长沙水泵厂多级离心泵的轴向力是如何消除的

合集下载

多级泵平衡轴向力的方法

多级泵平衡轴向力的方法

多级泵平衡轴向力的方法
多级泵平衡轴向力的方法
多级泵是一种常见的液压传动元件,其工作原理是利用多个叶轮将液体逐级压缩,以达到提高液体压力的目的。

然而,在多级泵中,由于叶轮之间存在一定的间隙,会产生一定的轴向力,影响泵的稳定性和寿命。

因此,为了保证多级泵的正常工作和延长使用寿命,需要采取措施平衡其轴向力。

下面介绍几种常见的多级泵平衡轴向力的方法:
1. 双吸入口设计
双吸入口设计是一种常见的平衡多级泵轴向力的方法。

该方法通过在进口处设置两个吸入口,并将它们分别连接到两个叶轮之间,使得进入两个叶轮之间的液体流量相等,从而平衡了两个叶轮之间产生的轴向力。

2. 对称式设计
对称式设计是一种将每个叶轮都设置在同一个位置上,并且每个叶片
都有相同数量和角度的方法。

这种设计可以使得每个叶片所产生的力相互抵消,从而达到平衡轴向力的目的。

3. 反向旋转设计
反向旋转设计是一种将相邻两个叶轮的旋转方向相反的方法。

这样可以使得相邻两个叶轮所产生的轴向力相互抵消,从而达到平衡轴向力的目的。

4. 调整叶轮间隙
调整叶轮间隙是一种通过调整叶轮之间的间隙来平衡轴向力的方法。

该方法需要根据实际情况来确定叶轮之间的间隙大小和位置,以达到平衡轴向力的目的。

综上所述,多级泵平衡轴向力有多种方法可供选择,具体应根据实际情况进行选择和调整。

长沙水泵厂影响不锈钢卧式多级离心泵振动超标的原因之离心泵轴承

长沙水泵厂影响不锈钢卧式多级离心泵振动超标的原因之离心泵轴承

自平衡多级泵厂长沙宏力水泵提供: 长沙水泵厂影响不锈钢卧式多级离心泵振动超标的原因之离心
泵轴承
摘要:本文由长沙知名多级离心泵厂家湖南宏力泵业泵业整理发布,介绍了影响不锈钢卧式多级离心泵振动超标的原因之离心泵轴承间隙问题。

关键词:不锈钢卧式多级离心泵,长沙多级离心泵厂家,宏力泵业。

如果是采用滑动轴承的不锈钢卧式多级离心泵,经以上工作仍不能消除震动,则应检查轴瓦的接触情况,正常的轴瓦,下瓦应有均匀的接触痕迹,主要分布在中下部,接触面积应达75%以上,上瓦应留有间隙,一般取轴径的0.1—0.15%。

上瓦压盖对上瓦应有0.02—_0.02mm的紧力。

如不能达到要求,一般采取在瓦口加减减垫片,和刮削轴瓦的方法解决。

如果是采取滚动轴承的不锈钢卧式多级离心泵,则应测量轴承压盖对轴承外套的紧力情况,一般要留有0.20mm左右的膨胀间隙,以备在转子受热状态下膨胀时,不致轴承轴向受力。

多级离心泵的工作原理

多级离心泵的工作原理

多级离心泵的工作原理
多级离心泵主要应用于高层建筑供水,也可应用于厂矿、企业给排水以及低压锅炉循环用水。

DY型多级离心油泵是单吸、多级、分段式离心泵。

下面长沙水泵厂-宏力泵业小编来为大家介绍多级离心泵的工作原理。

当多级离心泵电机带动轴上的叶轮高速旋转时,充满在叶轮内的液体在离心力的作用下,从叶轮中心沿着叶片间的流道甩向叶轮的四周,由于液体受到叶片的作用,使压力和速度同时增加,经过导壳的流道而被引向次一级的叶轮,这样,逐次地流过所有的叶轮和导壳,进一步使液体的压力能量增加。

将每个叶轮逐级叠加之后,就获得一定扬程。

最后长沙水泵厂-宏力泵业小编温馨提示:当多级离心泵用来输送高温液体的泵,如电厂的锅炉给水泵,在启动多级离心泵前必须先暖泵。

水泵启时,高温给水流过泵内,会加速泵体内温度上升,从而导致泵内外零部件之间温差过大。

若没有足够长的传热时间和适当控制温升的措施,会使泵各处膨胀不均,造成泵体各部分变形、磨损、振动和轴承抱轴事故。

自平衡多级泵详细介绍

自平衡多级泵详细介绍
● 隔套(驱动侧)(07)的拆卸:注意在拆卸过程中不能旋转退出该件,以免 滑伤轴表面ቤተ መጻሕፍቲ ባይዱ同时将其固定用键一起集中放置(套内含有密封结构,注意保 护O型圈);
● 首级叶轮(07)的拆卸:拆卸时需小心导叶会落在叶轮上,在退出叶轮时注 意保护导叶落下时不会对轴有所破坏,同时叶轮与叶轮固定用键一起集中放 置;
注意:清洁上、下轴瓦,并单独包裹,防止损坏。 ● 拧下轴承体与泵体之间连接的螺母,取下轴承体(42),最后取下甩油环。
13
2021/2/7
皮肌炎图片——皮肌炎的症状表现
皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
销(24)拔出; ● 通过螺母(29)将在轴承体与泵体的定位销(28)拔出; ● 取下轴承盖(03),拧下连接压环与轴承体之间的内六角螺钉(23),取下压环( 06);
注意:若不需要更换迷宫环(01),则轴承盖、轴承体不须和迷宫环分开。 ● 取下上轴瓦(05),同时将轴抬高一些, 沿圆周方向将下轴瓦(43)取出;
21
3、转子跳动的检查
叶轮做完静平衡后,对零件进行清洁,将转子零件安装正确顺序(见 4.2)安装在轴上,按图3.2所示要求对转子部件进行跳动检查,检查 主要部位为:叶轮密封环(A1~A8)、节流轴套(C)、轮毂密封环 (B1~B8)、中间轴套(D)。最大允许的跳动值为0.04mm,如超过 范围,则上磨床修至要求值。如果不能修复,则须更换不合格零件。
11
R301内塔盘煤粉分布情况
12
2021/2/7
3.2非驱动端自润滑轴承部件的拆卸
● 拧下螺栓(15),拆卸轴承压盖(16); ● 拧下轴承锁紧螺母(14),顺序取出止动垫片(13)、甩油环(11)、轴承定位 套(12); ● 把轴承外套(10)、轴承套(39)、角接触球轴承(09)作为整体取出; ● 取出调整垫(40) ● 拧下轴承盖与轴承体之间的内六角螺钉(19),同时通过螺母(25)把在轴承盖和 轴承体之间定位

多级离心泵轴向力平衡方法有哪几种?

多级离心泵轴向力平衡方法有哪几种?

(1)平衡鼓法这是一种径向间隙液压平衡装置,它装在最后一级叶轮和平衡室之间,和泵轴一起旋转的称为平衡鼓轮,静止部分称为平衡鼓轮头。

用一根管线平衡室与泵进口连通,这样平衡室内的压力就等于进口连通管线中损失压力之和。

平衡鼓法平衡原理:平衡鼓轮前面是最后一级叶轮的后泵腔,其压力接近于泵的排出压力,因而平衡鼓两个端面之间有一个很大的压力差,能够把平衡鼓轮向后推,从而带动整个转子向后移动。

如果我们设法使这个推力和离心泵的轴向力相等,就能够达到平衡轴向力的目的。

(2)平衡盘法(下图):平衡盘是一种轴向间隙液压平衡装置。

装在最后一级叶轮与平衡室之间,和轴一起转动的称为平衡盘,静止不动的称为平衡环(套)。

平衡原理:从叶轮出来的一部分液体经过平衡盘与平衡环之间的轴向间隙漏入平衡室,再用管路把平衡室与泵吸入口连通,这时平衡盘背面所受的压力是平衡室压力。

平衡盘正面最小直径上受到的压力是泵的吐出压力,而在周界上是平衡室压力。

只要选择好平衡盘的内、外直径尺寸,就可以使平衡盘正面与背面的压力差和泵的轴向力相等,从而达到平衡的目的。

平衡盘法假如泵的轴向力增加,这额外的压力就会把泵的转子推向吸入口侧,从而使平衡盘和平衡环之间的端面间隙减小。

此时通过这个间隙的漏失量将减少,平衡室压力下降,这时平衡盘前后的压力差增加,将转子向吐出口方向推,直到与轴向力平衡为止。

反之,如果泵的轴向力减小,就会造成平衡盘与平衡环之间的轴向间隙增大,漏失量增加,平衡压力增高,直到又获得新的平衡为止。

(3)平衡盘与平衡鼓组合法(下图):平衡盘与平衡鼓组合实际上是一种径向、轴向液压平衡装置。

高压多级离心泵普遍采用此法,平衡效果好,组合法的平衡原理与上述两法相同。

平衡盘与平衡鼓组合法(4)叶轮对称布置平衡法:在多级水平中开式离心泵中通常采用叶轮对称布置平衡法来平衡轴向力,使成组叶轮的吸人口方向正好相反,从而起到平衡轴向力的作用。

在泵上也要安装止推轴承。

离心泵轴向力产生原因及平衡方法

离心泵轴向力产生原因及平衡方法

离心泵轴向力产生原因及平衡方法
离心泵轴向力是指泵转轴非对称运动时侧向受力产生的向力,主要有它的重力和压力及其流体动作、离心力及它所伴随的中间体及相关共振引起的振动负责。

离心泵的轴向力会引起机械设备的振动,受力部位的设计和动态特性容易导致系统发生故障,影响机械设备的安全运行。

要解决离心泵轴的力的问题,可以采取几种方法来平衡轴向力。

首先,应注重设备运行的稳定性和安全性,平衡轴向力的设计方法平衡前驱和滞后力已经成为离心泵轴向力平衡的主要方法。

使用特制的前驱和滞后比例和补偿调整环可以控制转子位移,使转子在设定点位置得到控制,这样可以最大限度地降低轴向力。

其次,采用改变泵头形状的方法平衡轴向力,不仅减小了轴向力,还提高了泵的效率。

再次,改变离心泵的安装方式和改变叶轮的支撑结构,也可以减小轴向力。

最后,应注意定期检查离心泵的中间体的物理和化学特性,防止出现可能引起振动的化学或物理性变化,同时增加阻尼器的频率也能减小轴向力产生的振动。

总之,要想有效地平衡离心泵轴向力,需要主要综合采取以上几种措施。

一方面,针对轴向力分析,检测设备的稳定性和安全性,利用特制的前驱和滞后力方法控制轴的位移;另一方面,要注重改变离心泵的安装方法和支撑形状,使泵头变化成矩形,以提高泵的效率。

还要定期检查离心泵中间体,并增加阻尼器的频率,控制泵轴的动态平衡。

浅谈离心泵的轴向力产生及解决方法

浅谈离心泵的轴向力产生及解决方法
叶轮 轴向力 平衡
延长设备使 用寿命 ,从而提高设备 的经济运行能力十分有 必要。 关 键 词 : 离心 泵

引 言 离 心泵在 运转 时 ,在其 转子 上产 生一个 很 大的作 用力 ,由于此作

用力 的方 向与离 心泵转 轴 的轴 心线相 平行 ,故 称为轴 向力 。流 体作 用 在转 子上 的轴 向力主要 是 由于 其作用 在 叶轮两 侧的 压力分 布不 对 称而 引起 的 ,分 为静 态轴 向力 和动态 轴 向力两 部分 ,采 用平衡 装置 无 法完 全平 衡 ,易 引起 机器本 身 及原 动机 ( 尤其 是 电动机 )损坏 ,例 如 轴向 力 过大 则造 成烧 瓦 、断 轴 、密 封隔 板 的损坏 或 增大 止推 轴承 的摩 擦 , 主 轴 、叶轮 向进 口方 向移 动致 使 叶轮 与机 壳摩 擦 ,原动 机 负载 加大 ; 如果 轴 向力 过小 ,则会 引起 转子 的前后窜 动 。
四、轴 向力平衡 方法
在大 多数情况下 , 泵 内的轴 向力值是 比较大 的。因此 , 必须 设法 平衡 或消 除作用在 叶轮上 的轴向力 , 否则 , 它将使转 子 串动 甚至 与固定零 件接 触, 造 成零部 件损坏 。平衡轴 向力的方 法有 : 1 . 用止推 轴承平衡 离心泵轴 向力 如 果止 推轴 承能可 靠 的承 受轴 向推 力, 这将 是最 有 效 的解决 方 法 。 但 由于轴 向力通常 较大 , 用止 推轴承 来平衡 轴 向力就 会使泵 的结 构非常 复 杂。所 以, 最好 用水 力方法 来平衡 轴 向力 。但 是这 样就 只有在 降低离 心 泵效率 的情况下才 能做 到这一点 。 2 . 用 背( 副) 叶片方 法平衡 轴向力 在 叶轮后 盖板 上作几 个径 向肋 筋——背 ( 副) 叶片 , 当叶轮 旋转 时 由 于背叶 片的作用 , 使作用 与叶轮 后盖板上 的液体压 力值下 降, 从而 使作 用

自平衡多级泵平衡轴向力的方法

自平衡多级泵平衡轴向力的方法

自平衡多级泵平衡轴向力的方法一、引言自平衡多级泵是一种常见的液压泵,其主要特点是具有较高的出口压力和流量,但在使用过程中容易出现轴向力不平衡的问题。

这种问题会导致泵的寿命缩短、效率降低等不良影响。

因此,解决自平衡多级泵轴向力不平衡问题是非常重要的。

二、自平衡多级泵的结构和工作原理自平衡多级泵由驱动轴、叶轮、定子和阀体等部分组成。

其工作原理是:驱动轴带动叶轮旋转,使得液体被吸入叶轮中心,并被推向外缘。

在叶轮旋转时,液体被迫通过定子内部的通道进入下一个叶轮组,如此循环直到达到所需的流量和压力。

三、自平衡多级泵轴向力不平衡问题及其影响在使用自平衡多级泵时,由于叶轮和定子之间存在一定的间隙,使得部分液体会从高压侧流回低压侧,在这个过程中会产生一定的阻力。

这种阻力会使得叶轮受到一个轴向力,从而导致轴向力不平衡的问题。

这种问题会导致泵的寿命缩短、效率降低等不良影响。

四、自平衡多级泵平衡轴向力的方法1.增加叶轮数量增加自平衡多级泵中的叶轮数量可以减少每个叶轮上所承受的压力和流量,从而减小每个叶轮所产生的阻力。

这样可以有效地减少泵中的轴向力不平衡现象。

2.采用对称结构采用对称结构可以使得液体在泵内部流动时更加均匀,从而减小液体在高压侧和低压侧之间产生的差异性。

这样可以有效地减少泵中的轴向力不平衡现象。

3.采用弹簧机构在自平衡多级泵中添加弹簧机构可以使得叶轮与定子之间始终保持一定的距离,从而减小液体在高压侧和低压侧之间产生的差异性。

这样可以有效地减少泵中的轴向力不平衡现象。

4.使用调节阀使用调节阀可以使得泵内部的压力和流量始终保持在一定的范围内,从而减小液体在高压侧和低压侧之间产生的差异性。

这样可以有效地减少泵中的轴向力不平衡现象。

五、结论自平衡多级泵轴向力不平衡问题是一个常见的问题,在使用过程中会给泵带来很多不良影响。

为了解决这个问题,我们可以采用增加叶轮数量、采用对称结构、采用弹簧机构和使用调节阀等方法来平衡轴向力。

离心泵轴向力的平衡方法总结

离心泵轴向力的平衡方法总结

离心泵轴向力的平衡方法总结如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此轴向力将拉动转子轴向串动,与固定零件接触,将造成泵零件的损坏以致不能工作。

一般常用以下7大方法来平衡泵的轴向力。

一、推力轴承对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济的方法。

即使采用其他平衡装置,考虑到总有一定的残余轴向力,有时也装设推力轴承。

二、平衡孔或平衡管如图1所示,在叶轮后盖板上附设密封环,密封环所在直径一般与前密封环相等,同时在后盖板下部开孔,或设专用连通管与吸入侧连通。

由于液体流经密封环间隙的阻力损失,使密封下部的液体的压力下降,从而减小作用在后盖板上的轴向力。

减小轴向力的程度取决于孔的数量和孔径的大小。

在这种情况下,仍有10~15%的不平衡轴向力。

要完全平衡轴向力必须进一步增大密封环所在直径,需要指出的是密封环和平衡孔是相辅相成的,只设密封环无平衡孔不能平衡轴向力;只设平衡孔不设密封环,其结果是泄漏量很大,平衡轴向力的程度甚微。

图1平衡孔示意图(具体见2楼)采用这种平衡方法可以减小轴封的压力,其缺点是容积损失增加(平衡孔的泄漏量一般为设计流量的2~5%)。

另外,经平衡孔的泄漏流与进入叶轮的主液流相冲击,破坏了正常的流动状态,会使泵的抗汽蚀性能下降。

为此,有的泵体上开孔,通过管线与吸入管连通,但结构变得复杂。

采用上述平衡方法,轴向力是不能达到完全平衡的,剩余轴向力需由泵的轴承来承受。

用平衡孔平衡轴向力的结构使用较广,不仅单级离心泵上使用,而且多级离心泵上也使用。

但由于轴向力不能完全平衡,仍需设置止推轴承,且由于多设置了一个口环,因而泵的轴向尺寸要增加,因此仅用于扬程不高,尺寸不大的泵上。

三、双吸叶轮单级泵采用双吸式叶轮后,因为叶轮是对称的,所以叶轮两边的轴向力互相抵消。

但实际上,由于叶轮两边密封间隙的差异,或者叶轮相对于蜗室中心位置的不对中,还是存在一个不大的剩余轴向力,此轴向力需由轴承来承受。

多级离心泵振动、泄漏的原因及处理措施

多级离心泵振动、泄漏的原因及处理措施

多级离心泵振动、泄漏的原因有哪些?下面专业的水泵厂来给你分析一下原因:1.多级离心泵存在较大轴向推力每次检修拆开检查平衡盘,都发现其表面被擦伤,多为轴向推力过大而造成的。

多级离心泵的轴向推力比单级离心泵大得多,如果设单级叶轮的轴向推力为FA,对同样尺寸的多级离心泵叶轮,其级数为i,则总的轴向推力为iFA,多级离心泵的轴向推力可在几十kN,甚至上百kN。

它的轴向推力的平衡方法是采用平衡盘,其结构如图1。

离心泵正常工作时,末级叶轮出口处压力P2通过径向间隙b后,泄漏到平衡盘中间室的液体压力降到平衡盘前的压力P1,液体再经过轴向间隙,压力降为P0,在平衡盘两侧由于压力差P1-P0的存在,作用在相应的有效面积上,便产生了与轴力方向相反的平衡力-FA。

若因负荷的变化使轴向推力增大,当作用在平衡盘上的平衡还未改变时,轴向推力将大于平衡力,转子便朝吸入侧位移一段微小距离。

此时,轴向间隙减小,泄漏的液体量将会减小。

而径向间隙b是不变的,当泄漏量减小时,阻力损失减少,平衡盘前的压力P1升高。

同时泄漏量减少也会使平衡室内的压力P0下降。

这样在平衡盘两侧的压力差增大,平衡力增加。

直到轴向间隙b0减少到使平衡力与轴向推力相等为止。

反之亦然。

多级离心泵振动、泄漏的原因及处理措施2.叶轮密封环间隙的影响检查中发现,叶轮的密封环间隙磨损较为严重,检修规程要求控制在0.3~0.44mm,而实际多数已达到1mm以上,有的间隙甚至有2mm。

当密封环的间隙变大后使叶轮前盖板与泵腔内产生了径向流动,当有径向流动时,会改变泵腔内的压力分布,使前泵腔中液体压强减小。

这是因为叶轮出口压力不变,液体在流动中必然产生附加压力。

于是增大了轴向力。

8个叶轮的密封环间隙都有较大磨损,单个叶轮的轴向推力也都增大了,而整台泵的轴向推力是8个叶轮轴向推力的迭加。

而且导叶轮与叶轮之间的间隙也磨损增大,又进一步增大了轴向推力。

整个轴向推力增大后,以前平衡盘的结构就不能完全抵消轴向推力了。

卧式多级离心泵轴向窜动怎么解决

卧式多级离心泵轴向窜动怎么解决

卧式多级离心泵轴向窜动怎么解决-长沙三昌泵业
卧式多级离心泵的工作原理:
多级离心泵是将具有同样功能的两个及以上的单级叶轮串在同一根轴上,然后流体通过流道压出到泵的出口,从而获得更高出口压头。

如此串联、能量的叠加的结构形成了多级离心泵。

首先,该多级泵本身就具有(允许轴向窜动,窜动量一般是设计时给定的尺寸值。

)当卧式多级离心泵启动的时候,就需要打开泵的平衡装置(平衡盘、平衡环等主要零件),避免平衡盘和平衡环相互磨损。

然后当泵运行平稳后,平衡盘、平衡环和叶轮间达到一个动态的平衡(一个固定值)。

因为各水泵的实际运行工况是根据用户自己工况而发生变化的。

但当密封环、导叶套中间进入小颗粒的时候就会对泵的叶轮开式磨损,当这个磨损量达到一定的值时,那么叶轮与密封环、叶轮轮毂与导叶套的间隙增大,导致泄漏量的增大后造成叶轮前后盖板的压差波动较大。

这样使得泵的转子部件在轴向上来回窜动,窜动量越大就越说明密封环、导叶套磨损的严重。

直接体现的一点就是泵开始振动、轴承发热。

但是有一点各用户均需明白的一点是:卧式多级离心泵是有轴向窜动且轴向窜动量一般是在3~6mm。

所以当泵的关键部位开始发热、振动、异响时可按如下方法来解决。

像遇到以上的这些情况一般的解决方法如下:
1、在泵的进口处增设过滤器把大颗粒过滤阻隔在进口的另一端。

2、单轴向窜动过大时建议更换已磨损的密封部件。

3、建议用户增设在线监测装置来监测泵轴向、水平等方向的位移量。

4、建议易磨损件的材质、工艺上进行突破来解决实质性问题。

5、在设计时考虑设计带有磨损量的报警装置来时刻提醒用户,时刻在线监测。

如何正确的消除离心力

如何正确的消除离心力

如何正确消除离心泵的轴向力
离心泵的轴向力:
1、轴向力产生的原因:因吸排液口压力不等也使并非完全对称的叶轮两侧所受液体压力不等,从而产生了轴向力。

叶轮两侧液体压力假如不计轴的截面积,也不考虑叶轮旋转对压力分布的影响,则作用在叶轮上的力为轮盘受的力和轮盖受的力的差值,转化为计算式就是出口压力和进口压力差值与叶轮轮盖的面积的乘积,因为出口压力始终大于进口压力,所以,当离心泵旋转起来就一定有了一个沿轴并指向入口的力作用在转子上。

2、轴向力产生的问题:不平衡的轴向力会加重止推轴承的工作负荷,对轴承不利,同时轴向力使泵转子向吸入口窜动,造成振动并可能使叶轮口环摩擦使泵体损坏。

如何正确消除离心泵的轴向力:
对于多级离心泵来说,一般出口压力远大于入口压力,所以用平衡力来消除轴向力就显得尤其重要,如何消除轴向力呢?
1、多级泵一般采用的是平衡盘和叶轮的对称安装,单级泵一般是在叶轮上开平衡孔,当然还有在叶轮轮盘上安装平衡叶片的方式来平衡轴向力。

2、虽然我们要求的是消除轴向力,但假如完全消除了也会造成转子在旋转中的不稳定,所以在设计的时候,会设计出30%的量让轴承来抵消,这就是为什么多级泵非驱动端轴承通常都是角接触轴承的原因,因为它可以用来承受很大的轴向力。

长沙三昌泵业有限公司给您带来一种全新的体验,自平衡多级离心泵既解决了平衡问题而且更经济,具有高效区宽、性能范围广、汽蚀性能好、运转安全和平稳、噪音低、易损件少,安装维修方便等优点。

可靠性大大提高,无故障运行时间是普通泵的3倍以上,用户维修成本大大降低,从而降低泵的寿命周期成本。

泵轴向力的平衡方法

泵轴向力的平衡方法

泵轴向力的平衡方法一、推力轴承对轴向力不大的小型泵,我们常采用推力球轴承来平衡轴向力,这里特别要提醒的是,安装向心推力轴承有方向要求,如果装反,不但不起平衡轴向力的作用,而且使轴失去定位而使转子窜动,轻则烧毁电机,重则酿成重大事故,绝对不能掉以轻心。

二、平衡孔这种结构就是在叶轮后盖板靠近轮义处轴对称地开几个小孔,使后盖板处得高压液体返到叶轮进口处,从而降低叶轮后盖处的压力,达到平衡轴向力的作用。

这种结构要求叶轮后盖板处有密封环,就是说对后盖板处无密封环结构的泵不宜采用,因为这时泵的泄露量较大,扬程损失严重。

这种结构平衡能力与平衡孔的数量和大小有关。

因为我们无法精确计算,所以这种方法也不能完全平衡轴向力,仍有10%20%的轴向力无法平衡。

平衡孔的总截面积为口环间隙环形截面积的3~6倍。

三、双吸叶轮双吸叶轮因为是对称结构,所以能平衡轴向力。

四、背叶片背叶片就是在叶轮后盖板(外侧)上有类似于叶片样的筋(有的像叶片一样弯曲,有的是直立的),它就像另一个叶轮一样抽送叶轮后面的液体,使后盖板处得液体压力降低,从而达到平衡轴向力的目的。

这种方法平衡的能力与叶轮和泵盖的间隙及背叶片的高度以及背叶片的长度等有关系,叶轮和泵盖的间隙越大,平衡效果越差,间隙越小,平衡效果越好。

但设计间隙太小,因加工、装配等的误差,就有可能使叶轮与泵盖产生摩擦或碰撞,影响运行,一般设计时给定的值为间隙0.5~3mm,大泵取大值。

五、对称布置叶轮多级泵因为叶轮级数多,所以轴向力更大,有时设计时采用对称布置叶轮的方法使它们产生的轴向力相互抵消,从而达到平和轴向力的目的。

实际上双吸叶轮就是特殊的对称布置叶轮。

六、平衡鼓和平衡盘平衡鼓和平衡盘都是多级泵中用来平衡轴向力的装置,装在末级叶轮后面。

也有将两者一起安装的。

来源:网络。

离心泵轴向力平衡方法全解

离心泵轴向力平衡方法全解

离心泵轴向力平衡方法全解 1 / 4
离心泵轴向力平衡方法汇总
如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此轴向力将拉动转子轴向串动,与固定零件接触,将造成泵零件的损坏以致不能工作。

一般常
用以下7种方法来平衡泵的轴向力。

1. 推力轴承
对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济的方法。

即使采用其他平衡装置,考虑到总有一定的残余轴向力,有时也装设推力轴承。

2. 平衡孔或平衡管
在叶轮后盖板上附设密封环,密封环所在直径一般与前密封
环相等,同时在后盖板下部开孔,或设专用连通管与吸入侧连通。

由于液体流经密封环间隙的阻力损失,使密封下部的液体的压力下降,从而减小作用在后盖板上的轴向力。

减小轴向力的程度取决于孔的数量和孔径的大小。

在这种
情况下,仍有10~15%的不平衡轴向力。

要完全平衡轴向力必须
进一步增大密封环所在直径,需要指出的是密封环和平衡孔是相辅相成的,只设密封环无平衡孔不能平衡轴向力;只设平衡孔不设密封环,其结果是泄漏量很大,平衡轴向力的程度甚微。

采用这种平衡方法可以减小轴封的压力,其缺点是容积损失增加(平衡孔的泄漏量一般为设计流量的2~5%)。

另外,经平衡孔的泄漏流与进入叶轮的主液流相冲击,破坏了正常的流动状态,会使泵的抗汽蚀性能下降。

为此,有的泵体上开孔,通过管线与吸入管连通,但结构变得复杂。

采用上述平衡方法,轴向力是不能达到完全平衡的,剩余轴向力需由泵的轴承来承受。

用平衡孔平衡轴向力的结构使用较广,不仅单级离心泵上使用,而且多级离心泵上也使用。

1-1推力轴承 1-1平稳孔
2-2平衡管。

多级泵轴向推力的平衡方法

多级泵轴向推力的平衡方法

多级泵轴向推力的平衡方法多级泵啊,那可是个厉害的家伙呢!在工业领域里,它就像个大力士,源源不断地输送着各种液体。

但多级泵也有个让人头疼的问题,那就是轴向推力。

这轴向推力要是不平衡,那可就麻烦啦!就好比一个人走路不稳,总是要摔跤一样。

那怎么来平衡这轴向推力呢?咱得先了解一下它是怎么产生的。

其实啊,就像是水流在管道里冲,总会有个方向的力嘛,多级泵里的液体流动也会产生这样的力。

一种常见的平衡方法就是叶轮对称布置。

嘿,这就好像是两个人拔河,力量相互抵消了。

把叶轮对称地安排在轴上,两边的力一中和,不就平衡多啦?
还有啊,采用平衡鼓也不错哦!这平衡鼓就像是个小盾牌,专门来抵挡那轴向推力的冲击。

它能把多余的力给分走一部分,让泵运行得更平稳。

平衡盘也是个好办法呢!它就像是个聪明的小精灵,能根据实际情况自动调节平衡力。

你说神奇不神奇?
另外呢,设置止推轴承也挺管用。

这止推轴承就像是给多级泵穿上了一双稳定的鞋子,让它站得更稳,不至于被轴向推力给推得东倒西歪。

咱再打个比方,多级泵就像是一辆在高速公路上行驶的汽车,那轴向推力就是路上的颠簸和阻力,而这些平衡方法就是汽车的减震器和稳定系统,能让车开得又快又稳。

在实际应用中,可不能随便乱用这些方法哦!得根据具体情况来选择,就像你穿衣服得根据天气和场合来选一样。

要是选错了,那可就适得其反啦!
总之呢,多级泵轴向推力的平衡方法有很多,每一种都有它的特点和适用场合。

我们得好好研究,好好运用,让多级泵能更好地为我们服务。

不然它要是出了问题,那可就耽误事儿啦!你说是不是这个理儿?。

多级离心泵运行中过负荷的原因及解决方法

多级离心泵运行中过负荷的原因及解决方法

多级离心泵运行中过负荷的原因及解决方法多级离心泵,中小型化工厂常用于锅炉给水或化工物料的输送,其主要由吸入段、中段、吐出段、导叶、未级导叶、导叶套、平衡环套、填料函体、水冷室盖、密封环、轴承体、轴承端盖、轴、叶轮、平衡盘、轴套、中间套、轴承挡套、平衡管等组成。

由于多级离心泵较单级泵零部件多,且结构复杂,同时工作压力、温度等较高,因此给使用和检修工作提出了较高的要求。

该类泵使用中经常出现过负荷跳闸,严重时烧坏电机,给长周期、安全稳定生产造成极大的影响。

1、多级离心泵的工作压力越高,泵转子轴向力也越大,水泵转子就会向低压侧窜动得厉害。

轴向力如果没有平衡装置去平衡,直接作用在高速旋转的叶轮上,将会产生很大的阻力,易使电机过负荷或烧坏。

因此,检修时,必须掌握水泵平衡原理。

多级离心泵在运行中,平衡盘在平衡环上直接接触而发生摩擦,其间有限小的间隙,在0.10—0.20左右,而且这个间隙在不断的变化,自动的平衡转子的轴向力,在平衡盘和平衡环之间形成一个平衡室,在高速旋转中平衡室内产生压力,方向与轴向力相反,从而达到平衡的目的。

那么怎样发挥平衡盘的作用。

(1)检修时把平衡环之间的间隙调整在0.10—0.20mm范围内。

(2)注意平衡盘和平衡环互相平而没有偏斜现象,如果偏斜,则平衡室在运行中就会产生大量的泄漏,平衡室形成不了平衡转子所需轴向力,因此,在装配时偏斜不得大于0.03mm,还应仔细修刮、研磨,直到表面精密接触,接触面越大越好。

2、多级离心泵上平衡管和叶轮上的平衡小孔也是非常重要的,起作减少平衡盘的压力的作用。

平衡管和平衡孔如果堵塞,平衡盘上的压力增加,负荷也增大,也就可能过负荷或烧电机,因此,检修时必须疏通平衡管、孔内水垢和杂物,使其畅通无阻。

3、检修中安装应注意问题(1)泵解体时,要求对拉杆螺栓、泵壳、叶轮、导叶等配件作好编号标记,同时测量拉杆的原始长度。

装配后使叶轮、泵壳、导叶等的顺序和位置与原位相对应,位置与原来基本相同,拉杆长度相等。

离心泵轴向窜动的原因及控制方法

离心泵轴向窜动的原因及控制方法

离心泵轴向窜动的原因及控制方法摘要:离心泵是利用离心力来输送液体的设备,在国民经济的各个部门以及人们生活中都有广泛的应用。

但在离心泵的使用中会不可避免地产生或大或小的轴向力,严重地影响着离心泵的使用寿命,因此对离心泵轴向力进行精确计算并想办法加以平衡,对于提高离心泵的效率和延长其使用寿命具有相当重要的意义。

本文简述了多级离心泵的基本结构,介绍多级离心泵的轴向窜动的原因,以及控制轴向窜动的集中常见的方法,并且提出了新的控制方法。

关键字:离心泵轴向力控制方法1 引言离心泵运转时,其转动部分受到一个与轴心线相平行的轴向力。

这个力相当大,特别是当级数很多时,更是如此。

单吸两级以上高压离心泵表现出来的轴向力,严重影响离心泵的正常工作,严重影响电动机的使用寿命,在轴向力的作用下,平衡盘与平衡环接触摩擦,当磨损至一定程度后,主轴工作叶轮向进水口方向移动,至使工作叶轮与机壳摩擦电动机负载加大,流量扬程下降。

若不更换平衡盘与平衡环则出现电动机烧毁的现象。

2 离心泵轴向力的产生原因离心泵的轴向力主要包括下列两个部分:(1)叶轮前后两侧因液体压力分布情况不同(轮盖测压力低,轮盘侧压力高)引起的轴向力G1,其方向为子叶轮背后面指向入口。

(2)液体流入和流出叶轮的方向和速度不同而产生的动反力G2,其方向与G1相反。

此外,对入口压力较高的悬臂式担心泵,还需要考虑作用在轴端上的入口压力引起的轴向力,其方向与G1相反。

对于立式离心泵,其转动部分重量也是轴向力。

2.1 叶轮前后两侧压引起的轴向力G1图1 叶轮前后两侧液体压力分布由图1中可以看出,叶轮前后两侧液体压力分布的示意图,由于林心里的作用,叶轮和壳体间的间隙内,液体压力沿径向成抛物线分布。

在图1中的右图夅,可以看到,叶轮的上部分压力大小相同,方向相反,正好压力抵消。

而叶轮下端压力不同,分别为P1,P2,且P1﹤P2,方向相反,则产生一个指向入口的力,这个力就是轴向力。

当泵的级数增加时,这个力也会相应的增加。

多级式离心泵轴向力增大原因及改进措施

多级式离心泵轴向力增大原因及改进措施

多级式离心泵轴向力增大原因及改进措施摘要:分析了苏尔寿MC80(A)离心式水泵轴向力增大的原因,提出了解决方法,改造后收到了良好的应用效果。

关键词:多级离心式水泵轴向推力密封环间隙一、前言辽宁锦天化甲醇车间锅炉给水泵(600P001)采用大连苏尔寿泵厂生产的MC80(A)型多级式离心泵,双机运行。

在使用中水泵机械密封首先出现频繁泄漏现象并伴随止推轴承箱温度升高、继而烧毁轴承。

在多次更换机械密封、止推轴承后,启动泵时造成水泵轴向力瞬间增大,机械密封轴套、折流盘、轴承内圈熔结在一起,解体大修时不得不破坏止推轴承箱,大修周期不足3个月,检修工作量大,水泵运行稳定性低,严重影响正常生产。

分析其原因:主要是水泵工作一段时间后,各级叶轮入口密封环、中级密封环不耐高速水流的冲刷,密封间隙不断增大,造成工作时逐渐产生了较大的轴向推力,超出平衡机构的平衡能力,最终造成上述故障(损坏部件见下图)。

二、水泵正常受力工作状况分析为排除水泵平衡机构平衡能力不足的因素,我们首先分析水泵正常工作时候转子的受力情况,并校核转子的平衡力。

MC80(A)多级水泵为单吸收多级分级式水泵。

工作时水以轴向速度C1进入叶轮,而以径向速度流出叶轮,形成一定的水动压力。

如果忽略泄漏等因素,工作时水泵每一只叶轮在轴旋转力矩作用下,带动泵腔内水以等角速度运动,逐级提高水的压力,将水泵出。

水泵叶轮前后底盘外表面受到进、出水压力差F1和叶轮内表面动反力F2的影响,机构产生较大的轴向力,迫使叶轮和其它运动件同向入水口方向移动(如图1),观察其运动,前后腔压力在R1到R2半径差值范围内大小相等,方向相反,故相互抵消,即叶轮前后ABCD所受力可认为相同。

但在R1到轴范围内叶轮后侧压力大于叶轮入口侧压力,既CFGH所受力F1就是单个叶轮前后压差所形成的轴向力。

因而整个运动构件(转子)有指向出口的轴向移动。

多个叶轮轴向力同时累加起来是十分巨大的,称为多级水泵平稳运行的主要隐患。

多级离心泵轴向力

多级离心泵轴向力

多级离心泵轴向力
多级离心泵轴向力是指在泵的运转过程中,由于叶轮的离心力和液体的惯性力等因素,使得泵的转子产生了一个沿轴线方向的力,即轴向力。

这种力的大小和方向会随着泵的运转状态而发生变化,如果轴向力过大,会对泵的正常运转产生不良影响,甚至会导致泵的损坏。

在多级离心泵中,轴向力的大小和方向主要受到以下因素的影响:
1. 叶轮的设计:叶轮的叶片数、叶片弯曲角度、进出口角度等都会影响叶轮的离心力和轴向力的大小和方向。

2. 泵的进口和出口布置:进口和出口的位置和布置方式也会影响泵的流量和压力分布,从而影响轴向力的大小和方向。

3. 液体的物理性质:液体的密度、粘度、温度等物理性质也会影响泵的流量和压力分布,从而影响轴向力的大小和方向。

4. 泵的运转状态:泵的运转状态包括转速、流量、压力等参数,这些参数的变化也会影响轴向力的大小和方向。

为了减小轴向力的影响,多级离心泵通常采用以下措施:
1. 采用双吸式结构:双吸式结构可以使得泵的进口压力分布更加均匀,从而减小轴向力的大小。

2. 采用对称式结构:对称式结构可以使得泵的进口和出口布置更加对称,从而减小轴向力的方向。

3. 采用轴向力平衡装置:轴向力平衡装置可以通过调整叶轮的进出口角度等参数,使得泵的轴向力趋于平衡。

4. 采用轴向力测量和控制系统:轴向力测量和控制系统可以实时监测泵的轴向力,并通过调整泵的运转状态等参数来控制轴向力的大小和方向。

总之,多级离心泵的轴向力是一个重要的运转参数,需要采取适当的措施来减小其影响,从而保证泵的正常运转和长期稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自平衡多级泵厂长沙宏力水泵提供: 长沙水泵厂多级离心泵的轴向力是如何消除的
多级离心泵因吸排液口压力不等也使并非完全对称的叶轮两侧所受液体压力不等,从而产生了轴向力。

叶轮两侧液体压力假如不计轴的截面积,也不考虑叶轮旋转对压力分布的影响,则作用在叶轮上的力为轮盘受的力和轮盖受的力的差值,转化为计算式就是出口压力和进口压力差值与叶轮轮盖的面积的乘积,因为出口压力始终大于进口压力,所以,当多级离心泵旋转起来就一定有了一个沿轴并指向入口的力作用在转子上。

不平衡的轴向力会加重止推轴承的工作负荷,对轴承不利,同时轴向力使泵转子向吸入口窜动,造成振动并可能使叶轮口环摩擦使泵体损坏。

对于多级离心泵来说,一般出口压力远大于入口压力,所以用平衡力来消除轴向力就显得尤其重要,如何消除轴向力呢?多级离心泵一般采用的是平衡盘和叶轮的对称安装,单级泵一般是在叶轮上开平衡孔,当然还有在叶轮轮盘上安装平衡叶片的方式来平衡轴向力。

虽然我们要求的是消除轴向力,但假如完全消除了也会造成转子在旋转中的不稳定,所以在设计的时候,会设计出30%的量让轴承来抵消,这就是为什么多级离心泵非驱动端轴承通常都是角接触轴承的原因,因为它可以用来承受很大的轴向力。

相关文档
最新文档