SURGE浪涌原理与整改(EMC)
EMC测试总体概述及浪涌测试原理与浪涌防护元器件使用
护方式(泄放或隔离或结合)、元器件等的选择; 4、根据浪涌进入PCB区域电压高低、电流大小、所
通过的路径进合理的间距、线宽、PCB布局、布 线设计;
测试波形介绍
• 2、短路电流波形参数(5/320uS):
测试波形介绍
• 浪涌测试波形的应用场景(对于CE认证) 1、根据我司现产品,电源端口采用1.2/50uS
(8/20uS)组合波; 2、网口采用10/700uS(5/320uS)组合波进行
试验;
3、试验前需对电缆类型、是否存在电源供电、 是否屏蔽等进行说明;(以便选择耦合/去耦 网络CDN);
浪涌防护元器件使用
• 2、压敏电阻(MOV)的参数与应用 • 2.1 压敏电阻的主要参数 • a 、标称压敏电压(V):
通过规定持续时间的脉冲电流(一般为 1mA 持续时间一般小于400mS)时压敏电 阻器两端的电压值
浪涌防护元器件使用
• b 、残压 在压敏电阻能承受的最大脉冲峰值电流Ip
及规定波形下压敏电阻两端电压峰值。 • c 、残压比
慢的缺点,此文中不再介绍。
浪涌防护元器件使用
• 浪涌防护器件小结 1、GDT、TSS同为开关型器件,均存在续流问题;
2、MOV、TVS同为钳位型器件,客服了续流问题, 但通流量较开关型器件要小;
3、GDT动作时间为uS级,MOV动作时间为nS级均 较慢;TSS、TVS客服了动作时间,为nS级器件;
残压比则是残压与标称电压之比。(一 般约为1.8~2.2)
浪涌防护元器件使用
• d 、通流容量 通流容量也称通流量,是指在规定的条
件(规定的时间间隔和次数,施加标准的 冲击电流)下,允许通过压敏电阻器上的 最大脉冲(峰值)电流值。 • 其他
SURGE浪涌原理和整改(EMC)
浪涌抑制
低压交流电源线上的浪涌是与过电压有联系的,但又不等同于过电压,因为浪涌 既包括电压的瞬变又包括电流的瞬变。同理,浪涌抑制也不等同于过电压保护。过电 压保护的目的是保障线路和电气设备绝缘完好,而浪涌抑制则是低压系统和电子设备 可靠运行及电磁兼容的保障。
浪涌(冲击)抗扰度试验 Surge Immunity Test
目录 一、浪涌介绍 二、GB/T 17626.5-2008相关规定 三、YY0505相关规定
一、浪涌介绍
概述 浪涌也被称为瞬态过电压,是电路中出现的一种短暂的电流、电压波 动,在电路中通常持续约 1us。220V 电路系统中持续瞬间(1us数量 级)的 5000~10000V 的电压波动,即为浪涌或瞬态过电压。持续时 间极短而幅值极大的电流波动,为瞬态电流冲击。开关操作和雷击浪 涌会在配电线路中引起瞬态过电压(流)。
浪涌的来源 对于低压系统来说浪涌来自两个方面,即外部浪涌和内部浪涌。 外部的浪涌最主要的来源是雷电,它可以是通过电源线传导的,也
可能是在电源线上感应而产生的;外部浪涌的另一个来源是公用电网开 关操作在电力线上产生的过电压。
内部浪涌是指入户配电盘以下的用电设备产生的浪涌。低压电源线 上 88%的浪涌产生于建筑物内部的设备,诸如来自空调机、空气压缩机、 电弧焊机、电泵、电梯、开关电源和其它一些感性负荷的浪涌。
不允许下列与基本性能和安全有关的性能降低:
1)器件故障; 2)可编程参数的改变; 3)工程默认值的复位(制造商的预设值); 4)运行模式的改变; 5)虚假报警; 6)任何预期运行的终止或中断,即使伴有报警; 7)任何非预期运行的产生,包括非预期或非受控的动作,即使伴有报警; 8)显示数值的误差大道足以影响诊断或治疗; 9)会干扰诊断、治疗或监护的波形噪声; 10)会干扰诊断、治疗或监护的图像伪影或失真; 11)自动诊断或治疗设备和系统在进行诊断或治疗时失效,即使伴有报警。 对于多功能的设备和系统,本准则适用于每种功能、参数和通道。
EMC测试总体概述及浪涌测试原理与浪涌防护元器件使用(课堂PPT)
.
18
浪涌防护元器件使用
• 浪涌保护器的型号、原理介绍 1、气体放电管(GDT)的参数与应用
u ufr
Δu
ufdc
Δτ
t
.
19
浪涌防护元器件使用
• 1.1主要技术参数 • a、直流放电电压
在上升陡度低于100V/s的电压作用下,放 电管开始放电的平均电压值称为其直流放 电电压。由于放电的分散性,所以,直流 放电电压是一个数值范围。 选择时应大于 电路工作电压120%;
EMC测试概述
• EMC测试包含EMI与EMS两部分
电磁兼容测试EMC
干扰发射EMI
敏 感 度EMS
DIP SURGE RS
CS
PMS
EFT ESD
Flicker Harmonic
CE RE
.
1
EMC测试概述
• RE&RS测试简介
高度扫描天线杆
天线
转台上的受试件
金属. 地板
2
EMC测试概述
• CE测试简介
.
27
浪涌防护元器件使用
• 1.2 压敏电阻的优缺点及其应用 • a 、优点: • 通流容量大 • 动作响应快 • 无续流 • b 、缺点 • 极间电容大 • TVS大家都有用过,TSS较GDT克服了动作时间
慢的缺点,此文中不再介绍。
.
28
浪涌防护元器件使用
• 浪涌防护器件小结 1、GDT、TSS同为开关型器件,均存在续流问题;
.
25
浪涌防护元器件使用
• b 、残压 在压敏电阻能承受的最大脉冲峰值电流Ip
及规定波形下压敏电阻两端电压峰值。 • c 、残压比
残压比则是残压与标称电压之比。(一 般约为1.8~2.2)
EMC测试总体概述及浪涌测试原理与浪涌防护元器件使用稿件.ppt
.新.
13
耦合/去耦网络的选择
• 耦合/去耦网络的选择 1、对于交直流电源线端口
.新.
14
耦合/去耦网络的选择
• 交/直流电源端口电容耦合试验配置(差模)
.新.
15
耦合/去耦网络的选择
• 交/直流电源端口电容耦合试验配置(共模)
.新.
16
浪涌防护元器件使用
• 浪涌防护原理 • 浪涌保护器的型号、原理介绍 • 浪涌保护电路及案例分析 (因现产品主要涉及到过压保护,这只介绍
用下,放电管开始放电的电压值称为其冲 击放电电压。
放电管的响应时间或动作时延与电压脉 冲的上升陡度有关,对于不同的上升陡度, 放电管的冲击放电电压是不同的 。
.新.
21
浪涌防护元器件使用
• C、冲击耐受电流 将放电管通过规定波形和规定次数的脉
冲电流,使其直流放电电压和绝缘电阻不 会发生明显变化的最大值电流峰值称为管 子的冲击耐受电流。 d、其他参数
通过的路径进合理的间距、线宽、PCB布局、布 线设计;
连辅助 设备与 端接
容性卡钳距参考地 100mm,轮流卡每根电缆
脉冲 EUT与发生器
群信 或卡钳之间
参考地平面的每
号源 的电源线或
个边要超出
信号线长度 小于1米
E大U地.T新1相. 00连mm并与
EUT与参考地平 面之间的距离 大于100mm
7
浪涌测试原理
• 测试波形介绍 • 耦合/去耦网络的选择
.新.
29
浪涌防护设计介绍
• 浪涌防护设计介绍(个人看法) 1、“标准”资料,GBT 17626.5,ITU K系列建议,
主要对波形参数、内阻、耦合方式进行了解; 2、“测试”技术了解,主要对差、共模,正、负极
SURGE浪涌原理及整改(EMC)
目录 一、浪涌介绍 二、GB/T 17626.5-2008相关规定 三、YY0505相关规定
一、浪涌介绍
概述 浪涌也被称为瞬态过电压,是电路中出现的一种短暂的电流、电压波 动,在电路中通常持续约 1us。220V 电路系统中持续瞬间(1us数量 级)的 5000~10000V 的电压波动,即为浪涌或瞬态过电压。持续时 间极短而幅值极大的电流波动,为瞬态电流冲击。开关操作和雷击浪 涌会在配电线路中引起瞬态过电压(流)。
低频能量可以通过硅二极管、压敏电阻、接地和控制环路面积进行消除; 而高频能量则可以通过滤波和屏蔽技术控制。
浪涌抑制
低压交流电源线上的浪涌是与过电压有联系的,但又不等同于过电压,因为浪涌 既包括电压的瞬变又包括电流的瞬变。同理,浪涌抑制也不等同于过电压保护。过电 压保护的目的是保障线路和电气设备绝缘完好,而浪涌抑制则是低压系统和电子设备 可靠运行及电磁兼容的保障。
a)在制造商、委托方或购买方规定的限制内性能正常; b)功能或性能暂时丧失或降低,但在骚扰停止后能自行恢复,不需要操作者干预; c)功能或性能暂时丧失或降低,但需操作者干预才能恢复; d)因设备硬件或软件损坏,或数据丢失而造成不能恢复的功能丧失或性能降低。
三、YY0505相关规定
36.202.1j:符合性准则 在36.202规定的试验条件下,Biblioteka 备或系统应能提供基本性能并保持安全,
浪涌抑制器的分类大致如下: ( 1)限幅型 氧化锌压敏电阻具有较高电能吸收能力和纳秒级响应时间; ( 2)开关型 主要指气体放电管,它响应较慢,瞬态的发生可能快于它的响应时间; ( 3)混合型 这主要是指金属氧化物压敏电阻( MOV)与开关管的联合使用;
浪涌抗扰度(Surge)测试资料
浪涌抗扰度(S u r g e)测试1) “´”可以是高于、低于或在其它等级之间的等级。
该等级可以在产品标准中规定。
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间内。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室内的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室内能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
浪涌抗扰度(Surge)测试
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
互连电缆象户外电缆一样走线甚至连到高压设备上。
这种环境下的一种特殊情况是电子设备接到人口稠密区的通信网上。
这时在电子设备以外,没有系统性结构的接地网,接地系统仅由管道、电缆等组成。
EMC及浪涌相关测试测试简介
EMC基本定义
电磁兼容性(Electro-Magnetic Compatibility,简称:EMC) 装置、整组设备或整套系统,在它本身的电磁环境中,能圆满地动作,而 且不会产生让其它在此环境中的设备难以忍受的电磁干扰。 EMC测试目的是检测电器产品所产生的电磁辐射对人体、公共电网以及 其他正常工作之电器产品的影响。 EMC包含两大项:EMI(干扰)和 EMS(敏感度,抗干扰)
辐射骚扰测试(RE)
辐射骚扰测试(Radiated disturbance,简称RE),包含空间辐射和磁场辐射 测试。辐射骚扰主要是指能量以电磁波的形式由产品发射到空中,或能量 以电磁波形式在空间传播对周边产品的影响。 辐射骚扰超标的产品可能引起周围装置、设备或系统性能降低,干扰信 息技术设备或其他电子产品的正常工作,并对人体造成一定危害。 电磁辐射分两个级别,其中工频段的单位是μT,如果辐射在0.4μ T以上 属于较强辐射,对人体有一定危害,长期接触易患白血病。如果辐射在 0.4μT以下,相对安全。而射频电磁波的单位是μW/㎝ 2。
电快速瞬变脉冲群抗扰度测试(EFT)
电快速瞬变脉冲群抗扰度测试(Electrical fast transient/burst Immunity test, 简 称EFT),测试波形为5/50nS电压波。又称快速脉冲测试. 电快速瞬变脉冲群是由电 路中来自切换瞬态过程(切断感性负载、继电器触点弹掉等)产生的能量,电 快速瞬变脉冲群抗扰度测试主要是模拟上述能量通过连接线缆(电源线等)对 电子产品产生的干扰. 电快速瞬变脉冲群抗扰度测试不通过的电子产品在实际使用中可能会死机, 复位,发生故障或烧毁等.电快速瞬变脉冲群抗扰度测试使用的基础标准为 IEC/EN 61000-4-4. 目的:考察单个设备或系统抗快速瞬变干扰的能力
浪涌原理技术
浪涌技术一、浪涌的定义 (2)二、浪涌的表现 (2)三、浪涌的来源 (2)四、浪涌的危害 (2)五、浪涌保护器的工作原理和基本元器件 (3)六、浪涌保护器(也称防雷器)的分级防护 (6)七、浪涌保护器的分类 (8)八、知名浪涌保护器品牌 (8)一、浪涌的定义浪涌也叫电涌、突波,就是超出正常工作电压的瞬间过电压。
本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲。
主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,由于电路本身的非线性有可能有高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰。
浪涌的特点是产生的时间非常短,大概在微微秒级。
浪涌出现时,电压电流的幅值超过正常值的两倍以上。
由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。
二、浪涌的表现浪涌普遍的存在于配电系统中,也就是说浪涌无处不在。
浪涌在配电系统主要表现有:1、电压波动;2、在正常工作情况下,机器设备会自动停止或启动;3、用电设备中有空调、压缩机、电梯、泵或电机;4、电脑控制系统经常出现无理由复位;5、电机经常要更换或重绕;6、电气设备由于故障、复位或电压问题而缩短使用寿命。
三、浪涌的来源以配电系统为参照物,则浪涌可以分成系统外的和系统内的两种。
根据统计,系统外的浪涌主要来自于雷电和其它系统的冲击,大约占20%;系统内的浪涌主要来自于系统内部用电负荷的冲击,大约占80%。
四、浪涌的危害1、破坏器件(1)电压击穿半导体器件;(2)破坏元器件金属化表层;(3)破坏印刷电路板印刷线路或接触点;(4)破坏三端双可控硅元件/晶闸管……。
2、干扰设备工作,影响数据(1)锁死、晶闸管或三端双向可控硅元件失控;(2)数据文件部分破坏;(3)数据处理程序出错;(4)接收、传输数据的错误和失败;(5)输出音质、画面质量下降;(6)原因不明的故障……。
3、破坏绝缘,使设备过早老化(1)使设备传输线绝缘遭受破坏,零部件提前老化、电器寿命大大缩短;(2)造成半导体器件性能的衰退、设备发故障和寿命的缩短,最后导致停产或是生产力的。
最新EMC测试总体概述及浪涌测试原理与浪涌防护元器件使用
测试波形介绍
• 10/700uS(5/320uS) 波形介绍: 1、开路电压波形为10/700uS;
___________________________ _______________________
测试波形介绍
• 2、短路电流波形参数(5/320uS):
___________________________ _______________________
的信小电号于源线1米线长或 度__________________个 E大__U__边 地__T__1__要 相__0__0超 连____m__出__m____并____与__
EUT与参考地平 面之间的距离 大于100mm
浪涌测试原理
• 测试波形介绍 • 耦合/去耦网络的选择
___________________________ _______________________
浪涌防护元器件使用
• 浪涌保护器的型号、原理介绍 1、气体放电管(GDT)的参数与应用
u ufr
Δu
ufdc
Δτ
t
___________________________ _______________________
浪涌防护元器件使用
• 1.1主要技术参数 • a、直流放电电压
在上升陡度低于100V/s的电压作用下,放 电管开始放电的平均电压值称为其直流放 电电压。由于放电的分散性,所以,直流 放电电压是一个数值范围。 选择时应大于 电路工作电压120%;
耦合/去耦网络的选择
• 耦合/去耦网络的选择 1、对于交直流电源线端口
___________________________ _______________________
EMC 浪涌防护元器件的工作原理及应用
中明科技有限公司
(Wholly owned by Chinamax Technologies Limited)
A leading TVS Supplier
”浪涌防护”元器件的工作原理及应用
在通信和数据线路上,“过电压”以及所产生的“过电流”会危害和干扰通信与计算机系统 的正常工作,并且可能对操作维护人员.设备造成伤害与损失,这种危害也可波及到用户端。 引起设备过电压的原因有: 1. 雷电行波从户外电力线.传输线路和天馈线侵入; 2. 因地线的接地电阻较大引起的”反击电压”; 3. 当用户线或传输线与交流电线碰撞时,可产生很大的电流,损坏设备甚至造成火灾; 4. 电网中供电回路的切换过程会对供电系统造成尖峰脉冲干扰,使正弦波电压畸变; 5. “静电放电”。 浪涌防护分为”过电压”防护和”过电流”防护,气体放电管(GDT).压敏电阻(MOV).半导体放 电管(TSS).瞬态电压抑制器(TVS)等是电压限制元器件,它们的工作原理相似,但是它们之间 的通流量.动作速度.极间电容.嵌位电压.残压等有很大的差别,新产品 PWC 以及 EMC 是新 型的浪涌电压防护元件,它的特点是串联使用; PTC 是电流限制元件用于”过电流”防护, 仅靠过电压保护并不能完全保护设备和线路免受浪涌冲击的破坏,浪涌电压有时不够高,不 能高于”过电压”保护值”,浪涌电压便有可能在电路中产生足够大的额外电流,从而破坏敏感 设备,所以需要过电流保护; 下面介绍不同元器件的工作原理和使用注意事项: 一. PTC(正温度系数)热敏电阻: (简称:PTC) PTC 是高分子聚合物材料制造的”电流限制”固态元件,在正常温度下呈现欧姆特性,当超过 特定的温度以后电阻值会随着温度上升而呈现剧烈的变化,依据 P=I×V.元件会发热,这样 的加热造成”高分子结构”,由”结晶相”转变成”分晶相”结构,使阻增加几个至十几个 数量级,此时电路中的电压几乎都加在 PTC 两端,因此可以起到保护其它元件和电路的作用, 当人为切断电路故障后,PTC 会恢复到原来的状态,PTC 无需更换而继续使用。 PTC 的应用和注意事项: (1).PTC 和环境温度的关系 PTC 是”过电流”保护元件,高分子聚合物 PTC 热敏电阻是直热式阶跃型,其电阻变化过程与 自身的发热和散热情况有关,所以”维持电流””动作电流”和”动作时间”受环境温度影响,当 PTC 发热功率大于散热功率时会动作,当 PTC 发热功率小于散热功率时不会动作,当 PTC 散 热功率和发热功率接近时处于临界状态。PTC 的动作时间与电流和环境温度有如下关系: 1).PTC 在环境温度相同时,动作时间随着电流的增加而急剧缩短; 2).PTC 在环境温度较高时动作时间更短,维持电流和动作电流都较小; (2).PTC 的恢复时间 1).PTC 动作后需要时间恢复; (1)
浪涌保护器工作原理
浪涌保护器工作原理浪涌保护器工作原理引言在配置计算机系统时,您可能购买的一个标准元件将是浪涌保护器。
浪涌保护器的大部分设计都能提供一个非常明显的功能——允许多个元件共用一个电源插座。
因为计算机系统是由各种不同的元件组成的,所以浪涌保护器确实是一个非常有用的装置。
但是带有浪涌保护器的电源板的另一个功能——保护计算机中电子设备免受电源浪涌的损害——要重要得多。
在本文中,我们将了解浪涌保护器(也称为浪涌抑制器),揭示其作用、适用情况和工作效果。
此外,我们还将介绍它能提供何种水平的保护,为什么即使您使用了优质浪涌保护器,也可能得不到需要的所有保护。
浪涌基本知识浪涌保护器系统的主要作用是保护电子设备免受“浪涌”的损害。
因此,如果您想知道浪涌保护器的作用,就需要弄清楚两个问题:什么是浪涌?电子设备为什么需要它们的保护?电涌或瞬变电压是指电压在电能流动的过程中大幅超过其额定水平。
在美国,一般家庭和办公环境配线的标准电压是120伏。
如果电压超过了120伏,就会产生问题,而浪涌保护器有助于防止该问题损坏计算机。
为了澄清这一问题,了解一些有关电压的知识会很有帮助。
电压是一种表示电势能差额的度量单位。
电流能够从一点流到另一点,是因为电线一端的电势能比另一端的电势能大。
这与水在压力下流出水管的原理相似——水管一端的高压推动着水流向压力较低的区域。
因此,您可以将电压看作是电压力的度量单位。
我们稍后将了解到,有各种因素可以引起电压的短暂上升。
•当电压增加持续三毫微秒(十亿分之一秒)或更长时间时,被称为浪涌。
•当电压增加仅持续一毫微秒或两毫微秒时,被称为尖峰。
如果浪涌或尖峰电压足够高,它就可能对计算机造成某种严重损坏。
这种效果与向水管施加过大水压十分相似。
如果水压过大,水管将会爆裂。
如果电线中的电压过大,也会发生类似的事情——电线“爆裂”。
实际上,它会像电灯泡灯丝一样发热并烧断,但原理相同。
增加的电压即使不会立即损坏计算机,也会使元件过度损耗,长期下来会降低它们的使用寿命。
浪涌工作原理
浪涌工作原理
浪涌工作原理是指在电气设备中,当遭受到电力过电压或电流冲击时,通过浪涌抑制器将过电压或过电流限制在一定范围内,保护设备免受损坏。
浪涌抑制器由浪涌电流保险丝、电闸和浪涌吸收器等组成。
具体而言,浪涌抑制器的工作原理包括以下几个步骤:
1. 检测:浪涌电流保险丝和电闸能够检测到过电压或过电流的存在,并迅速发出信号。
2. 断开:电闸会迅速打开,切断电路中的电流流动,以防止过电压或过电流的传导。
3. 吸收:浪涌吸收器作为电路的一部分,能够吸收过电压或过电流的能量。
它采用了特殊的材料和结构设计,能够迅速响应并吸收过电压或过电流的峰值。
4. 释放:一旦过电压或过电流消失,浪涌吸收器会自动释放并恢复正常的工作状态。
通过以上几个步骤,浪涌抑制器能够有效地保护电气设备免受过电压或过电流的损害。
它能够稳定电路中的电压和电流,保证设备的正常运行,并提高设备的寿命。
浪涌抑制器在各种电气设备中广泛应用,如电子设备、通信设备、家用电器等。
浪涌工作原理
浪涌工作原理嘿,咱今儿来聊聊浪涌工作原理这玩意儿。
你说这浪涌啊,就好像是电路世界里的一场小风暴。
想象一下,电路就像一条平静的小河,电流在里面稳稳地流淌着。
可突然,天上掉下块大石头,“扑通”一声,河水就溅起了老高的水花,这就跟浪涌差不多。
平常好好的电路,可能因为各种各样的原因,比如雷电啦、电网的波动啦,突然就来了那么一下子,电流瞬间增大,就像河水突然汹涌起来。
这浪涌要是不注意,那可不得了。
它就像个调皮的孩子,在电路里横冲直撞,说不定就把你的电器给搞坏啦!那可就得不偿失喽。
那浪涌到底是怎么工作的呢?其实啊,它就是一种瞬间的高能量释放。
就好比你憋了一口气,然后“噗”地一下子全吐出来,那力量可不小呢!当有浪涌产生的时候,它会迅速地在电路中传播,就像一阵风刮过。
咱家里的那些电器啊,可都得防着它。
比如说电视、电脑这些娇贵的玩意儿,要是被浪涌给袭击了,没准儿就黑屏啦、死机啦。
这时候就得靠一些保护装置啦,就像给电路穿上了一层铠甲。
这些保护装置就像是勇敢的卫士,时刻准备着抵御浪涌的攻击。
它们能在浪涌来的时候,迅速地做出反应,把那股强大的能量给吸收掉或者引导到别的地方去,让咱的电器安然无恙。
你说这浪涌是不是挺神奇的?它来无影去无踪,可破坏力却不小。
咱可得重视起来,给咱的电器都好好保护起来,不然等它们出了问题,咱可就得心疼啦!浪涌工作原理其实并不复杂,但它的影响却很大。
咱在生活中可得多留个心眼儿,别让浪涌给咱找麻烦。
你想想,要是正看着喜欢的电视剧呢,突然电视坏了,那得多扫兴啊!所以啊,了解浪涌工作原理,做好防护措施,这可是很重要的哦!这不光是为了保护咱的电器,也是为了让咱的生活更加顺畅、舒心呀!你说是不是这个理儿呢?。
浪涌保护器的工作原理
在正常工作情况下,防雷保护模块处于高阻状态。
当供电线路有雷电侵入或出现操作瞬时过电压时,防雷保护模块将以纳秒级的响应速度立即导通,将雷电过电压或瞬时过电压限制在用电设备允许承受的电压范围内,从而保护电子设备正常运行.而当雷电过电压或瞬时过电压结束以后,防雷保护模块又迅速地恢复到高阻状态,不影响电网的正常供电。
浪涌保护器(SPD)工作原理和结构??? 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。
电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。
用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
一、SPD的分类:1、按工作原理分:1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。
用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。
2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小(成正比是线性元件),其电流电压特性为强烈非线性。
用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。
3.分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。
扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。
用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。
按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。
(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。
浪涌原理
浪涌原理一、既然浪涌保护器实际就是压敏电阻,具有高通低阻的特性。
当电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。
如果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。
冲击波过后,电弧将被由分弧片和灭弧室组成的灭弧系统熄灭,恢复到高阻状态用以保护系统。
(浪涌保护器的作用)浪涌保护器本身如果出现故障,会出现长时间接通状态,造成电源/系统短路,此时就需要前端的断路器或熔断器及时切断接地回路,保证回路正常工作。
(浪涌保护器前断路器或熔断器作用)那么此断路器或熔断器怎样辨别到底是雷击造成短路的(称为A)还是浪涌保护器自身损坏(称为B)造成的短路,因为如果是A被辨别成B,断路器断开,主电路就会烧毁,反之如果B被辨别成A,主电路就会持续短路也会导致烧毁电路。
你的所有问题归纳起来只要你搞懂了在防雷器前段加装熔断器的原理就能搞懂了! 我们用的防雷器防的雷,其实不是能量很大可以摧毁一切的自己雷,而是电压峰值高,电流大,时间非常短的感应雷。
熔断器要熔断要满足一定的条件,那就是能量积累,瞬态的雷击很显然不会在防雷器工作是把熔断器给熔断了。
因为有了熔断器所以不管你所谓的A还是B都不会烧坏电路,而只是让熔断器断路,从而使电路和地安全的断开。
你上面有问怎么辨别防雷器是怎么损坏的我这倒是有个很简单,但是不怎么准确的办法:A:防雷器或者防雷器相连的电路上会有烧坏的痕迹,B:没有这样的痕迹二、防雷保护级别的划分是怎么样的,经常听人说A级保护,B级保护,C级保护,以最大通流量划分怎么区分,还有标称电压和电流是一个什么概念!谢谢帮助A级:Imax=120KA以上B级:Imax=80KA以上C级:Imax=40KA以上D级:Imax=20KA以上三、防雷分区1、什么叫防雷分区?根据IEC61312-1防雷分区的定义:雷电保护区LPZ0A(0A区)该区内的各物体都可能遭受直接雷击,同时在该区内雷电产生的电磁场能自由传播,没有衰减。
浪涌保护器工作原理及选择的几个原则
电涌保护器工作原理电涌保护器〔SPD〕工作原理及构造电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器〞或“过电压保护器〞英文简写为SPD。
电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
电涌保护器的类型和构造按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。
用于电涌保护器的根本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
一、SPD的分类:1、按工作原理分:1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。
用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。
2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。
用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。
3.分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。
扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。
用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。
按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。
(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。
二、SPD的根本元器件及其工作原理1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线〔N〕相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,防止了被保护设备上的电压升高。
浪涌发生器工作原理
浪涌发生器工作原理
浪涌发生器是一种用于模拟电力系统中的浪涌现象的设备。
它可以产生高电压、高电流的瞬态电压波形,用于测试电力设备的耐受能力。
浪涌发生器的工作原理是利用电容和电感的相互作用,产生高电压、高电流的瞬态电压波形。
浪涌发生器的主要部件包括电容、电感、开关、电源和控制电路。
电容和电感是浪涌发生器的核心部件,它们通过电路中的开关控制,产生高电压、高电流的瞬态电压波形。
电源提供电能,控制电路控制开关的开关时间和频率,从而控制浪涌发生器的输出波形。
浪涌发生器的工作原理可以分为两个阶段。
第一阶段是充电阶段,电容器通过电源充电,电感器中的电流逐渐增加。
当电容器充满电时,电路中的开关关闭,电容器和电感器之间的电荷开始流动,产生高电压、高电流的瞬态电压波形。
第二阶段是放电阶段,电容器和电感器之间的电荷开始流动,产生高电压、高电流的瞬态电压波形。
这个过程会不断重复,直到浪涌发生器停止工作。
浪涌发生器的应用范围非常广泛,主要用于测试电力设备的耐受能力。
例如,浪涌发生器可以用于测试变压器、电缆、开关、插座等电力设备的耐受能力。
通过模拟电力系统中的浪涌现象,可以检测电力设备的耐受能力,提高电力系统的可靠性和稳定性。
浪涌发生器是一种非常重要的电力测试设备,它可以模拟电力系统
中的浪涌现象,用于测试电力设备的耐受能力。
浪涌发生器的工作原理是利用电容和电感的相互作用,产生高电压、高电流的瞬态电压波形。
通过浪涌发生器的测试,可以提高电力系统的可靠性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浪涌波形的频谱分析
对 8/20µs 联合波形即式(1)进行傅立叶变换,得出其幅值频谱公式: 对于ω = 0 ,则有 对公式(2)进行傅立叶变换,得出其幅值频谱公式为:
当ω = 0时电压幅值为: 同样可以决定幅值频谱的第一拐点和第二拐点频率为:
a)在制造商、委托方或购买方规定的限制内性能正常; b)功能或性能暂时丧失或降低,但在骚扰停止后能自行恢复,不需要操作者干预; c)功能或性能暂时丧失或降低,但需操作者干预才能恢复; d)因设备硬件或软件损坏,或数据丢失而造成不能恢复的功能丧失或性能降低。
三、YY0505相关规定
36.202.1j:符合性准则 在36.202规定的试验条件下,设备或系统应能提供基本性能并保持安全,
波形分析
根据 IEC 标准,对于 8/20µs 的雷电电压、电流联合波形,其函数表示为:
式中 I(t)表示电流; Ip为电流峰值; t 为时间。 对于 1.2/50µs 波形,其函数描述为:
式中 V(t)为雷电电压; Vp是电压峰值。 操作浪涌呈现得是衰减的振荡波,如对于 IEC标准规定 0.5µs, 100kHz 振荡波和 5kHz 振荡波,它们一般用下式代表:
浪涌(冲击)抗扰度试验 Surge Immunity Test
目录 一、浪涌介绍 二、GB/T 17626.5-2008相关规定 三、YY0505相关规定
一、浪涌介绍
概述 浪涌也被称为瞬态过电压,是电路中出现的一种短暂的电流、电压波 动,在电路中通常持续约 1us。220V 电路系统中持续瞬间(1us数量 级)的 5000~10000V 的电压波动,即为浪涌或瞬态过电压。持续时 间极短而幅值极大的电流波动,为瞬态电流冲击。开关操作和雷击浪 涌会在配电线路中引起瞬态过电压(流)。
二、GB/T 17626.5-2008相关规定
试验等级:
试验等级应根据安装情况来选择;安装类别在B.3中给出。 所有较低试验等级的电压应得到满足(见8.2)。 对不同界面的试验等级的选择见附录A。
试验结果的评价
试验结果应依据受试设备在试验中的功能丧失或性能降低现象进行分类, 相关的性能水平由设备的制造商或需要方确定,或由产品的制造商和购买方 双方协商同意。推荐按如下要求分类:
浪涌抑制器的分类大致如下: ( 1)限幅型 氧化锌压敏电阻具有较高电能吸收能力和纳秒级响应时间; ( 2)开关型 主要指气体放电管,它响应较慢,瞬态的发生可能快于它的响应时间; ( 3)混合型 这主要是指金属氧化物压敏电阻( MOV)与开关管的联合使用;
浪涌抑制的原理
常用的浪涌抑制器件为气体放电管、氧化锌压敏电阻、瞬态电压抑制器、 硅二极管等。它们的工作原理不同,但有相似的伏安特性,即两端电压低于规 定电压时,通过电流很小,而当两端电压高于规定电压后,通过电流会呈指数 规律增长。这一伏安特性使其能同时满足浪涌抑制泻流和限幅的要求,因而也 就成为浪涌抑制的主导器件。尤其是氧化锌压敏电阻,不仅限幅电压可以很低, 导通电流也可以很大,价格又便宜,已经成为工程师首选的浪涌抑制器件。
浪涌的来源 对于低压系统来说浪涌来自两个方面,即外部浪涌和内部浪涌。 外部的浪涌最主要的来源是雷电,它可以是通过电源线传导的,也
可能是在电源线上感应而产生的;外部浪涌的另一个来源是公用电网开 关操作在电力线上产生的过电压。
内部浪涌是指入户配电盘以下的用电设备产生的浪涌。低压电源线 上 88%的浪涌产生于建筑物内部的设备,诸如来自空调机、空气压缩机、 电弧焊机、电泵、电梯、开关电源和其它一些感性负荷的浪涌。
设备和系统可以出现不影响基本性能和安全的性能降低。
谢 谢! Thank you!
低频能量可以通过硅二极管、压敏电阻、接地和控制环路面积进行消除; 而高频能浪涌是与过电压有联系的,但又不等同于过电压,因为浪涌 既包括电压的瞬变又包括电流的瞬变。同理,浪涌抑制也不等同于过电压保护。过电 压保护的目的是保障线路和电气设备绝缘完好,而浪涌抑制则是低压系统和电子设备 可靠运行及电磁兼容的保障。
式中
显 然 ,第 一 拐点频率由波长指数决定, 第二拐点频率由波前指数决定。对公式(4)、 (5)、 (6)、 (7) 利用 MATLAB软件可分别计算出几种典型浪涌波的幅值频谱,结果如下图所示。
从幅值频谱图可以看出,浪涌波形的波前时间越短,则其所包含的频带 越宽,频率越高。幅值频谱分析表明许多浪涌呈现低频特征,即主要能量集 中在频率较低的频段。但是由于非常低的能量就会引起集成电路的状态混乱 或损坏,因此在浪涌波形中所含的高频能量即使比例较小也足以影响半导体 电路的正常运行。事实上采用集成电路技术的电子设备的损害或误动大多都 是由于浪涌能量造成的。通常认为集成电路装置的受损能量级为 100mJ。
不允许下列与基本性能和安全有关的性能降低:
1)器件故障; 2)可编程参数的改变; 3)工程默认值的复位(制造商的预设值); 4)运行模式的改变; 5)虚假报警; 6)任何预期运行的终止或中断,即使伴有报警; 7)任何非预期运行的产生,包括非预期或非受控的动作,即使伴有报警; 8)显示数值的误差大道足以影响诊断或治疗; 9)会干扰诊断、治疗或监护的波形噪声; 10)会干扰诊断、治疗或监护的图像伪影或失真; 11)自动诊断或治疗设备和系统在进行诊断或治疗时失效,即使伴有报警。 对于多功能的设备和系统,本准则适用于每种功能、参数和通道。