预测疲劳裂纹扩展的多种理论模型研究_石凯凯_蔡力勋_包陈
复合材料的疲劳裂纹扩展与评估
复合材料的疲劳裂纹扩展与评估在现代工程领域,复合材料凭借其优异的性能,如高强度、高刚度、良好的耐腐蚀性等,得到了广泛的应用。
然而,就像任何材料一样,复合材料在长期的使用过程中也会面临疲劳损伤的问题,其中疲劳裂纹的扩展是导致其性能下降甚至失效的重要原因之一。
因此,深入研究复合材料的疲劳裂纹扩展机制,并建立有效的评估方法,对于确保复合材料结构的可靠性和安全性具有至关重要的意义。
要理解复合材料的疲劳裂纹扩展,首先需要了解复合材料的基本组成和结构。
复合材料通常由两种或两种以上具有不同物理和化学性质的材料组成,其中一种作为基体,另一种或几种作为增强相。
常见的复合材料有纤维增强复合材料,如碳纤维增强复合材料和玻璃纤维增强复合材料,以及颗粒增强复合材料等。
在疲劳载荷作用下,复合材料中的裂纹起始和扩展过程与传统的单一材料有很大的不同。
对于单一材料,裂纹通常在材料的表面或内部缺陷处起始,并沿着特定的晶体学方向扩展。
而对于复合材料,由于其复杂的微观结构,裂纹的起始位置可能在基体、增强相或者基体与增强相的界面处。
而且,裂纹在扩展过程中会遇到不同的相和界面,其扩展路径也会变得更加复杂。
影响复合材料疲劳裂纹扩展的因素众多。
首先是材料的组分和微观结构。
增强相的类型、含量、分布以及与基体的结合强度都会对疲劳性能产生影响。
例如,碳纤维具有较高的强度和刚度,能够显著提高复合材料的疲劳性能;而增强相的分布不均匀可能导致局部应力集中,从而加速裂纹的起始和扩展。
其次,加载条件也是一个重要因素。
加载频率、应力比、加载波形等都会影响疲劳裂纹的扩展速率。
此外,环境因素如温度、湿度等也可能对复合材料的疲劳性能产生不利影响。
为了研究复合材料的疲劳裂纹扩展行为,科学家们采用了多种实验方法。
其中,最常用的是疲劳试验。
通过对试样施加循环载荷,监测裂纹的长度随循环次数的变化,从而得到疲劳裂纹扩展曲线。
在实验中,通常采用光学显微镜、扫描电子显微镜等设备来观察裂纹的形态和扩展路径。
基于双重方法的慢性疲劳裂纹扩展预测模型的研究
基于双重方法的慢性疲劳裂纹扩展预测模型的研究随着社会的不断进步,大型机械装置也不断在使用中,但是在使用过程中难免会发生慢性疲劳裂纹扩展的现象,这样会对机械装置的使用稳定性产生影响,因此对慢性疲劳裂纹扩展进行预测研究相当重要。
本文将会从基于双重方法的角度展开对于慢性疲劳裂纹扩展预测模型的研究。
首先,慢性疲劳裂纹扩展预测模型是用来预测慢性疲劳裂纹扩展速率的模型。
对于这个模型,我们可以用双重方法来来进行预测。
双重方法基于物理问题的本质,通过建立一个与实际问题相似的模型,以探寻其内部规律。
在预测慢性疲劳裂纹扩展的过程中,我们需要先建立出裂纹扩展率和应力的关系式,即疲劳应力范围、裂纹长度、疲劳循环数和其他一些参数之间的关系,然后根据这个关系式进行双重方法的预测。
其次,为了提高预测精度,我们可以建立两个不同的模型来进行预测。
第一个模型是基于机器学习的模型,通过机器学习算法去学习慢性疲劳裂纹扩展数据的变化规律,然后对未知数据进行预测。
第二个模型是基于有限元分析的模型,通过有限元分析方法去计算出慢性疲劳裂纹扩展所需要的应力和应变,然后对于应力和应变之间的关系进行双重方法的预测,相比于第一个模型,这个模型的预测精度会更加精确一些。
最后,在进行模型预测的过程中,我们还需要考虑一些因素,如何去选择裂纹扩展参数、如何进行时间选择、如何进行模型修正等等。
同时,我们也需要关注一些特殊情况下的裂纹扩展现象,如粗糙表面、裂纹交叉、热交变等不确定的因素对于慢性疲劳裂纹扩展所产生的影响,这些都需要我们去自行探索和寻找解决方案。
综上所述,基于双重方法的慢性疲劳裂纹扩展预测模型的研究可以为我们提供一个更加准确的预测模型,这不仅对机械装置的使用起到了积极的促进作用,同时也为探索机械装置安全运转提供了更多思路。
因此,在今后的研究中我们可以进一步深入探讨和研究基于双重方法的慢性疲劳裂纹扩展预测模型。
核工程中的材料疲劳和裂纹扩展研究
核工程中的材料疲劳和裂纹扩展研究材料疲劳和裂纹扩展是核工程中非常重要的研究方向。
在核工程领域,材料的疲劳行为和裂纹扩展特性是设计和运行核设施的关键因素,对于预测材料的劣化和寿命评估至关重要。
本文将从材料疲劳的基本概念入手,讨论材料的疲劳机制、裂纹扩展行为以及相关的试验方法和数值模拟技术。
一、材料疲劳基本概念材料疲劳是指在循环荷载下的材料破坏行为。
与单次加载不同,循环荷载下材料的应力和应变状态会周期性地变化,从而导致材料在应力集中区域形成微观缺陷,进而发展为裂纹,最终导致材料破坏。
材料疲劳是一种时间相关的过程,其破坏行为与循环次数、应力幅值、应力比、频率、温度等因素密切相关。
二、材料的疲劳机制材料的疲劳机制主要包括裂纹起源和裂纹扩展两个阶段。
裂纹起源是指在循环荷载下,材料表面或内部的缺陷或不均匀性发展为微裂纹。
不同材料的裂纹起源机制有所不同,常见的裂纹起源机制有金属材料的内裂纹起源和非金属材料的颗粒疲劳剥落。
裂纹扩展是指微裂纹在循环荷载下逐渐扩展,经过一定的扩展路径和时程,最终导致材料的破坏。
裂纹扩展的速率和路径是研究裂纹扩展行为的重要指标。
三、裂纹扩展行为研究方法为了研究材料的裂纹扩展行为,科学家们发展了一系列的试验方法和数值模拟技术。
目前常用的试验方法包括疲劳试验、疲劳裂纹扩展试验和疲劳裂纹扩展率试验等。
疲劳试验通过施加循环荷载来研究材料的疲劳行为。
疲劳裂纹扩展试验是通过在材料中人工引入裂纹,并施加循环荷载来观察和测量裂纹的扩展行为。
疲劳裂纹扩展率试验是通过测量裂纹的长度和循环次数来计算裂纹扩展速率和周期性扩展增长率。
数值模拟技术包括有限元方法、离散元方法、界面元方法等,可以对裂纹扩展行为进行分析和预测。
四、材料疲劳和裂纹扩展预测和评估预测材料的疲劳寿命和评估裂纹扩展行为是核工程中的重要任务之一。
疲劳寿命的预测可以通过试验数据的统计分析和寿命模型的建立来进行。
在核工程中,常用的疲劳寿命模型包括Wöhler曲线和巴斯克维尔方程等。
复合材料疲劳裂纹扩展行为研究
复合材料疲劳裂纹扩展行为研究在现代工程领域,复合材料因其优异的性能而得到广泛应用。
然而,疲劳裂纹扩展行为是影响复合材料使用寿命和可靠性的关键因素之一。
对复合材料疲劳裂纹扩展行为的深入研究,对于保障结构的安全性和耐久性具有重要意义。
复合材料是由两种或两种以上不同性质的材料通过物理或化学方法组合而成的。
与传统单一材料相比,复合材料具有高强度、高刚度、良好的耐腐蚀性等优点。
但正是由于其复杂的成分和结构,使得疲劳裂纹的扩展行为更为复杂。
疲劳裂纹的产生通常源于材料内部的微观缺陷、制造过程中的残余应力或者在使用过程中的外部载荷作用。
在复合材料中,这些因素的相互作用使得裂纹的萌生和扩展机制变得多样化。
例如,纤维增强复合材料中的纤维与基体之间的界面性能、纤维的分布和取向等都会对疲劳裂纹的扩展产生显著影响。
研究复合材料疲劳裂纹扩展行为的方法多种多样。
实验研究是其中最直接和有效的手段之一。
通过对标准试样进行疲劳加载实验,可以获得裂纹扩展速率与应力强度因子范围之间的关系曲线。
在实验中,需要精确控制加载条件、测量裂纹长度的变化,并记录相关的数据。
同时,借助先进的观测技术,如电子显微镜、X 射线衍射等,可以对裂纹扩展过程中的微观结构变化进行详细分析。
除了实验研究,数值模拟方法也在复合材料疲劳裂纹扩展研究中发挥着重要作用。
有限元方法、边界元方法等可以建立复合材料的微观或宏观模型,模拟疲劳裂纹的扩展过程,并预测其寿命。
这些数值方法能够考虑材料的非均匀性、各向异性等特性,为深入理解裂纹扩展机制提供了有力的工具。
在研究复合材料疲劳裂纹扩展行为时,还需要考虑环境因素的影响。
例如,温度、湿度等环境条件会改变材料的性能,从而影响疲劳裂纹的扩展速率。
此外,加载频率、加载波形等加载条件也会对裂纹扩展行为产生不同程度的影响。
对于不同类型的复合材料,其疲劳裂纹扩展行为也存在差异。
例如,碳纤维增强复合材料和玻璃纤维增强复合材料在纤维类型、强度和刚度等方面有所不同,导致它们在疲劳性能上表现出各自的特点。
金属材料疲劳裂纹扩展研究综述
内容摘要
海洋钢结构在海洋环境中承受着复杂的力学环境和疲劳载荷。疲劳裂纹扩展 是导致其结构破坏的主要原因之一,因此,对海洋钢结构的疲劳裂纹扩展进行准 确预报具有重要意义。本次演示主要探讨一种单一扩展率曲线模型在海洋钢结构 疲劳裂纹扩展预报中的应用。
一、单一扩展率曲线模型
一、单一扩展率曲线模型
单一扩展率曲线模型是一种基于应力强度因子和应力循环次数的关系来预测 裂纹扩展的方法。它假定裂纹扩展速率仅与应力强度因子幅值和应力循环次数有 关,而与应力的其它参数如平均应力、应力比等无关。这种模型的优点是能够用 一条曲线来描述裂纹扩展的全过程,简洁直观。
4、金属材料疲劳裂纹扩展的应用领域和未来研究方向
未来研究方向主要包括以下几个方面:首先是深入研究金属材料疲劳裂纹扩 展的机理和影响因素,以进一步揭示其本质和规律;其次是发展更加准确、高效 的研究方法和技术手段,以更好地模拟和分析材料的疲劳裂纹扩展行为;第三是 加强针对不同约束条件下的裂纹扩展模型和实验方法的研究,以更好地应用于实 际工程中;最后是拓展金属材料疲劳裂纹扩展的应用领域,如智能材料、生物医 用材料等领域,以发挥其更加广泛的作用。
在几何约束条件下,裂纹扩展模型主要考虑材料的几何特征、裂纹形状和扩 展方向等因素。在物理约束条件下,需要考虑材料的物理性质、力学性能和化学 成分等因素对裂纹扩展的影响。在工程约束条件下,需要考虑实际工程中材料的 服役条件、载荷形式和工作环境等因素对裂纹扩展的影响。
3、基于不同约束条件下的裂纹扩展模型和实验方法
主体部分
1、金属材料疲劳裂纹扩展的机 理和影响因素
1、金属材料疲劳裂纹扩展的机理和影响因素
金属材料疲劳裂纹扩展的机理主要包括应力腐蚀、疲劳裂纹扩展和断裂力学 等。应力腐蚀主要指在应力和腐蚀介质共同作用下,材料内部产生微裂纹并逐渐 扩展的现象。疲劳裂纹扩展则是在循环载荷作用下,材料内部初始裂纹发生疲劳 扩展的过程。断裂力学则是从材料的力学性能出发,研究裂纹扩展的规律和预测 材料的断裂行为。
裂纹顶端钝化锐化模型分析
1.疲劳裂纹扩展的方式
从第Ⅰ阶段向第Ⅱ阶段的转变,一般认为 是内部晶粒难于滑移造成的。当裂纹端部由约 束少的表面晶粒进入金属内部时,因内部晶粒 各向都受约束,滑移受到强烈抑制,从而使裂 纹由开始的剪切扩展方式转变为拉伸扩展方式。 由第Ⅰ阶段向第Ⅱ阶段转变的裂纹长度,决定 于材料和应力幅,一般不超过十分之几个毫米。
e-压应力达到最大值时,裂纹完全闭 合,应力回到0时又达到一个新的a状 态。
2.裂纹顶端钝化锐化模型
每循环加载一次,裂纹向前扩展一段距 离,这就是裂纹的扩展速率da/dN,同时在 断口上留下疲劳带,在拉压循环下钝化锐化, 这就是顶端钝化锐化模型的机理。
3.参考文献
[1]小林英男,有关疲劳裂纹扩展的最近研究.
[2]石凯凯,蔡力勋,包 陈,预测疲劳裂纹扩展的多种理论模型研究,2014. [3]中国知网 /kns/brief/default_result.aspx. /refbook/R200910074.html.
The End,Thank You!
裂纹顶端钝化锐化模型分析
1.疲劳裂纹扩展的方式
疲劳裂纹扩展可分为第Ⅰ阶段裂纹扩展和 第Ⅱ阶段裂纹扩展两个阶段。
第Ⅰ阶段:裂纹在滑移带上萌生以后,首 先沿着切应力最大的活性面扩展,具有一定的 结晶学特性。在单轴应力下,即沿着与外加应 力成接近45°角的滑移面扩展,这种切变型式 的裂纹扩展称为第Ⅰ阶段裂纹扩展。
a-循环开始时,交变应力为0,裂纹处 于闭合状态。
b-拉应力开始增加,裂纹张开,并且 裂纹顶端沿最大, 裂纹顶端变为圆形,停止扩展。并且 裂纹顶端由于塑性变形产生塑性钝化, 应力集中减少。
机械工程中的裂纹扩展与疲劳分析研究
机械工程中的裂纹扩展与疲劳分析研究在现代机械工程中,疲劳是一种十分常见的现象,它是金属材料在连续受到交变载荷作用后所出现的渐进性损伤过程。
疲劳问题一旦发生,往往会对机械系统的安全性和可靠性产生严重影响,因此,对疲劳问题的研究与分析成为机械工程领域中的一个重要课题。
裂纹扩展作为疲劳破坏的一种主要形式,是引起机械元件失效的关键因素之一。
因此,对裂纹扩展行为的研究具有重要意义。
一般而言,裂纹扩展行为可通过数学模型来预测和分析。
在研究机械工程中的裂纹扩展时,最常用的方法之一就是有限元法。
有限元法是一种通过将复杂结构分割为无限小的有限元素,以近似求解连续介质力学问题的数值方法。
通过有限元法对裂纹扩展行为进行建模和仿真,可以揭示裂纹扩展的机制和规律,为裂纹扩展的控制和预测提供依据。
此外,还可以通过实验手段对模型进行验证,从而提高数值模拟的准确性。
在裂纹扩展的机理研究中,马尔文等人提出了著名的“裂纹扩展力学”理论,即线弹性力学中的弹性应力场理论与线弹塑性力学中的应变能释放率理论相结合。
根据这一理论,裂纹扩展的驱动力主要来自应变能释放率,即裂纹前端的弹性应力能转化为其扩展所需的变形能。
根据裂纹形态的不同,裂纹扩展的方式也有所不同,常见的扩展方式包括沿单一平面、沿不同平面和远离应力场。
在疲劳分析研究中,我们也需要考虑到应力幅和寿命之间的关系。
疲劳寿命是指材料在一定应力幅范围内经历的循环次数,其与应力幅呈相反的指数关系。
通过疲劳试验,我们可以获得不同应力幅下的疲劳寿命数据,并通过拟合得到应力寿命曲线。
通过应力寿命曲线,我们可以预测在特定应力幅下的疲劳寿命,从而为机械元件的设计和优化提供指导。
除了裂纹扩展与疲劳分析的基础研究外,工程实践中还需要考虑到实际工况下的各种复杂因素。
例如,在航空航天领域,飞机机身结构处于动态载荷的作用下,高空环境下氧化腐蚀等因素也可能引起裂纹扩展和疲劳失效。
因此,我们需要进行更加全面和深入的研究,以便更好地应对复杂工况下的疲劳问题。
材料疲劳裂纹扩展研究综述
材料疲劳裂纹扩展研究综述疲劳裂纹扩展是材料科学和工程学领域的一个重要研究方向,其研究对象主要是材料在受到疲劳加载后裂纹的扩展行为。
本文将对疲劳裂纹扩展的研究进行综述。
疲劳裂纹扩展是材料在反复加载下裂纹自行扩展的过程。
这一过程常常发生在材料受到动态加载时,如金属在循环加载下,裂纹会逐渐扩展直到引起材料的破坏。
了解裂纹扩展的过程和机制对于材料的设计和工程应用具有重要意义。
疲劳裂纹扩展的机理可以通过多种方式进行研究,例如通过实验测试、数值模拟以及理论建模等方法。
实验测试是研究疲劳裂纹扩展最常用的方法之一,通常通过加载试样并观察其疲劳裂纹扩展过程来获得有关材料扩展特性和裂纹形态的信息。
数值模拟可以通过在计算机上建立数学模型来模拟材料受到疲劳加载时裂纹的扩展行为,从而得到裂纹尖端的应力和应变分布等信息。
理论建模则是通过建立数学方程和理论模型来描述材料裂纹扩展的过程和机制。
疲劳裂纹扩展的研究内容包括裂纹扩展速率、裂纹形态演化以及裂纹扩展的影响因素等。
裂纹扩展速率是研究疲劳裂纹扩展的重要参数之一,通常通过计算裂纹长度随时间的变化来获取。
裂纹形态演化是指裂纹在扩展过程中形态的变化,包括裂纹尖端的尖断和裂纹的侧面形态。
影响疲劳裂纹扩展的因素包括材料的力学性能、加载条件、温度等。
其中,材料的力学性能对于裂纹扩展具有重要影响,如材料的硬度、韧性、断裂韧度等。
近年来,随着材料科学和工程学的快速发展,对疲劳裂纹扩展研究的需求不断增加。
研究者们通过优化材料的组织结构和力学性能,设计新的材料合金以提高其抗疲劳裂纹扩展的能力。
同时,研究者们还开展了对裂纹扩展过程的多尺度研究,通过考虑微观结构的影响来提高对疲劳裂纹扩展机理的理解。
此外,还开展了对疲劳裂纹监测和预测的研究,研究者们致力于开发新的非破坏性检测技术和数学模型,以便在裂纹扩展之前预测和诊断材料的损伤。
总之,疲劳裂纹扩展是一个重要的研究领域,对理解和应用材料的疲劳性能具有重要意义。
材料疲劳裂纹扩展设计研究综述
材料疲劳裂纹扩展设计研究综述引言近年来,材料疲劳裂纹扩展设计研究成为了材料科学领域中的重要研究方向。
疲劳裂纹扩展是材料在疲劳加载下裂纹随时间扩展的现象,会导致组件和结构的损坏与失效。
因此,研究如何设计材料抵抗疲劳裂纹扩展的能力,对于提高材料的使用寿命和安全性具有重要意义。
本文将综述材料疲劳裂纹扩展设计研究的相关内容,包括材料表面处理、添加剂设计、晶粒尺寸控制等方面的研究进展。
一、材料表面处理材料表面处理是一种常见的方法来抵抗疲劳裂纹扩展。
这种方法通常通过表面改性来增加材料的表面硬度和耐腐蚀性能,从而提高材料的抗疲劳裂纹扩展的能力。
例如,通过表面渗碳、氮化等方法,可以在材料表面形成一层高硬度和高耐磨性的硬质化层,进而提高材料的疲劳裂纹扩展阻力。
此外,还可以利用电化学方法在材料表面形成一层致密的氧化层来阻止裂纹扩展,从而延缓材料的失效过程。
二、添加剂设计添加剂设计是一种通过添加特定化合物或元素来改善材料疲劳裂纹扩展性能的方法。
这种方法主要通过改变材料的组成和微结构来影响裂纹扩展的行为。
例如,在铝合金中添加稀土元素,可以形成致密的沉淀相,并提高材料的韧性和抗疲劳裂纹扩展的能力。
此外,添加微观颗粒和晶界强化剂等微细化技术也可以有效地阻止疲劳裂纹的扩展,提高材料的疲劳寿命。
三、晶粒尺寸控制晶粒尺寸对材料的疲劳裂纹扩展行为有着重要的影响。
较小的晶粒尺寸可以提高材料的塑性变形能力,从而减缓裂纹扩展的速率。
因此,通过控制材料的晶粒尺寸可以有效地改善材料的疲劳裂纹扩展性能。
例如,通过热处理和合适的形变工艺可以促使晶粒细化,从而提高材料的抗疲劳裂纹扩展能力。
此外,还可以通过精密液态成型和等离子喷涂等方法来控制材料的晶粒尺寸和组织结构,进而改善材料的疲劳性能。
结论综上所述,材料疲劳裂纹扩展设计研究已经取得了一定的进展。
目前,材料表面处理、添加剂设计和晶粒尺寸控制等方法以及一些其他新兴的研究方向,如纳米材料等,已经被广泛应用于提高材料的抗疲劳裂纹扩展的能力。
预测疲劳裂纹扩展的多种理论模型研究_石凯凯_蔡力勋_包陈
1
I 型裂纹尖端循环应力应变场
基于材料低周疲劳行为预测 I 型疲劳裂纹扩展 的预测模型是由裂纹尖端循环载荷下的应力应变 场,继而结合裂纹尖端失效准则分析疲劳裂纹扩展 规律。现有的预测模型采用的循环应力应变场是基 于小范围屈服条件下的静应力应变场结合 RICE 的 塑性叠加法衍生得到的。 1.1 静态拉伸下的裂纹尖端应力应变场 目前可用于描述平面应力条件下裂尖区的应 力应变场主要有两类。 [18] [19] 一类是 KUJAWSKI 等 将 RICE 对 III 型裂 纹尖端的应力应变场,扩展应用至 I 型裂纹尖端小 范围屈服应力应变场
n /(1 n ) 2 K y 2 (1 n) π y r n /(1 n ) 1/(1 n ) 2 K K2 y y 2 2 (1 ) π n r y (1 n) π y r
在往复载荷作用下,构件均会发生疲劳破坏 。线 弹性断裂力学认为,疲劳失效分析中裂纹尖端附近 的应力场是由应力强度因子 K 控制的,所以裂纹在 疲劳载荷下的扩展行为可利用应力强度因子进行定 性和定量的描述。 基于材料低周疲劳行为预测 I 型疲劳裂纹扩展 行为,国外已经提出了多种模型,其模型从研究对 象的角度分为材料微观参量描述的裂纹扩展模 [4-5] 型 和材料宏观参量表征的裂纹扩展模型,如 [6-7] GLINKA 等 基于裂尖扩展区内常应变假定, [8-12] SKELTON KUJAWSKI 等 在裂尖引入钝化假定,
(1) 式中 σ, ε ——裂纹尖端应力和应变; σy, εy ——屈服强度和屈服应变; n——材料应变硬化指数; r ——离裂纹尖端的距离。
52
机
械 50 卷第 18 期期
疲劳裂纹扩展新理论基本假定的分析与研究的开题报告
疲劳裂纹扩展新理论基本假定的分析与研究的开题报告
一、研究背景
疲劳裂纹扩展是金属材料在疲劳加载下出现的一种重要破坏形式,严重影响着工程结构的可靠性和寿命。
为了有效地预测和控制疲劳裂纹扩展的行为,研究疲劳裂纹扩展的机理和规律是非常必要的。
传统的线弹性理论不能描述疲劳裂纹扩展行为的基本规律,因此,新的疲劳裂纹扩展理论应运而生。
当前研究较多的理论是能量释放率法和延性区域法,它们均是以裂纹尖端周围的能量变化作为判定裂纹扩展的依据。
二、研究内容
本研究拟基于能量释放率法和延性区域法,结合细观裂纹扩展行为,建立疲劳裂纹扩展新理论的基本假定,从而探究其内在机理和规律。
具体研究内容包括:
1. 疲劳裂纹扩展理论的现状及其不足之处的总结
2. 能量释放率法和延性区域法的基本原理及其在疲劳裂纹扩展中的应用
3. 裂纹扩展的细观机理及其对疲劳裂纹扩展规律的影响
4. 基于能量释放率法和延性区域法的疲劳裂纹扩展新理论的建立与分析
5. 实验验证和对比分析
三、研究意义
该研究将对疲劳裂纹扩展的内在机理和规律有深入的探究,建立疲劳裂纹扩展新理论的基本假定和模型,为疲劳裂纹扩展的预测和控制提供理论依据。
同时,该研究将为优化材料设计、提高工程结构的可靠性和寿命提供重要的参考。
机械零件的疲劳裂纹扩展与寿命预测
机械零件的疲劳裂纹扩展与寿命预测机械零件的疲劳裂纹扩展与寿命预测是材料科学和工程领域中的一项重要研究内容。
机械零件在运行过程中,由于受到载荷作用和材料本身的缺陷等原因,容易产生疲劳裂纹。
疲劳裂纹的扩展会导致零件的强度逐渐下降,最终导致零件的失效。
因此,了解疲劳裂纹的扩展规律以及预测零件的寿命对于确保机械设备的可靠性和安全性至关重要。
疲劳裂纹扩展是指在连续循环加载下,起初微小的裂纹随着时间的推移逐渐扩展。
疲劳裂纹扩展的速率与裂纹长度、应力幅、材料性能等因素密切相关。
通过对这些因素的研究,科学家们发现了裂纹扩展速率与裂纹尖端应力强度因子之间的关系。
应力强度因子是描述裂纹尖端应力集中程度的物理量,研究其变化规律对理解和预测裂纹扩展至关重要。
为了预测机械零件的寿命,研究者们发展了一系列的疲劳寿命预测模型。
其中最为常用的是基于裂纹扩展速率的模型。
该模型通过测定材料的疲劳裂纹扩展速率,结合裂纹的初始长度,预测零件的寿命。
这种寿命预测模型在实际工程中应用广泛且经验丰富。
除了裂纹扩展速率模型外,还有一些更为精确和复杂的寿命预测方法正在逐渐发展。
例如,基于有限元分析的寿命预测方法能够更加准确地模拟裂纹扩展过程,并预测零件的寿命。
这种方法考虑了零件在运行过程中的应力分布、应力集中情况等因素,能够更好地揭示裂纹扩展的机理。
然而,这种方法需要大量的计算资源和时间,适用范围相对较窄。
疲劳裂纹扩展与寿命预测的研究具有重要的实际应用价值。
通过理解裂纹扩展的机理和规律,工程师们可以设计更加可靠和寿命长久的机械零件。
对于一些关键部件,如飞机发动机叶片和汽车发动机曲轴等,预测其寿命至关重要,以保障设备的安全和稳定运行。
除了工程应用外,对于材料科学和力学领域的研究人员而言,疲劳裂纹扩展与寿命预测是提高材料性能和开发新型材料的重要途径之一。
通过深入研究疲劳裂纹扩展机理,科学家们可以设计出更好的材料,改善机械零件的使用寿命和可靠性。
此外,对材料的疲劳行为进行预测也有利于降低工程成本和能源消耗,从而实现可持续发展的目标。
金属材料疲劳裂纹扩展过程与寿命预测研究
金属材料疲劳裂纹扩展过程与寿命预测研究近年来,金属材料在工程领域中的应用越来越广泛,但随之而来的是材料疲劳裂纹扩展的问题。
疲劳裂纹是金属材料在长时间循环加载下逐渐扩展形成的裂缝,它会导致材料的失效甚至破裂。
因此,研究金属材料疲劳裂纹扩展过程并预测其寿命成为了材料科学与工程领域中的热点问题。
首先,需要了解疲劳裂纹扩展过程。
疲劳裂纹扩展是由于材料在循环加载下受到应力集中区域的作用。
当材料受到负荷时,应力集中会导致裂纹的形成。
随后,裂纹开始以微小的速度在材料中扩展,这是疲劳裂纹扩展过程的第一个阶段。
在有限的应力幅值下,裂纹扩展速率稳定并可以通过裂纹扩展曲线来描述。
然而随着应力幅值的增加,裂纹扩展速率会迅速增加并进入第二阶段,即急速裂纹扩展阶段。
在这个阶段,裂纹扩展速率远远超过了稳定速率,而且伴随着显著的变形和破坏。
理解疲劳裂纹扩展的特点对于预测材料的寿命至关重要。
为了预测金属材料的寿命,研究者们发展了许多不同的方法和模型。
一种常用的方法是基于裂纹扩展曲线的预测模型。
裂纹扩展曲线通常是由应力强度因子(Stress Intensity Factors)和裂纹扩展速率构成的。
研究者通过对不同裂纹形状和材料参数进行试验和模拟,得到了很多用于预测寿命的模型。
这些模型可以帮助工程师根据特定应力和载荷条件,预测金属材料的寿命,从而提前采取措施以避免失效。
除了基于裂纹扩展曲线的预测模型,还有一些其他的方法用于预测金属材料的寿命。
其中之一是基于位错结构的模型。
位错是材料中的一种缺陷,它可以在材料中传播并导致裂纹的形成。
研究者们通过模拟位错的扩展过程,以及裂纹如何由位错引发,来预测金属材料的寿命。
这种方法可以为工程师提供更多关于材料疲劳裂纹扩展过程的深入理解,并提供更准确的寿命预测。
此外,最近一些研究还探索了机器学习在金属材料疲劳裂纹扩展预测中的应用。
通过建立大规模数据集,并使用机器学习算法进行训练和预测,可以提高预测模型的准确性和可靠性。
裂纹顶端钝化锐化模型分析
The End,Thank You!
e-压应力达到最大值时,裂纹完全闭 合,应力回到0时又达到一个新的a状 态。
2.裂纹顶端钝化锐化模型
每循环加载一次,裂纹向前扩展一段距 离,这就是裂纹的扩展速率da/dN,同时在 断口上留下疲劳带,在拉压循环下钝化锐化, 这男,有关疲劳裂纹扩展的最近研究.
第Ⅱ阶段:当微裂纹扩展到一个或两三个 晶粒的深度以后,裂纹的扩展方向开始由与外 加应力成接近45°角的方向逐渐转向与拉伸应 力相垂直的方向。这种拉伸型式的裂纹扩展称 为第Ⅱ阶段裂纹扩展,它不再有结晶学特性。
1.疲劳裂纹扩展的方式
从第Ⅰ阶段向第Ⅱ阶段的转变,一般认为 是内部晶粒难于滑移造成的。当裂纹端部由约 束少的表面晶粒进入金属内部时,因内部晶粒 各向都受约束,滑移受到强烈抑制,从而使裂 纹由开始的剪切扩展方式转变为拉伸扩展方式。 由第Ⅰ阶段向第Ⅱ阶段转变的裂纹长度,决定 于材料和应力幅,一般不超过十分之几个毫米。
裂纹顶端钝化锐化模型分析
1.疲劳裂纹扩展的方式
疲劳裂纹扩展可分为第Ⅰ阶段裂纹扩展和 第Ⅱ阶段裂纹扩展两个阶段。
第Ⅰ阶段:裂纹在滑移带上萌生以后,首 先沿着切应力最大的活性面扩展,具有一定的 结晶学特性。在单轴应力下,即沿着与外加应 力成接近45°角的滑移面扩展,这种切变型式 的裂纹扩展称为第Ⅰ阶段裂纹扩展。
2.裂纹顶端钝化锐化模型
由于第Ⅱ阶段裂纹扩展的速率和辉纹间距都比第Ⅰ阶段大 得多,因此对第Ⅱ阶段的扩展机制进行了较多的研究,有较多 的了解。Laird C.(莱尔德)通过对延性金属裂纹尖几何形状变 化的直接观察,提出了描述第Ⅱ阶段裂纹扩展过程的“裂纹顶 端钝化锐化模型”。
_固体力学学报_2013年总目次_
固体力学学报2013年总目次离子交换膜金属复合材料力-电耦合变形数值模拟漆 炜 樊建平 龚亚琦 (Ⅰ-1)…………………………点蚀演化及腐蚀疲劳裂纹成核的能量原理黄小光 许金泉 (Ⅰ-7)……………………………………………裂纹扩展独立于网格的一种有限元单元子划分方法潘 清 周储伟 (Ⅰ-13)…………………………………无量纲载荷分离法在延性断裂韧性测定中的应用包 陈 蔡力勋 石凯凯 (Ⅰ-20)…………………………复合型裂纹断裂的新准则任 利 朱哲明 谢凌志 张 茹 艾 婷 (Ⅰ-31)…………………………………复杂裂纹问题的多边形数值流形方法求解张慧华 祝晶晶 (Ⅰ-38)……………………………………………具有初始构型的MEMS驱动器的跳跃和吸合现象研究胡育佳 朱媛媛 程昌钧 (Ⅱ-109)…………………跌落冲击载荷下焊锡接点金属间化合物层的动态开裂安 彤 秦 飞 (Ⅱ-117)……………………………中心刚体-旋转悬臂板耦合系统碰摩动力特性解析法研究寇海江 袁惠群 闻邦椿 吴文波 (Ⅱ-125)………三维结构安定分析的直接算法原 园 刘 凯 徐颖强 孔令飞 (Ⅱ-133)……………………………………二维三轴编织复合材料的弹性性能分析严 雪 许希武 张 超 (Ⅱ-140)……………………………………非线性应力波传播理论的发展及应用……………………王礼立 任辉启 虞吉林 周风华 吴祥云 唐志平 胡时胜 杨黎明 董新龙 (Ⅲ-217)构元组集损伤断裂模型及其与内聚区模型的比较刘 芳 付 强 陈 岑 梁乃刚 (Ⅲ-241)………………脆性颗粒材料的应变率效应机理研究黄俊宇 徐松林 胡时胜 (Ⅲ-247)………………………………………硬夹心矩形夹层板的整体稳定性分析杨 贺 邓宗白 (Ⅲ-251)………………………………………………非均质Cosserat连续体细-宏观均匀化条件刘其鹏 刘晓宇 高月华 (Ⅲ-259)………………………………有限变形下单晶变温本构模型赵 聃 朱祎国 胡 平 张万喜 (Ⅲ-266)……………………………………物性与温度相关材料广义热弹性模型及渐近分析王颖泽 张小兵 宋新南 (Ⅲ-272)…………………………一种内压膨胀系统的动态响应分析杨 琳 刘桂祥 赵高煜 (Ⅲ-279)…………………………………………Ⅰ固体力学学报 2013年第34卷基于应变能等效指标的结构损伤识别技术研究郭惠勇 李正良 (Ⅲ-286)……………………………………基于波动法的框式结构功率流主动控制方法与实验研究王有懿 王 坤 马文来 赵 阳 (Ⅲ-292)………改进时域间断Galerkin有限元方法在弹塑性波传播数值模拟中的应用郭 攀 武文华 吴志刚 (Ⅲ-299)……区间五次Hermite样条多小波Euler-Bernoulli梁单元夏逸鸣 唐 敢 江世永 (Ⅲ-305)……………………岩石脆性破坏临界信息综合识别孙 强 薛晓辉 朱术云 (Ⅲ-311)……………………………………………粘弹性夹芯层合旋转圆板的气动弹性动力稳定性分析李龙飞 王省哲 周又和 (Ⅳ-325)……………………基于局域共振声子晶体结构的低频振动能量回收研究张思文 吴九汇 (Ⅳ-333)……………………………基于扩展多尺度有限元法的含液闭孔材料拓扑优化吕 军 张洪武 陈飙松 (Ⅳ-342)………………………动态开挖卸荷条件下深埋圆形洞室各向同性围岩的分区破裂化机理周小平 毕 靖 钱七虎 (Ⅳ-352)……功能梯度简支矩形板的非线性动力响应杜长城 李映辉 (Ⅳ-361)……………………………………………八脚机器爬虫运动仿真分析漆 炜 樊建平 杨希南 (Ⅳ-367)…………………………………………………考虑界面应力时纳米涂层纤维增强复合材料的有效力学性能肖俊华 徐耀玲 王美芬 张福成 (Ⅳ-374)…基于可变形蜂窝的柔性蒙皮力学性能分析与结构设计张 平 周 丽 邱 涛 (Ⅴ-433)……………………层状柱壳磁电复合材料的非线性磁电效应研究师 阳 张娟娟 高原文 (Ⅴ-441)……………………………………………ECAP对纯铜循环硬化/软化特性的改变张克实 董书惠 许凌波 黄世鸿 袁秋平 (Ⅴ-450)面内阶跃载荷下矩形薄板的塑性动力屈曲邓 磊 王安稳 毛柳伟 (Ⅴ-459)………………………………………………………………………Z-pins增强C/SiC复合材料层间I型断裂韧性刘 韡 矫桂琼 (Ⅴ-466)基于Weibull分布的盐岩分数阶蠕变本构模型研究丁靖洋 周宏伟 李 潮 王春萍 武志德 (Ⅴ-473)……炭黑增强橡胶复合材料力学行为的三维数值模拟李 庆 杨晓翔 (Ⅵ-541)…………………………………四种强度准则在高聚物粘结炸药强度分析中的适应性………………………………………………唐 维 李 明 温茂萍 蓝林钢 刘 彤 章定国 (Ⅵ-550)中等质量冲击下复合材料层压板冲击响应特性分析于哲峰 陈亚军 伊鹏跃 汪 海 (Ⅵ-557)……………算子自定义小波弹性板单元构造及自适应分析汪友明 李锡夔 (Ⅵ-562)……………………………………一个修正的金属材料低周疲劳损伤模型关 迪 孙 秦 杨锋平 (Ⅵ-571)……………………………………三维粘弹性层状半空间埋置集中荷载动力格林函数求解—修正刚度矩阵法刘中宪 梁建文 (Ⅵ-579)……Ⅱ研究简报基于拓展多尺度有限元的点阵材料结构最小柔顺性设计阎 军 胡文波 段尊义 (Ⅰ-47)…………………正交各向异性板中非主轴方向的Lamb波何存富 刘宏业 刘增华 吴 斌 (Ⅰ-55)…………………………复合材料层压板低速冲击响应与损伤参数关系研究王一飞 张晓晶 汪 海 (Ⅰ-63)………………………空心颗粒填充复合材料弹塑性力学行为模拟梁 希 李慧剑 余 为 姜 鑫 张遵乾 (Ⅰ-73)……………基于重构相空间的结构损伤识别方法聂振华 马宏伟 (Ⅰ-83)…………………………………………………基于离散-连续耦合方法的地下结构在地震中破坏过程模拟金炜枫 周 健 张 姣 (Ⅰ-93)………………应力波传播与屈曲耦合情况下结构动力屈曲控制方程及波前边界条件的探讨毛柳伟 王安稳 (Ⅱ-152)…基于不同时间步长时域非结构有限体积法模拟声-弹性耦合问题…………………………………………………………宣领宽 张文平 明平剑 李 川 龚京风 (Ⅱ-158)含埋藏椭圆形裂纹金属构件电磁热止裂时热应力场分析付宇明 周红梅 郑丽娟 (Ⅱ-169)…………………变边界粘弹性轴对称问题的复变函数法王华宁 何 平 曹志远 (Ⅱ-174)……………………………………………………………………………2.5维自愈合C/SiC复合材料弹性性能预测梁仕飞 矫桂琼 (Ⅱ-181)人工肌肉作动器的参数优化设计李晖敏 何天虎 陈 程 (Ⅱ-188)……………………………………………第Ⅱ类尺寸效应影响下金属薄板液压胀形本构模型研究梁 伟 杨晓翔 傅明旺 邓将华 (Ⅱ-194)………结构疲劳寿命分析的模糊凸集模型孙文彩 杨自春 李昆锋 (Ⅱ-200)…………………………………………缺口件疲劳寿命分布预测的有效应力法奚 蔚 姚卫星 (Ⅱ-205)……………………………………………一种求解粘弹性大变形问题的时域分段展开算法韩 治 杨海天 (Ⅳ-380)…………………………………薄壁圆管空间结构的热疲劳可靠性分析阎 彬 陈建军 方永锋 曹鸿钧 (Ⅳ-388)…………………………随机孔隙缺陷对3D编织复合材料力学性能的影响研究徐 焜 钱小妹 (Ⅳ-396)…………………………热机载荷作用下三维界面裂纹问题的权函数法分析李 龙 吴化平 鲍雨梅 卢炎麟 柴国钟 (Ⅳ-401)……采用精确化理论求解厚板任意形开孔动应力集中胡 超 周传平 倪 博 刘殿魁 (Ⅳ-410)………………轴向运动导电薄板磁弹性耦合动力学理论模型胡宇达 (Ⅳ-417)………………………………………………………………SH波入射半空间双相介质界面附近圆形衬砌的动力分析齐 辉 张根昌 郭 晶 (Ⅳ-426)Ⅲ弯曲衬底上应变异质外延薄膜形态失稳的相场模拟梁晓东 汪忠明 (Ⅴ-481)………………………………可压缩条件下超弹性电子封装材料中孔穴的增长问题李志刚 树学峰 (Ⅴ-487)……………………………单自由度超弹性SMA减振结构随机振动理论研究任文杰 贾俊森 窦远明 (Ⅴ-493)………………………穿透夹杂界面的半无限楔形裂纹尖端螺型位错的发射研究张艳兵 冯 慧 方棋洪 刘又文 (Ⅴ-501)……单轴压缩下微纳晶镍的孔洞演化模型张 舒 周剑秋 王 璐 (Ⅴ-508)………………………………………混凝土压缩性对SHPB试验中惯性效应的影响陈 滔 李庆斌 管俊峰 (Ⅴ-515)……………………………亚音速气流作用下薄板结构混沌运动的时滞反馈控制姚 国 李凤明 (Ⅴ-521)……………………………三轴剪切作用下体积变化对岩石其他力学性质影响王者超 李术才 乔丽苹 杨文东 (Ⅴ-527)……………饱和土地基在简谐荷载作用下的解析分析周凤玺 赖远明 任圆圆 (Ⅴ-536)…………………………………受热载荷两相材料界面端应力场的新型有限元分析平学成 陈梦成 郑冰冰 许 玢 (Ⅵ-590)……………轴对称一维六方准晶圆柱的精化理论卢贵贤 赵宝生 (Ⅵ-598)………………………………………………内压对多场诱发表面扩散下微裂纹演化的影响郭建伟 黄佩珍 (Ⅵ-602)……………………………………初应力对单向复合材料圆柱板周向波的影响张小明 禹建功 王裕清 (Ⅵ-607)………………………………………………FSDD运行模态参数识别方法中不确定性的计算孙鑫晖 郝木明 李振涛 张 静 (Ⅵ-614)隧道施工中围岩与支护结构的黏弹性分析李之达 康 冕 靳华蕾 李佳欣 (Ⅵ-620)………………………结构优化导重准则及其意义与合理性陈树勋 韦齐峰 黄锦成 (Ⅵ-628)………………………………………优秀博士论文介绍蜻蜓翅膀宏细观结构的实验观察与力学分析赵红晓 (Ⅰ-103)…………………………………………………介电高弹聚合物力电行为研究与器件设计李铁风 (Ⅱ-213)……………………………………………………多孔金属夹层圆柱壳的热机响应分析、优化设计及应用研究周加喜 (Ⅲ-320)………………………………Ⅳ2013CHINESE JOURNAL OF SOLID MECHANICSLIST OF CONTENTSNumerical simulation of macro-deformation for ionic polymer-metal composites under the…………………………electro-mechanical couple action Wei Qi,Jianping Fan,Yaqi Gong (Ⅰ-1)Energy principle for pit evolution and corrosion fatigue crack nucleation……………………………………………………………………Xiaoguang Huang,Jinquan Xu (Ⅰ-7)A finite element sub-partition method for simulating crack extension independent to global……………………………………………………………………mesh Qing Pan,Chuwei Zhou (Ⅰ-13)Application of nondimensional load separation method in the ductile fracture toughness……………………………………………………estimation Chen Bao,Lixun Cai,Kaikai Shi (Ⅰ-20)New fracture crtierion for mixed mode cracks……………………………………Li Ren,Zheming Zhu,Lingzhi Xie,Ru Zhang,Ting Ai (Ⅰ-31)Numerical manifold analysis of complex crack problems on polygonal elements……………………………………………………………………Huihua Zhang,Jingjing Zhu (Ⅰ-38)Snap-through and pull-in behaviors of MEMS devices with the initial configurations…………………………………………………Yujia Hu,Yuanyuan Zhu,Changjun Cheng (Ⅱ-109)Dynamic fracturing of the intermetallic compound layer in solder joints under impact…………………………………………………………………drop loadingTong An,Fei Qin (Ⅱ-117)Study on rubbing dynamic behavior of hub-plate with analytical method…………………………………Haijiang Kou,Huiqun Yuan,Bangchun Wen,Wenbo Wu (Ⅱ-125)A direct analysis method for shakedown of three-dimensional structures under cyclic…………………………………loadingYuan Yuan,Kai Liu,Yingqiang Xu,Lingfei Kong (Ⅱ-133)Analysis of elastic properties of 2Dtriaxial braided composites………………………………………………………………Xue Yan,Xiwu Xu,Chao Zhang (Ⅱ-140)Development and application of the theory of nonlinear stress wave propagation…………………………………………………………Lili Wang,Huiqi Ren,Jilin Yu,Fenghua ZhouXiangyun Wu,Zhiping Tang,Shisheng Hu,Liming Yang,Xinlong Dong (Ⅲ-217)Ⅴ固体力学学报 2013年第34卷Component assembling model for damage and fracture and its comparison with cohesive………………………………zone model Fang Liu,Qiang Fu,Cen Chen,Naigang Liang (Ⅲ-241)Investigations on the intrinsic mechanisms of strain rate effects of brittle granular…………………………………………materials Junyu Huang,Songlin Xu,Shisheng Hu (Ⅲ-247)The overall buckling analysis of rectangular sandwich plates with hard core…………………………………………………………………………He Yang,Zongbai Deng (Ⅲ-251)Micro-macro homogenization conditions of heterogeneous Cosserat continuum…………………………………………………………Qipeng Liu,Xiaoyu Liu,Yuehua Gao (Ⅲ-259)Constitutive model for single crystal thermal finite deformation………………………………………………Dan Zhao,Yiguo Zhu,Ping Hu,Wanxi Zhang (Ⅲ-266)Generalized thermoelastic model and asymptotic analysis for elastic media with……………………temperature-dependent Yingze Wang,Xiaobing Zhang,Xinnan Song (Ⅲ-272)Dynamic response analysis on an internal pressure expansion system…………………………………………………………Lin Yang,Guixiang Liu,Gaoyu Zhao (Ⅲ-279)Structural damage identification method based on strain energy equivalence parameter……………………………………………………………………Huiyong Guo,Zhengliang Li (Ⅲ-286)Active control method of power flow and its experimental validation for frame structurebased on wave method…………………………………………Youyi Wang,Kun Wang,Wenlai Ma,Yang Zhao (Ⅲ-292)Application of the modified time discontinuous Galerkin finite element method to elasto-…………………plastic wave propagation simulation Pan Guo,Wenhua Wu,Zhigang Wu (Ⅲ-299)Euler-Bernoulli beam element formulation using multiwavelets based on the quintic…………Hermite spline function on the interval Yiming Xia,Gan Tang,Shiyong Jiang (Ⅲ-305)The identification method of critical information for rock brittle failure………………………………………………………Qiang Sun,Xiaohui Xue,Shuyun Zhu (Ⅲ-311)Analysis on the aeroelastic dynamic stability of a rotating sandwich annular plate with……………………………viscoelastic core layer Longfei Li,Xingzhe Wang,Youhe Zhou (Ⅳ-325)Energy harvesting based on locally resonant phononic crystals for low frequency……………………………………………………………vibrations Siwen Zhang,Jiuhui Wu (Ⅳ-333)Topology optimization of closed liquid cell materials based on extended multiscale finite…………………………………element method Jun Lv,Hongwu Zhang,Biaosong Chen (Ⅳ-342)Ⅵ第6期 陈树勋等: 结构优化导重准则及其意义与合理性The zonal disintegration mechanism of isotropic rock masses around a deep circular………………tunnel subjected to dynamic unloading Xiaoping Zhou,Jing Bi,Qihu Qian (Ⅳ-352)Nonlinear dynamic response of simply-supported functionally graded rectangular plates……………………………………………………………………Changcheng Du,Yinghui Li (Ⅳ-361)……Simulation analysis of IPMC 8-legged walking reptile Wei Qi,Jianping Fan,Xinan Yang (Ⅳ-367)Effective mechanical property of nano coated fiber reinforced composites due to interface…………………………stress Junhua Xiao,Yaoling Xu,Meifen Wang,Fucheng Zhang (Ⅳ-374)Mechanical property analysis and structural design of flexible skin based on deformable……………………………………………………honeycomb Ping Zhang,Li Zhou,Tao Qiu (Ⅴ-433)Research on the nonlinear magnetoelectric effect of layered ME composite cylinder……………………………………………………Yang Shi,Juanjuan Zhang,Yuanwen Gao (Ⅴ-441)From cyclic hardening to cyclic softening:transforming of an ECAPed copper…………………Keshi Zhang,Shuhui Dong,Lingbo Xu,Shihong Huang,Qiuping Yuan (Ⅴ-450)Plastic dynamic buckling of rectangular thin plates subject to in-plane step load…………………………………………………………Lei Deng,Anwen Wang,Liuwei Mao (Ⅴ-459)Mode I interlaminar fracture toughness for Z-pins reinforced C/SiC composites…………………………………………………………………………Wei Liu,Guiqiong Jiao (Ⅴ-466)The fractional derivative approach to creep constitutive model of salt rock based on Weibull……………distribution Jingyang Ding,Hongwei Zhou,Chao li,Chunping Wang,Zhide Wu (Ⅴ-473)Three dimensional numerical simulation of the mechanical behavior of carbon black filled rubber…………………………………………………………composites Qing Li,Xiaoxiang Yang (Ⅵ-541)Adaptability of four strength criterions in polymer bonded explosives strength analysis……………Wei Tang,Ming Li,Maoping Wen,Lingang Lan,Tong Liu,Dingguo Zhang (Ⅵ-550)On the responses of composite laminate under intermediate-mass impact…………………………………………Zhefeng Yu,Yajun Chen,Pengyue Yi,Hai Wang (Ⅵ-557)The construction of operator custom-design wavelet finite elements and adaptive analysis of………………………………………………………elastic plates Youming Wang,Xikui Li (Ⅵ-562)A modified low cycle fatigue damage model for metals……………………………………………………………Di Guan,Qin Sun,Fengping Yang (Ⅵ-571)Solution to dynamic Green’s function for three-dimensional concentrated loads in the interior……………………………of viscoelastic layered half-space Zhongxian Liu,Jianwen Liang (Ⅵ-579)ⅦResearch NotesMinimum compliance design of lattice materials based on extended multiscale finite……………………………………………element method Jun Yan,Wenbo Hu,Zunyi Duan (Ⅰ-47)Lamb waves propagation along non-principal directions in orthotropic plate………………………………………………Cunfu He,Hongye Liu,Zenghua Liu,Bin Wu (Ⅰ-55)Low-velocity impact response of composite laminate and its relationship with damage…………………………………………parameters Yifei Wang,Xiaojing Zhang,Hai Wang (Ⅰ-63)Elastoplastic simulation of hollow particle filled composites…………………………………Xi Liang,Huijian Li,Wei Yu,Xin Jiang,Zunqian Zhang (Ⅰ-73)Structural damage detection based on reconstructed phase space………………………………………………………………………Zhenhua Nie,Hongwei Ma (Ⅰ-83)Collapse simulation of the subway structure during the earthquake based on the two-scale…………………………………………coupled method Weifeng Jin,Jian Zhou,Jiao Zhang (Ⅰ-93)Derivation of governing equations for dynamic buckling of structures under coupled………………stress wave propagating and dynamic buckling Liuwei Mao,Anwen Wang (Ⅱ-152)Numerical simulation of acoustic-elastic interaction based on multi-time-step unstructuredfinite volume time domain method……………Lingkuan Xuan,Wenping Zhang,Pingjian Ming,Chuan Li,Jingfeng Gong (Ⅱ-158)Analysis on thermal stress field at the moment of crack arrest by electromagnetic heatingin metal component with elliptical embedding crack…………………………………………………Yuming Fu,Hongmei Zhou,Lijuan Zheng (Ⅱ-169)Complex variable method for viscoelastic axisymmetric problem involving time-dependent…………………………………boundary regions Huaning Wang,Ping He,Zhiyuan Cao (Ⅱ-174)Prediction of elastic properties of 2.5Dself-healing C/SiC composite……………………………………………………………………Shifei Liang,Guiqiong Jiao (Ⅱ-181)Optimization design of artificial muscle actuator by parameters…………………………………………………………Huimin Li,Tianhu He,Cheng Chen (Ⅱ-188)Study on the constitutive model of metal sheet under the second order size effect in……………hydraulic bulge Wei Liang,Xiaoxiang Yang,Mingwang Fu,Jianghua Deng (Ⅱ-194)Ⅷ第6期 陈树勋等: 结构优化导重准则及其意义与合理性A fuzzy convex set model for analysis of structural fatigue life………………………………………………………Wencai Sun,Zichun Yang,Kunfeng Li (Ⅱ-200)Effective stress model for fatigue life distribution of notched specimen……………………………………………………………………………Wei Xi,Weixing Yao (Ⅱ-205)A piecewise temporal expanding algorithm to solve viscoelastic problems with large……………………………………………………………deformation Zhi Han,Haitian Yang (Ⅳ-380)Thermal fatigue reliability analysis for space structures composed of thin-walled………………………………tube Bin Yan,Jianjun Chen,Yongfeng Fang,Hongjun Cao (Ⅳ-388)Effect of random void defects on the mechanical properties of 3Dbraided composites…………………………………………………………………………Kun Xu,Xiaomei Qian (Ⅳ-396)Analysis of weight function method for three dimensional interface crack undermechanical and thermal loading…………………………Long Li,Huaping Wu,Yumei Bao,Yanlin Lu,Guozhong Chai (Ⅳ-401)Dynamic stress concentrations in thick plates with an arbitrary cutout by using the……………………………refined theoryChao Hu,Chuanping Zhou,Bo Ni,Diankui Liu (Ⅳ-410)Magneto-elastic coupled dynamics theoretical model of axially moving current-conducting………………………………………………………………………………thin plate Yuda Hu (Ⅳ-417)Dynamic analysis of the scattering of SH-wave by circular lining near bimaterial interface……………………………………………in half-space Hui Qi,Genchang Zhang,Jing Guo (Ⅳ-426)Phase field modeling of morphological instability of strained heteroepitaxial films on…………………………………………wavy substrates Xiaodong Liang,Zhongming Wang (Ⅴ-481)Void growth of hyperelastic electronic packaging materials under compressible……………………………………………………………condition Zhigang Li,Xuefeng Shu (Ⅴ-487)Research on random vibration theory of single-degree-of-freedom structure with superelastic……………………shape memory alloy damper Wenjie Ren,Junsen Jia,Yuanming Dou (Ⅴ-493)Emission criterion of a screw dislocation from a semi-infinite wedge crack penetrating………………an inhomogeneity Yanbing Zhang,Hui Feng,Qihong Fang,Youwen Liu (Ⅴ-501)Void evolution of micro/nanocrystalline Ni under uniaxial compression…………………………………………………………Shu Zhang,Jianqiu Zhou,Lu Wang (Ⅴ-508)The inertia effect of the compressible concrete material tests in SHPB system…………………………………………………………Tao Chen,Qingbin Li,Junfeng Guan (Ⅴ-515)Ⅸ固体力学学报 2013年第34卷Time-delayed feedback control of the chaotic motion of the thin plate in subsonic air flow…………………………………………………………………………Guo Yao,Fengming Li (Ⅴ-521)Influence of volume change on other mechanical behaviors of rocks subject to triaxial…………………………shearingZhechao Wang,Shucai Li,Liping Qiao,Wendong Yang (Ⅴ-527)An analysis on saturated soil foundation under harmonic loads…………………………………………………Fengxi Zhou,Yuanming Lai,Yuanyuan Ren (Ⅴ-536)A novel finite element analysis of stresses near apex of a bi-material wedge subjected to……………thermal loading Xuecheng Ping,Mengcheng Chen,Bingbing Zheng,Bin Xu (Ⅵ-590)Refined theory of axisymmetric circular cylinder in one-dimensional hexagonal quasicrystals……………………………………………………………………Guixian Lu,Baosheng Zhao (Ⅵ-598)The effects of the internal pressure on the evolution of microcracks by multi-physical fields………………………………………induced surface diffusion Jianwei Guo,Peizhen Huang (Ⅵ-602)Effects of initial stresses on circumferential waves in unidirectional cylindrical curved plates………………………………………………Xiaoming Zhang,Jiangong Yu,Yuqing Wang (Ⅵ-607)Uncertainty calculation in frequency spatial domain decomposition modal parameters………………identification method Xinhui Sun,Muming Hao,Zhentao Li,Jing Zhang (Ⅵ-614)Viscoelastic analysis of the stress and displacement in tunnel surrounding rock and support…during the process of tunnel construction Zhida Li,Mian Kang,Hualei Jin,Jiaxin Li (Ⅵ-620)Meaning and rationality of guide-weight criterion for structural optimization…………………………………………………Shuxun Chen,Qifeng Wei,Jincheng Huang (Ⅵ-628)Brief Introduction of Excellent Doctoral DissertationsThe experimental observations and mechanical analysis of macro and microstructure………………………………………………………………of dragonfly wingHongxiao Zhao (Ⅰ-103)Electromechanical behavior and device design of dielectric elastomer…………………………………………………………………………………………Tiefeng Li (Ⅱ-213)Thermomechanical response,optimal design and applications of prismatic cellular metal…………………………………………………………cylindrical sandwich shells Jiaxi Zhou (Ⅲ-320)Ⅹ。
一种基于疲劳裂纹扩展的疲劳寿命预测方法[发明专利]
专利名称:一种基于疲劳裂纹扩展的疲劳寿命预测方法专利类型:发明专利
发明人:何文涛,王昌梓,王树青,谢凌俊,曹诗卉
申请号:CN202210155558.1
申请日:20220221
公开号:CN114218661B
公开日:
20220603
专利内容由知识产权出版社提供
摘要:本文公开了一种基于疲劳裂纹扩展的疲劳寿命预测方法,属于疲劳寿命预测的技术领域。
该方法包括:前处理、迭代求解以及裂纹扩展,可分别借助SESAM,ABAQUS和FRANC3D平台完成,具体步骤包括:S1模型建模、S2水动力分析、S3结构强度分析、S4三维裂纹扩展区建模、S5裂纹插入及网格更新、S6疲劳特性表征、S7增量计算判断S8终止条件校验、S9服役年限统计。
本发明通过应力强度因子传递函数计算对结构的疲劳性能予以表征;首次引入了等效损伤累积率的概念,并将其成功应用于不规则波的简化;实现了从水动力到结构强度乃至裂纹扩展过程中结构内部受力状态的继承和传递;基于子模型和多尺度模型技术,成功开展了实尺度结构与裂纹扩展区的耦合分析。
申请人:中国海洋大学
地址:266000 山东省青岛市崂山区松岭路238号
国籍:CN
代理机构:山东济南齐鲁科技专利事务所有限公司
代理人:赵明媚
更多信息请下载全文后查看。
复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法
复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法张鼎;黄小平【摘要】The unified fatigue crack growth model proposed by our group is based on McEvily model, and it can unify three regions of crack growth rate curve and explain more fatigue phenomena observed in tests. The paper introduces the basic equations of the model. The model is combined with SIF calculation equations for surface crack in the weld toe, and the way to predict the fatigue crack growth behaviour of submarine structures under complex loading conditions is discussed. Random loading which obeys the Weibull distribution is arranged into ascending, descending and random loading spectrums respectively. Fatigue crack growth of submarine structural welded toe joints under the above three loading spectrums is predicted, and the effect of loading sequence interaction and initial crack size on fatigue life of submarine structures under random loading spectrum is analyzed. It is concluded that loading sequence interaction has great effect on fatigue life of submarine structures, and reasonable initial crack size is very important for fatigue life prediction of submarine structures.%统一疲劳裂纹扩展模型是课题组在McEvily模型基础上提出来的,它将疲劳裂纹扩展的3个扩展区域统一起来,并能解释更多的疲劳试验现象.本文介绍了统一疲劳裂纹扩展模型的基本表达式.将此模型与焊缝焊趾表面裂纹应力强度因子的计算方法结合起来,探讨复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法.将服从Weibull分布的随机载荷系列编排为升序、降序载荷谱及随机载荷谱,预报潜艇锥柱结合壳焊缝焊趾处表面裂纹在3种载荷谱下的疲劳裂纹扩展情况,并分析随机载荷谱下载荷次序效应及初始裂纹尺寸对疲劳裂纹扩展行为的影响.结果表明,载荷次序效应对潜艇结构疲劳寿命的影响很明显,且合理的确定初始裂纹尺寸对潜艇结构的疲劳寿命预报是非常重要的.【期刊名称】《舰船科学技术》【年(卷),期】2012(034)002【总页数】7页(P11-16,21)【关键词】统一疲劳裂纹扩展模型;潜艇结构;载荷次序效应;残余应力;疲劳裂纹扩展【作者】张鼎;黄小平【作者单位】上海交通大学海洋工程国家重点实验室,上海200240;上海交通大学海洋工程国家重点实验室,上海200240【正文语种】中文【中图分类】U661.41 概述潜艇由于必须不定期的上浮和下潜,承受着反复作用的外压随机载荷,面临着疲劳问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
式中
Δσ, Δε ——裂纹尖端的应力幅和应变; σyc, εyc ——循环屈服强度和循环屈服应变; nc ——循环应变硬化指数; ΔK ——应力强度因子幅。 同样的方式,基于塑性叠加法将式(2)改写成循
环载荷下的裂纹尖端应力应变场
1/ N c 1 K 2 2 yc 2 4 c I yc r 1/ N c 1 2 yc K r 2 2 (4) E 4 c I yc r N c / N c 1 yc K 2 0.5 r 2 c 2 4 c I yc E r
nc /(1 nc ) 2 K 2 yc 2 4(1 nc ) π yc r nc /(1 nc ) 2 K 2 yc 2 4(1 nc ) π yc r 1/(1 nc ) K 2 2 yc 2 4(1 nc ) π yc r
第 50 卷第 18 期 2014 年 9 月
机
械
工
程
学 报
Vol.50 Sep.
No.18 2014
JOURNAL OF MECHANICAL ENGINEERING
DOI:10.3901/JME.2014.18.050
预测疲劳裂纹扩展的多种理论模型研究*
石凯凯 蔡力勋 包
成都
陈
610031)
(西南交通大学力学与工程学院
摘要:大多数工程断裂是因疲劳而引起的,所以金属材料的低周疲劳和裂纹扩展速率性能一直受到安全设计部门的关注。长 久以来,国内外学者在建立金属材料低周疲劳行为和裂纹扩展速率性能之间的关系方面进行了多材料和多角度的研究。基于 平面应力裂纹尖端小范围屈服应力应变场和疲劳裂纹扩展失效准则,提出用于 I 型疲劳裂纹扩展速率的预测模型。针对国内 外相关工作的研究,基于平面应力裂纹尖端小范围屈服应力应变场和疲劳裂纹尖端循环塑性区内的应变能失效准则,提出一 个可用于 I 型疲劳裂纹扩展速率的预测模型。借助已发表的 15 种金属材料对应的低周疲劳和裂纹扩展速率性能数据,详细 分析和比较所提出的预测模型与其他 6 种预测模型的预测规律和结果。研究表明,所提出的预测模型能够预测更广泛的金属 材料疲劳裂纹扩展速率,并且较其他 6 中预测模型更符合安全设计的理念。 关键词:低周疲劳;疲劳裂纹扩展;裂纹尖端;应力应变场;应变能;金属 中图分类号:O346;TG113
1
I 型裂纹尖端循环应力应变场
基于材料低周疲劳行为预测 I 型疲劳裂纹扩展 的预测模型是由裂纹尖端循环载荷下的应力应变 场,继而结合裂纹尖端失效准则分析疲劳裂纹扩展 规律。现有的预测模型采用的循环应力应变场是基 于小范围屈服条件下的静应力应变场结合 RICE 的 塑性叠加法衍生得到的。 1.1 静态拉伸下的裂纹尖端应力应变场 目前可用于描述平面应力条件下裂尖区的应 力应变场主要有两类。 [18] [19] 一类是 KUJAWSKI 等 将 RICE 对 III 型裂 纹尖端的应力应变场,扩展应用至 I 型裂纹尖端小 范围屈服应力应变场
n /(1 n ) 2 K y 2 (1 n) π y r n /(1 n ) 1/(1 n ) 2 K K2 y y 2 2 (1 ) π n r y (1 n) π y r
0
前言
1
疲劳一直是工程失效的主要原因之一,一直引 [1] 起安全设计部门的关注 。金属材料发生疲劳破坏 要历经:裂纹萌生、裂纹稳定扩展和裂纹失稳扩展 三个阶段,所以疲劳分析既要研究裂纹萌生,又要 [2] 研究裂纹稳定扩展 。考虑到疲劳裂纹扩展是局部 塑性损伤累积的过程,因此由材料加工而成的机构
* 国 家 自 然 科 学 基 金 (11202174) 和 四 川 省 青 年 科 技 创 新 研 究 团 队 (2013TD0004)资助项目。20130917 收到初稿,20140331 收到修改稿
基于式(8)得到裂纹尖端的塑性应变能分布
yc p 4 K c E
1 nc
在往复载荷作用下,构件均会发生疲劳破坏 。线 弹性断裂力学认为,疲劳失效分析中裂纹尖端附近 的应力场是由应力强度因子 K 控制的,所以裂纹在 疲劳载荷下的扩展行为可利用应力强度因子进行定 性和定量的描述。 基于材料低周疲劳行为预测 I 型疲劳裂纹扩展 行为,国外已经提出了多种模型,其模型从研究对 象的角度分为材料微观参量描述的裂纹扩展模 [4-5] 型 和材料宏观参量表征的裂纹扩展模型,如 [6-7] GLINKA 等 基于裂尖扩展区内常应变假定, [8-12] SKELTON KUJAWSKI 等 在裂尖引入钝化假定,
(1) 式中 σ, ε ——裂纹尖端应力和应变; σy, εy ——屈服强度和屈服应变; n——材料应变硬化指数; r ——离裂纹尖端的距离。
52
机
械ห้องสมุดไป่ตู้
工
程
学
报
第 50 卷第 18 期期
式中
Nc——循环应变硬化指数(Nc=1/nc); αc —— Ramberg-Osgood 循环应力应变模型 中的材料常数。 考虑材料的 Ramberg-Osgood 循环应力应变
另一类是由 GLINKA 根据 HUTCHINSON 的平面应力解,给出了垂直于 I 型裂纹面的应力应 变场
1/ N 1 K2 y 2 I y r 1/ N 1 2 y K r + 2 E I y r N / N 1 2 y K 0.5 r 2 E I y r
Various Theoretical Models Study of Prediction Fatigue Crack Growth
SHI Kaikai CAI Lixun BAO Chen
(School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031)
[3]
月 2014 年 9 月
[13-16]
石凯凯等:预测疲劳裂纹扩展的多种理论模型研究
[17] [6]
51
[20]
等 基于裂尖塑性应变能假定和 CHEN 等 基 于裂尖平均塑性损伤。材料微观参量描述的裂纹扩 展模型是结合裂纹扩展速率试验和材料微观参量对 比、分析后得到该材料的裂纹扩展区尺寸,继而得 到裂纹扩展速率。值得说明的是,通过对比裂纹扩 展速率试验和材料微观参量模型所得到的微观参量 仅能描述该材料的微观组织和尺寸,却无法方便地 应用于其他材料的疲劳裂纹扩展速率分析。而基于 材料宏观参量表征的裂纹扩展模型由于不涉及材料 微观尺寸或其微观参量通过宏观力学参量评估,所 以基于材料宏观参量表征的裂纹扩展模型反映了裂 纹扩展的平均速率,且模型方便应用。 在平面应力分析中,循环载荷下 I 型裂纹尖端 存在两种应力应变场: Rice-Kujawski-Ellyin(RKE) 场和 Hutchinson-Rice-Rosengren(HRR)场。 基于裂纹 尖端的 RKE 场和裂纹尖端循环塑性内的应变能失 效准则,本文提出了用于预测平面应力下 I 型裂纹 尖端的疲劳裂纹扩展模型。 同时结合 15 种金属材料 对应的低周疲劳和疲劳裂纹扩展数据,研究了所提 出的预测模型与其他 6 种预测模型的预测规律和结 果。分析指出,所提出的预测模型在预测 15 种金属 材料的疲劳裂纹扩展速率时更符合安全设计的理念。
(2)
式中
E ——弹性模量;
——泊松比;
N ——材料应变硬化指数(N=1/n); ——Ramberg-Osgood 模型中的材料常数; , r , I ——HRR 场中量纲一参量。 1.2 循环载荷下的裂纹尖端应力应变场 将静态拉伸 I 型裂纹尖端小范围屈服下的应力 应变场扩展至循环载荷下裂纹尖端的应力应变场。 [21] RICE 基于塑性分析提出了塑性叠加法, 给出了描 述循环载荷下裂纹尖端小范围屈服的应力应变场。 因此将式 (1) 改写成循环载荷下的裂纹尖端应力应 变场
Abstract:Most engineering fracture is caused by fatigue, so the low cyclic fatigue and the crack growth properties are always concerned about the safety design department. For years, the relationship between the low cyclic fatigue and the fatigue crack growth is developed by domestic and foreign scholars from multi-material and multi-angle. A series of prediction models for mode-I fatigue crack growth are proposed with considering the small scale yield of plane stress crack tip condition and the failure criteria of fatigue crack tip. In present study, a prediction model for mode-I fatigue crack growth is proposed based on the small scale yield of plane stress crack tip and the strain energy failure criteria of cyclic plastic zone of fatigue crack tip. With the low cyclic fatigue and the fatigue crack growth for fifteen kinds of metals published in literatures, the proposed prediction model and the six kinds of prediction models are detailed analyzed and compared in the prediction law and results. Research shows that the proposed prediction model can be used to predict fatigue cracking for a wide range of metals and obey the safety design conception than other six kinds of prediction models. Key words:low cycle fatigue(LCF);fatigue crack growth(FCG);crack tip;stress-strain field;strain energy;metal