北师大第一章一元一次不等式(二)教案

合集下载

《解一元一次不等式(二)》教学设计

《解一元一次不等式(二)》教学设计

《解一元一次不等式(二)》教学设计素质教学目标1.让学生自主探索一元一次不等式在实际问题中的应用。

2.使学生进一步探索和研究实际问题中的数量关系,感受数学建模思想,体会不等式和方程同样是刻画现实世界数量关系的重要模型。

重点、难点、关键,1.重点:一元一次不等式在实际问题中的应用。

2.难点,在实际问题中建立一元一次不等式的数量关系。

’3.关键:突出建模思想,刻画数量关系,从实际中抽象出数量关系。

从列代数式到不等式。

转化为纯数学问题求解。

注意“不少于”、 “至少”等语句所隐含的不等量关系。

教具准备实物投影或幻灯机、直尺、圆规。

教学过程全解一、回顾1.一元一次不等式的概念。

2.一元一次不等式的解法。

二、观察探讨,研究新知例4当x 取何值时,代数式43x +的值比312x -的值大17? 教师活动:提出问题、引导、启发。

学生活动:观察与回答。

教学方法:互动交流。

思路点拨:分析题目的条件和结论,该题实际上是求x 取什么值时不等式431132x x +-->成立,为此就要求出这个不等式的解集。

三、随堂练习,巩固新知补充练习:x 取什么值时,代数式3x/2—8的值:1.大于7一x ,2.小于7一x ,3.不大于7一x ,4.不小于7一x教师活动:巡视、指导、关注中等、中下程度学生。

学生活动:合作学习、上台板演。

教学方法:讨论、交流。

四、创设情境,指导示范1.“在科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛,育才中学25名学生通过了预选赛,他们分别可能答对了多少道题?教师活动:操作投影仪、提出问题。

学生活动:小组学习、回答。

教学方法和媒体:投影显示问题情境,讨论交流。

2.问题1:对于上述问题,请你想一想,你是用什么方法?有没有其他方法? 问题2:如果你是利用不等式的知识解决这个问题的,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?思路点拨:对于课本提出的问题情境,如果列不等式求解,那么可以参照列方程的基本思想,进一步学会分析以解决实际问题。

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案第一章:一元一次不等式概念引入1.1 教学目标让学生理解一元一次不等式的概念。

学生能够写出一元一次不等式的标准形式。

学生能够解一元一次不等式。

1.2 教学内容引入不等式的概念,解释不等式的意义。

介绍一元一次不等式的定义和标准形式。

演示如何解一元一次不等式。

1.3 教学方法使用实例和图形来帮助学生理解一元一次不等式的概念。

通过练习题让学生巩固一元一次不等式的解法。

分组讨论和分享,促进学生之间的交流和合作。

1.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式的理解程度。

观察学生在解题过程中的思路和方法,评估他们的解题能力。

第二章:一元一次不等式组的解法2.1 教学目标让学生理解一元一次不等式组的概念。

学生能够解一元一次不等式组。

2.2 教学内容引入一元一次不等式组的概念,解释不等式组的解法。

介绍解一元一次不等式组的基本原则和步骤。

2.3 教学方法使用实例和图形来帮助学生理解一元一次不等式组的解法。

通过练习题让学生巩固一元一次不等式组的解法。

分组讨论和分享,促进学生之间的交流和合作。

2.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的解法理解程度。

观察学生在解题过程中的思路和方法,评估他们的解题能力。

第三章:一元一次不等式组的图像表示3.1 教学目标让学生理解一元一次不等式组的图像表示方法。

学生能够通过图像来解一元一次不等式组。

3.2 教学内容介绍一元一次不等式组的图像表示方法。

解释如何通过图像来解一元一次不等式组。

3.3 教学方法使用图形和实例来帮助学生理解一元一次不等式组的图像表示方法。

通过练习题让学生巩固一元一次不等式组的图像解法。

分组讨论和分享,促进学生之间的交流和合作。

3.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的图像解法的理解程度。

观察学生在解题过程中的思路和方法,评估他们的解题能力。

第四章:一元一次不等式组的应用4.1 教学目标让学生理解一元一次不等式组在实际问题中的应用。

《一元一次不等式(二)》教学设计

《一元一次不等式(二)》教学设计

《一元一次不等式(二)》教学设计教学目标1.知识与技能目标:让学生进一步经历运用不等式解决实际问题的过程,总结运用不等式解决实际问题的一般过程.2.过程与方法目标:运用所学知识对实际问题进行分析,并加以解决,培养学生抽象、分析、解决问题的能力.体验知识生成、发展的过程.3.情感与态度目标:培养学生敢于探索,勇于克服网难的意志品质.课前准备:1.教师准备:课件2.学生准备:复习一元一次不等式以及如何解一些简单的一元一次不等式?一元一次方程解应用题的一般步骤?课时安排:一课时教学过程:一、复习旧知,引入新课1.回忆什么叫一元一次不等式,以及如何解一些简单的一元一次不等式?学生思考回答:不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.特别提醒学生注意:在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.2.解一元一次不等式,并把解集在数轴上表示出来.学生自主完成:(答案见课件)3.一元一次方程的应用某种商品进价为200元,标价300元出售,折价销售的利润率为5%,问此商品是按几折销售的?学生利用学过的知识自主完成.提出问题:回忆列一元一次方程解应用题的一般步骤?学生回忆解答.提出问题:类比用一元一次方程解应用题,如何用一元一次不等式解应用题呢?(引出本课课题)二、合作学习,自主探究1.做一做:某种商品进价为200元,标价 300 元出售,商场规定可以打折销售,但其利润率不能少于5%. 请你帮助售货员计算一下,此种商品可以按几折销售?提出问题:1.本题中已知什么?求什么?2.本题中的等量关系和不等关系分别是什么?学生讨论归纳如下:①已知进价、标价、利润,求商品可以按几折销售.②等量数量:售价-进价=利润,不等关系:利润≥5%.根据分析,列不等式解题如下:解:设商品可按x折销售,根据题意,得-200≥200×5%300×x10解不等式,得 30x-200≥10即:x≥7答:此种商品可以按7折销售.2.例题讲解例题:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?问题(1)本题已知的数量关系有哪些?要求的是什么?问题(2)找出题目中的不等关系和表示不等关系的关键词;问题(3)根据确定的不等关系设未知数,列出不等式;问题(4)不等式的解集与题目的解有什么关系.讨论结果:略.解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85.解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22道、23道、24道或25道题提出问题:根据以上两题的解题过程,你能总结出列不等式解应用题的一般步骤是怎样的吗?学生讨论归纳如下:(1)审题:分析题目中已知什么求什么?明确各量之间的关系,包括题目中的等量关系与不等量关系.(2)设适当未知数,并用未知数表示相关的量.(3)列出不等式.(4)解不等式.(5)检验并写出符合题意的答案.3.试一试小明准备用26元买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,他最多还能买多少根火腿肠?学生自主完成,进一步理解列不等式解应用题的一般步骤.(解题过程见课件)三、巩固运用、深化拓展1.1999年,新疆喀什市一位70岁的维吾尔老人为参加新中国成立50周年庆祝活动,只身从家乡骑自行车前往北京。

一元一次不等式 教案

一元一次不等式 教案

一元一次不等式教案第一章:一元一次不等式的概念与性质1.1 引入不等式的概念通过实际例子,让学生了解不等式的含义和作用。

引导学生理解不等号(>、<、≥、≤)的含义。

1.2 认识一元一次不等式解释一元一次不等式的定义,即形如ax + b > 0 或ax + b ≤0 的不等式。

强调未知数x 的系数a 和常数项b 的重要性。

1.3 探索一元一次不等式的性质引导学生通过举例或图形来分析一元一次不等式的性质。

讨论不等式的解集,即满足不等式的x 的取值范围。

第二章:一元一次不等式的解法2.1 解基本的一元一次不等式演示如何解形如ax > b 或ax ≤b 的一元一次不等式。

强调解不等式时要注意符号的变化。

2.2 解含括号的一元一次不等式解释如何处理含括号的一元一次不等式。

引导学生先解决括号内的运算,再进行不等式的解法。

2.3 解含有绝对值的一元一次不等式解释绝对值的概念,并引导学生如何处理含有绝对值的一元一次不等式。

强调绝对值不等式的解集可能包含两个部分。

第三章:一元一次不等式的应用3.1 应用一元一次不等式解决实际问题提供实际问题,让学生应用一元一次不等式进行解答。

强调将实际问题转化为不等式问题的过程。

3.2 一元一次不等式的线性组合解释如何将多个一元一次不等式进行线性组合。

引导学生理解线性组合后的不等式的解集。

3.3 一元一次不等式组解释什么是一元一次不等式组,即多个一元一次不等式的集合。

引导学生如何解决一元一次不等式组,并讨论解集的交集。

第四章:一元一次不等式的拓展4.1 不等式的符号性质引导学生深入理解不等式的符号性质,如传递性、互补性等。

通过举例或练习题来巩固学生对不等式符号性质的理解。

4.2 不等式的变形解释如何对一元一次不等式进行变形,如两边加减乘除等。

强调变形时保持不等号方向不变的重要性。

4.3 一元一次不等式与函数的关系引导学生理解一元一次不等式与函数之间的关系。

北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案

北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案

《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。

新北师大版八年级下册数学 《一元一次不等式(2)》教案

新北师大版八年级下册数学 《一元一次不等式(2)》教案

2.4 一元一次不等式(二)●教学目标(一)教学知识点能利用一元一次不等式解决一些简单的实际问题.(二)能力训练要求通过学生独立思考,培养学生用数学知识解决实际问题的能力.(三)情感与价值观要求通过学生自主探索,培养学生学数学的好奇心与求知欲,使他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.●教学重点1.用数学知识去解决简单的实际问题.●教学难点能结合具体问题发现并提出数学问题.●教学方法在教师的引导下,学生探索的方法.●教学过程Ⅰ.提出问题,引入新课[师]上节课,我们学习了什么叫一元一次不等式,以及如何解一些简单的一元一次不等式,下面大家先回忆一下.[生]不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.[师]很好.在解不等式的过程中,有需要注意的问题吗?[生]有.在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.[师]非常棒.下面我们做一个练习检查一下,看大家的动手能力如何.1.解不等式:51(x+15)≥21-31(x -7) [生]解:去分母,得6(x+15)≥15-10(x -7),去括号,得6x +90≥15-10x+70,移项、合并同类项,得16x ≥-15,两边同除以16,得x ≥-1615. [师]做得很好.请看第2题.2.判断下面解法的对错. 解不等式:312+x -615-x <2 解:去分母,得2(2x+1)-5x -1<2,去括号,得4x+2-5x -1<2移项、合并同类项,得-x <1两边都乘以-1,得x >-1.[师]请大家先独立思考、再互相讨论,指出上面的解法有无错误,若有请指出来.[生]第一,在去分母时,分子应作为一个整体,应加括号,是(5x -1),而非-5x -1,第二,整数2也应乘以公分母.[师]这位同学的分析很精彩.请大家改正.[生]解:去分母,得2(2x+1)-(5x -1)<12去括号,得4x+2-5x+1<12,移项、合并同类项,得-x <9,两边都乘以-1,得x >-9.[师]刚才这位同学提出的改正方案也正是解此类不等式需要注意的问题,本节课我们要加以巩固.Ⅱ.新课讲授[做一做][师]这类题型我们掌握得已很好了,下面我们来学习有关不等式的应用题. 某种商品进价为200元,标价为300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,这种商品做多可以按几折销售?[师]解不等式应用题也和解方程应用题类似,我们先回忆一下列方程解应用题应如何进行.[生]先审题,弄清题中的等量关系;设未知数,用未知数表示有关的代数式;列出方程,解方程;最后写出答案.[师]好,同学们回答的非常棒!我们设这种商品最多可以x折销售,那么有3002005%200x-≥,得x≥0.7,故这种商品做多可以打7折.你们做对了吗?投影片(§2.4.2 B)在85分或85分以上,所以关系式应为:4×答对题数-1×答错题数≥85请大家自己写步骤.[生]解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22,23,24,25道题.[师]大家依据列方程解应用题的过程,对照上面解不等式应用题的步骤,总结一下两者的不同,并给出解一元一次不等式应用题的一般步骤,请互相交流.[生]第一步:审题,找不等关系;第二步:设未知数,用未知数表示有关代数式;第三步:列不等式;第四步:解不等式;第五步:根据实际情况写出答案.[师]非常好.请大家按照刚才的步骤解答例4.[生]解:设她还可以买n支笔,根据题意得3n+2.2×2≤21解这个不等式,得n ≤36.16 因为在这一问题中n 只能取正整数,所以,小颖还可以买1支,2支,3支,4支或5支笔.Ⅲ.课堂练习1.解:设至多可以打x 折,根据题意,得50040010%4000.88x x -≥∴≥ 所以至多可以打8.8折.2.解:设他还可以买x 根火腿肠,根据题意,得2x +3×5≤26解这个不等式,得x ≤5.5所以小明还可以买1根,2根,3根,4根或5根火腿肠.Ⅳ.课时小结根据前面我们做的练习和例题,我们来总结一下解一元一次不等式应用题的一般步骤.(1)审题,找不等关系;(2)设未知数;(3)列不等关系;(4)解不等式;(5)根据实际情况,写出全部答案.Ⅴ.课后作业教材 习题2.5Ⅵ.活动与探究x 取什么值时,代数式2x -5的值:(1)大于0?(2)不大于0?解:(1)根据题意,得2x -5>0解得x >25所以当x >25时,2x -5的值大于0. (2)根据题意,得2x -5≤0解得x ≤25. 所以当x ≤25时,2x -5的值不大于0. ●板书设计。

2022北师大版八年级数学下册全套教案

2022北师大版八年级数学下册全套教案

2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。

能够根据具体的事例列出不等关系式。

二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。

(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。

在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。

(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。

(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。

当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。

教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。

《一元一次不等式》第2课时示范公开课教案【八年级数学下册北师大版】

《一元一次不等式》第2课时示范公开课教案【八年级数学下册北师大版】

《一元一次不等式》教学设计第2课时【教学方案】一、教学目标1.能根据实际问题中的数量关系,列一元一次不等式求解.2.初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验.3.结合具体问题,了解不等式的意义,初步体会一元一次不等式的应用价值.4.发展学生分析问题、解决问题的能力;体会数学建模思想,提升应用数学知识解答实际问题的兴趣与能力.二、教学重难点重点:能根据实际问题中的数量关系,列一元一次不等式求解.难点:找不等关系,列不等式.能从所得到的不等式的解集中确定符合题意的解.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计⑤132362x x -+-<⑥ x +xy ≥y 2⑦ x >0A.5个B.4个C.6个D.3个 预设答案:A问题3:一元一次不等式的解法: 解一元一次不等式,要根据不等式的性质,将不等式逐步化为x >a (x ≥a )或x <a (x ≤a )的形式.其一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1(注意不等号方向是否改变).问题4:应用一元一次方程解实际问题的步骤:【探究】竞赛中,小明的得分为优秀(85分或85分以上),小明至少答对了几道题?提问:此实际问题中的不等关系是什么? 预设答案:不等关系是:小明的得分≥85 追问:设小明答对了 x 道题,则他答错和不答的共有多少道题?预设答案:答错和不答的共有(25-x )道题. 解:设小明答对了 x 道题,则他答错和不答的共有(25-x )道题.根据题意,得 4x -1×(25-x )≥85. 解这个不等式,得 x ≥ 22. 所以,小明至少答对了22道题. 【归纳】利用不等式来解决实际问题的步骤:【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 一辆客车从甲地开往乙地,出发 10min 后,一辆轿车也从甲地开往乙地,轿车的速度是 120 km/h ,轿车出发 30 min 内就超过了客车,则客车的速度小于多少?分析:客车速度×103060+<轿车速度×3060. 解:设客车的速度是x km/h ,根据题意,得 103030120.6060x +<⨯思维导图的形式呈现本节课的主要内容:。

一元一次不等式教案

一元一次不等式教案

一元一次不等式教案一元一次不等式教案篇一(一)复习提问:三角形的三边关系?(二)列一元一次不等式组问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?注:这个问题是本节的引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可。

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形。

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②注:木条c必须同时满足两个条件,即ca+b,ca-b.类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组。

实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组。

(三)一元一次不等式组的解集类比方程组的解,怎样确定不等式组中x的可取值的范围呢?不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围。

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围。

由不等式①解得x一叁.由不等式②解得x7.从图9.3―2容易看出,x可以取值的范围为7一叁.注:利用数轴可以直观形象地认识公共部分。

这个公共部分是两端有界的开区间。

这就是说,当木条c比7cm长并且比一叁cm短时,它能与木条a和b一起钉成三角形木框。

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。

解不等式组就是求它的解集。

注:这里正式给出不等式组的解集以及解不等式组的定义一叁.注:利用数轴可以直观形象地认识公共部分。

一元一次不等式(2)精品教案

一元一次不等式(2)精品教案
第四环节布置作业
个性空间
(1) (2)
第二环节探究活动(教师指导,学生展示)
一、独立思考
例1一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),问:小明至少答对了几道题?
解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,
列一元一次不等式解应用题的步骤:
3.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。
(1)符合公司要求的购买方案有哪几种?请说明理由。
(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?
的解小?
第三环节课堂巩固(独立思考,互批,T2展示)
1.某种商品进价为200元,标价300元出售,商场规定可以打折销售,但利润率不能少于5%,请你帮助售货员计算一下,这种商品最多可以按几折销售?(独立思考,展示)
2小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解,这两种灯的照明效果和使用寿命都一样,已知小王所在地的电价为每千瓦时0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。
①_______;②___________________;
③;④;⑤
练1:小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他还可能买多少根火腿肠?(独立完成,互批,帮扶)
二、合作探究(独立思考,自由展示)

一元一次不等式教案--【教学参考】

一元一次不等式教案--【教学参考】

教案:一元一次不等式教案--【教学参考】第一章:一元一次不等式的概念及性质1.1 不等式的定义教学目标:使学生理解不等式的概念,掌握不等式的基本性质。

教学内容:介绍不等式的定义,举例说明不等式的形式。

教学方法:采用讲解法,结合具体例子进行分析。

教学步骤:(1)引入不等式的概念,给出不等式的定义。

(2)举例说明不等式的形式,如2x > 3,5y ≤7等。

1.2 不等式的基本性质教学目标:使学生掌握不等式的基本性质,能够运用性质进行不等式的变形。

教学内容:介绍不等式的加减乘除性质,不等式的传递性质。

教学方法:采用讲解法,结合具体例子进行分析。

教学步骤:(1)介绍不等式的加减乘除性质,如不等式两边加减同一数,不等号方向不变;不等式两边乘除同一正数,不等号方向不变等。

(2)举例说明不等式的传递性质,如如果a > b,b > c,a > c。

(3)引导学生运用不等式的性质进行不等式的变形,如解不等式2x > 3。

第二章:一元一次不等式的解法2.1 解一元一次不等式教学目标:使学生掌握解一元一次不等式的方法,能够正确解不等式。

教学内容:介绍解一元一次不等式的方法,如去分母、去括号、移项等。

教学方法:采用讲解法,结合具体例子进行分析。

教学步骤:(1)介绍解一元一次不等式的方法,如去分母、去括号、移项等。

(2)举例说明解一元一次不等式的具体步骤,如解不等式3x 4 > 2。

(3)引导学生进行不等式的解法练习,巩固所学方法。

2.2 不等式的应用教学目标:使学生能够运用一元一次不等式解决实际问题。

教学内容:介绍不等式在实际问题中的应用,如长度、面积的计算等。

教学方法:采用案例分析法,结合具体例子进行分析。

教学步骤:(1)介绍不等式在实际问题中的应用,如利用不等式解决长度、面积的计算问题。

(2)举例说明不等式在实际问题中的应用,如计算一个矩形的长度,已知宽度为3cm,面积为12cm²。

2.4.2一元一次不等式(教案)

2.4.2一元一次不等式(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-实际应用:学会将实际问题转化为不等式模型,并求解得到满足条件的解集。
举例解释:
-在讲解不等式的定义时,重点强调“大于”、“小于”等符号的意义,并通过示例让学生直观感受不等式的概念。
-在介绍不等式的性质时,详细讲解每一条性质,如“不等式两边加(减)同一个数,不等号方向不变”,并给出具体例子进行验证。
-在讲解不等式的解法时,以具体的不等式为例,逐步演示求解过程,强调每一步骤的关键点。
-在实际应用方面,通过典型例题,引导学生将实际问题转化为不等式,培养学生解决实际问题的能力。
2.教学难点
-不等式的性质理解:学生容易混淆不等式的加减乘除性质,以及乘除以正负数的规律。
-不等式的移项:学生可能对移项时改变不等号方向的操作不熟练。
五、教学反思
今天我们在课堂上学习了一元一次不等式这一章节。回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于导入新课的部分,我通过提问同学们日常生活中的比较问题,激发了他们的兴趣。从学生的反应来看,这个导入方式还是比较吸引他们的,但可能还需要进一步贴近学生的生活实际,让他们更直观地感受到不等式的应用。
这些核心素养目标旨在帮助学生深入理解一元一次不等式的内涵,提高他们在实际问题中运用数学知识的能力,培养他们严谨、有条理的数学思维。
三、教学难点与重点

数学初二下北师大版1.6.2一元一次不等式组(二)教案

数学初二下北师大版1.6.2一元一次不等式组(二)教案

数学初二下北师大版1.6.2一元一次不等式组(二)教案教学目标〔一〕知识点要求1.进一步巩固解一元一次不等式组的过程.2.总结解一元一次不等式组的步骤及情形.〔二〕能力训练要求通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.〔三〕情感与价值观要求1.加强运算的熟练性与准确性.2.培养思维的全面性.教学重点巩固解一元一次不等式组.教学难点讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点.教学方法自主与讨论相结合的方法即让学生自己解不等式组,然后讨论解中出现的所有情况.教学过程Ⅰ.创设问题情境,导入新课[师]上节课我们差不多学习了如何解由两个一元一次不等式组成的不等式组的解法,本节课我们将接着加强解法的熟练性和准确性,同时还要全面地对所有解的情况进行总结.Ⅱ.新课讲授1.例题解以下不等式组〔1〕〔2〕〔3〕〔4〕[师]在做这组练习题之前,我们先回忆一下求一元一次不等式的解集和一元一次不等式组的解集的步骤.[生]解一元一次不等式的步骤为:去分母,去括号,移项、合并同类项,系数化成1.要注意的是在去分母和系数化成1这两步中不等号方向是否改变.解一元一次不等式组的步骤为:分别求出两个一元一次不等式的解集,在数轴上确定它们的公共部分,从而得出不等式组的解集.[师]好.下面我们先自己独立完成这四个不等式组的求解.〔让四个同学在黑板上板书过程〕.[生甲]〔1〕解:解不等式〔1〕,得x>1解不等式〔2〕,得x>-4.在同一条数轴上表示不等式〔1〕,〔2〕的解集如图1-33:图1-33因此,原不等式组的解集是x>1[生乙]〔2〕解:解不等式〔1〕,得x<解不等式〔2〕,得x<在同一条数轴上表示不等式〔1〕,〔2〕的解集.如图1-34:图1-34因此,原不等式组的解集是x<[生丙]〔3〕解:解不等式〔1〕,得x>解不等式〔2〕,得x≤4.在同一条数轴上表示不等式〔1〕,〔2〕的解集,如图1-35:图1-35因此,原不等式组的解集为<x≤4.[生丁]〔4〕[解]解不等式〔1〕,得x>4.解不等式〔2〕,得x<3.在同一条数轴上表示不等式〔1〕,〔2〕的解集如图1-36:图1-36因此,原不等式组的解集为无解.[师]大伙做得特别棒,下面大伙认真观看一下这四组解,你发明了什么?2.讨论解的情况[师]我们从每个不等式的解集,到那个不等式组的解集,认真观看,互相交流,找出规律.〔1〕由得x>1;〔2〕由;〔3〕由得<x≤4;〔4〕由得,无解.[生]由〔1〕得,两个不等式的解集中不等号的方向基本上大于号,在数字1和-4中取大数1,不等号取大于号.由〔2〕得,两个不等式的解集中不等号的方向基本上小于号,在不等式组的解集中不等号的方向取小于,而数字取比较小的数字.由〔3〕得,两个不等式的解集中不等号的方向有大于也有小于,数字<4,同时是x>,x≤4,最后的结果中是x取大于小数小于大数,即<x≤4.由〔4〕得,两个不等式的解集中不等号的方向有大于也有小于,同时是x>4,x<3,因为4>3,即x应取大于4而小于3的数,而如此的数全然不存在,因此原不等式组的解集为无解.[师]大伙分析得特别精彩.差不多上说明了情况,下面我再系统地给大伙作一总结:两个一元一次不等式所组成的不等式组的解集有以下四种情形.设a<b,那么〔1〕不等式组的解集是x>b;〔2〕不等式组的解集是x<a;〔3〕不等式组的解集是a<x<b;〔4〕不等式组的解集是无解.[师]这是用式子表示,也能够用语言简单表述为:同大取大;同小取小;大于小数小于大数取中间;大于大数小于小数无解.Ⅲ.课堂练习1.随堂练习解以下不等式组〔1〕〔2〕[解]〔1〕解不等式〔1〕,得x<2解不等式〔2〕,得x>3在同一数轴上表示不等式〔1〕、〔2〕的解集,如图1-37:图1-37因此,原不等式组无解.〔2〕解:解不等式〔1〕,得x>2解不等式〔2〕,得x>3在同一数轴上表示不等式〔1〕,〔2〕的解集,如图1-38:图1-38因此,原不等式组的解集为x>3.2.补充练习解以下不等式组1.2.1.解:解不等式〔1〕,得x≤1解不等式〔2〕,得x<4在同一条数轴上表示不等式〔1〕、〔2〕的解集如图1-39:图1-39因此,原不等式组的解集为x≤12.解:解不等式〔1〕,得x<-2解不等式〔2〕,得x>0在同一条数轴上表示不等式〔1〕、〔2〕的解集,如图1-40:图1-40因此,原不等式组无解.课时小结本节课我们学习了如下内容.1.练习了解一元一次不等式组.2.总结了由两个一元一次不等式所组成的不等式组的解集的四种情况. .课后作业习题1.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 一元一次不等式和一元一次不等式组
4.一元一次不等式(二)
二、教学任务分析
(一)教学目标:
(1)知识与技能目标:
①进一步熟练掌握解一元一次不等式
②利用一元一次不等式解决简单的实际问题
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学生的分析和建立数学模型的能力。

(3)情感与态度目标:
通过利用一元一次不等式解决实际问题,使学生认识数学与人类生活的密切联系,以激发学生学习数学的兴趣与信心。

(二)教学重点:一元一次不等式的应用
(三)教学难点:将实际问题抽象成数学问题的思维过程。

三、教学过程分析
本节课设计了六个教学环节:第一环节:复习旧知,方法归纳;第二环节:合作探究,解决问题;第三环节:范例解析,方法归纳;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

第一环节 复习旧知,方法归纳
活动内容1:
解下列不等式,并把它们的解集分别表示在数轴上
(1)132<-x
x
(2)22
35-+≥x x
活动目的:通过对这两个一元一次不等式的求解,让学生回顾解一元一次不等 式的基本步骤以及在数轴上表示解集的方法。

活动效果:绝大多数学生都能独立地、正确地解决,但有一部分学生在用数轴
表示解集时还是把端点值的实心点画成空心圆圈,有的学生甚至把方向也画反了。

老师在此应再次强调。

活动内容2:
归纳解一元一次不等式的一般步骤:
(1)去分母———不等式性质2或3
注意:
①勿漏乘不含分母的项;
②分子是两项或两项以上的代数式时要加括号;
③若两边同时乘以一个负数,须注意不等号的方向要改变.
(2)去括号——去括号法则和分配律
注意:
①勿漏乘括号内每一项;
②括号前面是“-”号,括号内各项要变号.
(3)移项——移项法则(不等式性质1)
注意:移项要变号.
(4)合并同类项——合并同类项法则.
(5)系数化成1——不等式基本性质2或性质3.
注意:两边同时除以未知数的系数时,要分清不等号的方向是否改变
活动目的:让学生进一步明确解一元一次不等式的步骤与注意事项
活动效果:丛后面的练习效果来看,归纳方法是有效且必需的。

活动内容3:
求不等式4(x+1)≤20的正整数解。

活动目的:使学生体会题目的条件与要求对不等式解集的影响,也为后面解决实际问题时要考虑实际意义作铺垫。

活动效果:一部分学生能顺利解答,一部分学生因思维定势与审题不严而做错。

第二环节合作探究,解决问题
活动内容:利用一元一次不等式解决简单的实际问题
一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
解:设小明答对了x道题,则得4x分,另有(25-x)道要扣分,而小明评为优秀,即小明的得分应大于或等于85分,则
4x-(25-x) ≥85
解得: x≥22
所以,小明至少答对了22道题,他可能答对22,23,24或25道题。

活动目的:通过学生之间的合作、交流,让学生体会不等式在解决实际问题时的作用,并且发展了学生的合作、交流与数学语言的表达能力。

活动效果:学生发言踊跃,思维活跃,有算术计算的方法,有方程的方法,也有不等式的方法。

第三环节例题解析,方法归纳
活动内容1:
[例3]小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买x枝笔,根据题意,得
3x+2.2×2≤21
解这个不等式,得
x≤
36.
16
因为在这一问题中x只能取正整数,所以还可能买1枝、2枝、3枝、4枝
或5枝笔.
活动目的:进一步让学生体会不等式在解决实际问题时的作用,并且要结合实际问题的意义作出最后的解答,同时也为学生的解题步骤起了一个示范的作用。

活动效果:有助于提高学生解题的规范性,同时为后面的方法归纳作了铺垫。

活动内容2:方法归纳
解一元一次不等式应用题的步骤:
(1)审题,找不等关系;
(2)设未知数;
(3)列不等关系;
(4)解不等式;
(5)根据实际情况,写出全部答案
活动目的:通过例2、例3的解答,让学生通过讨论与交流,归纳出利用一元一次不等式解决实际问题的一般步骤,培养学生的数学建模的能力。

活动效果:通过类比列方程解应用题的步骤,学生基本上归纳得比较完整,只是最后求出了不等式的解集后,还要根据实际意义来得到最后答案,有些同学容易忽略。

第四环节 练习提高
活动内容:1、解下列不等式,并把它们的解集分别表示在数轴上:
;1322)3(;15)
1(-≤+<+x
x
x x ;
43)1(6)4(;573)2(x x x x +≥-->+ 2、小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,
一盒方便面3元钱,他买了5盒方便面,他还可能买多少根火腿 肠?
活动目的:通过学生独立对随堂练习的解答,及时发现问题、解决问题,让学生熟练解一元一次不等式,并能利用不等式解决一些实际问题。

活动效果:随机抽取学生上台演示,学生掌握情况良好。

第五环节 课堂小结
活动内容:通过本节课的学习,你学到了哪些知识?
(1)解一元一次不等式的一般步骤及注意事项
(2)利用一元一次不等式可以解决一些实际问题
活动目的:培养学生知识归纳与整理的习惯与能力,通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆。

活动效果:学生各抒己见,畅所欲言,一般都能概括出上述两条来。

第六环节布置作业
习题1.5 1.2.3。

相关文档
最新文档