2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷及答案
2015-2016学年八年级下册期中数学试卷(含答案)
2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。
2016年河南省人教版八年级下数学期中考试题及答案
2016年河南省人教版八年级下数学期中考试题及答案漯河市郾城区八年级下数学期中考试题及答案一、选择题(每小题2分,共12分) 1.下列式子中,属于最简二次根式的是( )A.9B.7C.20D.312. 如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MD AM等于( )A.83B.32C.53D.543.若代数式1 x x 有意义,则实数x 的取值范围是( )A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在ADNM DBCA 245边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B. 24C. 312D. 3165. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-46.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2二、填空题:(每小题3分,共24分)7.计算:()()031-= .+2-310题8.若x31-在实数范围内有意义,则x的取值范围是.9.若实数a、b满足0a,则b a= .+b4+-2=10.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数书为 .11.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .12.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)13 .如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= . 14.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.O FE DCBA11题12题13题三、解答题(每小题5分,共20分)15.计算:1021128-⎪⎭⎫⎝⎛+--+π16. 如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.ECDBAB 14题16题17.先化简,后计算:11()b a b b a a b ++++,其中12a =,12b =.18. 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直线交AB 于E ,交CD 于F. 求证:OE=OF.四、解答题(每小题7分,共28分)19. 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角O FED CBA18题线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。
【人教版】2015-2016年八年级下期中数学试卷及答案解析
【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(
)
A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(
)
A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(
)
A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =
;
D、
=2
;
所以这三项都不是最简二次根式.故选 A .
河南省驻马店地区八年级下学期数学期中考试试卷
河南省驻马店地区八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·广州期中) 将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A . 向左平移1个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移1个单位2. (2分)下列命题中,真命题是()A . 位似图形一定是相似图形B . 等腰梯形既是轴对称图形又是中心对称图形C . 四条边相等的四边形是正方形D . 垂直于同一直线的两条直线互相垂直3. (2分) (2019八上·重庆月考) 估算﹣1的值在()A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间4. (2分) (2016八上·鄱阳期中) 下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A . ①②B . ②③C . ③④D . ②④5. (2分) (2019八下·北京期中) 如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF=()A . 3B . 4C . 5D . 66. (2分) (2019八下·九江期中) 如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=12,则ED的长为()A . 3B . 4C . 5D . 67. (2分)(2020·温州模拟) 已知不等式组,其解集在数轴上表示正确的是()A .B .C .D .8. (2分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A . x>-1B . x<-1C . x<-2D . 无法确定9. (2分)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到△A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于A . 120°B . 90°C . 60°D . 30°10. (2分) (2015八上·黄冈期末) 一个等腰三角形的两边长分别是3和7,则它的周长为()A . 17B . 15C . 13D . 13或17二、填空题 (共4题;共4分)11. (1分) (2020七下·张家港期末) 已知x,y满足二元一次方程2x﹣y=1,若3y+1<0,则x的取值范围是________.12. (1分) (2019八上·韶关期中) 如图,∠1+∠2+∠3+∠4=________。
河南省驻马店地区八年级下学期期中数学试卷
河南省驻马店地区八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·江干期末) 下列图案属于轴对称图形的是()A .B .C .D .2. (2分) (2017九上·琼中期中) 平面直角坐标系内一点P(﹣4,3)关于原点对称的点的坐标是()A . (3,﹣4)B . (4,3)C . (﹣4,﹣3)D . (4,﹣3)3. (2分)已知a2﹣3a+1=0,则分式的值是()A . 3B .C . 7D .4. (2分)(2018·莱芜) 在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y= 的图象上,则k=()A . 3B . 4C . 6D . 125. (2分)化简﹣的结果是()A . a+bB . aC . a﹣bD . b6. (2分) (2017九上·鄞州月考) 以矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2 ,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A .B .C .D .7. (2分)反比例函数y=的图象的对称轴条数是()A . 0B . 1C . 2D . 48. (2分)(2017·青浦模拟) 顺次连结矩形四边中点所得的四边形一定是()A . 菱形B . 矩形C . 正方形D . 等腰梯形9. (2分)如图,△ABC是直角三角形,BC是斜边,现将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为()A .B .C . 5D . 410. (2分)有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程()A .B .C .D .二、填空题 (共13题;共13分)11. (1分)(2017·灌南模拟) 式子在实数范围内有意义,则实数x的取值范围是________.12. (1分)(2016·龙岗模拟) 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为________.13. (1分)当x=________ 时,分式的值为零.14. (1分) (2017八下·东台期中) 若关于x的方程﹣1=0有增根,则a的值为________.15. (1分)(2016·钦州) 如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为________.16. (1分) (2015九上·崇州期末) 如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM 的面积为________.17. (1分) (2017八下·定州期中) 如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为________.18. (1分) (2017九上·江门月考) 如图,A为反比例函数图象上一点,AB垂直x轴于B点.若S△AOB =5,则k的值为________.19. (1分)(2019·平阳模拟) 在古埃及,人们把三边之比为3:4:5的三角形称为“埃及三角形”,古埃及人用一张正方形纸片,将一边中点和对边的两个端点连结,就能得到“埃及三角形”,如图所示,在正方形ABCD 中,点E、F、G分别是AB、BC、CD的中点,则图中为“埃及三角形”的是________(至少写出两个).20. (1分) (2017八下·路南期末) 如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=________.21. (1分) (2016九下·巴南开学考) 有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程+ =2的解为正数,且不等式组无解的概率是________.22. (1分)(2017·蓝田模拟) 如图,在平面直角坐标系中,点A(2,m)是第一象限内一点,连接OA,将OA绕点A逆时针旋转90°得到线段AB,若反比例函数y= (x>0)的图象恰好同时经过点A、B,则k的值为________.23. (1分) (2016九上·宜春期中) 如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A 旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是________.三、解答题 (共9题;共90分)24. (10分)(2014·扬州) 对x,y定义一种新运算T,规定:T(x,y)= (其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= =b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?25. (10分)(2017·荔湾模拟) 已知关于x的一元二次方程x2+(m+2)x+m=0,(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)若x1,x2是原方程的两根,且 + =﹣2,求m的值.26. (5分)先化简,在求值:,其中a=3.27. (5分)如图,在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,请判断AD与BC的数量关系,并说明理由.28. (10分)(2017·盘锦模拟) 有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y= 上的概率.29. (10分) (2017八下·启东期中) 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.30. (10分)已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围.(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.31. (10分) (2019八下·昭通期中) 已知:如图,在平行四边形中,、是对角线上的两点,且 .求证:(1) .(2) .32. (20分)(2013·钦州) 如图,在平面直角坐标系中,O为坐标原点,抛物线y= x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y= x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y= x2+2x上,请说明理由.(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(,),对称轴是直线x= .)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共13题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、三、解答题 (共9题;共90分)24-1、24-2、25-1、25-2、26-1、27-1、28-1、28-2、29-1、29-2、30-1、30-2、31-1、32-1、32-2、32-3、32-4、。
2015-2016学年度第二学期期中联考测试卷八年级数学参考答案
.405256三、解答题三、解答题 17.(1) 213x x -+£ …………………………………………………………1分231x x -£-………………………………………………………2分 2x -£ ………………………………………………………3分 2x ³-………………………………………………………4分(2)解不等式①得:3-³x …………………………………………………………1分解不等式②得:x < 2…………………………………………………………………………………………………………………………2分 在同一数轴上分别表示出它们的解集为在同一数轴上分别表示出它们的解集为 …………………………3分∴原不等式组的解集是23<£-x …………………………………………4分(3)原式)原式 =()24129x a a --+………………………………………………………2分=()223x a -- …………………………………………………………4分18.原式.原式 =[](1)43(1)x m m --- …………………………………………2分= (1)(73)x m m -- ………………………………………………3分∴当3, 32x m ==时,原式时,原式 =()()3317332´-´-´………………………………………… 4分 =6- ………………………………………5分19.①点B 的坐标是(-4,-3);………1分②画出△O 1A 1B 1, ………1分 点B 1的坐标是(-4,2);………1分 ③画出旋转后的△OA 2B 2,………2分 点B 2的坐标是(3,-4)。
………1分(注:每一个坐标1分,第一个画图1分,第二个画图2分,共6分,能画准确图形,坐标要准确。
)0 1 2 3 4 –1 –2 –3 –4 图7 2015-2016学年度第二学期期中联考测试卷八年级数学 参考答案一、选择题一、选择题DABCA DCCDC BB 二、填空题二、填空题13.()241x -14.6º15.2x <16DECBA20.(1)证明:∵)证明:∵ DE 垂直平分AB ,∠A=30º,∠ABC=60º∴ EA=EB ……………………1分 ∴∠ABE=∠A=30º∴∠EBC=60º —30º30º=30º=30º…………………2分 在△EBC 中,∠C=90º ,∠EBC=30º∴EB=2CE …………………3分 ∵ EA=EB ∴AE=2CE …………………4分 (2)证明:∵∠ABE=∠EBC ∴EB 平分∠ABC ………………………5分 又∵AC ⊥BC ,ED ⊥AB ∴ED=EC ………………………6分 (注:其他正确证法可类似按点给分。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
河南省驻马店地区八年级下学期期中数学试卷
河南省驻马店地区八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017九上·琼中期中) 下列图形中,不是中心对称图形的是()A .B .C .D .2. (2分) (2015七上·深圳期末) 为了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A . 32000名学生是总体B . 1600名学生的体重是总体的一个样本C . 每名学生是总体的一个个体D . 以上调査是普查3. (2分)(2019·长春模拟) 下列事件是随机事件的是()A . 人长生不老B . 明天就是5月1日C . 一个星期有七天D . 2020年奥运会中国队将获得45枚金牌4. (2分)(2017·十堰模拟) 下列计算正确的是()A . xy•xy=2xyB . 3 ﹣ =3(x≥0)C . (2x)3=2x3D . • = (x≥0,y≥0)5. (2分)下列各组中的两个分式不相等的是()A . 与B . 与﹣C . 与D . 与6. (2分)(2018·烟台) 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A . 7B . 6C . 5D . 4二、填空题 (共10题;共11分)7. (1分)若分式的值为0,则x的值为________8. (1分) (2019八下·河南期中) 当 ________时,分式的值为零.9. (1分)对某名牌衬衫抽检结果如下表:抽检件数1020100150200300不合格件数013469如果销售1000件该名牌衬衫,至少要准备________件合格品,供顾客更换10. (2分)公元3世纪,我国古代数学家刘徽就能利用近似公式得到的近似值.他的算法是:先将看出:由近似公式得到;再将看成,由近似值公式得到;…依此算法,所得的近似值会越来越精确.当取得近似值时,近似公式中的a是________,r是________.11. (1分)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为________12. (1分) (2018九上·兴义期末) “任意打开一本154页的九年级数学书,正好翻到第127页”,这是________事件.(填“随机”或“必然”)13. (1分)等边三角形ABC的两顶点A、B的坐标分别为(﹣4,0),(4,0),则点C的坐标为________.14. (1分)已知关于x的方程的解是负数,则m的取值范围为________15. (1分)一次函数y=﹣5x+2的图象不经过第________ 象限.16. (1分)(2017·永康模拟) 如图,正方形ABCD的边长为13,以CD为斜边向外作Rt△CDE.若点A到CE 的距离为17,则CE=________.三、解答题 (共10题;共93分)17. (5分)计算:(-1)2015+sin30°+(2-)(2+).18. (15分) (2016八上·临海期末) 解答(1)计算:2(x+y)(x﹣y)﹣(x+y)2;(2)解方程:;(3)先化简,再求值:v,在0,1,2三个数中选一个合适的数并代入求值.19. (5分)(2017·安阳模拟) 先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.20. (12分) (2019八下·天河期末) 某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是________,中位数是________.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?21. (5分)(2016·新疆) 某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?22. (6分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.23. (10分)(2017·贵阳) “2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.24. (10分) (2017八下·简阳期中) 计算下列各式:(1) |﹣5|+(π﹣3.1)0﹣()﹣1+ ;(2) 1﹣÷ • .25. (10分)(2018·白银) 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.26. (15分)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共93分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。
2015-2016学年八年级(下)期中数学试卷含答案解析
=﹣4C.
=×
4.如图,直角三角形的三边长分为 a、b、c,下列各式正确的是(
D. ﹣ = )
A.a2+b2=c2 B.b2+c2=a2 C.c2+a2=b2 D.以上都不对 5.一个直角三角形的两边长分别为 4cm、3cm,则第三条边长为( ) A.5cm B.4cm C. cm D.5cm 或 cm 6.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 7.如图,在▱ABCD中,已知 AD=5cm,AB=3cm,AE平分∠BAD交 BC边于点 E,则 EC等于( )
A.1cm B.2cm C.3cm D. 4cm 8.菱形具有而矩形不具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.对角相等 D.邻角互补 9.两条对角线互相垂直平分且相等的四边形是( ) A.矩形 B.菱形 C.正方形 D.都有可能 10.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,则重叠部分△
【解答】解:∵式子
有意义,
∴x﹣5≥0,解得 x≥5.
故选 C. 【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的
关键.
2.下列二次根式中,属于最简二次根式的是( )
A. B.
C. D.
【考点】最简二次根式. 【分析】根据最简二次根式的条件进行判断即可. 【解答】解: = ,被开方数含分母,不是最简二次根式;
2015-2016 学年八年级(下)期中数学试卷 参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1.使式子
2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷(解析版)
2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷一.选择题:(每小题3分,共24分)1.(3分)如果三角形一边的中线和这边上的高重合,则这个三角形是()A.等边三角形B.等腰三角形C.锐角三角形D.钝角三角形2.(3分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣13.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或225.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF ∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.87.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°8.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11二.填空题.(每小题3分,共21分)9.(3分)用不等式表示:x与5的差不大于x的2倍:.10.(3分)不等式﹣4x≤5的解集是.11.(3分)“等边对等角”的逆命题是.12.(3分)如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.13.(3分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b<0.14.(3分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=cm.15.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.三.解答题.16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.17.(8分)如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.18.(7分)已知方程组的解x与y的和为负数,求k的取值范围.19.(8分)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.20.(9分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.21.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.22.(10分)五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元,(1)分别表示出甲旅行社收费y1,乙旅行社收费y2与旅游人数x的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?23.(12分)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷参考答案与试题解析一.选择题:(每小题3分,共24分)1.(3分)如果三角形一边的中线和这边上的高重合,则这个三角形是()A.等边三角形B.等腰三角形C.锐角三角形D.钝角三角形【解答】解:∵BD=CD,AD⊥BC,∴AB=AC,即三角形是等腰三角形.故选:B.2.(3分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:图1、图5都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图3不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图2、图4既是轴对称图形,又是中心对称图形.故选:B.4.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或22【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:不等式组整理得:,由①得:x>1;由②得:x≥2,则不等式组的解集为x≥2,在数轴上表示为:故选:A.6.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF ∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.8【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF=3+2=5,故选:A.7.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是()A.45°B.55°C.60°D.75°【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选:C.8.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11【解答】解:设答对x道,则答错或不答的题目就有20﹣x个.即10x﹣5(20﹣x)≥95去括号:10x﹣100+5x≥95∴15x≥195x≥13因此选手至少要答对13道.故选:B.二.填空题.(每小题3分,共21分)9.(3分)用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x10.(3分)不等式﹣4x≤5的解集是x≥﹣.【解答】解:不等式的两边同时除以﹣4得,x≥﹣.故答案为:x≥﹣.11.(3分)“等边对等角”的逆命题是等角对等边.【解答】解:“等边对等角”的逆命题是等角对等边;故答案为:等角对等边.12.(3分)如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6.【解答】解:∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.故答案为:6.13.(3分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x<2.5时,kx+b<0.【解答】解:当x<2.5时,y<0,即kx+b<0.故答案为<2.5.14.(3分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=6+ cm.【解答】解:作AB的垂直平分线,交AC于点E,∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,∴tan30°==,解得:CD=cm,∵BC=3 cm,∴BE=6cm,∴CE=3cm,∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.15.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.三.解答题.16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.【解答】解:(1)去分母得,x﹣1≤15﹣3x,移项、合并同类项得,4x≤16,把x的系数化为1得,x≤4.在数轴上表示为:;(2),由①得x>1,由②得x≤2,不等式①②的解集在同一数轴上表示如下:故原不等式组的解集是1<x≤2.17.(8分)如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.【解答】解:(1)△A1B1C1如图所示;(2)△AB2C2如图所示.18.(7分)已知方程组的解x与y的和为负数,求k的取值范围.【解答】解:方程组,解得:,∵x与y的和为负数,∴解得:k>.19.(8分)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD20.(9分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等).∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠ADF.∴△ADF是等腰三角形.21.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.【解答】证明:如图,∵D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,∴BD=CD,△BDE、△CDF均为直角三角形;在△BDE、△CDF中,,∴△BDE≌△CDF(HL),∴∠B=∠C,∴AB=AC.22.(10分)五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元,(1)分别表示出甲旅行社收费y1,乙旅行社收费y2与旅游人数x的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?【解答】解:(1)x≤4时,y 1=100x,x>4时,y1=4×100+×100(x﹣4)=50x+200,所以,y1=,y2=0.7×100x=70x,即y2=70x;(2)当y1=y2时,50x+200=70x,解得x=10,所以,当x<10时,选择乙旅行社收费更优惠,当x=10时,选择两家旅行社收费相同,当x>10时,选择甲旅行社收费更优惠.23.(12分)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)【解答】解:(1)设生产A型桌椅x套,则生产B型桌椅(500﹣x)套,根据题意,可得不等式组:,解之得240≤x≤250因为x是整数,所以有11种生产方案.(2)根据题意可得关系式y=(100+2)x+(120+4)(500﹣x)整理可得y=﹣22x+62000因为k=﹣22<0,所以x越大,y越小,当x为250时,费用最少,费用为y=﹣22×250+62000=﹣5500+62000=56500.。
河南省驻马店地区八年级下册期初数学考试试卷
河南省驻马店地区八年级下册期初数学考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·宜昌期中) 能使有意义的的范围是().A . 且B .C .D .2. (2分)等腰三角形的两条边分别为3cm和6cm,则它的周长为()A . 12B . 15C . 12或15D . 93. (2分)下列语句中,属于命题的是()A . 直线AB和CD垂直吗B . 过线段AB的中点C画AB的垂线C . 同旁内角不互补,两直线不平行D . 连结A,B两点4. (2分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A . 4B . 5C . 6D . 不能确定5. (2分)用直尺和圆规操作一个角等于已知角的依据是()A . SASC . AASD . ASA6. (2分)(2018·云南模拟) 不等式组的解集是()A . x >B . - 1 ≤ x <C . x <D . x ≥ - 17. (2分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A . △ABC绕点C顺时针旋转90°,再向下平移3B . △ABC绕点C顺时针旋转90°,再向下平移1C . △ABC绕点C逆时针旋转90°,再向下平移1D . △ABC绕点C逆时针旋转90°,再向下平移38. (2分) (2015八上·宜昌期中) 若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A . 12B . 15C . 12或15D . 99. (2分)(2020·陕西模拟) 已知一函数和,则两个一次函数图象的交点在()A . 第一或二象限B . 第二或三象限C . 第三或四象限D . 第一或四象限10. (2分)(2018·福清模拟) 已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()B . 5C . 8D . 2二、填空题 (共6题;共6分)11. (1分) (2017七下·建昌期末) 若点P(a,b)到x轴的距离是2,到y轴的距离是1,且ab>0,则点P坐标为________.12. (1分) (2016八上·临安期末) 命题“对顶角相等”的逆命题为________.13. (1分)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,则BD= ________14. (1分)(2018·秀洲模拟) 如图,矩形ABCD中,,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,且EH∥BC,则AG∶GH∶HC=________.15. (1分)(2018·黔西南模拟) 若不等式组无解,则m的取值范围是________.16. (1分)如图所示,AB是半圆的直径,∠C的两边分别与半圆相切于A、D两点,DE⊥AB,垂足为E,AE=3,BE=1,则图中阴影部分的面积为________.三、解答题 (共7题;共72分)17. (5分)下列三个图,均由4个完全相同的小正方形组合而成,分别添加一个相同的正方形,使它们成为不同的轴对称图形.18. (10分) (2018八上·濮阳开学考) 如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;19. (11分) (2018九上·朝阳期中) 已知:在四边形ABCD中,AB=AD ,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为________;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.20. (6分) (2019八下·长春期中) 已知正比例函数经过点 .(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是________.21. (10分) (2017八上·确山期中) 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.22. (15分)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式.(2)如图所示,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=- x垂直的直线l5的函数表达式.23. (15分) (2017八上·江都期末) 在平面直角坐标系中,直线交x轴、y轴分别于点A、点B,将△AOB绕坐标原点逆时针旋转得到△COD.直线CD交直线AB于点E,如图1.图1(1)求:直线CD的函数关系式.(2)如图2,连接OE,过点O作交直线CD于点F,如图2.图2① 求证: = .② 求:点F的坐标.(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共72分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
河南省驻马店市2015-2016学年八年级数学下册期中试题
河南省驻马店市2015-2016学年八年级数学下学期期中素质测试试题
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。
大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,
欲与天公试比高。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,
只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。
薄雾浓云愁永昼,瑞脑消金兽。
佳节又重阳,玉枕纱厨,半夜凉初透。
东篱把酒黄昏后,有暗香盈袖。
莫道不消魂,帘卷西风,人比黄花瘦。
2015-2016学年驻马店市八年级下期中数学试卷含答案解析
2015-2016学年驻马店市八年级下期中数学试卷含答案解析一、选择题1.要使有意义,则x的取值范畴是()A.x≤B.x≥C.x≤D.x≥2.下列二次根式中属于最简二次根式的是()A.B.C.D.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,64.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE ⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.186.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米 B.6米C.3米D.3米7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4二、填空9.命题“等腰三角形的两个底角相等”的逆命题是.10.当1<a<2时,代数式+|1﹣a|的值是.11.三角形周长为(7+2)cm,已知两边长分不为cm和cm,则第三边的长是cm.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=.13.如图,CD是△ABC的中线,点E、F分不是AC、DC的中点,E F=1,则BD=.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH差不多上正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分不为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是.三、解答(本大题共8个小题,满分67分)17.运算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,D F=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分不交于点M和点N.(1)请你判定OM和ON的数量关系,并讲明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.23.【咨询题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展现】(1)直截了当写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请讲明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展现(1)、(2)中的结论是否成立?请分不作出判定,不需要证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么专门四边形?讲明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BE CD是正方形?请讲明你的理由.2015-2016学年河南省驻马店市八年级(下)期中数学试卷参考答案与试题解析一、选择题1.要使有意义,则x的取值范畴是()A.x≤B.x≥C.x≤D.x≥【考点】二次根式有意义的条件.【分析】二次根式有意义的条件是被开方数大于或等于零.【解答】解:要使有意义,则4﹣5x≥0,解得:x≤.故选;A.【点评】本题要紧考查的是二次根式有意义的条件,把握二次根式有意义的条件是解题的关键.2.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的确实是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 正确;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,6【考点】勾股定理的逆定理.【分析】按照勾股定理的逆定理(看看两小边的平方和是否等于大边的平方)分不进行判定即可.【解答】解:A、∵72+122≠132,∴以7,12,13为边的三角形不是直角三角形,故本选项错误;B、∵302+402=502,∴以30,40,50为边的三角形是直角三角形,故本选项正确;C、∵52+92≠122,∴以5,9,12为边的三角形不是直角三角形,故本选项错误;D、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项错误;故选B.【点评】本题考查了勾股定理的逆定理的应用,能熟记知识点是解此题的关键,注意:如果一个三角形的两边的平方和等于第三边的平方,那么那个三角形是直角三角形.4.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.【考点】勾股定理;三角形的面积.【专题】运算题.【分析】利用勾股定理求得有关线段的长度,然后由面积法求得BD的长度.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选:C.【点评】本题考查了勾股定理,三角形的面积.利用面积法求得线段B D的长度是解题的关键.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE ⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.18【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD,BC=AD,OB=OD,再按照线段垂直平分线的性质得出BE=DE,由△CDE的周长得出BC+CD=6cm,即可求出平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的运算;熟练把握平行四边形的性质,并能进行推理运确实是解决咨询题的关键.6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米 B.6米C.3米D.3米【考点】菱形的性质.【专题】应用题.【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,按照∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,按照勾股定理得:OA==3(米),则AC=2OA=6米,故选A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练把握菱形的性质是解本题的关键.7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE【考点】矩形的判定;平行四边形的性质.【分析】先证明四边形ABCD为平行四边形,再按照矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.【点评】本题考查了平行四边形的判定和性质、矩形的判定,第一判定四边形ABCD为平行四边形是解题的关键.8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】按照平行四边形的性质对①进行判定;按照矩形的判定方法对②进行判定;按照正方形的判定方法对③进行判定;按照菱形的判定方法对④进行判定.【解答】解:平行四边形的对边相等,因此①正确;对角线相等的平行四边形是矩形,因此②错误;对角线互相垂直平分且相等的四边形是正方形,因此③错误;一条对角线平分一组对角的平行四边形是菱形,因此④正确.故选B.【点评】本题考查了命题与定理:判定一件情况的语句,叫做命题.许多命题差不多上由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“如果…那么…”形式.有些命题的正确性是用推理证实的,如此的真命题叫做定理.二、填空9.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“那个三角形两底角相等”,因此命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】按照逆命题的概念来回答:关于两个命题,如果一个命题的条件和结论分不是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.10.当1<a<2时,代数式+|1﹣a|的值是1.【考点】二次根式的性质与化简.【分析】直截了当利用a的取值范畴去掉绝对值和化简二次根式,进而求出答案.【解答】解:∵1<a<2,+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】此题要紧考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键.11.三角形周长为(7+2)cm,已知两边长分不为cm和cm,则第三边的长是4cm.【考点】二次根式的加减法.【分析】第一化简二次根式,进而合并同类二次根式得出答案.【解答】解:∵三角形周长为(7+2)cm,两边长分不为cm和cm,∴第三边的长是:(7+2)﹣﹣=7+2﹣3﹣2=4(c m).故答案为:4.【点评】此题要紧考查了二次根式的加减运算,正确化简二次根式是解题关键.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=150°.【考点】平行四边形的性质.【分析】按照题意画出图形,再按照∠B=5∠A得出∠B的度数,进而得出∠D的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∠D=∠B,∵∠B=5∠A,∴6∠A=180°,解得∠A=30°,∴∠D=∠B=30°×5=150°°.故答案为:150°.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对边互相平行,两组内角分不相等是解答此题的关键.13.如图,CD是△ABC的中线,点E、F分不是AC、DC的中点,E F=1,则BD=2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再按照中线的定义即可求出BD的长.【解答】解:∵点E、F分不是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】按照正方形的性质,可得AB与AD的关系,∠BAD的度数,按照等边三角形的性质,可得AE与AD的关系,∠AED的度数,按照等腰三角形的性质,可得∠AEB与∠ABE的关系,按照三角形的内角和,可得∠AEB的度数,按照角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH差不多上正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=48.【考点】勾股定理的证明.【分析】按照面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AH为a,BH为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AH=8,BH=6,∴ab=6×8=48.故答案为:48.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分不为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是(3,4)或(2,4)或(6﹣2,4).【考点】矩形的性质;坐标与图形性质;等腰三角形的判定.【分析】由矩形的性质得出BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情形:①当PO=PA时;②当AP=AO=6时;③当OP=OA=6时;分不求出PC的长,即可得出结果.【解答】解:∵四边形OABC是矩形,∴BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情形:如图所示:①当PO=PA时,P在OA的垂直平分线上,P是BC的中点,PC=3,∴点P的坐标为(3,4);②当AP=AO=6时,BP==2,∴PC=6﹣2,∴P(6﹣2,4);③当OP=OA=6时,PC==2,∴P(2,4).综上所述:点P的坐标为(3,4)或(2,4)或(6﹣2,4).故答案为:(3,4)或(2,4)或(6﹣2,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;熟练把握矩形的性质,进行分类讨论是解决咨询题的关键.三、解答(本大题共8个小题,满分67分)17.运算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)【考点】二次根式的混合运算.【专题】运算题.【分析】(1)先对括号内的式子化简,再按照二次根式的除法进行运算即可解答本题;(2)按照二次根式的乘除法进行运算即可解答本题.【解答】解:(1)(10﹣6+4)÷===15;(2)×(﹣)÷(﹣)===.【点评】本题考查考查二次根式的混合运算,解题的关键是明确二次根式混合运算的运算方法.18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值.【分析】第一把x2+y2﹣xy﹣2x+2y化为x2﹣2xy+y2+xy﹣2x+2y=(x ﹣y)2+xy﹣2(x﹣y),在代入数值运算即可.【解答】解:∵x=+,y=﹣,∴x2+y2﹣xy﹣2x+2y=x2﹣2xy+y2+xy﹣2x+2y=(x﹣y)2+xy﹣2(x﹣y)=8+1﹣4=9﹣4.【点评】此题要紧二次根式的化简求值,要紧利用完全平方公式把整式整理,再进一步代入运算.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.【考点】勾股定理;直角三角形斜边上的中线.【专题】证明题.【分析】第一利用已知条件和勾股定理可证明BC=AB,进而可得∠B CA=∠BAC=45°,再按照已知条件可得∠CAD=135﹣45°=90°,因此三角形CAD是直角三角形,利用在直角三角形中,斜边上的中线等于斜边的一半即可证明CD=2AE.【解答】证明:Rt△ABC中,∠ABC=90°,AB=1,AC=∴BC2=()2﹣12=1,∴BC=AB,∴∠BCA=∠BAC=45°,又∵∠BAD=135°,∴∠CAD=135﹣45°=90°,又∵AE为CD上中点,∴AE为Rt△CAD斜边上中线,则CD=2AE.【点评】本题考查了勾股定理的运用以及在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)的性质,解题的关键是证明△CAD是直角三角形.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【专题】证明题.【分析】第一证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD 可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.【点评】此题要紧考查了平行四边形的判定,关键是把握一组对边平行且相等的四边形是平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,D F=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【专题】证明题.【分析】(1)按照平行四边形的性质,可得AB与CD的关系,按照平行四边形的判定,可得BFDE是平行四边形,再按照矩形的判定,可得答案;(2)按照平行线的性质,可得∠DFA=∠FAB,按照等腰三角形的判定与性质,可得∠DAF=∠DFA,按照角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分不交于点M和点N.(1)请你判定OM和ON的数量关系,并讲明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.【考点】菱形的性质;全等三角形的判定与性质;勾股定理.【专题】运算题;矩形菱形正方形.【分析】(1)按照四边形ABCD是菱形,判定出AD∥BC,AO=OC,即可推得OM=ON.(2)第一按照四边形ABCD是菱形,判定出AC⊥BD,AD=BC=AB= 6,进而求出BO、BD的值是多少;然后按照DE∥AC,AD∥CE,判定出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.【解答】解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.【点评】(1)此题要紧考查了菱形的判定和性质的应用,要熟练把握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,第一它是平行四边形,但它是专门的平行四边形,专门之处确实是“有一组邻边相等”,因而就增加了一些专门的性质和不同于平行四边形的判定方法.(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练把握.23.【咨询题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展现】(1)直截了当写出AM、AD、MC三条线段的数量关系:AM=AD +MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请讲明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展现(1)、(2)中的结论是否成立?请分不作出判定,不需要证明.【考点】四边形综合题.【分析】(1)从平行线和中点这两个条件动身,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=N M即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB =DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC 仍旧成立;在图2(2)中,采纳反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍旧成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题是四边形综合题,要紧考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了差不多模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么专门四边形?讲明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BE CD是正方形?请讲明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)先求出四边形ADEC是平行四边形,按照平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,按照菱形的判定推出即可;(3)求出∠CDB=90°,再按照正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,要紧考查学生运用定理进行推理的能力.。
驻马店地区八年级下学期期中数学试卷
驻马店地区八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·陕西) 已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2017八下·鞍山期末) 如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A .B .C .D .3. (2分)已知直线l:y=-x+1,现有下列3个命题:其中,真命题为()①点P(2,-1)在直线l上②若直线l与x轴,y轴分别交于A,B两点,则;③若a<-1,且点M(-1,2),N(a,b)都在直线l上,则b>2.A . ①②B . ②③C . ①②③D . ①③4. (2分)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A .B .C .D .5. (2分)如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A . 0B . 1C . 2D . 36. (2分)(2017·西安模拟) 如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B 的坐标为()A . (0,0)B . (1,﹣1)C . (,﹣)D . (,﹣)7. (2分)小亮家与学校相距1500m,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误几分钟,与小强告别后他就改为匀速慢跑,最后回到了家,设小亮从学校出发后所用的时间为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是()A .B .C .D .8. (2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A . x≥B . x≤3C . x≤D . x≥39. (2分)如图,反比例函数y=(k>0)与一次函数y=x+b的图象相交于两点A(x1 , y1),B(x2 ,y2),线段AB交y轴与C,当|x1-x2|=2且AC=2BC时,k、b的值分别为().A . k=,b=2B . k=,b=1C . k=,b=D . k=,b=10. (2分)在平面直角坐标系中,函数y=-x+1的图象经过()A . 一、二、三象限B . 二、三、四象限C . 一、三、四象限D . 一、二、四象限二、填空题 (共6题;共7分)11. (1分)如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为 ________千米/小时.12. (1分) (2017八上·西安期末) 过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线y=-x+1 平行.则在线段AB上,横、纵坐标都是整数的点的坐标是________13. (1分) (2018九上·长春开学考) 函数的图象与y轴的交点坐标是________.14. (1分) (2017八下·海安期中) 如图,巳知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是 ________.15. (2分) (2016八上·萧山月考) 已知一次函数的图像经过第一、二、四象限,则的取值范围是________,的取值范围是________。
【解析版】驻马店市初中数学八年级下期中经典练习卷(培优提高)
一、选择题1.(0分)[ID:9929]如右图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是()A.B.C.D.2.(0分)[ID:9906]在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 3.(0分)[ID:9902]26的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(0分)[ID:9901]如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A .10尺B .11尺C .12尺D .13尺5.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++6.(0分)[ID :9884]如图,直线y x m =-+与3yx 的交点的横坐标为-2,则关于x的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-17.(0分)[ID :9871]如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°8.(0分)[ID :9865]如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<9.(0分)[ID:9859]下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,3C.4,5,6D.1,3,2 10.(0分)[ID:9845]下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.3,4,5 11.(0分)[ID:9923]如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.12512.(0分)[ID:9919]甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个13.(0分)[ID:9834]下列运算正确的是()A532=B822=C114293=D()22525-=-14.(0分)[ID:9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A .1B .2C .5D .3 15.(0分)[ID :9851]下列各组数据中,不可以构成直角三角形的是( ) A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.5 二、填空题16.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.17.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.18.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.19.(0分)[ID :9981]甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .20.(0分)[ID :9979]菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.21.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.22.(0分)[ID:9967]如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.23.(0分)[ID:9963]已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=10,BD=8,则MN=_____.24.(0分)[ID:10011]将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=____.25.(0分)[ID:9965]如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=4,则图中阴影部分的面积为_______.三、解答题26.(0分)[ID:10127]已知a,b分别为等腰三角形的两条边长,且a,b满足=--33652b a a27.(0分)[ID:10126]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x人,甲乙两家旅行社所需的费用分别为y1和y2.(1)写出y1,y2与x的函数关系式并在所给的坐标系中画出y1,y2的草图;(2)根据图像回答,该单位选择哪家旅行社所需的费用最少?28.(0分)[ID:10116]计算:(1)1 27123-+=(2)(3622)2-÷=29.(0分)[ID:10099]计算:322223÷⨯÷.30.(0分)[ID:10069]如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=182km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.D4.D5.A6.C7.A8.C9.D10.A11.B12.A13.B14.C15.B二、填空题16.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直17.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P18.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为2419.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B20.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD=3AC⊥BD∴AB5故答案为:5【点睛】本题主要21.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E22.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=23.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM=DM =5根据等腰三角形的性质得到BN=4根据勾股定理得到答案【详解】解:连接BMDM∵∠ABC=∠ADC=90°M是AC的中点24.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC25.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.2.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选:B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.D解析:D【解析】试题解析:设水深为x 尺,则芦苇长为(x+1)尺,根据勾股定理得:x 2+(102)2=(x+1)2, 解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D . 5.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()12a b =+--12a b =+-+3a b =-+【点睛】. 6.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.7.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .8.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .9.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.10.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.11.B解析:B【解析】【分析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 12.A解析:A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确, 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误, 乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误, 故选A .【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A . 532-≠,故A 错误;B . 8222-2=2-=,故B 正确;C . 137374=993=,故C 错误; D . ()22525=5-2-=-,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE 的长.【详解】如图所示:22125BE +=故选:C .【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.15.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C、12+(34)2=2516=(54)2,故是直角三角形,不符合题意;D、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题16.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.17.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴22221310=++=DE CE CD∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.18.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24 解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.19.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B解析:10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B地到A地所用的时间.【详解】解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:366 4.54.52-⨯-=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.20.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA12=AC=4,OB12=BD=3,AC⊥BD,∴AB22OA OB=+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.21.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,4CF===设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.23.3【解析】【分析】根据在直角三角形中斜边上的中线等于斜边的一半得到BM=DM=5根据等腰三角形的性质得到BN=4根据勾股定理得到答案【详解】解:连接BMDM∵∠ABC=∠ADC=90°M是AC的中点解析:3【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM=DM=5,根据等腰三角形的性质得到BN=4,根据勾股定理得到答案.【详解】解:连接BM、DM,∵∠ABC =∠ADC =90°,M 是AC 的中点,∴BM =DM =12AC =5, ∵N 是BD 的中点,∴MN ⊥BD , ∴BN =12BD =4, 由勾股定理得:MN =22BM BN -=2254-=3,故答案为:3.【点睛】此题主要考查矩形性质、等腰三角形的性质及勾股定理的应用,解题的关键是熟知直角三角形中,斜边上的中线等于斜边的一半.24.128°【解析】【分析】如图延长DC 到F 根据折叠的性质可得∠ACB=∠BCF 继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC解析:128°.【解析】【分析】如图,延长DC 到F ,根据折叠的性质可得∠ACB=∠BCF ,继而根据平行线的性质可得∠BCF=∠ABC=26°,从而可得∠ACF=52°,再根据平角的定义即可求得答案.【详解】如图,延长DC 到F ,∵矩形纸条折叠,∴∠ACB=∠BCF ,∵AB ∥CD ,∴∠BCF=∠ABC=26°,∴∠ACF=52°,∵∠ACF+∠ACD=180°,∴∠ACD=128°,故答案为128°. 【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握相关知识是解题的关键.25.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】 由图可知,阴影部分的面积14242=⨯⨯= 故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE 的面积等于△BOF 的面积,从而可以判断阴影部分的面积等于矩形面积的一半.三、解答题26.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a =2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】∵3b =∴3a -6≥0,2-a ≥0∴a =2∴b=3∵a ,b 分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a =2. 27.(1)1150y x =,2160160y x =-,图象见解析;(2)当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【分析】(1)根据题意可以直接写出甲乙旅行社收费1y 、2y (元)与参加旅游的人数x (人)之间的关系式,再画出图象;(2)根据题意,可以列出相应的不等式,从而可以得到该单位选择哪一家旅行社支付的旅游费用较少.【详解】解:(1)由题意可得,12000.75150y x x =⨯=,即甲旅行社收费1y (元)与参加旅游的人数x (人)之间的关系式是1150y x =; 22000.80(1)160160y x x =⨯-=-,即乙旅行社收费2y (元)与参加旅游的人数x (人)之间的关系式是2160160y x =-;(2)当150160(1)x x =-时,解得,16x =,即当16x =时,两家费用一样;当150160(1)x x >-时,解得,16x <,即当1016x ≤<时,乙社费用较低;当150160(1)x x <-时,解得,16x >,即当1625x <时,甲社费用较低;答:当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.-.(12)2【解析】【分析】(1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.【详解】(1)原式==(2)原式=2=.【点睛】本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.29.1【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】==原式1【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.30.此时B处距离D处26km远.【解析】【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【详解】在Rt△AOC中,∵OA=OC,AC=km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD26(km).答:此时B处距离D处26km远.【点睛】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷一.选择题:(每小题3分,共24分)1.(3分)如果三角形一边的中线和这边上的高重合,则这个三角形是()A.等边三角形B.等腰三角形C.锐角三角形D.钝角三角形2.(3分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣13.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或225.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF ∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.87.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°8.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11二.填空题.(每小题3分,共21分)9.(3分)用不等式表示:x与5的差不大于x的2倍:.10.(3分)不等式﹣4x≤5的解集是.11.(3分)“等边对等角”的逆命题是.12.(3分)如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.13.(3分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b<0.14.(3分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=cm.15.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.三.解答题.16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.17.(8分)如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.18.(7分)已知方程组的解x与y的和为负数,求k的取值范围.19.(8分)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.20.(9分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.21.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.22.(10分)五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元,(1)分别表示出甲旅行社收费y1,乙旅行社收费y2与旅游人数x的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?23.(12分)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)2015-2016学年河南省驻马店市驿城区八年级(下)期中数学试卷参考答案与试题解析一.选择题:(每小题3分,共24分)1.(3分)如果三角形一边的中线和这边上的高重合,则这个三角形是()A.等边三角形B.等腰三角形C.锐角三角形D.钝角三角形【解答】解:∵BD=CD,AD⊥BC,∴AB=AC,即三角形是等腰三角形.故选:B.2.(3分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:图1、图5都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图3不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图2、图4既是轴对称图形,又是中心对称图形.故选:B.4.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或22【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:不等式组整理得:,由①得:x>1;由②得:x≥2,则不等式组的解集为x≥2,在数轴上表示为:故选:A.6.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF ∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.8【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF=3+2=5,故选:A.7.(3分)如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是()A.45°B.55°C.60°D.75°【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选:C.8.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11【解答】解:设答对x道,则答错或不答的题目就有20﹣x个.即10x﹣5(20﹣x)≥95去括号:10x﹣100+5x≥95∴15x≥195x≥13因此选手至少要答对13道.故选:B.二.填空题.(每小题3分,共21分)9.(3分)用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x10.(3分)不等式﹣4x≤5的解集是x≥﹣.【解答】解:不等式的两边同时除以﹣4得,x≥﹣.故答案为:x≥﹣.11.(3分)“等边对等角”的逆命题是等角对等边.【解答】解:“等边对等角”的逆命题是等角对等边;故答案为:等角对等边.12.(3分)如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6.【解答】解:∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.故答案为:6.13.(3分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x<2.5时,kx+b<0.【解答】解:当x<2.5时,y<0,即kx+b<0.故答案为<2.5.14.(3分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=6+ cm.【解答】解:作AB的垂直平分线,交AC于点E,∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,∴tan30°==,解得:CD=cm,∵BC=3 cm,∴BE=6cm,∴CE=3cm,∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.15.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.三.解答题.16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.【解答】解:(1)去分母得,x﹣1≤15﹣3x,移项、合并同类项得,4x≤16,把x的系数化为1得,x≤4.在数轴上表示为:;(2),由①得x>1,由②得x≤2,不等式①②的解集在同一数轴上表示如下:故原不等式组的解集是1<x≤2.17.(8分)如图,在边长为1的小正方形组成的方格纸上,分别将△ABC向左平移3个单位和绕着点A顺时针旋转90°.(1)画出平移后的△A1B1C1;(2)画出旋转之后的△AB2C2.【解答】解:(1)△A1B1C1如图所示;(2)△AB2C2如图所示.18.(7分)已知方程组的解x与y的和为负数,求k的取值范围.【解答】解:方程组,解得:,∵x与y的和为负数,∴解得:k>.19.(8分)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD20.(9分)已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等).∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠ADF.∴△ADF是等腰三角形.21.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=AC.【解答】证明:如图,∵D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,∴BD=CD,△BDE、△CDF均为直角三角形;在△BDE、△CDF中,,∴△BDE≌△CDF(HL),∴∠B=∠C,∴AB=AC.22.(10分)五一节快到了,甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元,(1)分别表示出甲旅行社收费y1,乙旅行社收费y2与旅游人数x的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?【解答】解:(1)x≤4时,y1=100x,x>4时,y1=4×100+×100(x﹣4)=50x+200,所以,y1=,y2=0.7×100x=70x,即y2=70x;(2)当y1=y2时,50x+200=70x,解得x=10,所以,当x<10时,选择乙旅行社收费更优惠,当x=10时,选择两家旅行社收费相同,当x>10时,选择甲旅行社收费更优惠.23.(12分)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)【解答】解:(1)设生产A型桌椅x套,则生产B型桌椅(500﹣x)套,根据题意,可得不等式组:,解之得240≤x≤250因为x是整数,所以有11种生产方案.(2)根据题意可得关系式y=(100+2)x+(120+4)(500﹣x)整理可得y=﹣22x+62000因为k=﹣22<0,所以x越大,y越小,当x为250时,费用最少,费用为y=﹣22×250+62000=﹣5500+62000=56500.。