项目三电阻应变式式传感器
《电阻应变式传感器》课件
1
电阻应变效应简介
深入了解电阻应变效应的基本原理和工作机制。
2
变形与电阻变化的关系
解释传感器受力变形时导致电阻变化的关系。
3
应变片的材料和制作工艺
探索应变片所使用的材料和制作工艺,以及其对传感器性能的影响。
电路设计
桥式电路的原理
了解桥式电路在电阻应变式传感 器中的作用和原理。
电阻应变式传感器的电路 设计要点
常见故障及排除方法
提供常见故障和ห้องสมุดไป่ตู้题的排除方法,确保传感器 的正常运行。
结论
1 优缺点和特点
总结电阻应变式传感器的优缺点和特点,了解其适用性和局限性。
2 市场前景和研究方向
展望电阻应变式传感器在未来的市场前景和可能的研究方向。
《电阻应变式传感器》 PPT课件
这是一份关于电阻应变式传感器的课件,将介绍该传感器的概述、原理、电 路设计和应用实例,帮助您理解其优缺点和市场前景。
传感器的概述
电阻应变式传感器
了解什么是电阻应变式传感器以及其在不同领 域的应用。
传感器的类型和特点
探索不同类型的传感器及其独特的特点和优势。
电阻应变式原理
探索设计电路时需要注意的关键 要点。
信号放大与滤波电路的设计
讲解信号放大和滤波电路在传感 器中的设计原则。
应用实例
1
工业自动化控制
展示电阻应变式传感器在工业领域中实
航空航天、汽车和建筑
2
际应用的案例。
探索电阻应变式传感器在航空航天、汽 车和建筑等领域的广泛应用。
维护与保养
维护周期和方法
讲解电阻应变式传感器的维护周期和适当的维 护方法。
电阻应变式传感器的工作原理
电阻应变式传感器的工作原理
电阻应变式传感器是一种常用的传感器,它可以将物体的应变转化为电阻的变化,从而实现对物体应变的测量。
其工作原理主要是利用电阻在受力作用下产生的应变效应,通过测量电阻值的变化来确定物体的应变情况。
首先,我们来了解一下电阻应变式传感器的基本结构。
它由电阻应变片、支撑件、固定件、连接线等部分组成。
其中,电阻应变片是传感器的核心部件,它通常由金属材料制成,具有一定的弹性。
当外力作用于物体表面时,电阻应变片会发生形变,从而导致其电阻值发生变化。
这种变化可以通过连接线传输到测量仪器中进行检测和分析。
其次,我们来看一下电阻应变式传感器的工作原理。
当外力作用于物体表面时,物体会产生应变,即单位长度内的形变量。
电阻应变片固定在物体表面上,随着物体的应变而产生相应的形变,从而使得电阻值发生变化。
这种变化可以通过连接线传输到测量仪器中,并经过放大、滤波等处理后,最终得到物体的应变情况。
在实际应用中,电阻应变式传感器通常被安装在需要测量应变的物体表面上。
当物体受到外力作用时,电阻应变片会产生相应的应变,从而使得电阻值发生变化。
通过测量仪器对电阻值的变化进行监测和分析,就可以得到物体的应变情况。
这种测量方法简单、灵敏,可以广泛应用于工程、科研等领域。
总的来说,电阻应变式传感器的工作原理是利用电阻在受力作用下产生的应变
效应,通过测量电阻值的变化来确定物体的应变情况。
它具有结构简单、测量精度高、响应速度快等优点,因此在工程、科研等领域得到了广泛的应用。
希望通过本文的介绍,能够让大家对电阻应变式传感器有更深入的了解。
电阻应变式力传感器的工作原理
电阻应变式力传感器的工作原理电阻应变式力传感器是一种常用于测量物体受力情况的传感器,通过测量电阻的变化来间接地推断物体所受的力的大小。
在现代工程领域中,电阻应变式力传感器被广泛应用于各种领域,如汽车工业、建筑工程、航空航天等。
本文将详细探讨电阻应变式力传感器的工作原理,以及其在实际应用中的重要性和发展前景。
电阻应变式力传感器的工作原理基于电阻的变化和应变的关系。
当物体受到外力作用时,物体会发生形变,即应变。
而电阻应变片则是利用薄膜电阻的应变性质来实现力的测量。
电阻应变片通常由一个弹性基底和导电材料组成,当外力作用在电阻应变片上时,导电材料会发生微小的拉伸或压缩,从而导致电阻值的改变。
通过测量电阻值的变化,可以准确地计算出物体所受的力的大小。
在电阻应变式力传感器中,常用的传感元件为皮托电桥。
皮托电桥是由四个电阻应变片组成的电桥电路,其中两个电阻应变片受力作用,另外两个电阻应变片则处于不受力状态。
当外力作用于受力电阻应变片时,电桥中各个电阻的电阻值将发生变化,导致电桥的平衡失调。
通过测量电桥的平衡失调量,可以准确地计算出物体所受的力的大小。
在实际应用中,电阻应变式力传感器具有许多优点。
首先,电阻应变式力传感器的结构简单,制造成本低廉。
其次,电阻应变式力传感器具有高灵敏度和线性度,能够准确地测量小到大范围内的力。
此外,电阻应变式力传感器的响应速度快,能够实时监测物体所受的力的变化。
因此,电阻应变式力传感器被广泛应用于各种需要测量力的场合。
在汽车工业中,电阻应变式力传感器常用于测量车辆刹车系统的工作情况。
通过安装在刹车片上的电阻应变式力传感器,可以实时监测刹车片受到的力,从而确保刹车系统的正常工作。
此外,在建筑工程中,电阻应变式力传感器常用于测量建筑结构的受力情况,以确保建筑物的结构安全可靠。
在航空航天领域,电阻应变式力传感器的应用也十分广泛。
例如,在飞机的机翼上安装电阻应变式力传感器,可以实时监测飞机受到的气动力,以及飞机结构的受力情况。
电阻应变式传感器实验报告
电阻应变式传感器实验报告
实验目的:
1. 了解电阻应变式传感器的工作原理
2. 掌握使用电阻应变式传感器进行力的测量的方法
3. 学习利用电阻应变式传感器测量应变和转换为电信号的过程
实验器材:
1. 电阻应变式传感器
2. 力传感器
3. 电源
4. 模数转换器
5. 电压计
实验步骤:
1. 搭建实验电路,将电源与电阻应变式传感器、模数转换器和电压计连接起来。
2. 将电阻应变式传感器安装在测量目标上,如测量弹簧的伸缩变化。
3. 通过调整电源的电压,使电阻应变式传感器的输出电压适合模数转换器的输入范围。
4. 通过读取电压计上的电压数值,记录下电阻应变式传感器输出的电压。
5. 通过改变测量目标的力大小,观察电阻应变式传感器输出电压的变化。
实验结果:
1. 根据实验数据计算出电阻应变式传感器的灵敏度。
2. 绘制出电阻应变式传感器输出电压与力大小的关系曲线。
3. 根据曲线上的数据点,计算出力与电阻应变式传感器输出电压之间的线性关系。
实验分析:
1. 分析电阻应变式传感器的工作原理,解释实验结果。
2. 探讨电阻应变式传感器的优缺点,以及其在实际应用中的使用场景。
结论:
通过实验,我们成功地使用电阻应变式传感器进行了力的测量,并了解了电阻应变式传感器的工作原理和应用。
我们还计算了电阻应变式传感器的灵敏度,并绘制了力和电压之间的关系曲线。
实验结果表明,电阻应变式传感器在测量力方面具有较高的精度和稳定性,适用于各种应用领域。
电阻应变式传感器的应用
改变力的大小即可改变传感器输出图1-1电桥电路 IRJ3 *IXnxB.S应支传感器实验模枫liw实验一电阻应变式传感器的应用一一电子称实验一、实验目的1、了解和掌握电阻应变式传感器的工作原理和特性;2、了解和掌握电阻应变式全桥测量电路的优点及应变式全桥测量电路的应用;3、掌握电阻应变式传感器的标定方法和误差的计算方法。
二、实验原理电阻应变式传感器由弹性体、电阻应变片和电桥电路三部分组成,当弹性体受力作 用时产生变形£,粘贴在弹性体上的四个电阻应变片R1、R2、R3、R4受到变形作用而产生电阻的变化△R1、A R2、A R3、△R4,将受力性质相同的两个电阻应变片接入电桥的对边,不同性质的应变片接入电桥的邻边,四个电阻应变片组成如图1-1所示电桥,当电桥的两端加上电压时,传感器受力作用时,由于电桥的阻值不平衡,则在电桥的另两端将有电压输出,该输出电压与外加的力成比例, 电压的大小。
三、实验仪器与设备QSCGQ-ZT2型测控技术试验台、CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。
四. 实验步骤1. 按图1-2全桥实验接线图将传感器接入全桥电路,并用万用表检查桥路阻抗,电桥阻抗应为350欧;图1-2全桥实验接线图 一接主盘尊—电魔输曲按主挖蕭菸救县东-电鶴输出Vi.宦!-L_;■2、从QSCGQ-ZT2型测控技术试验台中可调电源部分调整±4V电源接入CGQ-013实验模块上;3、从QSCGQ-ZT2型测控技术试验台中引入电源±15V接CGQ-001实验模块,检查无误后,合上主控箱电源开关。
4、将CGQ-001实验模块输出端V02与主控箱面板上的电压表电压输入端Vi相连,电压表的切换开关打到2V档;5、放大器调零:将CGQ-001实验模块中调节增益电位器Rw1顺时针调节到中间位置,然后进行差动放大器调零,使电压表显示0.00V。
电阻应变式传感器工作原理及应用
电阻应变式传感器工作原理及应用电阻应变式传感器是一种常见的传感器类型,它基于电阻的变化来检测物体或环境的应变。
本文将介绍电阻应变式传感器的工作原理和常见应用。
电阻应变式传感器的工作原理主要基于金属电阻的特性。
金属材料在受力作用下会发生应变,即物体的形状和尺寸会发生改变。
当金属材料发生应变时,其电阻值也会发生变化。
电阻应变式传感器利用这一原理,通过测量电阻值的变化来反映物体的应变情况。
电阻应变式传感器一般由金属应变片和电阻组成。
金属应变片是一个非常薄的金属片,可以粘贴或焊接在需要测量应变的物体上。
当物体发生应变时,金属应变片也会发生相应的应变。
应变片上的电阻会因为应变而发生变化。
电阻应变式传感器中的电阻通常采用导线电阻,如铜线或铂电阻。
当应变片发生应变时,导线电阻的长度和截面积都会发生变化,从而改变电阻值。
通过测量电阻的变化,可以间接地得知物体的应变情况。
电阻应变式传感器的应用广泛。
它可以用于测量力的大小和方向,例如测量桥梁、建筑物和船舶等结构物的应变。
同时,电阻应变式传感器也可以用于测量压力、应力和扭矩等物理量。
例如,它可以用于测量管道中的流体压力,以及机械设备中的扭矩大小。
电阻应变式传感器还可以用于工业自动化领域。
通过将传感器连接到控制系统中,可以实现对物体或设备的实时监测和控制。
例如,在汽车制造过程中,电阻应变式传感器可以用于监测车身的变形情况,以确保车身的质量符合标准要求。
除了上述应用外,电阻应变式传感器还可以用于测量温度、湿度和流量等参数。
通过将传感器与相应的测量电路结合,可以实现对这些参数的精确测量和控制。
总结起来,电阻应变式传感器是一种基于电阻变化来检测物体或环境应变的传感器。
它的工作原理简单且可靠,应用范围广泛。
无论是在工业生产中,还是在科学研究和日常生活中,电阻应变式传感器都发挥着重要的作用。
通过不断的技术创新和应用拓展,相信电阻应变式传感器将在更多领域发挥重要作用。
电阻应变式传感器的原理
电阻应变式传感器的原理电阻应变式传感器是一种常用的力、应力、压力或位移等物理量测量传感器。
它的原理基于金属材料的电阻随应变而发生变化的特性。
其基本构造由应变片(金属箔片)、固定基座、电缆和连接引线等组成。
首先,我们来了解一下金属材料的电阻特性。
金属在外力作用下会发生弹性体变形,其形状、尺寸和电阻值都会发生变化。
根据欧姆定律,金属导体的电阻值与导体截面积、长度和电阻率有关。
当金属材料变形时,导体截面积和长度都会发生变化,从而导致电阻值的变化。
电阻应变片是电阻应变式传感器的核心部件,它通常由金属箔片制成,并固定在传感器的基座上。
当外力作用于传感器时,应变片会发生弹性变形,其中一侧拉伸,另一侧压缩,导致应变片截面积和长度都发生变化。
应变片上有一个或多个刻线,称为应变片电阻悬臂。
其主要作用是用于测量应变片的电阻变化。
在应变片上连接一个桥式电路,其中两个悬臂的电阻与两个边缘悬臂的电阻串联,并且与电源和电荷放大器相连。
当外力作用于应变片时,悬臂的电阻值会发生变化,从而导致整个电桥的电阻发生变化。
电桥电阻的变化会引起输出电压的变化。
如果电桥平衡时输出电压为零,则当外力施加到应变片时,输出电压将不再为零。
这个输出电压的变化可以用来测量外力的大小。
通常使用称为Wheatstone电桥的平衡电桥来实现。
在使用电阻应变式传感器时,需要注意以下几个因素:首先是电源电压的稳定性,电源电压的波动会对输出的准确性产生影响;其次是温度的影响,金属材料的电阻值随着温度的变化而变化,因此需要对温度进行补偿;最后是应变片的选择,根据测量对象的应变量,选择合适的应变片进行测量。
总结来说,电阻应变式传感器的原理是利用金属材料的电阻随应变而变化的特性实现的。
通过应变片的变化,改变电桥电阻,从而测量外力的大小。
这种传感器在测量压力、力、应力和位移等物理量时广泛应用于工业、军事、航空航天等领域。
四种压力传感器的基本工作原理及特点
四种压力传感器的基本工作原理及特点四种压力传感器的基本工作原理及特点一:电阻应变式传感器一:电阻应变式传感器1 1电阻应变式传感器定义被测的动态压力作用在弹性敏感元件上,被测的动态压力作用在弹性敏感元件上,使它产生变形,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,电阻应变片感受动态压力的变化,按这种原理设计的传感器称按这种原理设计的传感器称为电阻应变式压力传感器。
为电阻应变式压力传感器。
1.2 电阻应变式传感器的工作原理电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。
箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。
丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 Ω,通常为120 Ω,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。
制成了纸基的电阻丝式应变片。
测量时,测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,弹性敏感元件随着动态压力而产生变形时,弹性敏感元件随着动态压力而产生变形时,电阻片电阻片也跟随变形。
如下图所示。
B 为栅宽,L 为基长。
为基长。
材料的电阻变化率由下式决定:材料的电阻变化率由下式决定:d d d R A R A r r=+ (1) 式中;式中;R —材料电阻由材料力学知识得;由材料力学知识得; [(12)(12)]dRR C K m m e e =++-= (2) K —金属电阻应变片的敏感度系数式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得可得 R L K K R Le D D == (3) 由式(2)可知,可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。
电阻应变式传感器
图3-1-4 电阻应变片的基本结构
返回首页
3.1.1 应变片的工作原理
•金属导体的应变效应
返回首页
–金属导体在外力作用下发生机械变形 时,其电阻值随着它所受机械变形 ( 伸长或缩短 ) 而发生变化的现象。
•根据电阻的定义:
R l / A
如果金属导体在外 力作用下产生变化 量dρ、dl、dA时, 其电阻变化dR为:
返回首页
3.1.1 应变片的工作原理
半导体应变片
• 半导体应变片 – 突出的优点是灵敏度系数高,可测微小应变(一般600 微应变以下);机械滞后小;动态特性好;横向效应 小;体积小。
– 其主要缺点是:电阻温度系数大;一般可达10-3/℃; 灵敏度系数随温度变化大;非线性严重;测量范围小。 因此,在使用时需采用温度补偿和非线性补偿措施。
2
ε • 上式中,
dl 称为轴向线应变,单位:“微应变”, l 6
1 110 mm / mm
• 由材料力学知,经向收缩 r 和轴向伸长 的关系为:
dr dl , 称为泊松比 • r r l
• 则
dR dl d d (1 2 ) (1 2 ) R l
金属电阻应变片
• 大多数金属材料的 0.3 ~ 0.5之间,所以 在1.6~2.0之间。
• 金属电阻应变片具有分辨率高,非线性误差小;温漂系数 小;测量范围大,可从弹性变形一直测至塑性变形(1 %~2%),可超载达20%;既能测量静态应变,又能测 量动态应变;价格低廉,品种繁多,便于选择和大量使用 等优点,因此在各行各业都广泛应用。
图3-T2 有源电桥
3.1.2 电阻应变传感器的测量电路
• 5)上述讨论假设负载电阻 Rl ,实际上是不可能的。 当 Rl为有限值时,由于桥路有内阻,所以输出电压有所 下降,此时可利用戴维南定理求其开路电压 U 0与桥路的 短路内阻 R0,得其等效电路见图3-T4。 • 由图可求出负载 Rl 两端电压为:
传感器实验报告(电阻应变式传感器)
传感器技术实验报告院(系)机械工程系专业班级姓名同组同学实验时间 2014 年月日,第周,星期第节实验地点单片机与传感器实验室实验台号实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码(每只约20g)、、数显电压表、±15V、±4V电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压εk E R RR R R E U 4R 4E 21140=∆⋅≈∆⋅+∆⋅= (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为%10021L ⋅∆⋅-=RR γ。
四、实验内容与步骤1.图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R 1、R 2、R 3、R 4上,可用万用表测量判别,R 1=R 2=R 3=R 4=350Ω。
2.从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端U i 短接,输出端Uo 2接数显电压表(选择2V 档),调节电位器Rw 3,使电压表显示为0V ,Rw 3的位置确定后不能改动,关闭主控台电源。
图1-2 应变式传感器单臂电桥实验接线图3.将应变式传感器的其中一个应变电阻(如R 1)接入电桥与R 5、R 6、R 7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw 1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端U i ,检查接线无误后,合上主控台电源开关,调节Rw 1,使电压表显示为零。
电阻应变式压力传感器课程设计说明书
1绪论1.1概述传感器技术是利用各种功能材料实现信息检测的一门综合技术学科,是在现今科学领域中实现信息化的基础技术之一。
现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大地促进了现代传感器技术的发展。
同时我们也看到,传感器在日常生活中的运用越来越广泛,可以说它已成为了测试测量不可或缺的环节。
因此,学习、研究并在实践中不断运用传感器技术是具有重大意义的。
1.2设计任务分析采用电阻应变片设计一种电阻应变式质量(压力)传感器,具体要求如下:1.正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥;2.选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析,3.并根据测试极限范围进行校核;4.完成传感器的外观与装配设计;5.完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通滤波电路)的设计和相关电路参数计算,并绘制传感器电路原理图;6.按学校课程设计说明书撰写规范提交一份课程设计说明书(6000字左右);7.按机械制图标准绘制弹性元件图(4号图纸),机械装配图各一张(3号图纸);2方案设计2.1原理简述电阻应变式传感器为本课程设计的主要部件,传感器中的弹性元件感受物体的重力并将其转化为应变片的电阻变化,再利用交流全桥测量原理得到一定大小的输出电压,通过电路输出电压和标准重量的线性关系,建立具体的数学模型,在显示表头中将电压(V)改为质量(kg)即可实现对物品质量的称重。
本次课程设计所测质量范围是0-10kg,同时也将后续处理电路的电压处理为与之对应的0-10V。
由于采用了交流电桥,所以后续电路包括放大电路,相敏检波电路,移相电路,波形变换电路,低通滤波电路(显示电路本次未设计)。
原理框图如图一所示。
图一原理框图2.2应变片检测原理电阻应变片(金属丝、箔式或半导体应变片)粘贴在测量压力的弹性元件表面上,当被测压力变化时,弹性元件内部应力变形,这个变形应力使应变片的电阻产生变形,根据所测电阻变化的大小来测量未知压力,也实现本次设计未知质量的检测。
电阻应变式压力传感器工作原理
电阻应变式压力传感器工作原理
电阻应变式压力传感器是一种常用的压力测量装置,它基于电阻应变效应来测量被测介质的压力。
该传感器的工作原理如下:在传感器的感应元件上贴有一层薄膜,该膜片具有电阻应变特性。
当被测介质的压力作用于膜片上时,膜片会产生变形,从而引起感应元件上电阻的改变。
这是因为在应变作用下,导电材料的电阻会发生变化。
一般情况下,电阻应变式压力传感器采用电桥的形式进行测量。
电桥的四个臂分别是两个电阻应变元件和两个固定电阻。
其中,两个电阻应变元件分别用作测量臂和补偿臂。
当无压力作用时,电桥处于平衡状态,此时输出电压为零。
而当被测介质的压力作用在感应元件上时,电桥会失去平衡,产生微小的电阻差,从而造成电桥的输出电压发生变化,该变化与被测介质的压力成正比。
为了提高传感器的灵敏度和测量精度,一般会采取一些措施,如增大感应元件的应变量、采用负载电阻匹配等。
总的来说,电阻应变式压力传感器利用电阻应变特性将被测介质的压力转化为电阻的改变,通过测量电桥的输出电压来间接获得压力值。
这种传感器具有体积小、响应速度快、测量范围广等优点,因此在工业控制、仪器仪表等领域得到广泛应用。
第3章 电阻应变式传感器
通常采用全等臂形式工作,即Rl=R2=R3=R4(初始值)。 且当四个桥臂均为应变片时,其相应的电阻变化为
∆R1 , ∆R2 , ∆R3和∆R4
UI 这样式(3-3)可变为: U 0 = 4
例:半桥测量时进行温度补偿。测量下图中的试件时,采用两片型号、 初始电阻值和灵敏度都相同的应变片Rl和R2。Rl贴在试件的测试点上,R2 贴在试件的应变为零处,或贴在与试件材质相同的不受力的补偿块上。 Rl和R2处于相同的温度场中,并接成双臂电桥(相邻臂)形式。当试件受 力并有温度变化时,应变片Rl的电阻变化率为: ∆R1/R1=∆R1e/R1e+∆R1t/R1 式中:∆R1e/R1e——R1由应变引起的电阻变化率; ∆R1t/R1——Rl由温度引起的电阻变化率。 应变片R2(温度补偿片)的电阻变化率为:∆R2/R2=∆R2e/R2e
如半导体硅,πL=(40~80)×10-11m2/N, E=1.67×1011N/m2,则k0=πLE=50~100。显然半导 体电阻材料的灵敏系数比金属丝的要高50~70倍。
二、结构特点
1、体形半导体应变片 条状半导体单晶硅或锗。 2、扩散性半导体应变片 最常用的半导体电阻材料有硅和锗,掺入杂质可 形成P型或N型半导体。 注意事项: 注意事项:由于半导体(如单晶硅)是各向异性材料, 因此它的压阻效应不仅与掺杂浓度、温度和材料类型 有关,还与晶向有关(即对晶体的不同方向上施加力 时,其电阻的变化方式不同)。
3-2金属电阻应变式传感器
一、电阻应变效应:假设金属应变片金属丝的长度为L,截面积为A、半 径为r、电阻率为ρ,则金属丝的初始电阻R可表示为:
电阻式传感器的常用种类
电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。
主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。
1、电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。
电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。
半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
2、压阻式传感器压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。
其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。
当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
3、热电阻传感器热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。
在温度检测精度要求比较高的场合,这种传感器比较适用。
目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。
用于测量-200℃~+500℃范围内的温度。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
电阻应变式传感器工作原理
电阻应变式传感器工作原理
电阻应变式传感器是一种利用电阻值随物体形变而发生变化的传感器,常被用于测量材料的应变或力的大小。
其工作原理基于导电材料在受到应变时电阻值发生变化的特性。
以下是电阻应变式传感器的基本工作原理:
1. 导电材料的特性:电阻应变式传感器通常使用导电性能较好的金属材料,如铜或铂。
这些材料在受到外部应变(例如拉伸或压缩)时,会导致其内部原子结构的变化,从而改变电阻值。
2. 应变引起电阻变化:当导电材料受到应变时,晶格结构发生变化,导致电子流通的路径发生扭曲或拉伸,从而引起电阻值的变化。
这个变化通常是线性的,与应变的大小成正比。
3. 电桥电路:电阻应变式传感器常常被集成到电桥电路中。
电桥电路包括多个电阻,其中一个是电阻应变式传感器。
当传感器受到应变时,其电阻值发生变化,导致整个电桥电路的电阻不平衡。
通过测量电桥电路两个对角线上的电压差,可以确定电阻变化的大小,从而计算出应变的值。
4. 信号放大和处理:电阻应变式传感器输出的信号较小,通常需要进行放大和处理。
使用放大器、滤波器等电子元件来增强和调整传感器输出的信号,以便更准确地测量和记录应变值。
5. 应变测量与力/压力关联:应变是由物体的形变引起的,通过测量电阻应变式传感器的电阻变化,可以间接地得知物体的形变情况。
进一步,通过已知材料的弹性特性,可以将应变转换为物体所受的力或压力值。
总体而言,电阻应变式传感器通过测量导电材料在应变作用下的电阻变化,实现对物体形变的测量,从而可以用于测量受力物体的力或压力。
这种传感器在工程、结构监测和材料测试等领域得到广泛应用。
电阻应变式传感器实验指导书
实验一 金属箔式应变片-单臂电桥、半桥、全桥性能比较实验实验目的:了解金属箔片式应变片,验证单臂、半桥、全桥的性能及彼此之间的关系。
所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬梁称重传感器、砝码、应变片、F/V 表、主、副电源。
实验原理与公式: (1)单臂电桥平衡条件: R 1R 4 = R 2R 3输出电压: RR EU 14∆⋅=灵敏度: 4EK U =(2)半桥平衡条件: R 1R 4 = R 2R 3 输出电压: RR EU 12∆⋅=灵敏度: 2EK U =(3)全桥平衡条件: R 1R 4 = R 2R 3 输出电压: RR E U 10∆=灵敏度:EK U =旋钮初始位置:直流稳压电源拨到2V 档,F/V 表拨到2V 档,差动放大器增益旋钮调到最大。
实验步骤:(1)了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下两片梁的外表面各贴两片应变片。
(2)差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F/V 表的输入插口vi 相连;调节差动放大器的增益旋纽到最大位置,然后调整差动放大器的调零旋钮使F/V 表显示为零,然后关闭主、副电源。
(3)按照下图,R 1、R 2、R 3为电桥的固定电阻;R 4=Rx 为应变片。
将稳压电源的切换开关置4v 档,F/V 表置20v 。
开启主、副电源,调节电桥平衡网络中的W 1,使F/V 表显示为零,等待数分钟后将F/V 表置2v ,再调节电桥W 1(慢慢调)使F/V 表显示为零。
(4)在传感器的托盘上放上一只砝码,记下现在的电压数值,然后每增加一只砝码记下一个数值并将这些数值填入下表。
表1(5)维持放大器增益不变,将固定电阻R 3换为与R X (R 4)工作状态相反的另一应变片,即取两片受力方向不同的应变片,形成半桥,调节电桥的W 1使F/V 表显示为零,重复(4)进程一样测得读数,填入表2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:日期:年月日编号:
Δ复习上节课容:(略)
Δ概述
力普遍存在于日常生活中。
在科学研究和工农业生产中,力更是起着重要的作用。
在生产过程中,压力检测与调节控制系统的应用非常广泛,例如锅炉蒸汽和水的压力监控;炼油厂减压蒸馏需要的低于大气的真空压力检测;在航空发动机试验研究中,为了研究发动机性能,必须测量过渡态的压力变化;电力系统中油路压力的测量和控制等。
对压力监控是保证工艺要求、生产设备和人身安全,实现经济运行所必须的。
检测力的传感器主要有电阻应变式传感器、压电式传感器、电容式传感器、压阻式传感器、电感式传感器等,本项目主要介绍电阻应变式和压电式测力传感器。
电阻应变片及弹性敏感元件
电阻应变片(也称应变计或应变片)是电阻应变式传感器的核心元件,它是一种电阻传感器,主要由弹性敏感元件或试件、电阻应变片和测量转换电路组成。
它是把应变转换为电阻变化,再用相应的测量电路将电阻转换成电压输出的传感器。
利用电阻应变式传感器可以直接测量力,也可以间接测量位移、形变、加速度等参数。
常用的电阻应变片有电阻丝应变片和半导体应变片两种。
一、应变效应
电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械形变时,其电阻值相应发生变化,这种现象称为“应变效应”。
由电工学可知,金属丝电阻R可用下式表示:
式中──电阻率,Ω·M;L──电阻丝长度,M;A──电阻丝截面积,M2。
当沿金属丝的长度方向施加均匀力时,上式中Ρ、R、L都将发生变化,导致电阻值发生变化。
即得到以下结论:金属丝受外力作用而伸长时,长度增加,而截面积减少,电阻值会增大;当金属丝受外力作用而压缩时,长度减小,而截面增加,电阻值会减小。
阻值变化通常较小。
实验证明,电阻应变片的电阻应变ΕR=∆R/R与电阻应变片的纵向应变ΕX的关系在很大围是线性的,即
其中∆ R/ R ──电阻应变片的电阻应变;K ──电阻丝的灵敏度。
式中的ΕR代表了被测件在应变片的应变。
严格来讲,由于试件与应变片之间存在蠕变等影响,所以应变片与试件这两者的应变是有差异的,但差异并不很大,工程上允许忽略,但却存在一大弱点,就是灵敏度低,一般为2.0~3.6。
二、电阻应变片的结构、材料和分类
电阻应变片的典型结构如图所示,由敏感栅、基底、覆盖层和引线等部分组成。
无论哪种形式的金属应变片,对敏感栅的金属材料都有以下基本要求:
1.灵敏系数要大,且在所测应变围保持不变;
2. Ρ要大而稳定,以便于缩短敏感栅长度;
3.抗氧化、耐腐蚀性好,具有良好的焊接性能;
4.电阻温度系数要小;
5. 机械强度高,具有优良的机械加工性能。
电阻应变片的分类:
按电阻应变片敏感栅材料不同,可分为金属应变片和半导体应变片两大类。
(A)丝式应变片;(B)箔式应变片;(C)半导体应变片
1—基底;2—应变丝或半导体;3—引出线;4—焊接电极;5—外引线
三、电阻应变片的测量电路
(一)直流电桥平衡条件
当RL→∞时,电桥输出电压为
(二)电压灵敏度
R1为电阻应变片,R2、R3、R4为电桥固定电阻,这就构成了单臂电桥。
N=1时,为最大值:
当电源电压E和电阻相对变化量一定时,电桥的输出电压也是定值,与各桥臂电阻阻值大小无关。
(三)电阻应变片的温度补偿方法
1 .补偿块补偿法
电桥输出电压U O与桥臂参数的关系为
工程上,一般按R1=RB=R3=R4选取桥臂电阻。
当温度升高或降低∆T =T-TO时,两个应变片因温度相同而引起的电阻变化量相等,电桥仍处于平衡状态,即
若此时被测试件有应变的作用,则工作应变片电阻R1有新的增量∆R1,而补偿片不承受应变,故不产生新的增量,此时电桥输出电压为
由上式可知,电桥的输出电压UO仅与被测试件的应变电阻有关,而与环境温度无关。
2.桥路自补偿法
当测量桥路处于双臂半桥和全桥工作方式时,电桥相邻两臂受温度影响,同时产生大小相等,符号相同的电阻增量而互相抵消,从而达到桥路温度自补偿的目的。
四、电阻应变片的应用——模拟电子称实验电路
电子称是将转换成电信号的称重传感器。
电子台秤不仅能快速、准确地称出商品的重
量,用数码显示出来,而且具有计算器的功能,
使用起来更加方便。
其他应用:
1、电阻应变式纱线力测量
2、筒式压力传感器
3、膜片压力式传感器
4、组合式压力传感
5、力和扭矩传感器
6、应变式加速度传感器
五、小结:
通过本训练熟悉电阻应变片的结构和种类,掌握应变片测量力的工作原理,掌握直流电桥的工作原理和有关特性,熟悉电阻应变式传感器测量电路。
六、布置作业:
1、应变式传感器的工作原理?
2、应变式传感器的测量方法?
七、板书安排
黑板分为三个部分:左边为标题,不擦除。
中部为具体讲解,更新擦除。
右边以图形为主,也可以写临时性容。