【分析】
根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.
【详解】
解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.
【详解】
解:根据三角形的外角得:
∠ACD=∠A+∠ABC.
又∵∠ABC与∠ACD的平分线交于点A1,

∴∠A1= ∠A
依此类推得,∠A2= ∠A,……,∠A8= ∠A= =
故答案为 .
【点睛】
本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..
3.已知等腰三角形的两边长分别为3和5,则它的周长是____________
如图2,当点P在BC上.则t>3∵E是DC的中点,∴BE=CE=4.
∵PE ,∴S= EP•AC= •EP×6=6,∴EP=2,∴t=5或t=9.
总上所述,当t=1.5或5或9时,△APE的面积会等于6.故答案为1.5或5或9.

初二培优班考试卷数学

初二培优班考试卷数学

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(循环小数)D. -1/32. 已知a=3,b=-2,那么a² - b²的值是()A. 7B. 5C. -7D. -53. 如果x² - 4x + 4 = 0,那么x的值是()A. 2B. -2C. 1D. -14. 下列函数中,一次函数是()A. y = x² + 2x + 1B. y = 2x - 3C. y = √xD. y = log₂x5. 在直角坐标系中,点A(-3,2)关于原点对称的点是()A. (-3,-2)B. (3,2)C. (3,-2)D. (-3,-2)二、填空题(每题5分,共25分)6. 有理数-3/4的相反数是__________。

7. 如果|a| = 5,那么a的值可以是__________。

8. 二元一次方程2x - 3y = 6的解为__________。

9. 若m + n = 0,且m > 0,那么n的符号是__________。

10. 在△ABC中,若∠A = 90°,∠B = 30°,则∠C的度数是__________。

三、解答题(每题10分,共40分)11. (10分)计算下列各式的值:(1)(2x - 3y)²(2)(x + y)(x - y) + (x + y)(x + y)12. (10分)已知方程x² - 4x + 3 = 0,求方程x² - 4x - 3 = 0的解。

13. (10分)在直角坐标系中,点P的坐标为(2,3),点Q在x轴上,且PQ的长度为5,求点Q的坐标。

14. (10分)若一次函数y = kx + b的图象经过点(1,2)和点(3,4),求该一次函数的解析式。

四、应用题(每题15分,共30分)15. (15分)某工厂生产一批产品,前5天共生产了300个,之后每天生产的产品数量比前一天多10个。

数学培优题试卷初二

数学培优题试卷初二

一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 02. 若a、b是方程x^2 - 3x + 2 = 0的两个根,则a+b的值是()A. 1B. 2C. 3D. 43. 已知x=2是方程ax^2 - 4x + 3 = 0的一个根,则a的值为()A. 1B. 2C. 3D. 44. 若a,b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值是()A. 17B. 18C. 19D. 205. 若x^2 + mx + 1 = 0的判别式Δ=0,则m的值为()A. 2B. -2C. 1D. -1二、填空题(每题5分,共25分)6. 若a、b是方程2x^2 - 3x - 2 = 0的两个根,则a^2 + b^2 = __________7. 若a、b是方程x^2 - 2x + 1 = 0的两个根,则a^2 - ab + b^2 =__________8. 若x^2 - 4x + 3 = 0的两个根分别是a和b,则a+b = __________,ab =__________9. 若x^2 - 5x + 6 = 0的两个根分别是a和b,则a^2 + b^2 = __________,ab = __________10. 若x^2 - 3x + 2 = 0的两个根分别是a和b,则a^2 - ab + b^2 =__________三、解答题(每题15分,共60分)11. 解方程:x^2 - 5x + 6 = 012. 解方程:2x^2 - 3x - 2 = 013. 解方程:x^2 + 2x - 3 = 014. 解方程:x^2 - 2x + 1 = 015. 解方程:x^2 - 5x + 6 = 0四、应用题(每题20分,共40分)16. 小明骑自行车去图书馆,他先以10km/h的速度行驶了20分钟,然后以15km/h的速度行驶了40分钟。

初二数学下册培优试卷

初二数学下册培优试卷

一、选择题(每题5分,共50分)1. 下列选项中,与-5的相反数相等的是()A. 5B. -5C. 0D. -102. 下列各数中,绝对值最大的是()A. 2B. -3C. 0D. -13. 已知等腰三角形的底边长为4cm,腰长为5cm,则该三角形的面积是()A. 10cm²B. 8cm²C. 12cm²D. 6cm²4. 若a、b、c是等差数列,且a+b+c=0,则a²+b²+c²的值为()A. 0B. 1C. 2D. 35. 已知一次函数y=kx+b的图象过点A(1,-2),B(-1,4),则该函数的解析式为()A. y=-3x+1B. y=3x-1C. y=-3x-1D. y=3x+16. 下列函数中,定义域为全体实数的是()A. y=√xB. y=x²C. y=1/xD. y=|x|7. 若一个数的平方等于它的相反数,则这个数是()A. 0B. 1C. -1D. 无法确定8. 下列方程中,有唯一解的是()A. 2x+3=5B. 2x²+3x-1=0C. 2x+3=5x-1D. 2x²+3x-1=09. 已知一次函数y=kx+b的图象与x轴、y轴分别相交于点A、B,且OA=OB,则该函数的解析式为()A. y=kx+bB. y=-kx-bC. y=-kx+bD. y=kx-b10. 若一个数的倒数等于它的平方,则这个数是()A. 0B. 1C. -1D. 无法确定二、填空题(每题5分,共50分)11. 若a、b、c是等差数列,且a+b+c=0,则a²+b²+c²=______。

12. 下列函数中,定义域为全体实数的是______。

13. 若一个数的平方等于它的相反数,则这个数是______。

14. 已知一次函数y=kx+b的图象过点A(1,-2),B(-1,4),则该函数的解析式为______。

初中八年级数学培优测试卷

初中八年级数学培优测试卷

一、选择题(每题3分,共30分)1. 若a、b是实数,且a+b=0,则下列结论正确的是:A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠02. 在等腰三角形ABC中,AB=AC,点D在BC上,AD⊥BC,则∠BAC的度数是:A. 45°B. 60°C. 90°D. 120°3. 下列函数中,在定义域内单调递增的是:A. y=x^2B. y=-x^2C. y=2xD. y=-2x4. 若a、b、c是等差数列的连续三项,且a+b+c=12,a+c=8,则b的值为:A. 2B. 4C. 6D. 85. 在直角坐标系中,点P的坐标为(-2,3),点Q在y轴上,且PQ=5,则点Q 的坐标可能是:A. (-2,-2)B. (-2,8)C. (2,3)D. (2,8)6. 下列方程中,解为x=3的是:A. x-3=0B. x^2-3=0C. 3x=0D. x^2-9=07. 在平面直角坐标系中,点A(1,2),点B(3,4),则线段AB的中点坐标是:A. (2,3)B. (2,2)C. (1,3)D. (1,2)8. 下列各数中,不是有理数的是:A. √4B. √9C. √16D. √259. 若等比数列的前三项分别为a、b、c,且a+b+c=24,b=6,则该数列的公比是:A. 1B. 2C. 3D. 410. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°二、填空题(每题5分,共25分)11. 已知等差数列{an}的公差为d,若a1=2,a4=10,则d=______。

12. 函数y=2x+1在x=3时的函数值是______。

13. 在直角坐标系中,点P(-3,4)关于x轴的对称点坐标是______。

14. 若等比数列的前三项分别为a、b、c,且a+b+c=18,b=6,则该数列的公比是______。

数学培优试卷八年级

数学培优试卷八年级

一、选择题(每题5分,共25分)1. 若m+n=10,m-n=2,则m²+n²的值为()A. 102B. 108C. 100D. 982. 在等腰三角形ABC中,底边BC=8,腰AB=AC=6,那么三角形ABC的面积是()A. 24B. 30C. 36D. 403. 已知x²-6x+9=0,则x的值为()A. 1B. 3C. 5D. 64. 下列方程中,解为整数的是()A. x²=2B. x²=4C. x²=8D. x²=165. 下列函数中,y与x成反比例关系的是()A. y=2x+1B. y=x²C. y=3/xD. y=x³二、填空题(每题5分,共25分)6. 若a+b=7,a-b=3,则a²+b²的值为______。

7. 在直角三角形ABC中,∠C=90°,AB=10,AC=6,则BC的长度为______。

8. 已知方程x²-4x+4=0,则方程的解为______。

9. 下列函数中,y与x成正比例关系的是______。

10. 若一个数x满足不等式3x-2<5,则x的取值范围为______。

三、解答题(每题15分,共45分)11. 已知一元二次方程ax²+bx+c=0(a≠0)的解为x₁和x₂,且x₁+x₂=4,x₁x₂=9,求方程的解。

12. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,求斜边AB的长度。

13. 已知一次函数y=kx+b(k≠0)的图象经过点A(1,2)和B(3,6),求函数的解析式。

四、应用题(每题20分,共40分)14. 某商店计划从甲、乙两个供应商处进货一批商品。

甲供应商提供的商品价格为每件100元,乙供应商提供的商品价格为每件120元。

已知甲供应商提供的商品数量是乙供应商的两倍,且两种商品的总数量不超过100件。

初二数学培优试卷

初二数学培优试卷

1. 已知一个等差数列的前三项分别为2,5,8,则该数列的公差为()A. 3B. 4C. 5D. 62. 在直角坐标系中,点A(2,3),B(4,1),则线段AB的中点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(2,3)3. 下列各式中,正确的是()A. 3a^2b^3 = 9a^4b^6B. 2a^2b^3 = 4a^3b^2C. 3a^2b^3 = 6a^3b^2D.3a^2b^3 = 9a^2b^34. 若方程x^2 + 2x - 3 = 0的解为x1和x2,则x1 + x2的值为()A. -2B. 2C. 1D. -15. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^46. 已知正方形的对角线长为10cm,则该正方形的边长为()A. 5cmB. 10cmC. 15cmD. 20cm7. 若平行四边形ABCD的对角线AC和BD相交于点O,则AO和CO的长度之比为()A. 1:1B. 2:1C. 1:2D. 3:18. 在等腰三角形ABC中,底边BC的长为8cm,腰AB和AC的长度分别为6cm和10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm9. 若一次函数y = kx + b的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k = 2,b = 0B. k = 2,b = -2C. k = -2,b = 0D. k = -2,b = 210. 已知一个等比数列的前三项分别为2,6,18,则该数列的公比为()A. 2B. 3C. 6D. 911. 若等差数列{an}的首项为a1,公差为d,则第n项an=__________。

12. 在直角坐标系中,点P(x,y)关于原点的对称点坐标为(__________,__________)。

13. 若方程2x^2 - 5x + 2 = 0的解为x1和x2,则x1 x2 =__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E D C B AA E D C AB 初二数学培优卷――等腰(边)三角形2难点★★★1.已知等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的顶角为 。

2.已知等腰三角形两腰上的高或其所在直线相交所成的锐角是50°,求这个三角形的顶角的度数。

3.在△ABC 中,AB = AC ,AB 的中垂线与AC 所在直线相交所得的锐角是50°,求∠B 的度数。

3(变). 在等腰△ABC 中,一腰上的高线为BD ,且∠DBC=40度,则顶角的度数为多少度?4.在平面直角坐标系xOy 中,已知A(2,-2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点有( ) A .2个 D .3个C .4个 D .5个5.如图,正方形ABCD 。

在平面上有一点P 可以使△PAB△PBC △PCD △PDA 都是等腰三角形这样的点有 个6、如图7:AB=AC=BD,则∠1和∠2的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180oC. ∠1+3∠2=180oD. 3∠1-∠2=180o7.如图,在△ABC 中,AB =AC ,,∠BAD =30°,AD =AE .求∠CDE 的度数.若∠BAD =40呢?AB=AC=CD ,求∠BAC 的度数。

9.已知:如图,△ABC 为正三角形,D 是BC 延长线上一点,连结AD ,以AD 为边作等边三角形ADE ,连结CE ,用你学过的知识探索AC 、CD 、CE 三条线段的长度有何关系?试写出探求过程.10、如图12,在Rt △ABC 中,∠ABC=90o,D 、E 在AC 上,且AB=AD ,CB=CE 。

求∠EBD 的度数。

若∠ABC=100呢o11.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数. 12.已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,h 2,h 3, △ABC 的高为h .“若点P 在一边BC 上[如图(1)],此时h 3=0可得结论:h 1+h 2+h 3=h .”请直接应用上述信息解决下列问题:当点P 在△ABC 内[如图(2)],以及点P 在△ABC 外[如图(3)]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系,请写出你的猜想,不需要证明. E AD M AB CP F EABE P D MC13.已知:如图在∆ABC 中,AD 是∠BAC 的平分线,DE ∥AC 交AB 于点E,EF ⊥AD,垂足是G ,且交BC 的延长线于点F 。

求证:∠CAF=∠B14.已知:如图,在∆ABC 中,∠ACB=90°,AC=BC ,CD ⊥AB ,垂足是D ,CE 平分∠ACD ,BF ⊥CE ,垂足是G ,交AC 于F ,交CD 于H ,求证:DH=AF 21。

15.如图,在六边形ABCDEF 中,若∠A=∠B=∠C=∠16.如图,已知AD 是ABC 的中线,BE 交AC 于点E ,交AD于点F ,且AE=EF求证:AC=BF17.已知:如图,在等边三角形ABC 中,D.E.分别是AB.AC 边上的点。

且BD=AE.EB 与CD 相交于点O.EF 与CD 垂直于点F 。

求证:OE=2OF18.已知∆ABC 中。

BD=CE.DF=EF.求证AB=AC答案A C D FB H G E AF GB H D E CA C BD FE A D FB C EA D FBC E O BD CEAF13.∠CAF+∠CAD=∠B+∠BAD14.过E作EM垂直AC.证明DH=MF=AM16.延长AD=DM连接MB17.∠EOF=∠OBC+∠OCB=∠OBC+∠ABO=6018.过E作EM平行于AB,交BC延长线于M初二数学培优卷――辅助线专题角平分线:全等:等腰(边)中辅助线的做法典题汇总。

A F D CB EC B AD CE B AD4321C E B A D A★★★条件比较隐蔽时,可通过添加辅助线用判别方法 在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.★★★条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.★★例1 已知:如图3,AB=AC ,∠1=∠2.求证:AO 平分∠BAC .★★★例2 已知:如图4,在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF .求证:∠ADC=∠BDF . ★★★例3.已知:如图16,AB=AE ,BC=ED ,点F 是CD 的中点,AF ⊥CD . 求证:∠B=∠E .★★★★例4.如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD .求证:AE=ED .★★★★例5.如图26,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E . 求证:CD=21BE .★★★★例6,在△ABC 中,AD 平分 ∠BAC ,AB=AC+CD . 求证:∠C=2∠B .★★★★★例7 为△ABC 的∠A 的平分线 AD 上一点,AB >AC . 求证:AB -AC >EB -EC .★★★★例8.所示,已知AD ∥BC ,∠1=∠2, ∠3=∠4,直线DC 过点E 作交AD 于点D ,交 BC 于点C .求证:AD+BC=AB .★★★★例9如图34,△ABC 中,∠ABC=90º, AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE . _2 _1 _C _O_B _A_A _B _F_D _E _C _A _D _C _B _E★★★★例10.如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。

求证:DE+DC=AE 。

★★★例11.已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC★★★例12知:如图10-1;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。

★★★例13. 如图2-8-1,中,AB=AC ,F 为BC上一点,E 为AC 延长线上一点,且BD=CE ,DE 交BC 于F 。

求证:DF=EF 。

★★★★例14.如图2-8-8 P 是等边△ABC 外的一点,∠APB=∠APC=60°,求证:PA=PB+PC 。

★★★★★例15.如图2-8-10,AC=BC ,∠C=20°,又M 在AC 边上,N 在BC 边上且满足∠BAN=50°,∠ABM=60°,求∠NMB 的度数。

答案:1.连接BC2.过B 作BG 重直于CB 交CF 于G . 4过E 作EF 垂直BA,EH 垂直DC 。

EG 垂直BCA B C D O D C B A OA再证明CD与这两条线段都相等.过D 作DF平行于AB 交BC 于F13.以D 为圆心DE 为半径做弧交EF 于点G . 14.在PA 上截取PD=PB.连BD.15.30°简解:易证AB=BN ,∠AMB=40°, 如图2-8-11,作等腰△BAD ,使BD=BA=BN ,又∠ABD=180°-2∠CAB=20°,∴∠DBN=80°-20°=60°,∴△BDN 是等边三角形,BD=DN ,又在△BDM 中, ∠DBM=∠DMB=40°,故△DMB 为等腰三角形,由 ∠MDN=180°-∠ADB -∠BDN=40°知,DN=DM=DB∴∠NMB=∠NMA -∠BMA=70°-40°=30°。

课题 图形的相似(2)1. 已知:等腰Rt △ABC 中,∠A=90°,如图1,E 为AB 上任意一点,以CE 为斜边作等腰Rt △CDE ,连结AD ,则有AD ∥BC ,为什么?(1)若将等腰Rt △ABC 改为正△ABC ,如图2所示,E 为AB 边上任一点,△CDE 为正三角形,连结AD ,上述结论还成立吗?说明理由。

(2)若△ABC 为任意等腰三角形,AB=AC ,如图3,E 为AB 上任一点,△DEC ∽△ABC,连结AD ,请问AD 与BC 的位置关系怎样?为什么?2. 填空并解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F 。

(1)如图①,若∠BAC =60°,则∠AFB =________;如图②,若∠BAC =90°,则∠AFB =________;(2)如图③,若∠BAC =α,则∠AFB =_________(用含α的式子表示);(3)将图③中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图④或图⑤。

在图④中,∠AFB 与∠α的数量关系是_____________;在图⑤中,∠AFB 与∠α的数量关系是___________。

请你任选其中一个结论证明。

3. 如图所示,//AD BC ,梯形ABCD 的面积是180,E 是AB 的中点,F 是BC 边上的点,且//AF CD ,AF 分别交,ED BD 于,,G H 设BCm AD=,m 是整数。

(1)若2m =,求GHD ∆的面积. (2) 若GHD ∆的面积为整数,求m 的值.4.已知:矩形ABCD中,AB=1,点M在对角线AC上,直线 过点M且与AC垂直,与AD相交于点E。

(1)如果直线 与边BC相交于点H(如图1)AM=13 AC且AD=a,求的AE长;(用含a的代数式表示)(2)在(1)中,若直线 把矩形分成两部分的面积比为2:5,求a的值;(3)若AM=14AC,且直线 经过点B(如图2),求AD的长。

相关文档
最新文档