2021届高考核心考点十分钟基础题速练: 用牛顿第二定律解决瞬时问题
牛顿第二定律瞬时性问题专题(个人整理)
B. 剪断绳的瞬间 C. 剪断弹簧的瞬间
D. 剪断弹簧的瞬间
析:剪断绳时a=0,剪断弹簧时a=g/2
• 例2、如图甲两球质量均为m,两根轻绳1和2,突 然迅速剪断1,剪断瞬间A、B的加速度为多少?
变式1:将轻绳2改变成轻质弹簧,如图乙,则情 况又如何?
变式2:如图乙中A、B质量分别为3m和2m,则 剪断线1瞬间,情况又如何?
பைடு நூலகம்
变式1 (2020·福建龙岩市期末质量检查)如图5所示,在倾角为θ=30°
的光滑固定斜面上,物块A、B质量均为m.物块A静止在轻弹簧上端,
物块B用细线与斜面顶端相连,A、B靠在一起,但A、B之间无弹力.
已知重力加速度为g,某时刻将细线剪断,下列说法正确的是
A.细线剪断前,弹簧的弹力为mg
B.细线剪断前,细线的拉力为mg
a
A
B
例3 (多选) 如图4所示,质量均为m的木块A和B用一轻弹簧相连,竖 直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处 于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开 的瞬间
√A.弹簧的形变量不改变
B.弹簧的弹力大小为mg
√C.木块A的加速度大小为2g
D.木块B对水平面的压力大小迅速变为2mg
细线剪断瞬间,对 A、B 系统,加速度大小:a=2mgs2inmθ-F=41g,故 D 正确.
变式2 如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角 为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆 相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行, 重力加速度为g,则在突然撤去挡板的瞬间有 A.图甲中A球的加速度大小为gsin θ B.图甲中B球的加速度大小为2gsin θ C.图乙中A、B两球的加速度大小均为gsin θ
高中物理牛顿运动定律的应用_牛顿第二定律的应用之瞬时性问题精选针对训练
牛顿运动定律的应用-牛顿第二定律的应用之瞬时性问题1. 如图所示,A 、B 为两个质量相等的小球,由细线相连,再用轻质弹簧悬挂起来,在A 、B 间细线烧断后的瞬间,A 、B 的加速度分别是( )。
A. A 、B 的加速度大小均为g ,方向都竖直向下B. A 的加速度为0,B 的加速度大小为g 、竖直向下C. A 的加速度大小为g 、竖直向上,B 的加速度大小为g 、竖直向下D. A 的加速度大于g 、竖直向上,B 的加速度大小为g 、竖直向下2. 如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2。
重力加速度大小为g 。
则有CA. 1a g =,2a g =B. 10a =,2a g =C. 10a =,2m M a g M +=D. 1a g =,2m Ma g M+= 3. 如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态。
当木板AB 突然向下撤离的瞬间,小球的加速度大小为 ( )。
A. 0B.233g C. g D. 33g 4. 如图所示,质量满足m A =2m B =3m C 的三个物块A 、B 、C ,A 与天花板之间,B 与C 之间均用轻弹簧相连,A与B 之间用细绳相连,当系统静止后,突然剪断AB 间的细绳,则此瞬间A 、B 、C 的加速度分别为(取向下为正) ( )。
A. -56g 、2g 、0B. -2g 、2g 、0C. -56g 、53g 、0D. -2g 、53g 、g5. 如图所示,A 、B 两小球分别连在轻线两端,B 球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端。
A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为 ( )。
高中物理力学提升专题07牛顿第二定律的瞬时性问题(2)
高中物理力学提升专题07牛顿第二定律的瞬时性问题(2)
奶多、又生长快的奶牛,可以采用什么方法呢?
解决学生疑难点
一、孟德尔杂交实验
1.模拟孟德尔杂交实验
分析上述实验结果,回答下列问题:
1.由P→F1能否推断出两对性状中的显隐性关系?
答案由P→F1,结合显性性状和隐性性状的定义可知,黄色和圆形为显性性状,绿色和皱形为隐性性状。
2.单纯看子叶颜色这对性状,结果符合分离定律吗?单纯看种子形状这对性状呢?
答案符合。
黄色∶绿色=3∶1;圆形∶皱形=3∶1。
3.上述结果说明,两对相对性状遗传时是否是独立的、互不干扰的?答案是独立的、互不干扰的。
4.F2有4种性状表现中与亲本表现类型相同(亲本类型)和与亲本的表现类型不同(重组类型)的分别是哪几种?比例分别是多少?
答案亲本类型为黄色圆形和绿色皱形,共占10/16;重组类型为黄色皱形和绿色圆形,共占6/16。
5.将两对性状一并考虑,它们之间是什么关系?
答案不同对的相对性状是可以相互组合的,而且组合是随机的,这种现象称为自由组合现象。
知识整合黄色和圆形为显性性状,绿色和皱形为隐性性状;F2中亲本类型为黄色圆形和绿色皱形,重组类型为黄色皱形和绿色圆形;每一对性状的遗传都是独立的、互不干扰的,符合分离定律;不同对的性状之间是可以自由组合的。
1.孟德尔用豌豆做两对相对性状的遗传实验不必考虑的是( ) A.亲本的双方都必须是纯合子
B.两对相对性状各自要有显隐性关系
C.对母本去雄,授以父本花粉。
牛顿第二定律的瞬时问题
例一:
(2010· 广东外国语学校模拟)在动摩擦因数μ=0.2的
水平面上有一个质量为m=1 kg的小球,小球与水平轻弹簧及 与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图3-
2-2所示.此时小球处于静止平衡状态,且水平面对小球的弹
力恰好为零,当剪断轻绳的瞬间,取g=10 m/s2.求: (1)此时轻弹簧的弹力大小; (2)小球的加速度大小和方向;
3、轻弹簧:既能承受拉力,又可承受压力,力 的方向沿弹簧的轴线;受力后发生较大形变,弹 簧的长度既可变长,又可变短,弹性限度内遵守 胡克定律;因形变较大ቤተ መጻሕፍቲ ባይዱ产生形变或使形变消失 都有一个过程,故弹簧的弹力不能发生突变,在 较短的时间内可认为弹力不变;当弹簧被剪断时, 弹力立即消失。
4、橡皮绳:只能承受拉力,不能承受压力,其 长度只能变长,不能变短,弹性限度内遵守胡克 定律;因形变较大,产生形变或使形变消失都有 一个过程,故橡皮条的弹力不能发生突变,在较 短的时间内可认为弹力不变;当橡皮条被剪断时, 弹力立即消失。
3.如图(1)所示,一质量为m的物体系于长度
分别为L1 、L2的两根细线上,L1的一端悬挂 在天花板上,与竖直方向夹角为θ ,L2水平 拉直,物体处于平衡状态。现将L2线剪断, 求剪断瞬时物体的加速度。
例三:如图3-2-8所示是两根轻弹簧与两个质量都为m 的小球连接成的系统,上面一根弹簧的上端固定在 天花板上,两小球之间还连接了一根不可伸长的细 线.该系统静止,细线受到的拉力大小等于4mg.在 剪断了两球之间的细线的瞬间,球A的加速度aA和球 B的加速度aB分别是 ( ) A.2g,竖直向下;2g,竖直向下 B.4g,竖直向上;4g,竖直向下 C.2g,竖直向上;2g,竖直向下 D.2g,竖直向下;4g,竖直向下
高中物理牛顿第二定律经典练习题专题训练(含答案)
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
考点11 牛顿第二定律——2021年高考物理专题复习附真题及解析
考点11 牛顿第二定律考点解读1.用牛顿第二定律分析瞬时加速度2.分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:特性模型受外力时的形变量力能否突变产生拉力或支持力质量内部弹力轻绳微小不计能只有拉力没有支持力不计处处相等橡皮绳较大不能只有拉力没有支持力轻弹簧较大不能既可有拉力也可有支持力轻杆微小不计能既可有拉力也可有支持力3.在求解瞬时加速度问题时应注意:(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
重点考向考向一牛顿第二定律的运用(2020·邢台市第二中学高一开学考试)如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。
质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。
某时刻将细线剪断,则细线剪断瞬间,B对A 的压力大小为(g=10 m/s2)A.12 N B.22 NC.25 N D.30N变式拓展1.(2020·湖南省高一期末)如图,将一轻质弹簧竖直固定在水平桌面上,把小球轻放在弹簧的上端,小球从静止开始向下运动,直至将弹簧压缩至最短。
在压缩弹簧的整个过程中,能表示小球加速度a与其下落高度h间关系的图是(设弹簧始终处于弹性限度内)()A.B.C.D.考向二瞬时加速度的计算(2020·宜宾市叙州区第一中学校高三其他)如图所示,细绳l 1与l 2共同作用于质量为m 的小球而使其处于静止状态,其中细绳l 1与竖直方向的夹角为θ,细绳l 2水平,重力加速度为g ,不计空气阻力.现剪断细绳l 2,则剪断瞬间A .小球立即处于完全失重状态B .小球在水平方向上的加速度大小为12gsin 2θ C .细绳l 1上的拉力大小为cos mgθD .小球受到的合力大小为mg tan θ,方向水平向右变式拓展1.(2020·江苏省响水中学高一月考)分别在四辆相同汽车的车厢顶部用细线悬挂一个小球,当汽车在沿平直道路上运动的过程中,小球相对汽车所处的状态如图所示. 已知0βαθ>>>︒,则获得最大加速度的汽车是A .B .C .D .考向三 牛顿第二定律的图像问题典例引领(2020·四川省棠湖中学高一月考)直立的轻弹簧一端固定在地面上,另一端拴住一个铁块,现让铁块在竖直方向做往复运动,从块所受合力为零开始计时,取向上为正方向,其运动的位移-时间图像如图所示()A.t=0.25s时物体对弹簧的压力最大B.t=0.25s和t=0.75s两时刻弹簧的弹力相等C.t=0.25s至t=0.50s这段时间物体做加速度逐渐增大的加速运动D.t=0.25s至t=0.50s这段时间内物体的动能和弹簧的弹性势都在增大变式拓展1.(2020·宁夏回族自治区高三一模)一质量为m=2.0 kg的木箱静止在粗糙的水平地面上,木箱与地面间的动摩擦因数μ=0.2,现对木箱施加一沿水平方向的大小随时间变化的拉力F,使木箱由静止开始运动,测得0~2s内其加速度a随时间t变化的关系图象如图所示。
牛顿第二定律瞬时加速度问题
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
牛顿第二定律-瞬时性
牛顿第二定律——瞬时性问题分析【思维提升】1.力和加速度的瞬时对应性是高考的重点。
物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然。
2.求解此类瞬时性问题,要注意以下四种理想模型的区别:【针对训练】1.如图所示,一木块在光滑水平面上受一恒力F 作用而运动,前方固定一个弹簧,当木块接触弹簧后( C ) A .将立即做变减速运动B .将立即做匀减速运动C .在一段时间内仍然做加速运动,速度继续增大D .当弹簧处于最大压缩量时,物体的加速度为零2.如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2。
重力加速度大小为g 。
则有( C )A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM gD .a 1=g ,a 2=m +MMg3.如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力的大小和小球A 的加速度大小分别为( A )A .2F 3,2F 3m +gB .F 3,2F 3m +gC .2F 3,F3m +gD .F 3,F3m+g4.物块A 1、A 2、B 1、B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连接。
两个装置都放在水平的支托物上,处于平衡状态,如图所示。
今突然迅速地撤去支托物,让物块下落。
在除去支托物的瞬间,A 1、A 2受到的合力分别为f 1和f 2,B 1、B 2受到的合力分别为F 1和F 2。
则( B )A .f 1=0,f 2=2mg ,F 1=0,F 2=2mgB .f 1=mg ,f 2=mg ,F 1=0,F 2=2mgC .f 1=0,f 2=2mg ,F 1=mg ,F 2=mgD .f 1=mg ,f 2=mg ,F 1=mg ,F 2=mg5.如图所示一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体,质量为m 。
高中物理牛顿运动定律的应用 牛顿第二定律的应用之瞬时性问题
-牛顿运动定律的应用牛顿第二定律的应用之瞬时性问题牛顿第二定律的“瞬时性”指:物体的加速度与物体所受合外力的瞬时对应关系分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立。
刚性绳(或接触面):1.认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间。
一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理。
2. 弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【名师点睛】即为该时刻物体所受a为某一瞬时的加速度,FF1. 物体的加速度a与物体所受合外力瞬时对应。
合合的合力。
物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动2.看变分析。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。
先看不变量,再化量;加速度与合外力瞬时一一对应。
轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零,同一根绳(线、弹簧、橡皮绳)的两3.端及其中间各点的弹力大小相等。
绳(线、橡皮绳)只能发生拉伸形变,只能产生拉力;而轻弹簧既能发生拉伸形变,又能产生压4. 轻缩形变,所以轻弹簧既能承受拉力,也能承受压力。
无论轻绳(线)所受拉力多大,轻绳(线)的长度不变,即轻绳(线)发生的是微小形变,因此轻5.绳(线)中的张力可以突变。
由于弹簧和橡皮绳受力时,发生的是明显形变,所以弹簧和橡皮绳中的弹力不能发生突变。
两者之间的弹力为零,注意弹簧轻弹簧的弹力不能突变;两物体相互分离的瞬间,6. 涉及弹簧问题时,但注意该时刻它们的速度和加速度仍相等。
7. 加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
AB m 的小球之间用一根轻弹簧(即不计其质量)连接,并两个质量均为【典例1】如图所示,用、AB 两球的加、球均保持静止。
1牛顿第二定律瞬时性问题
瞬时性问题【模型解析】(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】 (5.7.10.12为多选,其余为单选).1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律应用(瞬时性问题)
牛顿第二定律应用(瞬时性问题)方法突破 分析物体在某一时刻的瞬时加速度,关键是分析物体在瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种模型的建立.(1)中学物理中的“线”和“绳”是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,且一根绳(或线)中各点的张力大小相等,其方向总是沿绳且背离受力物体的方向.②不可伸长:即无论绳受力多大,绳的长度不变,由此特点可知,绳中的张力可以突变.刚性杆、绳(线)和接触面都可以认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给杆、细线和接触面在不加特殊说明时,均可按此模型来处理.(2)中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,同一弹簧两端及其中间各点的弹力大小相等.②弹簧既能承受拉力,也能承受压力;橡皮绳只能承受拉力,不能承受压力.③由于弹簧和橡皮绳受力时,恢复形变需要一段时间,所以弹簧和橡皮绳中的力不能突变.【例题1】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( )A.剪断P 处瞬间,A 的加速度为零,B 的加速度为gB.剪断P 处瞬间,A 的加速度为2g ,B 的加速度为零C.剪断Q 处瞬间,A 的加速度为零,B 的加速度为零D.剪断Q 处瞬间,A 的加速度为2g ,B 的加速度为g【例题2】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【例题3】如图所示,底板光滑的小车上用两个量程为20N , 完全相同的弹簧秤甲和乙系住一个质量为1kg 的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N ,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N 。
牛顿第二定律之瞬时性问题
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
高中物理牛顿第二定律经典习题训练含答案
牛顿第二定律典型题型及练习一、巧用牛顿第二定律解决连接体问题所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系。
1、连接体与隔离体:两个或几个物体相连接组成的物体系统为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
2、连接体问题的处理方法(1)整体法:连接体的各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。
(2)隔离法:如果要求连接体间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解,此方法为隔离法。
隔离法目的是实现内力转外力的,解题要注意判明每一隔离体的运动方向和加速度方向。
(3)整体法解题或隔离法解题,一般都选取地面为参照系。
例题1 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图1所示. 已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为( )A.a=1.0m/s,F=260N B.a=1.0m/s,F=330NC.a=3.0m/s,F=110N D.a=3.0m/s,F=50N二、巧用牛顿第二定律解决瞬时性问题当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。
例题2如图4所示,木块A与B用一轻弹簧相连,竖直放在木块C上。
三者静置于地面,它们的质量之比是1∶2∶3。
设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度a A、a B分别是多少?题型一 对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( )A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( )A .牛顿的第二定律不适用于静止物体B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少?【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a1=0,a2=gB. a1=g, a2=gC. a1=0, a2=(m+M)g/MD. a1=g, a2=(m+M)g/M题型三 牛顿第二定律的独立性3 如图所示,质量m =2 kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3 N ,F 2=4 N .试求物体的加速度大小.【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( )A .物体从A 到B 速度越来越大B .物体从A 到B 速度先增加后减小C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加【变式】.(2010·福建理综高考)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m题型五 牛顿第二定律的应用5、质量为2 kg 的物体与水平面的动摩擦因数为0.2,现对物体用一向右与水平方向成37°、大小为10 N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10 m/s.)【变式】.一只装有工件的木箱,质量m =40 kg.木箱与水平地面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取9.8 m/s 2)强化练习一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致2.关于力的单位“牛顿”,下列说法正确的是( )A .使2 kg 的物体产生2 m/s 2加速度的力,叫做1 NB .使质量是0.5 kg 的物体产生1.5 m/s 2的加速度的力,叫做1 NC .使质量是1 kg 的物体产生1 m/s 2的加速度的力,叫做1 ND .使质量是2 kg 的物体产生1 m/s 2的加速度的力,叫做1 N3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =13g ,则F f 的大小是( ) A .F f =13mg B .F f =23mg C .F f =mg D .F f =43mg 5.如图1所示,底板光滑的小车上用两个量程为20 N 、完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N ,这时小车运动的加速度大小是( ) A .2 m/s 2 B .4 m/s 2C .6 m/s 2D .8 m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( )A .a 1=a 2B .a 1<a 2<2a 1C .a 2=2a 1D .a 2>2a 1二、非选择题7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .8.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2 kg 的物体,运动的加速度为1 m/s 2,则所受合外力大小为多大?若物体所受合外力大小为8N ,那么,物体的加速度大小为多大?10.质量为6×103kg 的车,在水平力F =3×104N 的牵引下,沿水平地面前进,如果阻力为车重的0.05倍,求车获得的加速度是多少?(g 取10 m/s 2)11.质量为2 kg 物体静止在光滑的水平面上,若有大小均为10 2 N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.12.质量m 1=10 kg 的物体在竖直向上的恒定拉力F 作用下,以a 1=2m/s 2的加速度匀加速上升,拉力F 多大?若将拉力F 作用在另一物体上,物体能以a 2=2 m/s 2的加速度匀加速下降,该物体的质量m 2应为多大?(g 取10m/s 2,空气阻力不计)13.在无风的天气里,一质量为0.2 g的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大?(g =10m/s 2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化.参考答案1【答案】 BC 答案:D2答案:B 球瞬间加速度aB =0. aA =2g ,方向向下.答案c3 2.5 m/s 2 答案4、【答案】 BD 答案:B5、【答案】 2.6 m/s 2强化练习1析:物体所受的合外力产生物体的加速度,两者是瞬时对应关系,方向总是一致的.力的作用产生的效果与速度没有直接关系.答案:D2、答案:C3、解析:有力的作用,才产生加速度;力与加速度的方向总相同;力和加速度都是矢量,都可合成.答案:ABCD4、解析:由牛顿第二定律a =F 合m =mg -F f m =13g 可得空气阻力大小F f =23mg ,B 选项正确. 答案:B5、解析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由10 N 变为8 N 时,其形变量减少,则弹簧测力计乙的形变量必增大,且甲、乙两弹簧测力计形变量变化的大小相等,所以,弹簧测力计乙的示数应为12 N ,物体在水平方向受到的合外力F =F T 乙-F T 甲=12N -8 N =4 N .根据牛顿第二定律,得物块的加速度为4 m/s 2. 答案:B6、解析:根据牛顿第二定律F -mgsin θ-μmgcos θ=ma 1①2F -mgsin θ-μmgcos θ=ma 2②由①②两式可解得:a 2=2a 1+gsin θ+μgcos θ,所以a 2>2a 1. 答案:D7、解析:剪断A 、B 间的细绳时,两弹簧的弹力瞬时不变,故C 所受的合力为零,a C =0.A物体受重力和下方弹簧对它的拉力,大小都为mg ,合力为2mg ,故a A =2mg m=2g ,方向向下.对于B 物体来说,受到向上的弹力,大小为3mg ,重为mg ,合力为2mg ,所以a B =2mg m=2g ,方向向上. 答案:2g 2g 08、解析:由牛顿第二定律,得a 甲∶a 乙∶a 丙=25∶33∶52=4∶10∶25. 答案:4∶10∶259、解析:直接运用牛顿第二定律来处理求解.答案:2N 4 m/s210、解析:直接运用牛顿第二定律来处理求解.答案:4.5 m/s211、解析:求合力,用牛顿第二定律直接求解.答案:a=10 m/s2,方向东偏南45°12、解析:由牛顿第二定律F-m1g=m1a1,代入数据得F=120N.若作用在另一物体上m2g-F=m2a2,代入数据得m2=15 kg. 答案:120N 15kg13、(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f=mg=2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g逐渐减小直至为零,速度从零增大直至最后不变。
牛顿第二定律之 瞬时加速度专题(含答案解析)
牛顿第二定律之 瞬时加速度专题 物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,解决此类问题时,要注意两类模型的特点:(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,恢复形变几乎不需要时间,故认为弹力立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬时问题中,其弹力往往可以看成是不变的.加速度和力具有瞬时对应关系,即同时产生、同时变化、同时消失,分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度. 分析瞬时变化问题的一般思路:(1)分析瞬时变化前物体的受力情况(主要是分析瞬时变化前物体受到弹簧(或橡皮绳)的弹力),求出每个力的大小.(2)分析瞬时变化后每个力的变化情况.(3)由每个力的变化确定变化后瞬间的合力,由牛顿第二定律求瞬时加速度.例1 如图所示,质量分别为m 和2m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬时加速度a A 、a B 的大小分别是( )A .a A =0,aB =0 B .a A =g ,a B =gC .a A =3g ,a B =gD .a A =3g ,a B =0(变式练习1).如图所示,质量相等的A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A.都等于2gB.0和2gC.g 和0D.0和g(变式练习2)(瞬时加速度问题)如图所示,a 、b 两小球悬挂在天花板上,两球用细线连接,上面是一轻质弹簧,a 、b 两球的质量分别为m 和2m ,在细线烧断瞬间,a 、b 两球的加速度为(取向下为正方向)( )A .0,gB .-g ,gC .-2g ,gD .2g,0例2 如图所示,质量为m 的小球被水平绳AO 和与竖直方向成θ角的轻弹簧系着处于静止状态,现将绳AO 烧断,在绳AO 烧断的瞬间,下列说法正确的是( )A .弹簧的拉力F =mg cos θB .弹簧的拉力F =mg sin θC .小球的加速度为零D .小球的加速度a =gtan θ(变式练习3)如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为(重力加速度为g )( )A .0B .233gC .gD .33g例3 如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a 1=0,a 2=gB.a 1=g ,a 2=gC.a 1=0,a 2=gD.a 1=g ,a 2=g(变式练习4)如图所示,A 、B 两木块间连一轻杆,A 、B 质量相等,一起静止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A 、B 两木块的加速度分别是( )A.a A =0,a B =2gB.a A =g ,a B =gC.a A =0,a B =0D.a A =g ,a B =2g例4(瞬时加速度问题)如图所示,在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动(取水平向右为正方向),某时刻突然撤去拉力F ,此瞬间A 和B 的加速度为a 1和a 2,则( )A .a 1=a 2=0B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=-m 1m 2a课堂作业1.在倾角为θ的光滑斜面上放一球,球被竖直板挡住,如图所示,在拿开挡板后,小球的加速度为( )A. g sin θ,沿斜面向下B.g cos θ,沿斜面向下B. C.g tan θ,水平向左 D.,水平向左 2.三个质量相同的物块A ,B ,C ,用两个轻弹簧和一根轻线相连,如图所示,挂在天花板上,处于静止状态,在将A,B间细线剪断的瞬间,A,B,C的加速度分别为多大?(取向下为正,重力加速度为g)3.(多选)质量均为m的A,B两球之间系着一个不计质量的轻弹簧并放在光滑水平台面上,A球紧靠墙壁,如图所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间( BD )A.A的加速度大小为B.A的加速度大小为零C.B的加速度大小为D.B的加速度大小为4.(多选)如图所示,竖直放置在水平面上的轻弹簧上,放着质量为2 kg的物体A,处于静止状态.若将一个质量为3 kg的物体B轻放在A上,在轻放瞬间(g取10 m/s2)( CD )A.B的加速度为0B.B对A的压力大小为30 NC.B的加速度为6 m/s2D.B对A的压力大小为12 N5.如图所示,弹簧的一端固定在天花板上,另一端连一质量m=2 kg的秤盘,盘内放一个质量M=1 kg的物体,秤盘在竖直向下的拉力F作用下保持静止,F=30 N,在突然撤去外力F的瞬间,物体对秤盘的压力为(g=10 m/s2)( C )A.10 NB.15 NC.20 ND.40 N6.(多选)(难)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( AB )A.此时轻弹簧的弹力大小为20 NB.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间物块的加速度为0【教学反思】例1 D解析 分析B 球原来受力如图甲所示,F ′=2mg剪断细线后弹簧形变不会瞬间改变,故B 球受力不变,a B =0.分析A 球原来受力如图乙所示,F T =F +mg ,F ′=F ,故F T =3mg .剪断细线,F T 变为0,F 大小不变,A 球受力如图丙所示由牛顿第二定律得:F +mg =ma A ,解得a A =3g .(变式练习1)D(变式练习2)C例2 AD(变式练习3)B例3 D(变式练习4)B 【解析】由题意知,当刚抽去木板时,A 、B 和杆将作为一个整体,只受重力,根据牛顿第二定律得a A =a B =g ,故选项B 正确.例4 D 解析 两木块在光滑的水平面上一起以加速度a 向右匀加速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ,对B :取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以D 正确【答案】D。
高中物理力学提升专题07牛顿第二定律的瞬时性问题
专题07 牛顿第二定律的瞬时性问题【专题概述】牛顿第二定律是高中物理学重要的组成部分,同时也是力学问题中的基石,它具有矢量性、瞬时性等特性,其中瞬时性是同学们理解的难点。
所谓瞬时性,就是物体的加速度与其所受的合外力有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应的。
以两个相对比的情形来说明一下如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态。
现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4。
重力加速度大小为g,则有()A.a1=a2=a3=a4=0 B.a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=g D.a1=g,a2=g,a3=0,a4=g【答案】C如图所示,一质量为m的物体系于长度分别为l1、l2 的两根细线上,l1 的一端悬挂在天花板上,与竖直方向夹角为θ,l2 水平拉直,物体处于平衡状态。
现将l2 线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,物体重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。
因为mg tanθ=ma,所以加速度a=g tanθ,方向在T2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
(2)若将图a中的细线l1改为长度相同、质量不计的轻弹簧,如图b所示,其他条件不变,求解的步骤和结果与(l)完全相同,即a=g tanθ,你认为这个结果正确吗?请说明理由。
高考物理遍过考点 牛顿第二律(含解析)
避躲市安闲阳光实验学校牛顿第二定律1.用牛顿第二定律分析瞬时加速度2.分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:3.在求解瞬时加速度问题时应注意:(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上。
A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为12μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g。
现对A施加一水平拉力F,则下列说法中正确的是A.当F<2μmg时,A、B都相对地面静止B.当F=52μmg时,A的加速度为13μgC.当F>3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过12μg【参考答案】BCD【详细解析】当F≤32μmg时,A、B不发生相对滑动,但相对地面滑动。
当A、B刚要发生相对滑动时,A、B间的摩擦力达到最大静摩擦力2μmg,隔离B分析,根据牛顿第二定律有2μmg–12μ·3mg=ma,得a=12μg;对整体分析,F–12μ·3mg=3ma,得F=3μmg,即当F>3μmg时,A、B发生相对滑动。
隔离B分析,2μmg–12μ·3mg≥ma',得a'≤12μg;当F=52μmg时,A、B 相对静止,对整体分析,加速度a''=1323F mgmμ-⋅=13μg。
1.(2019·九校高一联考)如图所示,AB为竖直平面内某圆周的竖直直径,BC与CD为两根固定光滑细直杆,其中CD通过O点且与AB成60°夹角,两细直杆上各套有一个小球,小球可视为质点。
两小球均从C点由静止释放,一小球从C点运动到D点所用的时间为t1,另一小球从C点运动到B 点所用的时间为t2,则t1:t2等于A 1 B.2:1 C.1:1 D2【答案】A【解析】设AB=CD=d。
牛顿第二定律瞬时性问题
a
1
A
2
B
• 变式3、质量为mA、mB的两物体在粗糙的水平面 上,在水平外力F的作用下匀速运动,求撤去外 力F时A、B两物体的加速度为多少?
B
A
F
变式4、光滑的水平面上有一小车,以向右 的加速度a匀加速运动,车内两物体A、B 质量均为m,A、B间弹簧相连,通过绳子 B与车相连,剪断绳子的瞬间,A、B的加 速度分别为多少?
a 乙=g a 乙=g
a 乙=0 a 乙=g
选B
轻弹簧上端与一质量为m的木块1相连,下端与 另一质量为M的木块2相连,整个系统置于水平 放置的光滑木板上,并处于静止状态.现将木 板沿水平方向突然抽出,设抽出后的瞬间,木 块1、2的加速度大小分别为a1、a2.重力加速度 大小为g.则有( )
A.a1=g,a2=g B.a1=0,a2=g C.a1=0,a2=m+Mg
牛顿第二定律的瞬时性问题
附 轻绳:绳的弹力可发生突变。当其他条件 : 发生变化的瞬间,绳的弹力可以瞬时产生、 瞬 瞬时改变或瞬时消失。(当绳被剪断时, 时 绳的弹力瞬间消失) 加
速
度
的ห้องสมุดไป่ตู้
分 析
轻弹簧:弹簧的弹力不能发生突变。当其 他条件发生变化的瞬间,可以认为弹簧的
弹力不变。(当弹簧被剪断时,弹簧的弹
M D.a1=g,a2=m+Mg
M
选C
如图所示,小球M处于静止状态,弹簧与竖直方向的夹 角为θ,烧断BO绳的瞬间,试求小球M的加速度的大小和方 向。
答案:gtanθ 方向水平向右
例 题 如图所示,天花板上用
3
细绳吊起两个用轻弹簧相连的质量相同
的小球。两小球均保持静止。当突然剪
断细绳时,上面的小球A与下面的小球B
2021-2022学年高一物理期末备考点拨训练第25讲 牛顿第二定律的瞬时应用(解析版)
2021-2022学年高一物理期末备考点拨训练第25讲牛顿第二定律的瞬时应用牛顿第二定律的核心是加速度a与其所受得合外力F有瞬间对应关系,每一瞬间的加速度只取决于这一瞬间的合外力,而与这一瞬间之前或这一瞬间之后的力无关,不等于零得合外力作用在物体上,物体立即产生加速度,如果合外力得大小或方向改变,加速度得大小或方向也立即改变,如果合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以发生突然得变化,这就是牛顿第二定律的瞬间性。
关于瞬间加速度问题,涉及最多的是剪绳、杆或弹簧问题,那么绳和弹簧有什么特点呢?中学物理中得“绳”和“线”,是理想化模型,这些力学模型具有如下共同点:(1)质量可忽略的理想化模型(2)会发生形变而产生弹力(3)同一时刻内部弹力处处相等且与运动状态无关与此同时,这些模型中也有不同点:(4)轻绳:只能产生拉力,且方向一定沿着绳子背离受力物体,不能承受压力;绳子不可伸长,即无论绳子在所能承受的限度内所受拉力多大,长度不变;绳子的弹力可以发生突变——瞬时产生,瞬时改变,瞬时消失。
(5)轻杆:既能承受拉力,又可承受压力,施力或受力方向不一定沿着杆;杆既不可伸长,也不可缩短,杆的弹力也可发生突变。
(6)轻弹簧:既能承受拉力,也可承受压力,力的方向沿弹簧的轴线,受力后发生较大形变,弹簧的长度既可变长,又可变短,在弹性限度内遵循胡克定律;因形变量较大,产生形变或使形变消失都有一个过程,故弹簧的弹力不能突变,在极短时间内可认为弹力不变。
(7)橡皮绳:只能承受拉力,不能承受压力;(其长度只能变长,不能变短,同样遵循胡克定律;因形变量较大,产生形变或使形变消失都有一个过程,故橡皮绳的弹力同样不能突变,在极短时间内可认为弹力不变。
【例题1】如图所示,质量为m的小球与轻质弹簧Ⅰ和水平轻绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、Q,弹簧与竖直方向夹角θ=37°若分别剪断Ⅰ、Ⅱ的瞬间,小球的加速度大小分别为a1和a2,则a1:a2为()A.1:1 B.3:4 C.4:3 D.3:5【答案】C【解析】平衡时,小球受力如图所示可得23tan 4F mg mg θ==剪断弹簧,小球只受重力1a g =剪断轻绳,弹力不突变,小球还受重力和弹力,重力和弹力与绳子的拉力等大反向,合力提供加速度得234a g =故选C 。
高考物理一轮复习 第三章 微专题16 应用牛顿第二定律解决瞬时问题
应用牛顿第二定律解决瞬时问题1.考点及要求:(1)牛顿运动定律(Ⅱ);(2)牛顿运动定律的应用(Ⅱ).2.方法与技巧:(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理;(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.1.(弹簧模型)如图1所示,质量均为m 的木块A 和B 用一轻弹簧相连,竖直放在光滑的水平面上,木块A 上放有质量为2m 的木块C ,三者均处于静止状态.现将木块C 迅速移开,若重力加速度为g ,则在木块C 移开的瞬间( )图1A .木块B 对水平面的压力迅速变为2mgB .弹簧的弹力大小为mgC .木块A 的加速度大小为2gD .弹簧的弹性势能立即减小2.(杆模型)如图2所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )图2 A.233g B .0 C .g D.33g3. (多选)如图3所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则下列说法正确的是( )图3A .悬绳剪断瞬间A 物块的加速度大小为2gB .悬绳剪断瞬间A 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小4.如图4所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为( )图4A .g B.M -m m g C .0 D.M +m mg 5.(多选)如图5所示,弹簧p 和细绳q 的上端固定在天花板上,下端用小钩钩住质量为m 的小球C ,弹簧、细绳和小钩的质量均忽略不计.静止时p 、q 与竖直方向的夹角均为60°.下列判断正确的有( )图5A .若p 和球突然脱钩,则脱钩后瞬间q 对球的拉力大小为mgB .若p 和球突然脱钩,则脱钩后瞬间球的加速度大小为32g C .若q 和球突然脱钩,则脱钩后瞬间p 对球的拉力大小为12mg D .若q 和球突然脱钩,则脱钩后瞬间球的加速度大小为g6. (多选)如图6所示,在动摩擦因数μ=0.2的水平面上,质量m =2 kg 的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F 作用下处于静止状态,此时水平面对物块的弹力恰好为零,g 取10 m/s 2,以下说法正确的是( )图6A .此时轻弹簧的弹力大小为20 NB .当撤去拉力F 的瞬间,物块的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间物块的加速度为07.物块A 1和A 2、B 1和B 2质量均为m ,A 1、A 2用刚性轻杆相连,B 1、B 2用轻质弹簧连接,两个装置都放在水平支托物上,处于平衡状态,如图7所示.今突然迅速地撤去支托物,让物块下落,在撤去支托物的瞬间,A 1、A 2受到的合力分别为F A 1和F A 2,B 1、B 2受到的合力分别为F B 1和F B 2,则( )图7A.F A1=0,F A2=2mg,F B1=0,F B2=2mg B.F A1=mg,F A2=mg,F B1=0,F B2=2mg C.F A1=0,F A2=2mg,F B1=mg,F B2=mgD.F A1=mg,F A2=mg,F B1=mg,F B2=mg答案解析1.C2.A [撤离木板之前,小球处于三力平衡状态,木板对小球的弹力大小等于233mg .当木板突然撤离的瞬间,木板的弹力消失,但小球的重力不变,弹簧的弹力也不变,重力与弹簧的弹力的合力大小依旧等于木板对小球的弹力233mg ,根据牛顿第二定律有233mg =ma ,得a =233g ,选项A 正确.] 3.AC [剪断悬绳前,对B 受力分析,B 受到重力和弹簧的弹力,知弹力F =mg ,剪断瞬间,对A 分析,A 的合力为F 合=mg +F =2mg ,根据牛顿第二定律,得a =2g ,故选项A 正确,B 错误.弹簧开始处于伸长状态,弹力F =mg =kx .当向下压缩,mg =F ′=kx ′时,速度最大,x ′=x ,所以下降的距离为2x ,选项C 正确,D 错误.]4.D [以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F +mg =ma ,联立可解得,小球的加速度大小为a =M +m mg ,故选项D 正确.] 5.BD [原来p 、q 对球的拉力大小均为mg .p 和球脱钩后,球将开始沿圆弧运动,将q 受的力沿法向和切线正交分解,如图甲,得F -mg cos 60°=mv 2r =0,即F =12mg ,合力为mg sin 60°=ma ,故a =32g ,选项A 错误,B 正确;q 和球突然脱钩后瞬间,p 的拉力未来得及改变,仍为mg ,因此合力为mg ,如图乙,球的加速度大小为g .故选项C 错误,D 正确.]6.AB [物块在重力、拉力F 和弹簧的弹力作用下处于静止状态,由平衡条件得kx =F cos θ,mg =F sin θ,解得弹簧的弹力kx =mg tan 45°=20 N ,故选项A 正确;撤去拉力F 的瞬间,由牛顿第二定律得kx -μmg =ma 1,解得a 1=8 m/s 2,方向向左,故选项B 正确;剪断弹簧的瞬间,弹簧的弹力消失,则F cos θ=ma 2,解得a 2=10 m/s 2,方向向右,故选项C 、D 错误.]7.B [撤去支托物的瞬间,由于轻杆是刚体(认为无形变),所以弹力马上发生变化,A 1、A 2立即做自由落体运动,轻杆与A 1、A 2间弹力为零,所以F A 1=F A 2=mg ;撤去支托物前,由平衡条件知弹簧弹力大小为mg ,撤去支托物的瞬间,弹簧的形变因物块静止的惯性而不能马上改变,弹力仍保持原值,所以B 1受的合力F B 1=0,B 2受的合力F B 2=2mg ,故选项B 正确.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届高考核心考点十分钟基础题速练:用牛顿第二定律解决瞬时问题
姓名:
班级:
1.如图所示,放在水平桌面上的质量为1 kg的物体A通过水平轻绳、轻弹簧秤和光滑定滑轮与物体B相连接,两物体均静止时弹簧秤甲和乙的读数分别为5 N和2 N,则剪断物体A左侧轻绳瞬间,物体A的加速度和弹簧秤乙的读数分别为()
A.5 m/s2,零B.2 m/s2,2 N
C.零,零D.零,2 N
2.如图所示,小球的质量为m,用弹簧和细线悬挂在天花板上,保持静止,弹簧和细线的质量忽略不计,且与水平方向的夹角均为60°,当细线被剪断的瞬间,小球的加速度大小和方向正确的是()
A.0
B.
3
2g,竖直向下
C.g,竖直向下
D.
3
3g,右下方与水平方向成60°角
3.(多选)
如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态,现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为Δl1和Δl2,重力加速度大小为g,在剪断瞬间()
A.a1=3g B.a1=0
C.Δl1=2Δl2D.Δl1=Δl2
4.
如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( )
A .2F 3,2F 3m +g
B .F 3,2F 3m +g
C .2F 3,F 3m +g
D .F 3,F
3m +g
5.(多选)如图所示,物体a 、b 用一根不可伸长的轻细绳相连,再用一根轻弹簧和a 相连,弹簧上端固定在天花板上,已知物体a 、b 的质量相等,重力加速度为g.当在P 点剪断绳子的瞬间( )
A .物体a 的加速度大小为零
B .物体a 的加速度与物体b 的加速度大小相同
C .物体b 的加速度大小为零
D .物体b 的加速度大小为g
6.如图所示,质量为4 kg 的物体A 静止在竖直的轻弹簧上面.质量为1 kg 的物体B 用细线悬挂起来,A 、B 紧挨在一起但A 、B 之间无压力.某时刻将细线剪断,则细线剪断瞬间,B 对A 的压力大小为(取g =10 m /s 2)( )
A .0 N
B .8 N
C .10 N
D .50 N 7.
如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M 的铁块;右端悬挂有两质量均为m 的铁块,上下两铁块用轻质细线
连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg ,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )
A .14g
B .13g
C .2
3g D .g 8.
(多选)如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量均为m ,物块A 静止在轻弹簧上端,物块B 用细线与斜面顶端相连,A 、B 挨在一起但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断后瞬间,下列说法正确的是( )
A .物块
B 的加速度为1
4g
B .物块A 的加速度为1
2g
C .物块A 、B 间的弹力为1
4mg
D .物块A 、B 间的弹力为1
2mg 9.(多选)
如图所示,A 、B 、C 三个小球的质量均为m ,轻质弹簧一端固定在斜面顶端,另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.已知倾角为θ的斜面光滑且固定在地面上,弹簧、轻杆与细线均平行于斜面,初始时系统处于静止状态.则细线被烧断的瞬间,下列说法正确的是( )
A .
B 球的受力情况未变,加速度为零
B .A 、B 两个小球的加速度方向均沿斜面向上,大小均为g sin θ
C .A 、B 间杆的拉力大小为3
2mg sin θ
D .C 球的加速度方向沿斜面向下,大小为g sin θ 10.
如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )
A .a 1=a 2=a 3=a 4=0
B .a 1=a 2=a 3=a 4=g
C .a 1=a 2=g ,a 3=0,a 4=m +M
M g
D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M
M g
11.如图所示,小球在水平轻绳和轻弹簧拉力作用下静止,弹簧与竖直方向夹角为θ.设重力加速度为g ,下列说法正确的是( )
A .从A 点剪断弹簧瞬间,小球的加速度大小为g ,方向竖直向下
B .从A 点剪断弹簧瞬间,小球的加速度大小为g
cos θ,方向与竖直成θ角斜向右下 C .从B 点剪断轻绳瞬间,小球的加速度大小为g sin θ,方向与水平成θ角斜向左下
D .从B 点剪断轻绳瞬间,小球的加速度大小为g tan θ,方向与竖直成θ角斜向左上
12.(多选)如图所示,A 球的质量为m 1,B 球的质量为m 2,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( )
A .
B 球的瞬时加速度为0
B .B 球的瞬时加速度沿斜面向下,大小为m 1g sin θ+m 2g sin θ
m 2
C .A 球的瞬时加速度沿斜面向下,大小为m 1g sin θ+m 2g sin θ
m 1
D .A 、B 两球的瞬时加速度均沿斜面向下,大小均为g sin θ
13.(多选)如图所示,A 、B 两物体用两根轻质细线分别悬挂在天花板上,两细线与水平方向夹角分别为60°和45°,A 、B 间拴接的轻质弹簧恰好处于水平状态,则下列判断正确的是( )
A .A 、
B 的质量之比为1: 3
B .A 、B 所受弹簧弹力大小之比为3: 2
C .悬挂A 、B 的细线上拉力大小之比为2:1
D .快速撒去弹簧的瞬间,A 、B 的瞬时加速度大小之比为1: 2
14.如图所示,A 、B 质量均为m ,叠放在轻质弹簧上(弹簧上端与B 不连接,弹簧下端固定于地面上)保持静止,现对A 施加一竖直向下、大小为F(F>2mg)的力,将弹簧再压缩一段距离(弹簧始终处于弹性限度内)而处于静止状态,若突然撤去力F ,设两物体向上运动过程中A 、B 间的相互作用力大小为F N ,则关于F N 的说法正确的是(重力加速度为g)( )
A .刚撤去外力F 时,F N =mg +F
2
B .弹簧弹力等于F 时,F N =F
2
C .两物体A 、B 的速度最大时,F N =2mg
D .弹簧恢复原长时,F N =mg
参考答案
1.D 2.D 3.AC 4.A
5.BD 本题考查牛顿运动定律及其相关的知识点.设物体a 、b 的质量都为m ,剪断绳子前,由平衡条件可得绳子的拉力为mg ,弹簧向上的弹力为2mg .在P 点剪断绳子的瞬间,绳子的拉力突变为零,物体b 做自由落体运动,加速度大小为g ,选项C 错误,D 正确;在P 点剪断绳子的瞬间,弹簧中弹力不变,弹簧对物体a 向上的拉力还是2mg ,由牛顿第二定律有2mg -mg =ma 0,可得物体a 向上的加速度a 0=g ,与物体b 的加速度大小相同,选项A 错误,B 正确.
6.B 剪断细线前,A 、B 间无压力,则弹簧的弹力F =m A g =40 N ,剪断细线的瞬
间,对整体分析,整体加速度:a =(m A +m B )g -F m A +m B =(4+1)×10-40
4+1
=2 m/s 2,隔离对B
分析,m B g -N =m B a ,解得:N =m B g -m B a =10-2=8 N .故选B.
7.C 细线烧断前由整体法可知M =2m ,弹簧上弹力F =mg ,细线烧断时,M 与上面m 为整体,加速度大小相同,由牛顿第二定律可得Mg +F -mg =3ma,2mg +mg -
mg =3ma ,a =2
3g, C 正确.
8.AC 细线剪断后瞬间,物块A 、B 间的弹力突变,物块A 、B 相对静止,弹簧弹力不变,以物块A 、B 整体为研究对象:2mg sin θ-F =2ma ,且F =mg sin θ,可得a =14g ,以物块A 为研究对象:F N +mg sin θ-F =ma 可得F N =1
4mg ,综上,选项A 、C 正确.
9.CD 细线烧断前,对A 、B 、C 组成的整体进行受力分析,可求得弹簧弹力F =3mg sin θ,细线烧断的瞬间,弹簧弹力不变,对A 、B 组成的整体进行受力分析,有
3mg sin θ-2mg sin θ=2ma AB ,a AB =1
2g sin θ,方向沿斜面向上,对B 进行受力分析,有
F T -mg sin θ=ma AB ,轻杆拉力F T =3
2mg sin θ,故A 、B 错误,C 正确;对C 进行受力分析,由牛顿第二定律得:mg sin θ,mg sin θ=ma C ,a C =g sin θ,方向沿斜面向下,D 正确.
10.C 当1与2下的板抽出后,1、2一块做自由落体运动,加速度为g ,此时连接1与2间的杆无力;3与4下方的板抽出瞬间,弹簧的形变量还未变化,此时弹簧弹
力与没抽出板时的弹力相同,故3受力仍平衡,加速度为零,4的加速度为:a 4=m +M
M g .由上分析知C 对.
11.A 12.AC 13.CD 14.B。