金属的塑性变形1

合集下载

第11章-1 金属塑性变形的物理基础-冷变形

第11章-1 金属塑性变形的物理基础-冷变形

(二)晶间变形

晶粒相互滑动和转动
在冷态变形条件下,多晶体的塑性变形主要 集中在晶内。晶间变形只起次要作用。而且 需要其他变形机制的协调。这主要是由于晶 界强度高于晶内,其变形比晶内困难。而且 多晶体各晶粒间犬牙交错,造成晶界滑移困 难,如晶界发生变形,必将引起裂纹,故晶 界变形量是很小的。
2.塑性变形特点
(一)晶内变形


(1)滑移 滑移:晶体一部分沿一定晶面(滑移面) 和晶向(滑移方向)相对另一部分发生 相对移动和切变。产生宏观的塑性变形。 滑移面:原子排列密度最大的晶面。 滑移方向:原子排列密度最大的方向。 滑移系:一种滑移面及其上的一个滑移 方向构成 滑移总是沿着原子密度最大的晶面和晶 向发生。因为原子密度最大的晶面,原 子间距小,原子间结合力强;而其晶面 间的距离则较大,晶面与晶面之间的结 合力较弱,滑移阻力较小。

1.冷态下塑性变形机理



单晶体的塑性变形 滑移和孪生 多晶体的塑性变形 晶内变形和晶界变形
多晶体的晶内变形可以看做是一个单晶的塑性变形
(一滑移 和孪生。其中滑移变形是主要的;而孪生 变形是次要的,一般仅起调节作用。但在 体心立方金属,特别是密排六方金属中, 孪生变形也是主要的。


临界切应力:要使滑移能够发生,需要沿 滑移面的滑移方向上作用一定大小的切应 力。 临界切应力的大小取决于金属的类型、纯 度、晶体结构的完整度、变形温度、应变 速率和预先变形程度等。
(一)晶内变形
2.孪生
孪生方向
孪生区域
孪生面
孪生面 孪生方向
面心立方晶体孪生变形示意
a) 孪生面和孪生方向 b) 孪生变形时原子的移动
※ 产生 残余应力 变形、开裂、耐蚀性下降。利用好可提高表面疲劳强度

材料力学杆的塑性变形第1节 金属材料的塑性性质

材料力学杆的塑性变形第1节 金属材料的塑性性质

第十二章 杆件的塑性变形
弹性和塑性弹性变形过程是一 个可逆的过程;塑性变形则是不可恢复的,塑性变 形过程是一个不可逆的过程。
• 在弹性阶段,应力和应变之间存在一一对应的单值 函数关系,而且通常还假设是线性关系;在塑性阶 段,应力和应变之间通常不存在一一对应的关系, 而且是非线性关系。 本章仅讨论在常温、静载下,金属材料的 一些塑性性质、杆件基本变形的塑性分析、杆件因 塑性变形引起的残余应力等。 注意
对于复杂应力状态,当材料出现塑性变形时
第三强度理论 塑性条件
1 3 s
特雷斯卡 塑性条件 米泽斯 塑性条件
第四强度理论塑性条件
(1 2 )2 ( 2 3 )2 ( 3 1 )2 2 s2
• 材料强化程度比较明显,以斜直线表示其强化阶段, 而弹性变形又不能忽略,则简化为线性强化弹塑性 材料,其应力-应变关系如图(c)所示。 • 如果材料强化程度比较明显,而弹性变形可以忽略, 可简化为线性强化刚塑性材料,其应力-应变关系 如图(d)所示。
有时也把应力—应变关系近似地表示为幂函数:
c n
第十二章 杆件的塑性变形
杆件在受力过程中的两个阶段 • 弹性阶段:当外力小于弹性极限时,在引起变形的 外力卸除后,固体能完全恢复原来的形状,这种能 恢复的变形称为弹性变形,固体只产生弹性变形的 阶段称为弹性阶段;
• 塑性阶段:外力一旦超过弹性极限载荷,这时再卸 除载荷,固体便不能恢复原状,其中有一部分不能 消失的变形被保留下来,这种保留下来的永久变形 就称为塑性变形,这一阶段称为塑性阶段。
低 碳 钢 拉 伸 的 应 力 — 应 变 曲 线

e p
p
e
由于塑性变形时应力和应变的关系是非线性的, 所有研究比较困难。为了降低问题的复杂程度,需要 将材料的应力—应变关系作必要的简化:

wwei材料成形技术(塑性)1

wwei材料成形技术(塑性)1

二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。

材料力学性能-第一章-塑性变形(1)

材料力学性能-第一章-塑性变形(1)

2021年10月28日 第一章 单向静载下材料的力学性能 星期四
2021年10月28日 第一章 单向静载下材料的力学性能 星期四
滑移面-原子最密排的晶面 滑 移
滑移方向-原子最密排方向 系
2021年10月28日 第一章 单向静载下材料的力学性能 星期四 <110>
(111)
体心立方
面心立方
密排六方
2021年10月28日 第一章 单向静载下材料的力学性能 星期四
例如,温度升高时,bcc金属可能沿{112}及 {123}滑移,这是由于高指数晶面上的位错源容 易被激活。轴比为1.587的钛(hcp)中含有氧和氮 等杂质时,若氧含量为0.1%,滑移面为(1010), 当氧含量为0.01%时,滑移面变为(0001)。由于 hcp金属只有三个滑移系,所以其塑性较差,并 且这类金属塑性变形程度与外加应力方向有很大 关系。
2021年10月28日 第一章 单向静载下材料的力学性能 星期四 τ
图1-15 晶体中通 过位错运动造成 滑移的示意图
2021年10月28日 第一章 单向静载下材料的力学性能 星期四
位错运动过程中滑移面上原子位移情况如
图1-16所示。当晶体通过位错运动产生滑移时,
只在位错中心的少数原子发生移动,而且它们
2021年10月28日 第一章 单向静载下材料的力学性能 星期四 滑移变形的特点: 滑移只能在切应力作用下发生,产生 滑移的最小切应力称为临界切应力;
滑移常沿晶体中原子密度最大的晶面 和晶向发生,这是因为原子密度最大的 晶面和晶向之间的间距最大,原子结合 力最弱,产生滑移所需切应力最小。
2021年10月28日 第一章 单向静载下材料的力学性能 星期四
为了降低两个不全位错间

第四章金属及合金的塑性变形和再结晶1

第四章金属及合金的塑性变形和再结晶1

⑵ 滑移常沿晶体中原 子密度最大的晶面和 晶向发生。 晶向发生 。 因原子密 度最大的晶面和晶向 之间原子间距最大, 之间原子间距最大 , 结合力最弱, 结合力最弱 , 产生滑 移所需切应力最小。 移所需切应力最小。 沿其发生滑移的晶面和晶向分别叫做滑移面和 沿其发生滑移的晶面和晶向分别叫做滑移面和滑移 滑移面 方向。通常是晶体中的密排面和密排方向。 方向。通常是晶体中的密排面和密排方向。
5万吨水压机 万吨体金属的塑性变形 单晶体受力后, 单晶体受力后,外力在 任何晶面上都可分解为 正应力和切应力。 正应力和切应力。正应 力只能引起弹性变形及 解理断裂。 解理断裂。只有在切应 力的作用下金属晶体才 能产生塑性变形。 能产生塑性变形。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
一个滑移面 和其上的一 个滑移方向 构成一个滑 构成一个滑 移系。 移系。
三种典型金属晶格的滑移系
晶格 滑移面 {110} {110} {111} 滑移 方向 滑移系 体心立方晶格 {111} 面心立方晶格 密排六方晶格
滑移系越多,金属发生滑移的可能性越大, 滑移系越多,金属发生滑移的可能性越大,塑性也 越好,其中滑移方向对塑性的贡献比滑移面更大。 越好,其中滑移方向对塑性的贡献比滑移面更大。 因而金属的塑性,面心立方晶格好于体心立方晶格 因而金属的塑性,面心立方晶格好于体心立方晶格, 体心立方晶格好于密排六方晶格。 体心立方晶格好于密排六方晶格。
韧性断口
脆性解理断口
塑性变形的形式:滑移和孪生。 塑性变形的形式:滑移和孪生。 金属常以滑移方式发生塑性变形。 金属常以滑移方式发生塑性变形。 ㈠ 滑移 滑移是指晶体的一部分沿一定的晶 滑移是指晶体的一部分沿一定的晶 面和晶向相对于另一部分发生滑动 位移的现象。 位移的现象。

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响1. 塑性变形对金属组织结构的影响(1)晶粒发生变形金属发生塑性变形后,晶粒沿形变方向被拉长或压扁。

当变形量很大时, 晶粒变成细条状(拉伸时), 金属中的夹杂物也被拉长, 形成纤维组织。

变形前后晶粒形状变化示意图(2)亚结构形成金属经大的塑性变形时, 由于位错的密度增大和发生交互作用, 大量位错堆积在局部地区, 并相互缠结, 形成不均匀的分布, 使晶粒分化成许多位向略有不同的小晶块, 而在晶粒内产生亚晶粒。

金属经变形后的亚结构(3)形变织构产生金属塑性变形到很大程度(70%以上)时, 由于晶粒发生转动, 使各晶粒的位向趋近于一致, 形成特殊的择优取向, 这种有序化的结构叫做形变织构。

形变织构一般分两种:一种是各晶粒的一定晶向平行于拉拔方向, 称为丝织构, 例如低碳钢经高度冷拔后, 其<100>平行于拔丝方向; 另一种是各晶粒的一定晶面和晶向平行于轧制方向, 称为板织构, 低碳钢的板织构为{001}<110>。

形变织构示意图2. 塑性变形对金属性能的影响(1)形变强化金属发生塑性变形, 随变形度的增大, 金属的强度和硬度显著提高, 塑性和韧性明显下降。

这种现象称为加工硬化, 也叫形变强化。

产生加工硬化的原因是:金属发生塑性变形时, 位错密度增加, 位错间的交互作用增强, 相互缠结, 造成位错运动阻力的增大, 引起塑性变形抗力提高。

另一方面由于晶粒破碎细化, 使强度得以提高。

在生产中可通过冷轧、冷拔提高钢板或钢丝的强度。

(2)产生各向异性由于纤维组织和形变织构的形成, 使金属的性能产生各向异性。

如沿纤维方向的强度和塑性明显高于垂直方向的。

用有织构的板材冲制筒形零件时, 即由于在不同方向上塑性差别很大, 零件的边缘出现“制耳”。

在某些情况下, 织构的各向异性也有好处。

制造变压器铁芯的硅钢片, 因沿[100]方向最易磁化, 采用这种织构可使铁损大大减小, 因而变压器的效率大大提高。

金属塑性成形原理 1-3章

金属塑性成形原理 1-3章

金属塑性成型原理第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

第二章 材料的变形——塑性变形1

第二章 材料的变形——塑性变形1

许多滑移系并非同时参与滑移。只有当外力 在某一滑移系中的分切应力达到一定临界值 时,该滑移系方可首先发生滑移,该分切应 力称为滑移的临界分切应力。 沿滑移面滑移方向的分切应力; 能够引起滑移系开动的分切应力。
切应力的作用下,晶格发生弹性外扭,进一步将使晶格发生滑 移。外力去除后,由于原子到了一新的平衡位置,晶体不能恢 复到原来的形状,而保留永久的变形。大量晶面的滑移将得到 宏观变形效果,在晶体的表面将出现滑移产生的台阶。
向(孪生方向)发生切变,形成对称的晶格排列,发生切变
部分叫做孪生带,或简称为孪晶。切变部分和未切变部分 呈镜面对称,对称面为孪生面。
孪生变形的特点
孪生需要的临界切应力很大,仅在滑移困难时才会发 生。一般孪生出现在滑移系很少的晶体结构的材料中 (如密排六方晶格金属);某些容易发生滑移的立方材 料仅在低温度滑移困难或受冲击时来不及滑移时才可 能产生孪生。 孪生是一种均匀切变,即切变区内与孪晶面平行的每 一层原子面均相对于其毗邻晶面沿孪生方向位移了一 定的距离,移动量都相同。
滑移、孪生、蠕变、晶界滑动。
2.1 滑移
单晶体的塑性变形的主要方式是滑移和
孪生。其中滑移是最基本、最普遍的塑 性变形方式,孪生只是在滑移难以进行 的情况下出现。
单晶体的圆柱试样表面抛光后拉伸,试样表
面就会出现一系列平行的变形痕迹。 光镜观察,试样表面形成的浮凸,由一系列 滑移迹线组成,称为滑移带。
就越来越大。
此外,塑性变形也会导致晶格畸变,使外力和滑移面的相 对位向也会发生变化。使开动位错所需应力增大。
பைடு நூலகம்
2.2孪生变形
——孪晶:两个晶体或者晶体的两个部分沿
一个公共晶面构成镜面堆成的位向关系

3-1 金属的塑性变形

3-1 金属的塑性变形

18
四、纤维组织
材料在压力加工中产生塑性 材料在压力加工中产生塑性 压力加工 变形时, 变形时,基体金属的晶粒形状和 沿晶界分布的杂质形状都发生了 变形,它们都将沿着变形方向被 变形, 拉长,呈纤维形状。 拉长,呈纤维形状。这种结构叫 纤维组织。 纤维组织。 纤维组织是变形后所形成的带有方向性的晶粒。 纤维组织是变形后所形成的带有方向性的晶粒。 是变形后所形成的带有方向性的晶粒
后 退
12
二、多晶体的塑性变形
多晶体是多个位向不同变形总和,除了晶内变形外, 多晶体是多个位向不同变形总和,除了晶内变形外, 是多个位向不同变形总和 还有晶间变形,及晶粒间互相移动及转动。 还有晶间变形,及晶粒间互相移动及转动。
特点: 特点:
变形过程复杂。 变形过程复杂。 变形抗力比单晶体大的多。 变形抗力比单晶体大的多。 多晶体塑变以晶内为主,晶间很小。 多晶体塑变以晶内为主,晶间很小。
5
3.挤压 3.挤压
金属坯料在挤压模内被挤出模孔而变形, 金属坯料在挤压模内被挤出模孔而变形,从 挤压模内被挤出模孔而变形 而获得所需制件的加工方法。 而获得所需制件的加工方法。 正挤压:金属流动方向与凸模送进的方向相同。 正挤压:金属流动方向与凸模送进的方向相同。 方向相同 反挤压:金属流动方向与凸模送进方向相反 方向相反。 反挤压:金属流动方向与凸模送进方向相反。 采用机械化生产方法具有很高的生产率。 采用机械化生产方法具有很高的生产率。
22
2) 金属组织的影响
纯金属和非饱和固溶体可锻性好。 纯金属和非饱和固溶体可锻性好。 可锻性好 金属化合物是硬脆的组成相, 金属化合物是硬脆的组成相,组织中的金属化合 是硬脆的组成相 物越多,可锻性越差。 物越多,可锻性越差。 比如纯铁、纯铜、纯铝、具有单相铁素 比如纯铁、纯铜、纯铝、 体或单相奥氏体的钢具有良好的可锻性, 体或单相奥氏体的钢具有良好的可锻性,但 是具有网状渗碳体的过共析钢可锻性较差。 是具有网状渗碳体的过共析钢可锻性较差。 铸铁中由于含有大量的渗碳体或石墨, 铸铁中由于含有大量的渗碳体或石墨, 其可锻性非常差,铸铁是根本不能锻造的。 其可锻性非常差,铸铁是根本不能锻造的。

金属的塑性变形与再结晶1

金属的塑性变形与再结晶1
57
6.4 塑性变形对金属组织与性能的影响
3.形变织构 是指随塑性变形进行,各个晶粒在空间取向上
逐渐趋于一致的组织状态。
58
不同的晶体结构,有不同的形变织构取向
59
织构的利与弊:各向异性的避免或利用
制耳
60
6.4 塑性变形对金属组织与性能的影响
4.残余应力 变形功一部分转变为储存能,以各类残余应力 的形式表现
72
不可变形粒子阻碍变形的Orowan机制
➢ 受阻—弯曲—绕过—位错环—反作用于位错源
克服线张力作用使位错
线弯曲到曲率半径
R的切应力为:
Gb
2R 能够绕过粒子继续运动
需要克服的临界切应力
为:
Gb ( : 粒子间距)
73
小结:
不可变形粒子的强化作用与粒子间距λ成 反比,粒子愈多,粒子间距愈小,强化作用 愈明显。
强化的理解与运用 ➢塑性变形对合金组织与性能的影响与分
析运用 ➢塑性变形中用 的理解
80
通常有害,应予以消除 也可有特殊的强化效应——表面残余压应力提 高疲劳强度
61
残余应力的分类
➢ (1)宏观残余应力(第一类内应力): 由宏观变形不均匀性引起的,易导致工件变形
➢ (2)微观残余应力(第二类内应力) 由晶粒或亚晶粒之间的变形不均匀性引起,易导致 工件开裂。
➢ (3)点阵畸变(第三类内应力): 由点阵缺陷(如空位、间隙原子、位错等)引起的, 引起晶体的强化并使之处于热力学不稳定状态。
(2)是一种均匀切变。 (3)孪晶有对称关系。
在一定范围内改变了晶体的取向。
39
40
41
111 000
孪晶形貌的衍衬像
孪晶的选区电子衍射花样

2-1 金属冷态下的塑性变形

2-1 金属冷态下的塑性变形
金属的晶体结构和组织
塑性成形的金属材料绝大部分是多晶体,其变形过程较单晶体的复杂得 多,这主要是与多晶体的结构特点有关。 多晶体:由许多大小、形状和位向都不同的晶粒组成,晶粒之间存在晶 界 。变形的不均匀性和各晶粒变形的相互协调性是其变形的主要特点。
单晶体与多晶体
金属塑性成形原理
大角晶界
亚晶界
小角晶界
滑移系越多材料的塑性愈好,尤其是滑移方向的作用更明显! 滑移面对温度具有敏感性,高温下可能出现新的滑移系,塑性增加.
金属塑性成形原理
滑移是金属的一部分相对于另一部分沿滑移面和滑移方向的剪切变形,需要一定的驱 动力来克服滑移运动的阻力,这个驱动力即是外力在滑移面、滑移方向作用的切应力 分量。当此分切应力的数值达到一定大小时,晶体在这个滑移系统上进行滑移。 临界切应力:能引起滑移的这个切应力分量,以τk表示。
最容易发生交滑移的是体心立方金属,因其可以在{110}{112}{123}晶面上 滑移,而滑移方向总是[111]
单滑移
多滑移
交滑移
2.孪生
孪生变形:在切应力作用下晶 体的一部分相对于另一部分沿 一定晶面(孪生面)和晶向(孪生 方向)发生切变的变形过程。
发生切变、位向改变的这一 部分晶体称为孪晶。孪晶与未 变形部分晶体原子分布形成对 称。
cos cos
取向因子
软取向:=0.5或接近于0.5的取向(==45) 硬取向:=0或接近于0的取向( φ=90,λ=0或φ=0,λ=90 )
注:单晶体的临界切应力,跟取向无关,不随取向因子的变化而变化
金属塑性成形原理
练习题:P56 第2题 设有一简单立方结构的双晶体,该金属的滑移系是{100}<100>, 在应力作用下,哪个晶体首先滑移?为什么?

材料加工成型理论第一章-金属塑性变形的物理本质

材料加工成型理论第一章-金属塑性变形的物理本质

5. 割阶运动所引起的阻力
• 割阶运动所引起的阻力也就是形成点缺陷 引起的阻力。当带有割阶的位错滑移时, 如果割阶做的是非保守运动,则运动过程 中其后形成一连串的点缺陷。形成这些点 缺陷需要能量,这就相当于有反向的力阻 碍位错前进。形成这些点缺陷引起的阻力 为:
• 位错要运动,虽然很容易,但也必须至少克服点 阵阻力(派-纳力)对它的阻碍才能运动。
1.点阵阻力
• 位错向前运动,必须越过一个能量最大值的位置, 才能从一个低能的稳定位置过渡到另一个低能的 稳定位置。为此,就需要对位错施加足够的力以 供克服这一能垒所需要的能量,这个能垒就称为 派尔斯垒,克服这个能垒所需要的力就是派-纳力。
4. 位错切割穿过其滑移面的位错林所引起的阻力
• 位错林是指那些穿过运动位错所在滑移面的
位错。切割林位错所引起的阻力用
' s
表示,
是一种短程力。
• 热激活对于克服这个阻力是有很大作用的。
• 由于位错林的存在,必然存在应力场,林位
错的应力场对运动位错的阻力用
" s
表示,
该力是一种长程力,它对温度不敏感。
• 根据该理论可以估计出纯金属的理论屈服强度
m G / 2
• 一般金属晶体的理论屈服强度为103~104MPa 数量级。而实测纯金属单晶体大致为1MPa, 理论值是实际值的1000倍以上,说明把滑移 过程看成是整体刚性的移动与实际相差较远。
二、实际晶体屈服强度的构成
• 金属的理论屈服强度来源于金属的原子间的结合 力,它是金属原子间结合力大小的反映。而实际 晶体中存在各种晶体缺陷,如位错的存在,位错 易运动,因而不能充分发挥出原子间结合力的作 用,所以金属实际屈服强度远低于理论值。

材料科学基础-第6章塑性变形1

材料科学基础-第6章塑性变形1

7
7
6.1.1 单晶体的塑性变形
晶体塑性的好坏,不仅取决于滑移系的多少,还与滑 移面上原子的密排程度和滑移方向的数目等因素有关。 例如体心立方金属α-Fe,与面心立方金属的滑移系 同样多,都为12个。但它的滑移方向没有面心立方金
属多,同时滑移面间距离较小,原子间结合力较大, 必须在较大的应力作用下才能开始滑移,所以它的塑 性要比铝、铜等面心立方金属差。
图6-6 拉伸时晶体发生转动的示意图
14
14
6.1.1 单晶体的塑性变形
5.多系滑移与交滑移 多滑移:若有多组滑移系相对于外力轴的方向相同, 分切应力同时达到临界值,滑移一开始就可以在两个 或多个滑移系同时进行。 交滑移:在晶体中,还会发生两个或两个以上滑移面 沿着同一个滑移方向同时或交替进行滑移的现象。
4
4
图6-2 滑移带形成示意图
5
5
2.滑移系 金属中的滑移是沿着一定的晶面和一定的晶向进行的, 这些晶面称为滑移面,晶向称为滑移方向。
表6-1
三种常见金属晶体结构的滑移系
6
6
6.1.1 单晶体的塑性变形
滑移面通常是晶体中原子排列最密的晶面,而滑移方 向则是原子排列最密的晶向。这是因为密排面之间的 距离最大,面与面之间的结合力较小,滑移的阻力小, 故易滑动。而沿密排方向原子密度大,原子每次需要 移动的间距小,阻力也小。 一个滑移面和该面上的一个滑移方向组成一个滑移系。 每个滑移系表示晶体进行滑移时可能采取的一个空间 取向。 晶体中的滑移系越多,滑移过程中可能采取的空间取 向便越多,滑移越容易进行,故这种晶体的塑性便越 好。密排六方晶体由于滑移系数目太少,故塑性较差。
11
11
图6-4 镁单晶拉伸的屈服应力与晶体取向的关系

金属的塑性变形与再结晶(1)

金属的塑性变形与再结晶(1)
45
2021/4/9
本章总结
➢ 滑移及孪晶的概念,特点及异同; ➢ 三种典型的晶体结构滑移特点的比较; ➢ 多晶体的塑性变形特点; ➢ 冷塑性变形对金属性能的影响; ➢ 塑性变形金属在加热时组织性能变化; ➢ 再结晶温度与再结晶退火温度。
46
2021/4/9
一、填空
课堂练习
1.金属材料经压力加工变形后,不仅改变了
❖ 加载时,各晶粒的滑移面和滑移方向相 对于受力方向是不相同的,那些受最大或 接近最大分切应力位向的晶粒处于软位向。 ❖ 分批,逐步的进行,从软位向到硬位向, 从少数晶粒到多数晶粒,从不均匀变形到 均匀变形。
21
2021/4/9
22
2021/4/9
§3.2 塑性变形对金属组织性能的影响 1、晶粒内部组织发生变化,产生 加工硬化现象; 2、纤维组织; 3、织构——择优取向 ; 4、残余内应力 。
50
D较小,物理化学性能恢复,内应力显 著降低,强度和硬度略有降低——去应力 退火。
33
2021/4/9
2.再结晶
❖ 新核的形成、长大过程,无新相生成;
❖ 加工硬化消除,力学性能恢复,显微组织 发生显著变化→等轴晶粒,强度大大下降;
❖ 再结晶退火:消除加工硬化的热处理工艺
❖ 再结晶温度:纯金属 TR=(0.4-0.35)Tm(K) 合金:TR=(0.5-0.7)Tm(K)
27
2021/4/9
位错强化
塑性变形→位错开动→位错大量增殖→相互作用→运动阻力 加大→变形抗力↑→强度↑、硬度↑、塑性、韧性↓
位错强化:位错密度↑→强度、硬度↑
28
2021/4/9
2.纤维组织
29
2021/4/9

第三章 金属塑性变形和加工硬化

第三章  金属塑性变形和加工硬化

第二阶段特征: 1)加工硬化率( Ⅱ )很高,且和应变量呈线 性关系; 2)加工硬化率对金属的种类或合金的成分(只 要为面心立方晶体)不敏感,对晶体的位向也不 敏感; 3)滑移线长度随应变量有如下规律:
2 l2
4)每根滑移线上位错数大致不变; 5)其位错结构缠结,形成胞状结构。
应力一应变曲线的另一特点是,体心立方金属的明显 屈服效应、动态形变时效现象。 原因是晶界附近最容易偏析杂质原子,由于溶质原子 特别是间隙原子与位错的相互作用强烈,柯垂尔气团 对位错的钉扎很牢,应力一应变曲线出现屈服效应现 象。当温度从室温上升时,出现动态形变时效,上下 屈服点反复出现,这种现象称为波特纹一李一沙特里 效应。
一、晶界在塑性变形中的作用
为了显示晶界对变形的影响,可将由几个晶粒 组成的大晶体承受变形并观察和测量它的变形 分布情况。如下图:
图3.6 总变形量相同时多晶铝的几个晶粒各处的实际变形量
由图可知: 1)总变形量相同时,在多晶体内,不仅各晶 粒所承受的实际变形量不同,而且每个晶粒内 部各处的实际变形程度也不一致。 2)在晶粒边界处变形程度都比晶粒内部小, 这既表明晶界处较难变形;也显示出晶界在促 进变形的不均匀分布上起很大作用。
3) 温度的影响 温度升高时,0略有降低, Ⅲ而则显著降低,
Ⅱ , Ⅲ 变短, Ⅰ 和 Ⅱ 与温度关系不大,而 Ⅲ
则随温度升高而减小。
3、FCC金属形变单晶体的表面现象
面心立方晶体研究发现,无论层错能高低,只要是 处于同一个阶段形变,都具有相同特征的表面现象。 各阶段观测研究的结果简述如下: 第1阶段;用光学显微镜一般看不到滑移线。 第Ⅱ阶段:光学显微镜在暗场下可以看到滑移线, 线长随应变的增加而递减。电镜观察到的单个滑移 线比第1阶段的粗而短。 第Ⅲ阶段:出现滑移带,带中包括靠得很近的滑移 线。应变增加时,带间不再增加新线,形变集中在 原来的带中,带端出现了碎化现象。所谓碎化现象, 系指相互连接着的滑移带的侧向移动现象。

第一节 金属塑性变形基础

第一节 金属塑性变形基础
金属与合金在塑性变形时所消耗的功,绝大多数转变 成热而散发掉,只有一小部分能量以弹性应变和增加金属 中的晶体缺陷(空位和位错)的形式储存起来。 温度升高,可以提高原子活动能力,储存能使变形后 的金属材料具有向形变前的稳定状态转化的趋势。 形变金属的退火:将金属材料加热到某一温度,保温 一定时间,然后缓慢冷至室温的一种热处理工艺。 退火目的:使金属材料内部的组织结构发生变化,使 热力学的稳定性得以提高,从而获得所要求的各种性能。 形变退火包括:回复、再结晶和晶粒长大
六、材料的塑性成形性
材料的塑性成形性:材料通过塑性变形而不产生裂 纹和破裂以获得所需形状的性能。 衡量指标:材料的塑性和变形抗力 影响因素:材料性质和变形条件
1. 材料的本质
a.化学成分 纯金属 > 合金; 碳化物形成元素使塑性成形性下降 Nb、 Ti、V、Cr、Mo、W 纯金属和固溶体 > 碳化物; 均匀细小晶粒 > 粗晶粒
金属质点将向阻力最小的方向移动
2. 体积不变条件
εx + εy+ εz=0 εx= - (εy+ εz),某一主方向的微小应变等于另两个方向的 微小应变之和,且变形方向相反。如用V型铁拔长。
体积不变条件是塑性变形过程中力学分析的前提,也可 用于计算原毛坯的体积。
根据最小阻力定律和体积不变条件可分析金属坯料的 变形趋势,制定金属流动模型,以采取相应措施,保证生 产过程及产品质量控制。
(3) 生产率高,易机械化、自动化 (4) 制品精度较高
缺点: (1)不能加工脆性材料
(2)难以加工内腔形状特别复杂、体积大的制品 (3)设备、模具投资费用高 塑性成形广泛应用于机械制造、汽拖、容器、造船、 建筑、包装、航空航天工业部门。
§2-1 金属塑性变形基础

第2[1].3章 金属超塑性变形分析解析

第2[1].3章 金属超塑性变形分析解析

第三节 金属的超塑性变形

对力学性能的影响主要表现为:
(1)超塑性变形后合金仍保持均匀细小的等轴晶组织,不存 在织构,所以不产生各向异性,且具有较高的抗应力腐蚀 能力。 (2)超塑性成形时,由于变形温度稳定、变形速度缓慢,所 以零件内部不存在弹性畸变能,变形后没有残余应力。 (3)对某些超塑性合金,存在加工软化现象,即硬度随压缩 率的增加而降低。 (4)高铬高镍不锈钢经超塑性变形后,形成细微的双相混合 组织,具有很高的抗疲劳强度。
第三节 金属的超塑性变形
晶界滑动和扩散蠕变联合机理(A-V机理)示意图
a.四个六边 形等轴晶粒 在应力作用 下,发生晶 粒滑动 c.四个晶粒发 生转动,形 成新的组态, 仍保持等轴 晶粒 晶粒转换机制的二维表示法
b在应力作用 下,发生晶粒 滑动,同时依 靠晶界扩散, 保持联结
d、e.伴随定向扩散的晶界滑动机制,虚线箭头代表体扩散方向
有人把上述的第二类及第三类超塑性统称为动态超 塑性,或环境超塑性。
第三节 金属的超塑性变形

二、超塑性变形机理
目前有这样几种解释: ①晶界滑移的作用;
超细晶粒材料的晶界有异乎寻常大的总面积,因此晶界运动在超塑性 变形中起着极其重要的作用。晶界运动分为滑动和移动两种,前者为 晶粒沿晶界的滑移,后者为相邻晶粒间沿晶界产生的迁移。 在研究超塑性变形机理的过程中,曾提出了许多晶界滑动的理论模型。
金属塑性成形原理
第二章 金属塑性变形的物理基础
第三节 金属的超塑性变形
主讲:刘华 华侨大学模具技术研究中心
第三节 金属的超塑性变形
一、超塑性概念及种类
概念:在一定条件下进行热变形,材料可得到特别大的 均匀塑性变形,而不发生缩颈,延伸率可达 500~2000%,材料的这种特性称为超塑性 特点: 大伸长率 无缩颈 低流动应力 对应变速率敏感 无加工硬化 易成形

金属材料塑性变形机制与特点

金属材料塑性变形机制与特点

第三章 塑性变形
单击添加副标题
3.1金属材料塑性变形机制与特点
单击添加副标题
3.1.1 金属晶体塑性变形的机制 3.1.2 多晶体材料塑性变形特点
3.1.1 金属晶体塑性变形的机制
定义 fcc: {111} <110>; bcc: {110} {112} {123} <111> 滑移系 hcp: {0001} 定义 hcp 滑移系少,故常以孪生方式进行 fcc bcc 孪生变形量是很有限的,它的作用改变晶体取向,以便启动新的滑移系统,或使难于滑移的取向改变为易于滑移的取向。
位错运动速率与外力有强烈依存关系。
01
02
03
屈服现象产生与下述三个因素有关:
冷变形金属的真应力-应变关系
颈缩条件分析
韧性的概念及静力韧度分析
3.3真应力-应变曲线及形变强化规律
当应力超过屈服强度之后,塑性变形并不像屈服平台那样连续流变下去,而需要继续增加外力才能继续进行,于是应力-应变曲线上表现为流变应力不断上升,出现了所谓形变强化现象。材料在形变强化阶段的变形规律用其应力-应变曲线(也叫流变曲线)描述。
物理屈服现象首先在低碳钢中发现,尔后在含有微量间隙溶质原子的体心立方金属,如Fe、Mo、Nb 、Ta等,以及密排六方金属,如Cd和Zn中也发现有屈服现象。
01
对屈服现象的解释,早期比较公认的是溶质原子形成Cottrell气团对位错钉扎的理论。以后在共价键晶体如硅和锗,以及无位错晶体如铜晶须中也观察到物理屈服现象。
则定义二者的比值: α——软性系数, α↑→τmax↑→应力状态越软,金属易于 先产生塑性变形。 α↓→应力状态越硬→金属易于产生脆性 断裂。
测硬度时,其应力状态相当于三向不等压缩,因此,硬度试验时的加载方式属于很软的应力状态。

金属工艺学_邓文英_第五版_课后习题参考答案

金属工艺学_邓文英_第五版_课后习题参考答案

第一章(p11)1.什么是应力?什么是应变?答:应力是试样单位横截面的拉力;应变是试样在应力作用下单位长度的伸长量2.缩颈现象在拉伸实验中当载荷超过拉断前所承受的最大载荷时,试样上有部分开始变细,出现了“缩颈”。

缩颈发生在拉伸曲线上bk段。

不是,塑性变形在产生缩颈现象前就已经发生,如果没有出现缩颈现象也不表示没有出现塑性变形。

布氏硬度法和洛氏硬度法各有什么优缺点?下列材料或零件通常采用哪种方法检查其硬度?库存钢材硬质合金刀头锻件台虎钳钳口洛氏硬度法测试简便,缺点是测量费时,且压痕较大,不适于成品检验。

布氏硬度法测试值较稳定,准确度较洛氏法高。

;迅速,因压痕小,不损伤零件,可用于成品检验。

其缺点是测得的硬度值重复性较差,需在不同部位测量数次。

硬质合金刀头,台虎钳钳口用洛氏硬度法检验。

库存钢材和锻件用布氏硬度法检验。

第五题下列符号所表示的力学性能指标名称和含义是什么?σb抗拉强度它是指金属材料在拉断前所能承受的最大应力.σs屈服点它是指拉伸试样产生屈服时的应力。

σ2.0规定残余拉伸强度σ1-疲劳强度它是指金属材料在应力可经受无数次应力循环不发生疲劳断裂,此应力称为材料的疲劳强度。

σ应力它指试样单位横截面的拉力。

a K冲击韧度它是指金属材料断裂前吸收的变形能量的能力韧性。

HRC 洛氏硬度它是指将金刚石圆锥体施以100N的初始压力,使得压头与试样始终保持紧密接触,然后,向压头施加主载荷,保持数秒后卸除主载荷。

以残余压痕深度计算其硬度值。

HBS 布氏硬度它是指用钢球直径为10mm,载荷为3000N为压头测试出的金属的布氏硬度。

HBW 布氏硬度它是指以硬质合金球为压头的新型布氏度计。

第二章(p23)(1)什么是“过冷现象”?过冷度指什么?答:实际结晶温度低于理论结晶温度(平衡结晶温度),这种线性称为“过冷”。

理论结晶温度与实际结晶温度之差,称为过冷度。

(2)金属的晶粒粗细对其力学性能有什么影响?细化晶粒的途径有哪些?答:金属的晶粒粗细对其力学性能有很大影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档