高等数学复习提纲_同济大学_下册
《高等数学》(下)期末考试考前复习提纲
《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。
高等数学下册考试提纲
高等数学下册考试提纲第一篇:高等数学下册考试提纲高等数学下册考试提纲一、二元函数求极限二、求向量投影,已知一定条件求平面方程三、求方向导数最大值(梯度的模),隐函数求一阶偏导,多元抽象复合函数求二阶偏导四、二元分段函数在分界点连续,偏导数、可微性判断五、交换二重积分次序;二重积分在直角坐标计算六、三重积分计算(球面坐标)七、第一类曲线积分计算;第二类曲线积分计算(利用曲线积分与路径无关或格林公式)八、第一类曲面积分计算;第二类曲面积分计算(利用高斯公式)九、求数项级数的和;求幂级数的收敛域与和函数十、数项级数敛散性判断;利用比较法证明数项级数收敛十一、利用条件极值求最大、最小值在几何上的应用题第二篇:《高等数学》考试大纲《高等数学》考试大纲――各专业(工科及管理类专业)适用1.极限与连续数列极限和函数极限的概念和性质,函数的左、右极限概念,无穷小的概念及性质,无穷小与无穷大的关系,无穷小的比较,极限的四则运算,极限存在准则与两个重要极限,利用存在准则1及两个重要极限求极限。
函数连续的概念及运算,函数间断点及其分类,初等函数的连续性,利用初等函数的连续性求极限,闭区间上连续函数的性质。
2.导数与微分导数的概念,几何意义,可导与连续的关系,基本初等函数的导数公式,导数的四则运算,反函数的导数,复合函数的求导法则,隐函数的求导方法,对数求导法,高阶导数及其计算。
微分的概念,微分基本公式,微分运算法则,微分形式不变性,微分的计算。
3.中值定理及其导数应用罗尔定理、拉格朗日中值定理、柯西中值定理,利用洛必塔(罗彼塔)法则求极限。
函数单调性的判别法,函数单调区间的求法及利用单调性证明不等式,函数取极值的判别法及极值求法,函数最大值与最小值的求法,最值应用。
曲线的凹(上凹)、凸(下凹)的判别法,曲线凹(上凹)、凸(下凹)区间及拐点的求法。
4.不定积分原函数和不定积分的概念,不定积分的基本性质,基本积分公式,不定积分的第一、第二换元积分法,分部积分法,简单有理函数及无理函数的不定积分求法。
高等数学复习提纲 同济大学 下册
高等数学复习提纲一、考试题型 1.填空题6题 2.计算题8题 二、知识点 1.平面及其方程。
例题:一平面过点(1? 0? ?1)且平行于向量a ?(2? 1? 1)和b ?(1? ?1? 0)? 试求这平面方程?解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=?所求平面的方程为(x ?1)?(y ?0)?3(z ?1)?0? 即x ?y ?3z ?4?0?2.空间直线及其方程。
例题:求过点(2? 0? ?3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程?解 所求平面的法线向量n 可取为已知直线的方向向量? 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=?所平面的方程为?16(x ?2)?14(y ?0)?11(z ?3)?0? 即 16x ?14y ?11z ?65?0?例题:求过点(3? 1? ?2)且通过直线12354zy x =+=-的平面方程?解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1?(5? 2?1)垂直? 因为点(3? 1? ?2)和(4? ?3? 0)都在所求的平面上? 所以所求平面的法线向量与向量s 2?(4? ?3? 0)?(3? 1? ?2)?(1? ?4? 2)也是垂直的? 因此所求平面的法线向量可取为k j i kj i s s n 229824112521--=-=⨯=?所求平面的方程为8(x ?3)?9(y ?1)?22(z ?2)?0? 即 8x ?9y ?22z ?59?0?3.旋转曲面。
例题:将zOx 坐标面上的抛物线z 2?5x 绕x 轴旋转一周? 求所生成的旋转曲面的方程? 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2?z 2?5x ?例题:将zOx 坐标面上的圆x 2?z 2?9绕z 轴旋转一周? 求所生成的旋转曲面的方程?解 将方程中的x 换成22y x +±得旋转曲面的方程x 2?y 2?z 2?9?4. 多元复合函数求导,隐函数求导。
高等数学(同济大学教材第五版)复习提纲
⾼等数学(同济⼤学教材第五版)复习提纲⾼等数学(同济⼤学教材第五版)复习提纲第⼀章函数与极限:正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限第⼆章导数与微分:正确理解、熟练掌握本章内容,各类函数的求导与微分的基本计算第三章微分中值定理与导数的应⽤:熟练掌握本章的实际应⽤,研究函数的性态,证明相关不等式第四章不定积分:正确理解概念,会多种积分⽅法,尤其要⽤凑微分以及⼀些需⽤⼀定技巧的函数类型第五章定积分:正确理解概念,会多种积分⽅法,有变限函数参与的各种运算第六章定积分的应⽤:掌握定积分的实际应⽤第七章空间解析⼏何和向量代数:熟练掌握本章的实际应⽤⾼等数学(1)期末复习要求第⼀章函数、极限与连续函数概念理解函数概念,了解分段函数,熟练掌握函数的定义域和函数值的求法。
2.函数的性质知道函数的单调性、奇偶性、有界性和周期性,掌握判断函数奇偶性的⽅法。
3.初等函数了解复合函数、初等函数的概念;掌握六类基本初等函数的主要性质和图形。
4.建⽴函数关系会列简单应⽤问题的函数关系式。
5.极限:数列极限、函数极限知道数列极限、函数极限的概念。
6.极限四则运算掌握⽤极限的四则运算法则求极限. 7.⽆穷⼩量与⽆穷⼤量了解⽆穷⼩量的概念、⽆穷⼩量与⽆穷⼤量之间的关系,⽆穷⼩量的性质。
8.两个重要极限了解两个重要极限,会⽤两个重要极限求函数极限。
9.函数的连续性了解函数连续性的定义、函数间断点的概念;会求函数的连续区间和间断点,并判别函数间断点的类型;知道初等函数的连续性,知道闭区间上的连续函数的⼏个性质(最⼤值、最⼩值定理和介值定理)。
第⼆章导数与微分1.导数概念:导数定义、导数⼏何意义、函数连续与可导的关系、⾼阶导数。
理解导数概念;了解导数的⼏何意义,会求曲线的切线和法线⽅程;知道可导与连续的关系,会求⾼阶导数概念。
2.导数运算熟记导数基本公式,熟练掌握导数的四则运算法则、复合函数的求导的链式法则。
高数复习大纲同济六版下册
高等数学下册复习提纲 (向量代数—>无穷级数)第一次课1、向量与空间几何 向量:向量表示((a^b));向量的模: 向量的大小叫做向量的模.向量a 、→a 、→AB 的模分别记为|a |、||→a 、||→AB . 单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或→0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行. 向量运算(向量积); 1. 向量的加法 2. 向量的减法3.向量与数的乘法设a =(a x , a y , a z ), b =(b x , b y , b z )即 a =a x i +a y j +a z k , b =b x i +b y j +b z k ,则 a +b =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ). a -b = (a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ).λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ). 向量模的坐标表示式 222||z y x ++=r点A 与点B 间的距离为 →212212212)()()(||||z z y y x x AB AB -+-+-==向量的方向:向量a 与b 的夹角 当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ⋅b , 即a ·b =|a | |b | cos θ .数量积与投影:由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b .同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b 反之, 如果a ⊥b , 则a·b =0.如果认为零向量与任何向量都垂直, 则a ⊥b ⇔ a ·b =0. 两向量夹角的余弦的坐标表示:设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有222222||||cos zy x z y x zz y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ向量积: 设向量c 是由两个向量a 与b 按下列方式定出:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定.那么, 向量c 叫做向量a 与b 的向量积, 记作a ⨯b , 即 c = a ⨯b . 坐标表示:zy x z y x b b b a a a kj i b a =⨯=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . . 向量的方向余弦:设r =(x , y , z ), 则 x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.||cos r x =α, ||cos r y=β, ||cos r z =γ. 从而 r e r r ==||1)cos ,cos ,(cos γβα向量的投影向量在轴上的投影设点O 及单位向量e 确定u 轴.任给向量r , 作→r =OM , 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影), 则向量→M O '称为向量r 在u 轴上的分向量. 设→e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:性质1 (a )u =|a |cos ϕ (即Prj u a =|a |cos ϕ), 其中ϕ为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );空间方程:曲面方程(旋转曲面和垂直柱面); (1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面.(3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面. (4)双叶双曲面由方程1222=--cz b y a x 所表示的曲面称为双叶双曲面.(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面 (6)双曲抛物面.由方程z b y a x =-2222所表示的曲面称为双曲抛物面. 椭圆柱面12222=+b y a x ,双曲柱面122=-by a x , 抛物柱面ay x =2, .直线方程(参数方程和投影方程) 空间直线的一般方程空间直线L 可以看作是两个平面∏1和∏2的交线.如果两个相交平面∏1和∏2的方程分别为A 1x +B 1y +C 1z +D 1=0和A 2x +B 2y +C 2z +D 2=0, 那么直线L 上的任一点的坐标应同时满足这两个平面的方程, 即应满足方程组 ⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线, 这个向量就叫做这条直线的方向向量. 容易知道, 直线上任一向量都平行于该直线的方向向量.确定直线的条件: 当直线L 上一点M 0(x 0, y 0, x 0)和它的一方向向量s = (m , n , p )为已知时, 直线L 的位置就完全确定了.直线方程的确定: 已知直线L 通过点M 0(x 0, y 0, x 0), 且直线的方向向量为s = (m , n , p ), 求直线L 的方程.设M (x , y , z )在直线L 上的任一点, 那么(x -x 0, y -y 0, z -z 0)//s , 从而有pz z n y y m x x 000-=-=-. 这就是直线L 的方程, 叫做直线的对称式方程或点向式方程 ⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 直线L 1和L 2的夹角ϕ可由 |) ,cos(|cos 2^1s s =ϕ222222212121212121||p n m p n m p p n n m m ++⋅++++=直线与平面的夹角设直线的方向向量s =(m , n , p ), 平面的法线向量为n =(A , B , C ), 直线与平面的夹角为ϕ , 那么|) , (2|^n s -=πϕ, 因此|) , cos(|sin ^n s =ϕ. 按两向量夹角余弦的坐标表示式, 有222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ平面方程:点法式(法向量)、一般式、任一平面都可以用三元一次方程来表示 . Ax +By +Cz +D =0.其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ). 提示:D =0, 平面过原点.n =(0, B , C ), 法线向量垂直于x 轴, 平面平行于x 轴. n =(A , 0, C ), 法线向量垂直于y 轴, 平面平行于y 轴. n =(A , B , 0), 法线向量垂直于z 轴, 平面平行于z 轴.n =(0, 0, C ), 法线向量垂直于x 轴和y 轴, 平面平行于xOy 平面. n =(A , 0, 0), 法线向量垂直于y 轴和z 轴, 平面平行于yOz 平面. n =(0, B , 0), 法线向量垂直于x 轴和z 轴, 平面平行于zOx 平面.截距式;平面夹角和距离两平面的夹角: 两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面∏1和∏2的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2), 那么平面∏1和∏2的夹角θ 应是) ,(2^1n n 和) ,() ,(2^12^1n n n n -=-π两者中的锐角, 因此, |) ,cos(|cos 2^1n n =θ. 按两向量夹角余弦的坐标表示式, 平面∏1和∏2的夹角θ 可由2222222121212121212^1|||) ,cos(|cos C B A C B A C C B B A A ++⋅++++==n n θ.来确定.从两向量垂直、平行的充分必要条件立即推得下列结论: 平面∏1和∏2垂直相当于A 1 A 2 +B 1B 2 +C 1C 2=0;平面∏ 1和∏ 2平行或重合相当于212121C C B B A A == 空间曲线的一般方程空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F空间曲线的参数方程(33)空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程. 切平面和切线: 切线与法平面;设空间曲线Г的参数方程为),(),(),(t z t y t x ωφϕ=== 曲线在点),,(000z y x M 处的切线方程为)(00t x x ϕ'-=.)()(0000t z z t y y ωφ'-='- 向量 )}('),('),('{000t t t T ωφϕ=就是曲线Г在点M 处的一个切向量 法平面的方程为0))(('))(('))( ('000000=-+-+-z z t y y t x x t ωφϕ切平面与法线隐式给出曲面方程((,,)0F x y z =)法向量为:)},,,(),,,(),,,({000000000z y x Fz z y x F z y x F n y x = 切平面的方程是))(,,())(,,())(,,(000000000000z z z y x F y y z y x F x x z y x F z y x -+-+-法线方程是.),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-),(y x z =在点),(00y x如果用α、β、γ表示曲面的法向量的方向角,并假定法向量的方向是向上的,即使得它与z 轴的正向所成的角γ是一锐角,则法向量的方向余弦为 ,1cos 22yxx ff f ++-=α ,1c o s 22yxy ff f ++-=β.11cos 22yxff ++=γ2、多元函数微分学多元函数极限:简单复习讲解 偏微分全微分:如果三元函数),,(z y x u φ=可以微分,那么它的全微分就等于它的三个偏微分之和, du =x u ∂∂dx +y u ∂∂dy +zu ∂∂dz 第二次课3、重积分二重积分:利用直角坐标计算二重积分我们用几何观点来讨论二重积分f x y d D(,)σ⎰⎰的计算问题。
同济第七版高等数学总复习
抛物线
y2
2
pz 绕 z 轴;
x 0
x2 y2 2 pz
旋转抛物面 z
z
y x
y xo
22
旋转椭球面
y2
椭圆
a
2
z2 c2
1绕
y 轴和z轴;
x 0
绕 y轴旋转
y2 a2
x2 c2
z2
1
绕z 轴旋转
x2 a2
y2
z2 c2
1
z
o
y
x
23
(1)球面 (2)圆锥面 (3)旋转双曲面
Q( x) (2 p)Q( x) (2 p q)Q( x) Pm ( x)
(Q( x) xkQm ) 12
(2) f ( x) ex[Pl ( x)cosx Pn( x)sinx] 型
设
y
x
k
e
x
[
R(1) m
(
x
)
cos
x
R(2 m
)
(
x
)
sin
x
],
其中
R(1) m
(
x
),
R(2) m
数之和, 如 y P( x) y Q( x) y f1( x) f2 ( x)
而
y1*与
y
* 2
分别是方程,
y P( x) y Q( x) y f1( x) y P( x) y Q( x) y f2 ( x)
的特解,
那么
y* 1
y* 2
就是原方程的特解.
代入即可证得 .
解的叠加原理
(
x
)是m次多项式,m
maxl
,
同济版高等数学_下_知识点整理
dx Fy
x Fz y Fz
9、空间曲线的切线与法平面:设空间曲线 的参数方程为
x (t), y (t), t [, ]
z (t),
M (x0 , y0 , z0 ) 为曲线上一点
假定上式的三个函数都在[, ]上可导,且三个导数不同时为零
则向量 T f '(t0 ) ('(t0 ), '(t0 ),'(t0 )) 为曲线 在点 M 处的一个切向量,曲
ax
az
bx bz
j + (1)13
ax bx
ay
by k = (aybz azby )i (azbx axbz ) j (axby aybx )k
注: a b b a
3、二次曲面
(1)
x2 椭圆锥面:
y2
z2 ;
a2 b2
x2 y2
x2 y2
(2) 椭圆抛物面: z ; (旋转抛物面:
A12 B12 C12 A22 B22 C22
特殊: 两平面互相垂直 A1A2 B1B2 C1C2 0
两平面互相平行或重合 A1 B1 C1 A2 B2 C2
6、点 P(x0, y0, z0 ) 到 平 面 Ax By Cz D 0 的 距 离 公 式 :
d Ax0 By0 Cz0 D A2 B2 C 2
的形式给出,则 在点 M 处的切线方
G(x, y, z) 0,
程为: x x0 y y0 z z0
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为:
Fy Fz Gy Gz
M
(x
x0 )
Fz Fx Gz Gx
高等数学(第七版·下册) 同济大学知识点
高等数学(第七版·下册)同济大学知识点一、多元函数微分学多元函数微分学是高等数学中的一个重要分支,研究的是多元函数的导数、微分以及应用。
在本章中主要介绍了以下几个知识点:1. 偏导数与全微分•偏导数:多元函数的偏导数是指函数在某一点上某个自变量的变化率。
•全微分:多元函数的全微分是在某一点上,函数值关于自变量的微小变化量。
2. 高阶偏导数与多元函数的泰勒展开式•高阶偏导数:多元函数的高阶偏导数是指对多个自变量进行重复求导的结果。
•多元函数的泰勒展开式:用多项式逐次逼近函数的方法,可以近似表示函数在某一点附近的取值。
3. 隐函数与参数方程的求导•隐函数求导:对于由方程定义的函数,可以通过偏导数求导的方法来求解其导数。
•参数方程求导:对于由参数方程定义的函数,可以通过链式法则将参数的导数转化为函数关于参数的导数。
4. 方向导数与梯度•方向导数:多元函数在某一点沿着给定方向的变化率。
•梯度:多元函数的梯度是一个向量,它的方向指向函数值增加最快的方向,模表示变化率最大的值。
5. 多元函数的极值与条件极值•多元函数的极值:函数取得的最大值或最小值。
•条件极值:在满足一定条件下,函数取得的最大值或最小值。
6. 格林公式与高斯公式•格林公式:二维平面上的曲线积分与这个曲线所围成的区域上的面积分之间的关系。
•高斯公式:三维空间中,某个闭合曲面上的散度与这个曲面所围成的空间区域内的体积分之间的关系。
二、多元函数积分学多元函数积分学是研究多元函数的积分以及应用的学科。
本章介绍了以下几个知识点:1. 二重积分•二重积分的概念:二重积分是将二元函数沿着某一平面区域上的小面积元素进行累加得到的量。
•二重积分的性质:二重积分具有线性性、可加性、保号性等性质。
2. 二重积分的计算方法•基本的计算方法:可以通过把二重积分化为累次积分的形式进行计算。
•坐标变换法:通过变换坐标系,使得被积函数的形式更简单,从而更容易计算。
高数下册复习资料(同济第六版)
高数下册复习资料(同济第六版)前言高等数学作为大学数学教育中的一门基础课程,对于学生的学习和打好数学基础起着至关重要的作用。
本文为高数下册的复习资料,是根据同济大学数学系教授精心编写的同济第六版教材精华所整理而成,帮助大家更好地掌握高数知识。
第一章序列与极限本章主要讲述了数列和极限的基本概念,以及对于极限运算的一些基础性质。
在数学中,序列可以看作是一种精确的数学表达式,是数学运算过程中的重要工具之一。
在学习高数下册的过程中,掌握好数列的各种性质以及它与极限的关系,对于深入理解数学知识和解决数学问题会有很大的帮助。
第二章一元函数微分学本章主要介绍了一元函数微分学的基本概念和方法。
其中包括导数与微分的概念,微分法则,函数的凹凸性以及最值和最优化等内容。
通过学习这些内容,可以更好地理解和掌握函数的性质,提高解决实际问题的能力。
第三章一元函数积分学本章主要阐述了一元函数积分学的基本概念和方法。
其中包括不定积分和定积分的概念,牛顿-莱布尼茨公式,变量代换法以及分部积分法等内容。
掌握好这些概念和方法,可以在高数的学习中更加深入地理解函数的性质和运算,以及在数学上更高效地处理各种复杂问题。
第四章微分方程微分方程作为一种重要的数学工具,具有广泛的应用价值。
本章主要介绍了微分方程的基本概念和一些解法的方法,包括常微分方程的一些基本解法以及一些特殊类型微分方程的解法。
通过学习这些内容,可以更加深入地理解微分方程的概念和运用,为今后在工程技术等领域的应用打下坚实的数学基础。
第五章无穷级数本章介绍了无穷级数的基本概念和运算方法,以及级数收敛和发散的相关性质和定理。
无穷级数作为数学中的一种重要的概念和操作,对于数学的进一步发展和应用也起到了重要的作用。
在高数下册的学习过程中,不仅需要掌握各个章节的知识和方法,更需要从根本上提升自己的数学思维和解决问题的能力。
通过不断的练习和思考,相信大家可以很好地掌握高数下册的知识,为今后的学习和工作打下牢固的数学基础。
大一同济高数下册知识点
大一同济高数下册知识点一、极限与连续函数1. 极限的概念及性质极限是数列或函数无限接近某个确定值的过程。
极限具有唯一性、局部有界性和保号性等性质。
2. 极限计算法则常用的极限计算法则包括四则运算法则、复合函数极限法则、夹逼准则等。
3. 函数的连续性连续函数是指函数在其定义域上的每一个点都存在极限,并且该极限等于函数在该点的函数值。
二、导数与微分1. 导数的定义及性质导数是描述函数变化率的概念,表示函数在某一点的瞬时变化率。
导数具有线性性、乘法法则、链式法则等性质。
2. 基本初等函数的导数基本初等函数的导数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 高阶导数与隐函数求导高阶导数是指导数的导数。
当函数表达式过于复杂时,可以利用隐函数求导的方法来求解导数。
三、微分中值定理与泰勒展开1. 罗尔中值定理罗尔中值定理是微分中值定理的一种形式,它说明在某个区间上,若函数在端点处相等,则必有某点的导数为零。
2. 拉格朗日中值定理拉格朗日中值定理是微分中值定理的另一种形式,它说明在某个区间上,函数在两点处的斜率之差等于某点处的导数。
3. 泰勒展开泰勒展开是将函数在某一点附近展开为无穷级数的形式,用于近似计算函数值。
四、积分与定积分1. 不定积分与原函数不定积分是用于求解导数的逆运算,它求解的是一个函数的无穷多个原函数。
2. 定积分的概念与性质定积分是用于计算曲线下面围成的面积,具有线性性、区间可加性和保号性等性质。
3. 牛顿—莱布尼茨公式牛顿—莱布尼茨公式是积分与导数的基本关系,它表示函数的积分可以通过求导来实现。
五、常微分方程1. 常微分方程的基本概念常微分方程是描述函数与导数之间关系的方程,包括一阶常微分方程和高阶常微分方程。
2. 一阶常微分方程的解法一阶常微分方程的解法包括分离变量法、齐次方程法、一阶线性方程法和可降阶方程法等。
3. 高阶常微分方程的解法高阶常微分方程的解法包括常系数齐次线性方程、常系数非齐次线性方程和尝试解法等。
同济大一高数下册知识点
同济大一高数下册知识点高等数学是大学理工类专业的重要基础课程之一。
在同济大学大一学年,学生们将接触到高等数学下册的知识点。
下面将为大家详细介绍同济大一高数下册的主要知识点,以便同学们全面了解和掌握这一学科的内容。
一、极限与连续1. 极限的概念与性质- 数列收敛的定义与性质- 函数极限的定义与性质- 无穷小量与无穷大量的概念与性质2. 连续与间断- 连续函数的定义与性质- 间断点的分类与性质- 利用极限与连续性求函数在某点的极限值二、导数与微分1. 函数的导数与微分- 导数的定义与性质- 可导与导数的关系- 微分的定义与性质2. 常见函数的导数和微分- 幂函数、指数函数的导数与微分- 对数函数、三角函数的导数与微分- 复合函数的导数与微分三、不定积分1. 不定积分的概念与性质- 不定积分的定义与基本性质- 微元法与反函数法求不定积分2. 常用的不定积分公式- 幂函数、指数函数、对数函数的不定积分- 三角函数、反三角函数的不定积分- 常见函数的不定积分四、定积分与定义1. 定积分的概念与性质- 定积分的定义与基本性质- 区间可加性与中值定理2. 定积分的计算方法- 函数积分法与换元法- 牛顿-莱布尼茨公式与定积分的应用五、微分方程1. 微分方程的基本概念- 微分方程的定义与分类- 一阶微分方程与高阶微分方程的关系2. 常见类型的微分方程- 一阶线性微分方程- 可分离变量方程- 齐次与非齐次线性微分方程六、多元函数及其偏导数1. 多元函数的概念与性质- 多元函数的定义与取值范围- 二元函数与三元函数的图像和性质2. 偏导数与全微分- 偏导数的定义与计算方法- 隐函数求导与全微分的概念与计算七、多元函数的极值与条件极值1. 多元函数的极值与最值- 多元函数的极值点的定义与判定条件- 多元函数的最值点的定义与判定条件2. 条件极值与拉格朗日乘数法- 条件极值点的定义与判别条件- 拉格朗日乘数法的基本思想与应用以上就是同济大一高数下册的主要知识点介绍。
高数同济版大一下学期期末复习
x y
2 3
2
(x y ) 2
(3) lim
x 0 y 0
x | y| x y
4
2
2
2
x 0 y 0
lim
x sin ay xy 1 1
lim
x sin ay ( xy 1 1) xy
x 0 y 0
a lim
sin ay ( xy 1 1) ay
根据题意知 取
s n1 ,
s n2 ,
s n1 n2 {4,3,1},
x3 4 y2 3 z5 1 .
所求直线的方程
例2:设直线 L 和平面 的方程分别为
x 3 y 2z 1 0 L: , 2 x y 10z 3 0
例:函数 z
x
y的定义域为(
B、x
B
)
A 、 0, y 0 x
C、x y, y 0
y, y 0
D、x 0, y 0
例:求下列函数的极限:
(1) lim
x 0 y 0
x sin ay xy 1 1
3
(2) lim
x 0 y 0
x y sin
2 z0 0
M1 (1, 1, 0), M 2 ( 1, 1, 0),
1 : 3( x 1) 3( y 1) 0,
x y 2 0,
2 : 3( x 1) 3( y 1) 0, x y 2 0,
2 3 x t , y t , z t 在点P处的切线平行于 例:(1)已知曲线
A B C L s // n m n p
一元微积分,多元微积分,高等数学复习提纲(同济大学版)
(1)1,补集的记号2,什么是笛卡尔乘积3,什么是邻域,记号,中心,半径4,去心邻域,记号,左邻域,右邻域5,两个闭区间的直积6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数8,逆映射,复合映射9,多值函数,单值分支10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义12,奇偶性、周期性13,初等函数,基本初等函数(2)1,数列极限的定义,用符号语言2,收敛数列的四个性质3(3)1,函数在某点的极限定义,符号语言2,函数在无穷大处的极限,符号语言3,函数极限的性质(4)1,无穷小的定义2,函数极限的充分必要条件,用无穷小表示3,无穷大4,无穷大和无穷小的定义(5)1,有限个无穷小的和2,有界函数与无穷小的乘积3,极限的四则运算4,函数y1始终大于y2,那么极限的关系是(6)1,极限存在的夹逼准则2,单调有界的数列是否存在极限3,(1+1/x)^x的极限4,柯西审敛准则1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小2,等价无穷小的充要条件3,两组等价无穷小之间的比例关系(8)1,函数连续性的定义,左连续,右连续2,什么是连续函数3,间断点的三种情况4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点(9)1,连续函数的四则运算后的连续性2,反函数和复合函数的连续性3,初等函数的连续性(10)1,有界性与最大最小值定理2,零点定理3,介值定理和推论第二章(1)1,导数的定义2,函数在一点可导的充要条件,用等式表示3,可导和连续的关系(2)1,函数的和差积商如何求导2,tanx、secx的导数,cscx和cotx3,反函数的求导法则是什么4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数5,复合函数求导法则(3)1,二阶导数的微分表示法2,莱布尼兹公式3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导4,隐函数的求导5,对数求导法的应用6,参数所表示的函数怎样求导7,什么是相关变化率1,可微的充分必要条件2,⊿y与dy的关系3,什么是线性主部4,什么是函数的微分,什么是自变量的微分5,函数的和差积商的微分6,复合函数的微分法则是什么、7,如何利用微分进行近似计算8,利用0点处的微分可以导出什么近似计算公式9,误差估计(星号)第三章(1)1,什么是费马引理2,什么是罗尔定理3,什么是拉格朗日中值定理4,什是有限增量公式5,什么是柯西中值定理(2)1,什么是罗比达法则(3)1,什么泰勒中值定理2,什么是泰勒多项式,什么是拉格朗日余型3,什么是皮亚诺余型4,什么是迈克劳林公式5,e^x\sinx\cosx\ln(1+x)\(1+x)^a的带有拉格朗日余项的麦克莱林公式(4)1,凹凸性的定义,导数如何判定凹凸性2,什么是拐点以及如何寻找拐点(5)1,极大值的定义2,什么是驻点,怎样利用导数判断极大值极小值3,如何利用二阶导数判断极大值极小值4,怎样判断最大值,最小值(6)函数图形描绘的步骤(7)1,弧微分公式2,什么是弧段的平均曲率,什么是曲率3,曲率的公式4,参数方程的曲率公式5,什么是曲率圆,曲率中心,曲率半径(8)1,什么是二分法2,什么是切线法第四章(1)1,什么是原函数2,原函数存在定理3,什么事不定积分4,1/x\1/(1+x^2)\1/sqr(1-x^2)\cosx\sinx\1/cosx^2\1/sinx^2\secxtanx\cscxcotx\e^x\a^x的原函数5,什么是第一类换元法6,cscx、secx的不定积分7,cos3x*cos2x的不定积分8,什么是第二类换元法9,tanx\cotx\secx\cscx\1/(a^2+x^2)\ 1/(x^2-a^2)\1/sqr(a^2-x^2)\1/sqr(x^2+a^2)\1/sqr(x^2-a^2)积分10,什么是分部积分法11,分部积分法,分部积分法的优先法则12,有理函数的积分怎样积,带根号的函数怎样积分(根号中x的次数是1)(5)积分表第五章(1)1,定积分的定义2,可积的2个充分条件是什么3,怎样利用积分的定义求定积分4,怎样利用定积分进行近似计算5,积分外面的绝对值和积分里面的绝对值之间的大小关系6,定积分与被积函数最大值最小值之间的关系7,什么是积分中值公式8,积分上限函数可导的充分条件,导数是9,什么是牛顿莱布尼兹公式10,定积分的换元法有什么条件,怎样换12,sinx^n从0积分到pi/2的结果13,什么是反常积分14,正负无穷的反常积分是怎样定义的15,如何利用牛顿莱布尼兹公式判定反常积分是存在还是发散16,瑕积分的定义,存在和发散的一般规则17,反常积分的比较审敛法13,绝对收敛的反常积分14,Γ函数的定义和重要性质第六章(1)1,什么是元素法2,怎样用定积分求面积,体积,弧长第七章(1)1,什么事微分方程呢,什么是微分方程的阶,什么事微分方程的通解,微分方程的特解,什么是初始条件2,什么是可分离变量的微分方程,怎样求解3,什么是其次方程,怎样求解4,什么事可以化为齐次的方程,怎样求解5,什么是齐次一阶线性微分方程和非齐次一阶线性微分方程,怎样求解6,什么是常数变易法,怎样求非齐次一阶线性微分方程7,什么是伯努利方程,怎样求解8,y^(n)=f(x)、y’’=f(x,y’)、y’’=f(y,y’)的形式怎样求解9,二阶齐次线性方程的性质,通解的结构10,n阶齐次线性方程通解11,二阶非齐次线性方程解的结构12,什么事线性微分方程的解的叠加原理13,怎样利用常数变异法求二阶非齐次线性方程的通解14,二阶线性常系数齐次方程的通解15,n阶常系数齐次线性微分方程的一般形式16,y’’+py’+qy=f(x),如果f(x)=e^(λx)p(x)怎样求解,如果f(x)= e^(λx)(p1(x)coswx+p2(x)sinwx)第八章(1)1,向量b平行于a的充要条件是2,有向线段AB的λ分点坐标3,怎样求向量的模4,怎样求方向角和方向余弦5,3个方向余弦之间有什么关系6,向量投影的记号(2)1,什么是向量的数量积2,两向量夹角余弦的坐标表示3,什么是向量积,怎样确定方向4,向量积的运算规律,向量积的坐标表示5,什么是向量的混合积怎样计算,几何意义是什么6,三向量共面的充分必要条件是7,球面方程8,围绕z轴的旋转曲面方程9,圆锥面方程,旋转单叶双曲面,旋转双叶双曲面,抛物柱面,柱面的方程10,椭圆锥面、椭球面、单叶双曲面、双叶双曲面、椭圆抛物面、双曲抛物面11,什么是空间曲线的一般方程12,什么是空间曲线的参数方程13,什么是螺旋线14,球面的参数方程15,如何求投影16,什么是平面的点法式方程17,什么是平面的一般方程18,什么是平面的截距式方程19,什么是两平面的夹角20,两平面互相平行和重合的条件21,点到平面的距离公式22,什么是对称式方程,怎样求平面的参数方程23,两直线的夹角是什么,怎样求24,直线与平面的夹角有什么25,直线与平面的夹角怎样求,直线与平面垂直或平行的条件是什么26,什么是平面束第九章(1)1,平面的邻域和去心邻域怎样表示2,什么是内点、外点、边界点、聚点3,什么是开集,闭集、连通集、闭区域、有界集、无界集4,什么是二元函数5,多元函数的极限6,利用多元函数的定义怎样判定极限不存在7,什么是多元函数的连续性、8,多元函数的有界性和最大最小值定理9,介值定理(2)1,偏导数的定义2,什么是混合偏导数3,二阶混合偏导数相等的充要条件4,什么是偏微分5,什么是全微分,什么是可微6,可微和连续的关系式7,可微分的充分条件是8,什么是多元函数微分的叠加原理(4)1,什么是全导数2,多元函数和多元函数复合时怎样求偏导数3,什么是隐函数的求导公式,4,什么是隐函数的偏导公式5,两个方程组所确定的函数如何求偏导(6)1,什么是一元向量值函数2,什么是向量函数的极限3,向量值函数的导数运算法则4,向量值函数的法平面方程5,曲线在点m处的切线方程6,空间曲线以F(x,y,z)=1,G(x,y,z)=0给出时,怎样求切线方程和法平面方程7,怎样求曲面的切面和法向量8,什么是方向导数,与偏导数的关系是什么9,什么是梯度,与方向导数的关系式什么10,梯度的意义(疑问)(8)1,什么是多元函数的极大值和极小值2,多元函数有极值的必要条件3,多元函数有极值的充分条件4,怎样运用拉格朗日乘数法第十章(1)1,什么是二重积分2,什么是二重积分的可加性3,什么是二重积分的中值定理(2)1,怎样利用极坐标求二重积分2,什么是二重积分的换元法(3)1,什么是三重积分2,三重积分在直角坐标下有哪些方法3,怎样利用柱面坐标三重积分4,怎样利用球坐标进行三重积分5,怎样积分曲面面积6,怎样利用曲面的参数方程积分7,怎样求质心和转动惯量(5)第十一章(1)1,什么是第一类曲线积分,怎样计算2,什么是第二类曲线积分,怎样计算3,两类曲线积分之间是什么关系(3)1,什么是格林公式2,曲线积分与路径无关的充分必要条件是什么(3个第十二章(1)1,什么是级数的部分和2,什么是级数的和3,收敛级数的5个性质4,什么是柯西审敛原理(2)1,正项级数收敛的充分必要条件2,什么是比较审敛法,有什么推论3,什么是比较审敛法的极限形式4,什么是大朗贝尔判别法5,什么是根值判别法6,什么是极限审敛法7,什么是莱布尼兹定理8,什么是绝对收敛和条件收敛(3)1,什么是函数项无穷级数2,什么是幂级数3,什么是阿贝尔定理,推论是什么4,怎样求收敛半径5,幂级数的和函数在收敛域上的积分和微分,怎样利用(4)1,什么是泰勒级数2,函数能展开成泰勒级数的充分必要条件3,函数展开成幂级数的步骤(5)1,微分方程的幂级数解法是什么2,什么是幂级数3,傅里叶级数。
高数大一同济版下册知识点
高数大一同济版下册知识点第一章一元函数微分学1.1 函数极限与连续性1.1.1 函数极限的定义与性质1.1.2 函数连续性的概念与判定1.1.3 连续函数的性质与运算1.2 导数与微分1.2.1 导数的定义与几何意义1.2.2 导数的计算方法1.2.3 微分的概念与计算1.3 高阶导数与高阶微分1.3.1 高阶导数的定义与计算1.3.2 高阶微分的概念与计算1.3.3 高阶导数与高阶微分的关系第二章微分学的应用2.1 极值与最值问题2.1.1 极值点的判定2.1.2 最值问题的求解方法2.1.3 应用实例2.2 函数的单调性与凹凸性2.2.1 函数单调性的判定2.2.2 函数凹凸性的判定2.2.3 应用实例2.3 泰勒展开与函数的近似计算 2.3.1 泰勒公式的导出与性质 2.3.2 函数近似计算的应用示例 2.3.3 应用实例第三章一元函数不定积分3.1 不定积分的定义与性质3.1.1 不定积分的定义3.1.2 不定积分的基本法则 3.1.3 基本积分表与换元法则3.2 积分方法与技巧3.2.1 分部积分法3.2.2 有理函数积分法3.2.3 三角函数积分法3.3 定积分的概念与性质3.3.1 定积分的定义3.3.2 定积分的计算法则3.3.3 定积分的几何应用第四章一元函数定积分4.1 定积分与不定积分的关系4.1.1 反常积分的概念与性质4.1.2 无穷限的换元法与分部积分法4.1.3 无穷限的比较判别法4.2 定积分的应用4.2.1 平面图形的面积与弧长4.2.2 物理学问题与定积分4.2.3 应用实例4.3 定积分的计算方法4.3.1 定积分的常用计算方法4.3.2 积分计算常用技巧4.3.3 定积分的应用实例这些知识点是高数大一同济版下册中的重要内容。
通过系统地学习与掌握这些知识点,你将对微积分理论有更深入的了解,并可以应用于实际问题的求解。
希望你能够认真学习,掌握这些知识点,在未来的学习与工作中能够灵活运用。
高数同济大一下知识点总结
高数同济大一下知识点总结高等数学是大学理工科专业的一门重要基础课程,在同济大学大一下学期,学生们将进一步学习和掌握高等数学的知识和技巧。
本文将对高等数学下学期的主要知识点进行总结,以帮助同学们更好地复习和掌握这门课程。
1. 导数与微分1.1 极限与连续- 数列极限与函数极限的概念及性质- 函数的连续性与间断点1.2 导数的概念与运算法则- 导数的定义和物理意义- 基本初等函数的导数- 利用定义计算导数1.3 微分的概念与运算法则- 微分的定义和物理意义- 微分运算法则与微分的应用2. 微分中值定理与导数应用2.1 函数的导数与增减性- 导数与函数的单调性2.2 导数与凹凸性- 函数的凹凸性与拐点- 高阶导数与凹凸性的判定 2.3 高阶导数与泰勒公式- 泰勒公式的定义与应用2.4 导数应用- 最值与优化问题- 切线与法线方程- 弧长与曲率- 物理问题中的导数应用3. 不定积分3.1 不定积分的概念与基本性质 - 不定积分的定义与运算法则- 变量代换法与分部积分法3.2 基本积分公式及其应用- 基本积分公式表- 积分公式的运用与变形4. 定积分4.1 定积分的概念与基本性质- 定积分的定义与运算法则4.2 定积分的计算方法- 牛顿-莱布尼兹公式- 定积分的换元法与分部积分法 4.3 定积分的应用- 曲线下的面积- 弧长- 物理学中的应用5. 微分方程与数列级数5.1 微分方程的基本概念- 微分方程的定义与基本性质5.2 常微分方程- 一阶线性微分方程- 可分离变量的一阶微分方程- Bernoulli微分方程5.3 数列级数- 数列的极限与性质- 数列的收敛与发散- 数列极限存在准则- 数列级数的定义与性质以上是同济大学大一下学期高等数学的主要知识点总结。
希望同学们能够认真复习和掌握这些知识,打好高数的基础。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学复习提纲1.平面及其方程。
例题:一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0. 2.空间直线及其方程。
例题:求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=.所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即 16x -14y -11z -65=0.例题:求过点(3, 1, -2)且通过直线12354z y x =+=-的平面方程. 解 所求平面的法线向量与直线12354z y x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1,-2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i kj i s s n 229824112521--=-=⨯=.所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0, 即 8x -9y -22z -59=0.3.旋转曲面。
例题:将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .例题:将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.4. 多元复合函数求导,隐函数求导。
例题:求函数 x yez = 的全微分解 xdy e xdx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=. 例题:设z =u 2ln v , 而yx u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2yy x x y x y x ----=. 例题:设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(c o s t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.例题:设sin y +e x -xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy ,xyy e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 例题:设xy y x arctanln 22=+, 求dx dy.解 令xyy x y x F arctanln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=,22222221)(11221y x x y x xy y x y y x F y +-=⋅+-+⋅+=,yx y x F F dx dyy x -+=-=. 5.重积分(直角坐标,极坐标)。
例题:⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. 例题:⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x⎰-=π)s i n 2(s i n dx x x x ⎰--=π0)c o s 2c o s 21(x x xd+--=0|)c o s 2c o s 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. 例题:利用极坐标计算下列各题: (1)⎰⎰+Dy x d eσ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以⎰⎰⎰⎰=+DDy xd de d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(3)σd x y Darctan ⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan ⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d .5.求曲顶柱体体积。
例题:求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数,所以 ⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=220222)2(12x dy y x dx π6)2(8232=-=⎰dx x .例题:计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--.6 常数项级数的审敛法。
例题:判定下列级数的收敛性: (1))4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ; 解 因为145lim 1)4)(1(1lim 222=++=++∞→∞→n n n n n n n n ,而级数∑∞=121n n 收敛,故所给级数收敛.(2) 2sin 2sin 2sin 2sin 32⋅⋅⋅++⋅⋅⋅+++nππππ; 解 因为πππππ==∞→∞→nnn n n n 22sinlim 212sin lim ,而级数∑∞=121n n 收敛,故所给级数收敛.(1) 23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ; 解 级数的一般项为nnn n u 23⋅=. 因为123123lim322)1(3lim lim 111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n nn n n n n n n ,所以级数发散.(2)∑∞=123n n n ; 解 因为131)1(31lim33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→n n n n u u n n n n n n n , 所以级数收敛.(3)∑∞=⋅1!2n nn n n ; 因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n , 所以级数收敛. (3)∑∞=+112t an n n n π.解 因为121221lim 2t an 2t an )1(limlim12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ,所以级数收敛.例题:判定下列级数是否收敛?如果是收敛的, 是绝对收敛还是 条件收敛? (1)4131211⋅⋅⋅+-+-;解 这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u , 其中n u n 1=. 因为显然u n ≥u n +1, 并且0lim =∞→n n u , 所以此级数是收敛的.又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数, 是发散的,所以原级数是条件收敛的. (2)∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n .因为131331lim 1<=+-∞→n n n n n , 所以级数∑∞=-113n nn 是收敛的, 从而原级数收敛, 并且绝对收敛.7.幂级数。
例题:求下列幂级数的收敛域:)1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ;解1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n, 也是收敛的, 所以收敛域为[-1, 1].∑∞=++-11212)1(n n nn x解 这里级数的一般项为12)1(12+-=+n xu n nn .因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].8.函数展开成幂级数。