2015-2016期末考试八上数学试卷(2)
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
江苏省无锡市宜兴市八年级数学上学期期末试题(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市宜兴市2015-2016学年八年级数学上学期期末试题一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)2.下列实数中,是无理数的为( )A.B.C.0 D.﹣33.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣47.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是__________.10.点A(﹣3,4)关于y轴对称的坐标为__________.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为__________.12.函数中自变量x的取值X围是__________.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=__________°.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为__________.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是__________.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为__________.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是__________.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为__________.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于__________ 与__________.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是__________千米/小时,乙比甲晚出发__________小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是__________;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2015-2016学年某某省某某市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)【考点】轴对称图形.【分析】根据轴对称图形的概念对各小题分析判断即可得解.【解答】解:(1)是轴对称图形,(2)不是轴对称图形,(3)不是轴对称图形,(4)是轴对称图形;综上所述,是轴对称图形的是(1)(4).故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列实数中,是无理数的为( )A.B.C.0 D.﹣3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理对A、B、C进行逐一判断,再利用三角形内角和定理可得D 选项中最大角的度数,进而可进行判断.【解答】解:A、∵12+()2=22,∴能构成直角三角形,故本选项不符合要求;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合要求;C、∵32+42=52,∴能构成直角三角形,故本选项不符合要求;D、∵180°×=5°,∴不能构成直角三角形,故本选项符合要求.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间【考点】勾股定理;估算无理数的大小;坐标与图形性质.【分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【解答】解:∵点P坐标为(﹣4,3),点B(﹣1,0),∴OB=1,∴BA=BP==3,∴OA=3+1,∴点A的横坐标为﹣3﹣1,∵﹣6<﹣3﹣1<﹣5,∴∴点A的横坐标介于﹣6和﹣5之间.故选:A.【点评】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解答此题的关键.8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(1,1),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==2,∵2<3,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.点A(﹣3,4)关于y轴对称的坐标为(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点A(﹣3,4)关于y轴对称的坐标为(3,4).故答案为:(3,4);【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为1.5×108.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数中自变量x的取值X围是x≥2.【考点】函数自变量的取值X围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值X围,考查的知识点为:二次根式的被开方数是非负数.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴A D=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为3.【考点】全等三角形的判定与性质.【分析】先证出∠DBF=∠DAC,由AAS证明△BDF≌△ADC,得出对应边相等AD=BD=BC﹣CD=5,DF=CD=2,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;故答案为:3.【点评】本题考查了全等三角形的判定和性质;证明三角形的全等得出对应边相等是解此题的关键.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为48.【考点】勾股定理.【分析】分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.【解答】解:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度,本题因给出了图形,故只有一种情况.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是x>2.【考点】一次函数与一元一次不等式.【分析】根据函数的图象直接解答即可.【解答】解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.【点评】此题考查了一次函数与不等式,利用数形结合是解题的关键.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为(﹣2,4).【考点】点的坐标.【分析】直接利用第二象限点的坐标性质结合到y轴的距离为2,得出a的值,进而得出点P的坐标.【解答】解:∵点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,∴a﹣1=﹣2,解得:a=﹣1,∴a+5=4,则点P的坐标为:(﹣2,4).故答案为:(﹣2,4).【点评】此题主要考查了点的坐标,正确利用坐标性质得出a的值是解题关键.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是y=3x﹣1.【考点】两条直线相交或平行问题.【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值,即可得解.【解答】解:∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵与y轴的交点坐标为(0,﹣1),∴b=﹣1,∴函数的表达式是y=3x﹣1.故答案为:y=3x﹣1.【点评】本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出k的值是解题的关键,也是本题的难点.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.【考点】实数的运算;平方根;立方根.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解;(3)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)原式=3+3﹣2=4;(2)方程整理得:x2=,开方得:x=±;(3)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.【考点】平方根;算术平方根;立方根.【分析】根据两个平方根互为相反数进行解答即可.【解答】解:∵某正数的两个平方根分别是a+3和2a﹣15,可得:a+3+2a﹣15=0,解得:a=4,∵b的立方根是﹣2,可得:b=﹣8,把a=4,b=﹣8代入﹣b﹣a=8﹣4=4,所以﹣b﹣a的算术平方根是2.【点评】此题考查平方根问题,关键是根据两个平方根互为相反数得出a的值.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据SSS定理推出即可;(2)根据全等三角形的性质得出∠BAC=∠DAC,根据等腰三角形的性质得出即可.【解答】证明:(1)∵在△ABC与△ADC中,∴△ABC≌△ADC(SSS);(2)∵△ABC≌△ADC,∴∠BAC=∠DAC,又∵AB=AD,∴AC垂直平分BD.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能求出△ABC≌△ADC是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)【考点】作图—应用与设计作图.【分析】医疗站到两村的距离相等,所点P在X村与李村所组成线段的垂直平分线上,医疗站到两公路的距离相等,则医疗站在公路夹角的平分线上.【解答】解:如图所示:点P即为所求作的点.【点评】本题主要考查的是作图﹣﹣应用与设计作图,掌握角平分线的性质和线段垂直平分线的性质是解题的关键.24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于4 与.【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质得出符合题意的三角形,再利用三角形面积求法得出答案.【解答】解:如图所示:图①的面积是:3×3﹣×1×3﹣×1×3﹣×2×2=4,图②的面积是:2×3﹣×1×2﹣×1×3﹣×1×2=.故答案为:4,.【点评】此题主要考查了利用轴对称设计图案以及三角形面积求法,正确掌握轴对称图形的性质是解题关键.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先利于y=(m+1)x+可求出B(0,),所以OB=,则利用三角形面积公式计算出OA=1,则A(﹣1,0);然后把点A(﹣1,0)代入y=(m+1)x+可求出m的值;(2)利用OP=3OA=3可得到点P的坐标为(3,0),然后利用待定系数法求直线BP的函数解析式.【解答】解:(1)当x=0时,y=(m+1)x+=,则B(0,),所以OB=,∵S△OAB=,∴×OA×OB=,解得OA=1,∴A(﹣1,0);把点A(﹣1,0)代入y=(m+1)x+得﹣m﹣1+=0,∴m=;(2)∵OP=3OA,∴OP=3,∴点P的坐标为(3,0),设直线BP的函数表达式为y=kx+b,把P(3,0)、B(0,)代入得,解得,∴直线BP的函数表达式为y=﹣x+.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是5千米/小时,乙比甲晚出发1小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?【考点】一次函数的应用.【分析】(1)根据速度,路程,时间三者之间的关系求得结果;(2)设乙的解析式为s=kt+b(k≠0),然后利用待定系数法求解即可;(3)联立两函数解析式,解方程组即可.【解答】解:(1)甲的速度是:20÷4=5,乙比甲晚出发1小时;故答案为:5,1;(2)设甲的解析式为:s=mt,则20=4m,∴m=5,∴甲的解析式为:s=5t,设乙的解析式为s=kt+b(k≠0),则,解得,∴乙的解析式为s=20t﹣20;(3)解得,∴甲经过h被乙追上,此时两人距离B地还有km.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,两直线交点的求法,需熟练掌握并灵活运用是解题的关键.28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是(0,);(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.【考点】一次函数综合题.【专题】压轴题;数形结合.【分析】(1)联立方程,解方程即可求得;(2)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;(3)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据S△OBQ=S△OAB﹣S△OAQ 列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=﹣y,根据S△OCQ=S△OAQ﹣S△OAC列出关于y的方程解方程求得即可.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).【点评】本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.。
山东省菏泽市单县度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某市单县2015-2016学年度八年级数学上学期期末考试试题一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=38.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.13.计算+的结果为.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为.16.已知=,则=.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n=.18.计算÷(1﹣)的结果是.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选去参赛.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.某某省某某市单县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等【考点】命题与定理.【分析】利用全等三角形的判定、等边三角形的判定分别判断后即可确定正确的选项.【解答】解:A、两条直角边对应相等的两个直角三角形全等,正确,是真命题;B、有一个角是60°的等腰三角形是等边三角形,正确,是真命题;C、顶角相等的两个等腰三角形相似但不全等,故错误,是假命题;D、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等,正确,是真命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定等知识,属于基础定理,难度不大.2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【考点】众数;中位数.【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人【考点】加权平均数.【专题】图表型.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数,据此列出方程,再求解.【解答】解:设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得:x=5人.故选A.【点评】本题主要考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数.5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故选D.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF【考点】全等三角形的判定与性质.【分析】利用“边边边”求出△ABC和△DEB全等,再根据全等三角形对应角相等可得∠ACB=∠DBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:在△ABC和△DEB中,∵,∴△ABC≌△DEB(SSS),∴∠ACB=∠DBE,在△BCF中,由三角形的外角性质得,∠ACB+∠DBE=∠A FB,∴∠ACB=∠AFB.故选B.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,难点在于准确确定出全等三角形的对应角.7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④A C=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断【考点】三角形的外角性质;平行线的性质.【分析】根据角平分线的定义得到∠1=∠ECF,根据平行线的性质得到∠F=∠ECF,根据三角形的外角的性质列式计算即可.【解答】解:∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,故选:C.【点评】本题考查的是三角形的外角的性质、平行线的性质以及角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是书.【考点】轴对称图形.【分析】根据轴对称图形的性质得出这个单词,进而得出答案.【解答】解:如图所示:这个单词是BOOK,所指的物品是书.故答案为:书.【点评】此题主要考查了轴对称图形的性质,正确得出单词的名称是解题关键.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故答案为:2.8.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.13.计算+的结果为 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式第一项约分后,两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为75°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据平行线的性质得出∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠求出∠EDB=75°,代入求出即可.【解答】解:∵AB∥CD,∴∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠得出∠EDB=(180°﹣30°)=75°,∵∠BFD=∠EFA=30°,∴∠1=180°﹣75°﹣30°=75°,故答案为:75°.【点评】本题考查了翻折变换,平行线的性质的应用,能灵活运用平行线的性质进行推理是解此题的关键.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为25 .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,根据比例求出CD的长,即可得解.【解答】解:∵AD是∠BAC的平分线交BC于D,∠C=90°,DE⊥AB,∴CD=DE,∵BC=40,DE:DB=3:5,∴CD=×40=15,∴DE=CD=15,∴BD=BC﹣CD=25,故答案为:25.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.16.已知=,则=.【考点】比例的性质.【分析】直接利用已知将原式变形得出a,b的关系,进而得出答案.【解答】解:∵=,∴6a+3b=3a+5b,则3a=2b,故a=b,故==.故答案为:.【点评】此题主要考查了比例的性质,得出a,b的关系是解题关键.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n= 1008 .【考点】规律型:数字的变化类.【分析】通过观察题中给定的等式发现存在1+3+5+…+2n﹣1=n2的规律,令2015=2n﹣1,即可求得结论.【解答】解:观察1=12;1+3=22;1+3+5=32;1+3+5+7=42,可知,1+3+5+…+2n﹣1=n2,∴2015=2n﹣1,∴n=÷2=1008.故答案为:1008.【点评】本题考查了数字的变换,解题的关键是发现1+3+5+…+2n﹣1=n2的规律.18.计算÷(1﹣)的结果是.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8 cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为x=1或x=﹣3 .【考点】解分式方程.【专题】新定义;分式方程及应用.【分析】分类讨论﹣与的大小,利用题中的新定义化简,求出解即可.【解答】解:当﹣<时,方程整理得:=,去分母得:3﹣x=2x,解得:x=1,经检验x=1是分式方程的解;当﹣>时,方程整理得:﹣=,去分母到:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=1或x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;(2)由△ABC与△DBC的周长分别是40cm,24cm,易得AB=△ABC与△DBC的周长的差.【解答】解:(1)∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;(2)∵△ABC的周长表示为:AB+BC+CA,△DBC的周长表示为BD+BC+CD,∴(AB+BC+CA)﹣(BD+BC+CD)=AB+BC+CA﹣BD﹣BC﹣CD=AB+CA﹣BD﹣CD=AB+CA﹣DA﹣CD=AB,∵△ABC与△DBC的周长分别为40cm,24cm,∴AB=16cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.【考点】作图—复杂作图;解分式方程.【分析】(1)直接利用作一角等于已知角的方法进而结合已知线段得出答案;(2)首先找出最简公分母,进而去分母,解方程求出答案.【解答】解:(1)如图所示,△ABC即为所求作的三角形;(2)方程两边都乘x(x+1),得4x+2=3x﹣(x+1),解这个一元一次方程,得:x=﹣,经检验x=﹣是原方程的解.所以原方程的解是x=﹣.【点评】此题主要考查了复杂作图以及分式方程的解法,正确掌握作一角等于已知角的方法是解题关键.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS证明△AEC≌△BED,即可得到AC=BD.【解答】证明:∵CE=DE,∴∠ECD=∠EDC,∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∴∠AEC=∠BED,又∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED.∴AC=BD.【点评】本题考查了等腰三角形的性质、全等三角形的性质定理与判定定理,解决本题的关键是证明△AEC≌△BED.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 60249.4 X浩596 578 596 628 590 631 595602 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选李勇去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选X浩去参赛.【考点】方差;算术平均数.【分析】(1)根据众数、方差的概念计算即可;(2)从众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)X浩成绩的平均数为:(596+578+596+628+590+631+595)÷7=602cm,李勇的方差为:s2=[(603﹣602)2+(589﹣602)2+…+(608﹣602)2]2;填表如下:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 602 (2)从成绩的平均数来看,两人的“平均水平”相同,从成绩的方差来看,李勇的成绩比X浩的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,李勇有5次成绩超过6米,而X浩只有两次超过6米,从成绩的方差来看,李勇的成绩比X浩的稳定,选李勇更有把握夺冠;(4)X浩有两次成绩为6.31米和6.28米,超过6.15米,而李勇没有一次达到6.15米,故选X浩.故答案为602,49.4;李勇;X浩.【点评】本题考查了方差及算术平均数的计算方法,此题结合实际问题考查了平均数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB 相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】(1)易证△ADE、△AFD、△DFE为等腰直角三角形,从而可得AF=DF,∠AFM=∠DFC=90°,根据同角的余角相等可得∠AMF=∠DCF,根据AAS即可得到△AFM≌△DFC;(2)由于AD⊥DE,要证AD⊥DE,只需证DE∥MC,只需证∠ACM=∠AED=45°,只需证△MFC为等腰直角三角形即可.【解答】证明:(1)∵AD⊥DE,AD=DE,点F是AE的中点,∴∠AFM=∠DFC=90°,AF=DF,∠DEA=∠DAE=45°.∵∠ABC=∠AFM=90°,∴∠AMF+∠MAC=90°,∠DCF+∠MAC=90°,∴∠AMF=∠DCF.在△AFM和△DFC中,∴△AFM≌△DFC;(2)AD⊥MC.理由如下:由(1)知,△AFM≌△DFC,∴FM=FC.∴△FMC是等腰直角三角形,∴∠FCM=45°.∵∠FED=45°,∴∠FED=∠FCM,∴DE∥MC.∵AD⊥DE,∴AD⊥MC.【点评】本题主要考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、全等三角形的判定与性质、平行线的判定与性质等知识,考查了分析问题与解决问题的能力.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.【考点】分式方程的应用.【分析】设小伙伴的人数为x人,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.【解答】解:设小伙伴的人数为x人,根据题意,得+2=,解得x=8.经检验x=8是原方程的根且符合题意.答:小伙伴的人数为8人.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。
2015-2016学年八年级上学期期末考试数学试题及答案
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
人教版数学2015-2016八年级(上)期末试卷二
2015-2016学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数y=的自变量x 的取值范围是( )A .x≠﹣2B .x≥﹣2C .x >﹣2D .x <﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等边三角形5.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D . 7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( ) A .m=﹣1 B .m=1 C .m=±1 D .m≠19.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >210.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A.6 B.12 C.32 D.64二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等的三角形的对数是.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年安徽省合肥市包河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣2,3)所在的象限是第二象限,故选B.3.函数y=的自变量x的取值范围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得:x+2≥0,解得x≥﹣2.故选:B.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项D.故选D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【考点】命题与定理.【分析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.【解答】解:A、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D.8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1 B.m=1 C.m=±1 D.m≠1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m 的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2﹣1的图象经过原点,∴0=0+m2﹣1,m﹣1≠0,即m2=1,m≠1解得,m=﹣1.故选A.9.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>2【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为30°.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DB,得到∠B=∠DAB,根据角平分线的定义得到∠DAB=∠DAC,根据三角形内角和定理计算即可.【解答】解:∵DE是△ABC的AB边的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=﹣2x+2.【考点】一次函数图象与几何变换.【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【解答】解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为10°.【考点】轴对称的性质;三角形的外角性质.【分析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.【解答】解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等的三角形的对数是4.【考点】线段垂直平分线的性质.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于1万个.【考点】一次函数的应用.【分析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.【解答】解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【考点】作图—应用与设计作图.【分析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.【解答】解:如图所示,点E或E′就是所求的点.17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为(a﹣3,b+2).【考点】作图-平移变换.【分析】(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是60m/分,点B的坐标是(9,120);(2)线段AB所表示的y与x的函数关系式是y=20x﹣60;(3)试在图中补全点B以后的图象.【考点】一次函数的应用.【分析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.【解答】解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发,∴弟弟1分钟走了60m,∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B的坐标为:(9,120),故答案为:60,120;(2)设线段AB所表示的y与x的函数关系式是:y=kx+b,把A(3,0),B(9,120)代入y=kx+b得:解得:∴y=20x﹣60,故答案为:y=20x﹣60.(3)如图所示;五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)当函数图象相交时,y1=y2,即﹣2x+6=x,再解即可得到x的值,再求出y的值,进而可得点A的坐标;当y1>y2时,图象在直线AB的右侧,进而可得答案;(2)由直线l2:y2=﹣2x+6求得B的坐标,然后根据三角形面积即可求得;(3)根据题意求得P的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P点的坐标.【解答】解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(,1).六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【考点】全等三角形的判定与性质;一元一次方程的应用.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。
广东省惠州市惠城区八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某市惠城区2015-2016学年八年级数学上学期期末考试试题一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm2.八边形的外角和为()A.180°B.360°C.900°D.1260°3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.106.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.57.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a58.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.已知,则的值是()A.B.﹣C.2 D.﹣2二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD=.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.计算:(4x3y﹣8xy3)÷(﹣2xy)=.14.化简=.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.16.已知a﹣b=1,a2+b2=25,则ab=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.18.解分式方程:.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.2015-2016学年某某省某某市惠城区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、10+7>15,能组成三角形,故此选项正确;B、4+5<10,不能组成三角形,故此选项错误;C、3+5=8,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选:A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.八边形的外角和为()A.180°B.360°C.900°D.1260°【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°进行解答.【解答】解:八边形的外角和等于360°.故选B.【点评】本题主要考查了多边形的外角和定理,多边形的外角和等于360°,与边数无关.3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD【考点】角平分线的性质.【分析】根据角平分线性质得出PF=PD,根据勾股定理推出OF=OD,根据三角形内角和定理推出∠DPO=∠FPO.【解答】解:A、∵∠1=∠2,PD⊥OA,PF⊥OB,∴PE=PD,正确,故本选项错误;B、∵PD⊥OA,PF⊥OB,∴∠PFO=∠PDO=90°,∵OP=OP,PF=PD,∴由勾股定理得:OF=OD,正确,故本选项错误;C、∵∠PFO=∠PDO=90°,∠POB=∠POA,∴由三角形的内角和定理得:∠DPO=∠FPO,正确,故本选项错误;D、根据已知不能推出PD=OD,错误,故本选项正确;故选D.【点评】本题主要考查平分线的性质,三角形的内角和,熟练掌握角平分线的性质是解题的关键.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.6.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.5【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念判断各图形即可求解.【解答】解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选C.【点评】本题考查轴对称图形的知识,注意掌握轴对称图形的判断方法:图形沿一条直线折叠后,直线两旁的部分能够互相重合.7.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【考点】实数X围内分解因式.【分析】利用因式分解的方法,分别判断得出即可.【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.已知,则的值是()A.B.﹣C.2 D.﹣2【考点】分式的化简求值.【专题】计算题.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD= 5 .【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=5.【解答】解:∵AB=AC∴∠ABD=∠ACD∵AD⊥BC∴∠ADC=∠ADB=90°∴CD=BD=5.故填5.【点评】此题主要考查等腰三角形“三线合一”的性质.题目思路比较直接,属于基础题.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.计算:(4x3y﹣8xy3)÷(﹣2xy)= ﹣2x2+4y2.【考点】整式的除法.【分析】直接利用整式的除法运算法则化简求出答案.【解答】解:(4x3y﹣8xy3)÷(﹣2xy)=﹣2x2+4y2.故答案为:﹣2x2+4y2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.14.化简= 1 .【考点】分式的加减法.【专题】计算题.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣==1.故答案为:1.【点评】此题考查的知识点是分式的加减法,关键是先把两个分式的分母化为相同再计算.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知a﹣b=1,a2+b2=25,则ab= 12 .【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到(a﹣b)2=a2﹣2ab+b2,再把a﹣b=1,a2+b2=25整体代入,然后解关于ab的方程即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴1=25﹣2ab,∴ab=12.故答案为12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体思想的运用.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)根据网格结构写出顶点的坐标.【解答】解:(1)所作图形如图所示:;(2)坐标为:A1(﹣1,﹣4)、B1(﹣2,﹣2)、C1(0,﹣1).【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.18.解分式方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(x+2)(x﹣2),得x(x+2)﹣8=(x+2)(x﹣2),解这个方程,得x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段垂直平分线的性质得到EA=EC,求出∠ACE的度数,计算即可.【解答】解:∵AB=AC,∠A=36°∴∠ACB=∠B==72°,又∵DE是AC的垂直平分线,∴EA=EC,∴∠ACE=∠A=36°∴∠ECB=∠ACB﹣∠ACE=36°.【点评】本题考查的是线段的垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【考点】整式的除法.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】解:(1)输入n 3 ﹣2 ﹣3 …输出答案 1 1 1 1…(2)(n2+n)÷n﹣n(n≠0)=﹣n=n+1﹣n=1.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,读表,明确计算程序是正确解答本题的前提.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BE D;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【考点】分式方程的应用.【专题】应用题.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.【考点】分式的化简求值;分母有理化.【专题】计算题.【分析】首先把除法运算转化成乘法运算,能因式分解的先因式分解,进行约分,然后进行减法运算,最后代值计算.【解答】解:原式=﹣=﹣==,当a=,b=时,原式==.【点评】本题的关键是正确进行分式的通分、约分,并准确代值计算.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.【考点】等腰三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.【解答】证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AE F∴AE=FA∴AE=FG.【点评】本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.【解答】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,,∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°﹣∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【点评】本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.。
师大博才2015-2016-初二期末数学试卷
湖南师大附中博才实验中学2015—2016学年度第一学期八年级期考试题卷·数学命题人: 唐高木 何政 审题人:鲁江华 林浩时 量: 120分钟 满 分:120分一、选择题(本题共12个小题,每小题3分,满分36分) 1. 计算2)2(a -的结果是( ).A .22a -B .22aC .24aD .24a - 2.若分式b a a -3中b a ,的值同时扩大到原来的5倍,则此分式的值( ). A.是原来的10倍 B.是原来的5倍 C. 不变 D. 是原来的51倍 3. 长沙市的冬春季节是流行性感冒的高发时期,接种流感疫苗,可有效预防流感。
流感病毒的形状一般为球形,直径大约为0.000 000 108 m ,该直径用科学记数法表示为( ). A.810.810-⨯ B.71.0810-⨯ C.60.10810-⨯ D.71.0810⨯4. 二次根式3-x 中字母x 的取值范围是( ).A .x ≥3B .x >3C .x ≤3D .x <3 5.如图所示是由边长为1的小正方形组成的网格,则四边形ABCD 的面积是( ).A .10B .11C .12D .16. 如图,在Rt △ABC 中, ∠ACB=90°,E 、F 分别是BC 、CA 的中点,CE=3,CF=4,则AB =( ).A. 10B. 15C. 20D. 257. 解分式方程22311x x x++=--时,去分母后变形为( ). A .2(2)3(1)x x ++=- B .223(1)x x -+=-C .2(2)3(1)x x -+=-D .2(2)3(1)x x -+=-8. 如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ).A. 2B. 5C. 3D. 25第8题图第5题图 密 封线 内 不 许答 题班级:姓名: 考号 考室:第6题图9.已知四边形ABCD 中,AD ∥BC,要使四边形ABCD 为平行四边形,需要增加一个条件:①AD=BC ;②AB=CD ;③AB ∥CD ;④∠A=∠C 正确的有( ).A .1个B .2个C .3个D .4个10. 下列条件中,不能判定四边形ABCD 为矩形的是( ).A .AB ∥CD ,AB=CD ,AC=BD B .∠A=∠B=∠D=90°C .AB=CD ,AD=BC ,∠A=90° D .AB=BC ,AD=CD ,且∠C=90°11.如图所示,菱形ABCD 的边长为4,且AE⊥BC 于E,∠B=60°,则菱形ABCD 的面积为( ).A.38 B .8 C .16 D .3412.如图,正方形ABCD 的边长为7,点E 、F 分别在AB 、BC 上,AE=3,CF=1,P 是对角线AC 上的动点,则PE +PF 的最小值为( ).A.56 B .57 C .58 D .59二、填空题(本题共6个小题,每小题3 分,共18分)13.因式分解:822-a = ;14.计算:2)2(218--⨯= ; 15.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB=4,则OE 的长是 ; 16.已知一个四边形的边长依次为d c b a ,,,且bd ac d c b a 222222+=+++,则此四边形的形状是 ;17. 已知ab b a 3-=+,则33ab a ab b -+= . 18.关于x 的方程12-=-+x a x 的解是正数,则a 的取值范围是 。
山东省潍坊市寿光市度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省潍坊市寿光市2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°7.下列分式中,是最简分式的是()A.B.C.D.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:.14.若分式的值为零,则x的值为.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为,方差为.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为cm.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?某某省潍坊市寿光市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义直接判断得出即可.【解答】解:只有,,8﹣,符合分式的定义,一共有3个.故选:C.【点评】此题主要考查了分式的定义,准确把握分式定义是解题关键.3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择;众数.【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.【点评】考查了众数、平均数、中位数和标准差意义,比较简单.4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥B C于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由四边形ABCD是平行四边形,可得对角相等,邻角互补,又由在▱ABCD中,∠A:∠B:∠C=2:3:2,即可求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠A:∠B:∠C=2:3:2,∴∠D=×180°=108°.故选D.【点评】此题考查了平行四边形的性质.注意结合题意画出图形,利用图形求解是关键.7.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【专题】探究型.【分析】将选项中式子进行化简,不能化简的选项即是所求的最简分式.【解答】解:,,,不能化简.故选D.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.9.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m【考点】三角形中位线定理.【专题】应用题.【分析】根据三角形中位线定理可得MN∥AB,MN=AB,然后可得△CMN∽△CAB,根据相似三角形面积比等于相似比的平方,线段的中点定义进行分析即可.【解答】解:∵AC,BC的中点M,N,∴MN∥A B,MN=AB,∴△CMN∽△CAB,∴S△M:S△ACB=(MN:AB)2,∴S△M:S△ACB=4:1,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.【点评】此题主要考查了三角形的中位线,以及相似三角形的性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.若分式的值为零,则x的值为﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=35°.【考点】等腰三角形的性质.【专题】计算题.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=105°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵AD=AE,BD=EC,∠ADB=∠AEC=105°,∴△ADB≌△AEC,∴AB=AC,∴∠B=∠C=40°,在△AEC中,∠CAE+∠C+∠AEC=180°,∴∠CAE=180°﹣40°﹣105°=35°,故答案为:35°.【点评】本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为3x﹣2 ,方差为9S2.【考点】方差;算术平均数.【分析】一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍;依此规律求解即可.【解答】解:∵一组数据x1,x2…,x n的平均数为x,方差为S2,∴另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数=(3x1﹣2+3x2﹣2+…+3x n﹣2)=[3(x1+x2+…+x n)﹣2n]=3x﹣2,原来的方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],现在的方差s2=[(3x1﹣2﹣3x+2)2+(3x2﹣2﹣3x+2)2+…+(3x n﹣2﹣3x+2)2]=[9(x1﹣x)2+9(x2﹣x)2+…+9(x n﹣x)2]=9S2.故答案为3x﹣2,9S2.【点评】本题考查了平均数与方差,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为10 cm.【考点】平行四边形的性质;解一元一次方程.【分析】根据平行四边形的对边相等可列出方程,从而解出a,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,当a﹣3=9﹣a时a﹣3=9﹣a,解得:a=6cm,即得AB=3cm、BC=2cm、CD=3cm、DA=2cm,∴平行四边形ABCD的周长是:AB+BC+CD+DA=10cm;当a﹣4=9﹣a时,a=6.5cm,即得AB=3.5cm、BC=2.5cm、CD=2.5cm、DA=2.5cm,∴AB≠BC=CD=DA,∴四边形不是平行四边形,故答案为10【点评】本题考查平行四边形的性质,需要熟练掌握平行四边形对边相等的性质,如果不能看出哪两组边为对边,可以画出草图,这样有助于分析.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据∠BAC=∠DAE得出∠BAD=∠CAE,再根据全等三角形的判定得出△ABD≌△ACE,解答即可.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)观察发现四个图形都是轴对称图形;(2)根据轴对称图形的特点设计图案即可.【解答】解:(1)这四个图案都具有的两个共同特征是:都是轴对称图形;(2)如图:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【考点】分式的化简求值.【专题】开放型.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:===x2+1;当x=0时,原式的值为1.说明:只要x≠±1,且代入求值正确,均可记满分.【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.【解答】解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.【点评】找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】平行四边形的性质;全等三角形的判定.【专题】证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(18﹣15)2+(18﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
江苏省盐城市建湖县八年级数学上学期期末试题(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市建湖县2015-2016学年八年级数学上学期期末试题一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个4.由四舍五入得到的地球半径约为6.4×103km;精确到( )5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ6.若一次函数y=kx+b的图象如图所示,则k、b的取值X围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是__________.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是__________.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=__________.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是__________.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是__________.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值X围是__________.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为__________.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y 与x之间的函数关系式为__________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为__________.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为__________.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为__________.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值X围.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值X围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.2015-2016学年某某省某某市建湖县八年级(上)期末数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列各数中,没有平方根的是( )A.﹣4 B.0 C.0.25 D.【考点】平方根.【专题】计算题;实数.【分析】根据负数没有平方根判断即可.【解答】解:没有平方根的是﹣4,故选A【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.下列点中,位于直角坐标系第二象限的点是( )A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)【考点】点的坐标.【专题】应用题.【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.【解答】解:∵点在第二象限的符号特点是横坐标是负数,纵坐标是正数,∴符合题意的只有选项C,故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),比较简单.3.在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,共2个.故选A.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.由四舍五入得到的地球半径约为6.4×103km;精确到( )【考点】近似数和有效数字.【分析】近似数精确到哪一位就是看这个数的最后一位是哪一位.【解答】解:6.4×103=6400,则这个数近似到百位.故选B.【点评】本题考查了近似数精确到的数位,正确记忆精确到哪一位就是看这个数的最后一位是哪位是本题的关键.5.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.6.若一次函数y=kx+b的图象如图所示,则k、b的取值X围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值X围,即可得答案.【解答】解:观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选B.【点评】本题要求学生根据图象分析出k、b参数的取值X围,考查学生对一次函数中k、b 参数的意义的了解与运用.7.如图,在平面直角坐标系中,点B的坐标为(3,2),以点O为圆心,OB的长为半径画弧,交x轴的正半轴于点A,则点A的横坐标在( )A.2和3之间B.3和3.5之间C.3.5和4之间D.4和5之间【考点】估算无理数的大小;坐标与图形性质;勾股定理.【分析】结合勾股定理得出OB的值,进而再利用估算无理数的方法得出答案.【解答】解:由题意可得:OB=OA==,∵<<,∴3<<4,2=12.25,∴点A的横坐标在:3.5和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确估计出最接近的有理数是解题关键.8.如图,把矩形ABCD沿EF翻折,点B恰好落在点D处,若AE=1,∠AEF=120°,则△DEF 的面积是( )A.1 B.2 C.D.2【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,由邻补角的定义得到∠DEF=60°,解直角三角形得到DE=2A′E=2,A′D=,根据三角形的面积公式即可得到结论.【解答】解:∵把矩形ABCD沿EF翻折,点B恰好落在点D处,∴A′E=AE=1,∠A′EF=∠AEF=120°,∠A′=∠A=90°,A′D=AB,∴∠DEF=60°,∴∠A′ED=60°,∴DE=2A′E=2,A′D=,∴S△DEF=DE•AB=DE•A′D==.故选C.【点评】本题考查的是图形折叠的性质,折叠的原图与对应图的对应角、对应边对应相等,还要熟练应用平行线的性质.二、填空题(共10小题,每小题3分,满分30分)9.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.已知点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点P(3,﹣4)关于y轴对称的对称点Q的坐标是(﹣3,﹣4),故答案为:(﹣3,﹣4).【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.阅读理解:∵24=16,(﹣2)4=16,∴16的四次方根为±2,即,则=±3.【考点】实数.【专题】计算题.【分析】根据已知四次方根的定义,(±3)四次方为81,因而可以得出答案.【解答】解:由已知四次方根的定义得:∵34=81,(﹣3)4=81,∴81的四次方根为±3,即则=±3.故答案为:±3.【点评】题目考查了四次方根的概念,学生只要抓住基本的运算规律即可,另外不要出现漏解的现象.12.已知y与x+2成正比例,且当x=1时,y=3,则y与x之间的函数关系式是y=x+2.【考点】待定系数法求一次函数解析式.【分析】直接利用正比例函数的性质假设出函数关系式,进而将已知代入求出答案.【解答】解:∵y与x+2成正比例,∴设y=k(x+2),∵当x=1时,y=3,∴3=3k,解得:k=1,则y与x之间的函数关系式是:y=x+2.故答案为:y=x+2.【点评】此题主要考查了待定系数法求一次函数解析式,正确假设出函数关系式是解题关键.13.直线y=2x+2沿y轴向下平移4个单位后,所得新直线与x轴的交点坐标是(1,0).【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律得出平移后解析式,进而利用y=0时求出直线与x轴交点坐标即可.【解答】解:∵直线y=2x+2沿y轴向下平移4个单位,∴平移后解析式为:y=2x﹣2,当y=0时,0=2x﹣2,解得:x=1.故新直线与x轴的交点坐标是:(1,0).故答案为:(1,0).【点评】此题主要考查了一次函数图象与几何变换,正确记忆一次函数平移规律是解题关键.14.已知一次函数y=(2﹣m)x+2的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值X围是m>2.【考点】一次函数图象上点的坐标特征.【分析】先根据x1<x2时,y1>y2,得到y随x的增大而减小,所以x的比例系数小于0,那么2﹣m<0,解不等式即可求解.【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小∴2﹣m<0∴m>2.故答案为m>2.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x 的增大而减小.15.如图,直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),则方程组的解为.【考点】一次函数与二元一次方程(组).【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线l1:y=k1x+b1与直线l2:y=k2x+b2交于点(2,2),∴二元一次方程组的解为,故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y 与x之间的函数关系式为y=13﹣x.【考点】根据实际问题列二次函数关系式.【分析】设AB为y(m),BC为x(m),根据AB+BC+CD﹣1=25列出方程即可.【解答】解:设AB为y(m),BC为x(m),根据题意得y+x+y﹣1=25,整理得y=13﹣x.故答案为y=13﹣x.【点评】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边建筑材料的总长为25米,列出等式.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题.【分析】可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°【解答】解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为:60°.【点评】本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.18.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为(,).【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】先作出点A关于直线y=x的对称点A′,再连接A′B,求出直线A′B的函数解析式,再联立直线y=x列方程组即可求解.【解答】解:如图,作A关于直线y=x的对称点A′,则PA=PA′,故PA+PB=PA′+PB,由图知,只有当A、P、B共线时,PA+PB最小,又由A与A′关于y=x对称知,A′(0,2),由A′、B两点坐标得直线A′B的解析式为y=﹣x+2,联立,解得 x=y=,故当PA+PB最小时,P的坐标为:(,).故答案为:(,).【点评】此题主要考查了轴对称﹣﹣最短路线问题,综合运用了一次函数和方程组的知识,综合性较强,做题的关键是正确作出图形.三、解答题(共9小题,满分74分)19.解答下列各题:(1)计算:;(2)求x的值:4x2﹣25=0.【考点】实数的运算;平方根;零指数幂.【专题】计算题;实数.【分析】(1)原式第一项利用平方根定义计算,第二项利用立方根定义,最后一项利用零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=4﹣3﹣1=0;(2)方程整理得:x2=,开方得:x=±.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系xOy中,已知点A(0,6),点B(6,6).(1)尺规作图,求作一点P,使点P同时满足下列条件(保留作图痕迹,不写作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)点P到A、B两点的距离相等,因此P在AB的垂直平分线上,作AB的AB的垂直平分线MN;点P到∠xOy的两边的距离相等,因此P在∠xOy的角平分线上,作∠xOy的角平分线OF,两线的交点就是P点;(2)根据线段垂直平分线的性质可得P点横坐标为3,根据角平分线的性质可得P点纵坐标等于横坐标,进而可得答案.【解答】解:(1)如图所示:(2)∵MN是AB的垂直平分线,B(6,6),∴P点横坐标为3,∵FO是∠yOx的角平分线,∴点P到角两边的距离相等,∴P点纵坐标等于横坐标为3,∴P(3,3).【点评】此题主要考查了复杂作图,关键是掌握角平分线上的点到角两边的距离相等,线段垂直平分线上的点到线段两端点的距离相等.21.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(1,2)、B(﹣2,1),将△ABC平移得到△A′B′C′,使得点A的对应点A′,试解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为(﹣4,﹣5).【考点】作图-平移变换.【分析】(1)根据A点坐标确定原点位置,然后建立平面直角坐标系;(2)从A到A′的平移方法是:向左平移1个单位,再向下平移3个单位,B、C也是同样的平移方法,然后再确定对应点位置,再连接即可.【解答】解:(1)如图所示:(2)如图所示:点C′的坐标为(﹣4,﹣5),故答案为:(﹣4,﹣5).【点评】此题主要考查了作图﹣﹣平移变换,关键是正确确定对应点的位置.22.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C(,﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q(﹣,b)都在该函数的图象上,试求a、b的值.【考点】函数关系式.【分析】(1)分别将A,B,C点代入函数关系式进而判断即可;(2)分别将P,Q点代入函数关系式进而得出答案.【解答】解:(1)当x=0时,y=2,当x=2时,y=+2=,当x=时,y=5,故B,C点不在该函数图象上,A点在该函数图象上;(2)当y=0时,0=x3+2,即0=a3+2,解得;a=,当x=﹣时,b=×(﹣)3+2,解得:b=2﹣.【点评】此题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.23.已知一次函数y=kx+b的图象与直线y=3x+2平行,且与直线y=﹣2x+3的交点A的纵坐标为1.(1)求这个一次函数关系式;(2)在给定网格图中,画出(1)中函数的图象;(3)当y<1时,写出x的取值X围.【考点】两条直线相交或平行问题.【分析】(1)根据两直线平行,则函数解析式的一次项系数相同,即可确定k的值,把A 的纵坐标代入y=﹣2x+3求得横坐标,进而将(1,1)代入求出即可.(2)利用两点法画出函数的图象;(3)根据图象求得即可.【解答】解:(1)∵一次函数y=kx+b的图象与直线y=3x+2平行,∴k=3,∵与直线y=﹣2x+3的交点A的纵坐标为1,∴1=﹣2x+3,解得x=1,∴A(1,1),把A的坐标代入y=3x+b,则1=3+b,解得:b=﹣2,故这个一次函数关系式为:y=3x﹣2.(2)画出函数的图象如图,(3)当y<1时,x<1.【点评】本题考查了两条直线平行问题,属于基础题,关键是掌握两直线平行则k值相同.24.如图,△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.(1)求证:MD=ME;(2)若D为AB的中点,且AB=10,求ME的长.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形的性质求出∠B=∠C,求出BM=CM,根据全等三角形的判定得出△DBM≌△ECM,根据全等三角形的性质得出即可;(2)根据三角形的中位线求出ME=AB,代入求出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵M是BC的中点,∴BM=CM,在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME;(2)解:∵M是BC的中点,D为AB的中点,∴ME=AB,∵AB=10,∴ME=5.【点评】本题考查了全等三角形的性质和判定,三角形中位线的应用,能求出△DBM≌△ECM 和ME=AB是解此题的关键.25.如图,在四边形ABCD中,AB∥CD,AD⊥DC,AB=BC,点E为BC上一点,且CD=CE.(1)求证:AE⊥BC;(2)若AD=6,DC=3,求AB的长.【考点】全等三角形的判定与性质.【分析】(1)连接AC,求出∠DCA=∠ECA,根据SAS推出△DCA≌△ECA,根据全等得出∠D=∠CEA,即可得出答案;(2)根据全等得出AE=AD=6,设AB=x,根据勾股定理得出方程,求出方程的解即可.【解答】(1)证明:连接AC,∵AB=BC,∴∠ECA=∠BAC,∵AB∥CD,∴∠DCA=∠BAC,∴∠DCA=∠ECA,在△DCA和△ECA中∴△DCA≌△ECA(SAS),∴∠D=∠CEA,∵AD⊥DC,∴∠D=90°,∴∠CEA=90°,∴AE⊥BC;(2)解:∵△DCA≌△ECA,∴AE=AD=6,设AB=x,∵DC=CE=3,∴在Rt△BEA中,由勾股定理得:AB2=BE2+AE2,∵AB=BC,∴x2=(x﹣3)2+62,解得:x=7.5,即AB=7.5.【点评】本题考查了等腰三角形的性质,全等三角形的性质和判定,勾股定理的应用,能推出△DCA≌△ECA是解此题的关键.26.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.【考点】一次函数的应用.【分析】(1)因为小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,所以交点P(2.5,7.5)的意义是经过2.5小时后,小东与小明在距离B地7.5千米处相遇;(2)需求直线y1的解析式,因为它过点(2.5,7.5),(4,0),利用待定系数法即可求出其解析式.然后令x=0,求出此时的y值即可.【解答】解:(1)交点P所表示的实际意义是:经过2.5小时后,小东与小明在距离B地7.5千米处相遇.(2)设y1=kx+b(k≠0),又y1经过点P(2.5,7.5),(4,0),∴,解得,∴y1=﹣5x+20,当x=0时,y1=20,故AB两地之间的距离为20千米.【点评】本题需仔细分析图象,利用函数解析式解决问题.27.如图,直线l1:y1=kx+2(k≠0)与直线l2:y2=4x﹣4交于点P(m,4),直线l1分别交x轴、y轴于点A、B,直线l2交x轴于点C.(1)求k、m的值;(2)写出使得不等式kx+2<4x﹣4成立的x的取值X围;(3)在直线l2上找点Q,使得S△QAC=S△BPC,求点Q的坐标.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先把P(m,4)代入y2=4x﹣4可求出m=2,则P点坐标为(2,4),然后把P 点坐标代入y1=kx+2可求出k的值;(2)观察函数图象,写出直线l2在直线l1上方所对的自变量的取值X围即可;(3)先利用y1=x+2确定A点和B点坐标,再利用y2=4x﹣4=0确定C点坐标,则根据S△BPC=S△PAC﹣S△BAC可计算出S△BPC=3,设Q点坐标为(t,4t﹣4),根据三角形面积公式得到所以×(1+2)×|4t﹣4|=3,然后解绝对值方程求出t的值即可得到Q点的坐标.【解答】解:(1)把P(m,4)代入y2=4x﹣4得4m﹣4=4,解得m=2,所以P点坐标为(2,4),把P(2,4)代入y1=kx+2得2k+2=4,解得k=1;(2)当x>2时,kx+2<4x﹣4;(3)当y=0时,x+2=0,解得x=﹣2,则A(﹣2,0);当x=0时,y1=x+2=2,则B(0,2),当y=0时,4x﹣4=0,解得x=1,则C(1,0),所以S△BPC=S△PAC﹣S△BAC=×(1+2)×4﹣×(1+2)×2=3,设Q点坐标为(t,4t﹣4),因为S△QAC=S△BPC=3,所以×(1+2)×|4t﹣4|=3,解得t=或t=,所以Q点的坐标为(,2)或(,2).【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年八年级上学期期末数学试卷
2015-2016学年八年级上学期期末数学试卷一、选择题(每题3分,共45分) 1.下列各式中计算正确的是( ) A .B .C .D .2.(3分)如图中点P 的坐标可能是( ) A . (﹣5,3) B . (4,3) C . (5,﹣3) D .(﹣5,﹣3)3.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A . 0 B . 1 C . 2 D .3 4.在﹣2,0,3,这四个数中,最大的数是() A . ﹣2 B . 0 C . 3 D . 5.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°, 则∠2的度数是( ) A . 50° B . 45° C . 35° D .30° 6.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限 7.若方程mx+ny=6的两个解是,,则m ,n 的值为( )A . 4,2B . 2,4C . ﹣4,﹣2D .﹣2,﹣4 8.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果: 居民(户) 1 3 2 4 月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是() A . 中位数是55 B . 众数是60 C . 方差是29 D .平均数是54 9.(3分)下列四组线段中,可以构成直角三角形的是() A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D .1,,3 10.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米 D . 张强从早餐店回家的平均速度是3千米/小时11.下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
2015-2016年四川省成都市武侯区八年级(上)期末数学试卷(解析版)
2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2 2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.56.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是,中位数是,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.一、填空题21.(3分)方程组的解是.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长cm.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】根据二次根式被开方数非负即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x+2≥0,∴m≥﹣2.故选:B.2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0.212121,﹣是有理数,3π是无理数,故选:C.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)【分析】先根据P点的坐标判断出x,y的符号,进而求出x,y的值,即可求得答案【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=5,|y|=3,∴点P(x,y)坐标中,x=5,y=﹣3,∴P点的坐标是(5,﹣3).故选:A.4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间【分析】求出7=,8=,即可求出的范围,即可得出答案.【解答】解:∵7=,8=,∴7<<8,即的值在7﹣8之间.故选:C.5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.5【分析】根据勾股定理,可得OB的长,根据等量代换,可得答案.【解答】解:OB==,OA=OB=,A点表示的数是﹣.故选:C.6.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个【分析】根据平方根的概念、三角形的外角性质、极差的概念、定理与公理的概念进行判断即可.【解答】解:①6的平方根是±;是真命题;②三角形的一个外角大于任何一个内角;是假命题;③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量;真命题;④凡是定理都可以作为公理.假命题;故选:B.8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,则所得三角形与原三角形的位置关系是关于y轴对称,故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【分析】根据一次函数性质逐项判断即可.【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.【分析】首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【分析】根据二元一次方程的定义,可得答案.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为y=2x.【分析】根据两直线平行,则自变量系数相同,即k值相同得出结论.【解答】解:由题意得:k=2则该正比例函数的表达式为:y=2x;故答案为:y=2x.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组组的解为.故答案为.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=64°.【分析】先根据平行线的性质,得出∠1=∠4=58°,根据折叠的性质,得出∠3=∠4=58°,最后根据平角计算∠2的度数.【解答】解:由矩形的对边平行,可得∠1=∠4=58°,由折叠可得,∠3=∠4=58°,∴∠2=180°﹣2×58°=64°,故答案为:64°.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.【分析】(1)首先进行各项的化简,然后合并同类项即可;(2)首先进行各项的化简,然后合并同类项即可;(3)根据x的系数互为相反数,利用加减消元法求解.【解答】解:(1)=+6=;(2)计算:=+3+12﹣5=(3)解:原方程可化为:,①+②得:4y=28,∴y=7,把y=7代入①得x=3,∴方程组的解为:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.【分析】在直角△ABC中,根据勾股定理即可求得AC2,然后在直角△ACF中求得FC,根据正方形CDEF的周长=4FC即可求解.【解答】解:在直角△ABC中,AC2=AB2+BC2=(2)2+42=28,在直角△ACF中,FC2=AF2+AC2=102+28=128.∴CF=8,而正方形CDEF的周长=4CF=32.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.【分析】先根据题意得出AB∥CD,故可得出∠BAP=∠APC,再由∠1=∠2即可得出∠EAP=∠APF,进而可得出结论.【解答】证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC.∵∠1=∠2,∴∠EAP=∠APF,∴AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是50,中位数是50,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?【分析】(1)众数就是出现次数最多的数,中位数就是大小处于中间位置的数,根据定义判断即可;(2)根据40名学生本学期购买课外书的总费用除以总人数,求得平均费用;(3)利用学校总人数1000乘以本学期购买课外书花费50元以上(含50元)的学生所占的比例即可求解.【解答】解:(1)这次调查获取的样本数据的众数是50元,这次调查获取的样本数据的中位数是50元,故答案是:50,50;(2)平均数为:×(6×20+10×30+12×50+8×80+4×100)=51.5(元);(3)调查的总人数是40人,其中购买课外书花费50元以上(含50元)的学生有24人,∴该校本学期购买课外书费用在50元以上(含50元)的学生有:1000×=600(人).19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.【分析】(1)利用直线l1的解析式求出点A的坐标,再根据勾股定理求出OA的长度,从而可以得到OB的长度,根据图象求出点B的坐标,然后利用待定系数法列式即可求出直线l2的函数表达式;(2)求得平移后的解析式,进而求得交点D的坐标,代入三角形的面积公式进行计算即可得解.【解答】解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,=×BC•x D=×(10+5)×6=45.∴S△BCD20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.【分析】(1)、Ⅰ)、求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;Ⅱ)、可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值,代值即可得出结论;(2)方法同(2).【解答】解:(1)、Ⅰ)、连接EF,根据翻折的性质得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;Ⅱ)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴=;∵AD=4,∴AB=2(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y,∵AB=DC==,∴BF=BG+GF=(+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(k﹣1)x]2=[(+1)x]2∴y=,∴==2.一、填空题21.(3分)方程组的解是.【分析】利用①+②可消去z,再与方程②组成二元一次方程组,再求解即可.【解答】解:在方程组中,①+③可得:3x+2y=43④,由②、④组成二元一次方程组,由②可得x=y+1,代入④可得:3(y+1)+2y=43,解得y=8,∴x=y+1=9,把x、y的值代入①可得:9+8+z=23,解得z=6,∴原方程组的解为.故答案为:.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长26cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为24cm,圆柱高为5cm,∴AB=5cm,BC=BC′=12cm,∴AC2=52+122=169,∴AC=13cm,∴这圈金属丝的周长最小为2AC=26cm.故答案为:26.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是3.【分析】首先利用二次根式有意义的条件得出x,y的值,进而利用尾数特征求出答案.【解答】解:由题意可得:|x|﹣2=0,2﹣x≠0,解得:x=﹣2,则y=7,∵71=7,72=49,73=343;74=2401;75=16807,∴个位数每4个一循环,∵2015÷4=503…3,∴y2015的个位数字是:3.故答案为:3.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为2+4.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵顶点B的纵坐标为2,∠B=60°,∴AB=2,OA=6,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵C(1,0),∴CN=AC﹣AN=4﹣3=1,在Rt△DNC中,由勾股定理得:DC==2,即PA+PC的最小值是2,∴△PAC周长的最小值为:2+4.故答案为:2+4.25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1【分析】根据题意可知所求的面积等于梯形的面积,然后根据题目中数据和图形即可解答本题.【解答】解:由题意可得,S2015==,故答案为:.二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.【分析】(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据“销售3个A品牌和2个B品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.”即可列出关于m、n的二元一次方程组,解之即可得出结论;(2)(I)根据“利润=销售额﹣成本”即可得出y1,y2与x之间的函数表达式;(II)分别令y1<y2、y1=y2以及y1>y2,求出x的取值范围,此题得解.【解答】解:(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据题意,得:,解得:.答:A品牌计算器的销售单价为35元/个,B品牌计算器的销售单价为40元/个.(2)(I)根据题意得:y1=35×0.8x﹣20x=8x.当0≤x≤5时,y2=40x﹣25x=15x;当6≤x时,y2=(40﹣25)×5+[40×0.7﹣25]×(x﹣5)=3x+60.∴y2=.(II)当y1<y2时,有8x<3x+60,解得:x<12;当y1=y2时,有8x=3x+60,解得:x=12;当y1>y2时,有8x>3x+60,解得:x>12.∴当6≤x<12时,选择推销B品牌的计算器获得的利润高;当x=12时,选择推销A、B品牌的计算器获得的利润一样多;当x>12时,选择推销A品牌的计算器获得的利润高.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.【分析】(1)利用旋转的性质得BO=BO′,∠OBO′=60°,则△OBO′为等边三角形,所以OO′=OB=8,则可判断△ABC为等边三角形,所以∠ABC=60°,BA=BC,接着利用旋转的定义可把△BOC绕点B逆时针旋转60°得到△BO′A,于是得到AO′=CO=10,然后根据勾股定理的逆定理可判断△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,根据旋转的性质得∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,则可判断△CDD′为等腰直角三角形,所以∠CD′D=45°,DD′=CD=2,然后根据勾股定理的逆定理可判断△ADD'为直角三角形,∠AD′D=90°;则∠AD′C=135°,所以∠BDC=135°;(Ⅱ)利用△CDD′为等腰直角三角形得到∠CDD′=45°,再判断点B、D、D′共线得到△BD′A为直角三角形,然后利用△ABC的面积=S△CDD′+S△BD′A进行计算.【解答】解:(1)∵线段BO绕点B逆时针旋转60°得到线段BO',∴BO=BO′,∠OBO′=60°,∴△OBO′为等边三角形,∴OO′=OB=8,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴△BOC绕点B逆时针旋转60°得到△BO′A,∴AO′=CO=10,在△AOO′中,∵AO′=10,AO=6,OO′=8,而62+82=102,∴OA2+OO′2=AO′2,∴△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,∴∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,∴△CDD′为等腰直角三角形,∴∠CD′D=45°,DD′=CD=2,在△ADD′中,AD=3,AD′=1,DD′=2,而12+(2)2=32,∴D′A2+AD2=DD′2,∴△ADD'为直角三角形,∠AD′D=90°;∴∠AD′C=135°,∴∠BDC=135°;(Ⅱ)∵△CDD′为等腰直角三角形,∴∠CDD′=45°,而∠BDC=135°;∴∠CDD′+∠BDC=180°,∴点B、D、D′共线,∴△BD′A为直角三角形,∴△ABC的面积=S△CDD′+S△BD′A=×2×2+×1×(1+2)=+.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】【分析】(1)根据待定系数法求出直线AB的解析式,再利用方程组求出交点坐标C.(2)设E(t,﹣t),则D(﹣t,﹣t+4),推出DE=﹣2t+4,由△DFE是等边三角形,可得点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,解方程即可解决问题.(3)分两种情形讨论①当0<t≤1.5时,重叠部分四边形DMNE.②当1.5<t <2时,重叠部分是△DEF.分别计算即可.【解答】解:(1)设直线AB的解析式为y=kx+b则有,解得,∴直线AB的解析式为y=x+4,由解得,∴点C坐标(﹣2,2).(2)如图1中,作FH⊥DE于H.设E(﹣t,t),则D(﹣t,﹣t+4),∴DE=﹣2t+4,∵△DFE是等边三角形,∴FH=DE=﹣3t+6,∴点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,∴t=1.5,∴t=1.5s时,点F在y轴上.(3)如图2中,①当0<t≤1.5时,重叠部分四边形DMNE,m=3(﹣2t+4)﹣FM=﹣6t+12﹣(﹣4t+6)=﹣t+8.②当1.5<t<2时,重叠部分是△DEF,m=3(﹣2t+4)=﹣6t+12.综上所述,m=.。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
江苏省扬州中学教育集团树人学校2015-2016学年八年级上学期期末数学试题(含解析)
江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=93.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.124.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)二、填空题9.81的算术平方根是.10.角的对称轴是.11.的最简公分母是.12.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.13.点P(2,﹣3)关于x轴的对称点坐标为.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.16.当m=时,关于x的分式方程=﹣1有增根.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,针对四个选项进行分析即可.【解答】解:根据轴对称图形的定义可得B、C、D都是轴对称图形,只有A不一定是,故选:A.【点评】此题主要考查了轴对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=9【考点】立方根;算术平方根.【分析】利用平方根与立方根的定义求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项正确;C、=|﹣7|=7,故本选项错误;D、(﹣)2=3,故本选项错误.故选B.【点评】此题考查了平方根与立方根的定义.此题比较简单,注意熟记定义是解此题的关键.3.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.12【考点】二次根式有意义的条件.【专题】计算题.【分析】运用二次根式有意义的条件,即,必须同时根号下部分大于等于0,即x﹣2≥0,且2﹣x≥0,得出x的值,再代入,求出y的值,从而得出y x的值.【解答】解:∵x、y为实数,且,∴根据二次根式有意义的条件,,必须同时有意义,即x﹣2≥0,且2﹣x≥0,同时满足x﹣2≥0,且2﹣x≥0,x只能等于2,∴把x=2代入,解得:y=3,∴y x=32=9.则y x的值为9,故选:C.【点评】此题主要考查了二次根式有意义的条件,以及乘方运算,解决问题的关键是根据,同时有意义,即x﹣2≥0,且2﹣x≥0,从而得出x的值.4.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变【考点】分式的基本性质.【专题】应用题.【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【解答】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选A.【点评】本题考查了分式的基本性质,解题的关键是整体代入.5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】运用一次函数的增减性:当k>0时,y随x的增大而增大,即可比较大小.【解答】解:因为>0,y随x的增大而增大,又﹣1<2,所以,y1<y2.故选C.【点评】本题考查了一次函数的增减性,对于一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.本题可以通过代值计算函数值,比较大小.6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的应用;一次函数的图象;等腰三角形的性质.【分析】根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边列式求出x的取值范围,即可得解.【解答】解:根据题意,x+2y=100,所以,y=﹣x+50,根据三角形的三边关系,x>y﹣y=0,x<y+y=2y,所以,x+x<100,解得x<50,所以,y与x的函数关系式为y=﹣x+50(0<x<50),纵观各选项,只有C选项符合.故选C.【点评】本题考查了一次函数的应用,主要利用了三角形的周长公式,难点在于利用三角形的三边关系求出底边x的取值范围.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【考点】规律型:点的坐标.【分析】根据反弹时反射角等于入射角画出点的运动轨迹,表示出点的坐标,总结规律得到答案.【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.【点评】本题考查的是根据图形找出点的坐标的变化规律,正确理解题意、画出合适的示意图、表示出变化过程中各点的坐标、正确总结规律是解题的关键.二、填空题9.81的算术平方根是9.【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是:=9.故答案为:9.【点评】此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.10.角的对称轴是角平分线所在的直线.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.【点评】注意:对称轴必须说成直线.11.的最简公分母是12x3yz.【考点】最简公分母.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.12.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.13.点P(2,﹣3)关于x轴的对称点坐标为(2,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12.【考点】勾股定理;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.当m=6时,关于x的分式方程=﹣1有增根.【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣3=0,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:2x﹣m=﹣x+3,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:6﹣m=﹣3+3,解得:m=6,故答案为:6.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】先利用自变量函数解析式确定A点坐标,然后观察函数图象得到,当x>﹣时,直线y=kx+b都在直线y=﹣3x的上方,于是可得到关于x的不等式kx+b+3x>0的解集.【解答】解:把A(m,4)代入y=﹣3x得﹣3m=4,解得m=﹣,即A点坐标为(﹣,4),当x>﹣时,kx+b+3x>0,所以关于x的不等式kx+b+3x>0的解集为x>﹣.故答案为x>﹣【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)方程整理得:x2=2,开方得:x=±;(2)原式=5﹣6+4﹣4=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先根据分式混合运算的法则把原式进行化简,再在0,﹣1,2中选取一个适当的数代入求值即可.【解答】解:原式=(+)÷=×x(x﹣2)=x(x+3),∵x≠0,x≠2,∴当x=﹣1时,原式=﹣(﹣1+3)=﹣2.【点评】本题考查的是分式的化简求值,在解答此题时要注意x≠0,x≠2.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求出k的值,即可确定出y与x函数关系;(2)把x=5代入计算即可求出y的值.【解答】解:(1)设y﹣3=k(x+5),把x=2,y=17代入得:14=7k,即k=2,则y﹣3=2(x+5),即y=2x+13;(2)把x=5代入得:y=10+13=23.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为16;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】(1)根据折叠和矩形的性质得出AE=OA=BC,OD=DE,BC=OA,AB=OC,根据已知得出CE+CD+DE+AB+BE+AE=16,推出CE+BE+AB+OA+OD+CD=16即可.(2)根据勾股定理求出BE,求出CE,再利用勾股定理求得D 的坐标,待定系数法求出直线AD 的解析式即可.【解答】解:(1)∵以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,四边形OABC是矩形,∴AE=OA=BC,OD=DE,BC=OA,AB=OC,∵△ECD的周长为4,△EBA的周长为12,∴CE+CD+DE+AB+BE+AE=4+12=16,∴CE+BE+AB+OA+OD+CD=16,即矩形OABC的周长为16,故答案为:16.(2)∵矩形OABC的周长为16,∴2OA+2OC=16,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5﹣4=1,∴设DE=OD=x,则CD=3﹣x,∴CD2+CE2=DE2,即(3﹣x)2+12=x2,∴x=,∴D(0,),设直线AD的解析式为y=kx+b(k≠0),∵A(5,0),E(0,),∴,解得.∴线段AD所在直线的解析式为:y=﹣x+.【点评】本题考查的是一次函数综合题,涉及到勾股定理,矩形的性质,折叠的性质的应用,难度适中.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BA C=45°.【点评】本题考查了勾股定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?【考点】分式方程的应用.【专题】工程问题.【分析】本题的等量关系为:工作时间=工作总量÷工作效率.由题意可知,甲队施工的总工程量+乙队总工程量=1,由此可列出方程求解.【解答】解:设原计划需x个月,则甲单独完成需要x个月,乙单独完成需要(x+6)个月,由题意得4×(+)+(x﹣4)×=1,解得:x=12,经检验:x=12是原方程的解,答:原来规定修好这条公路需12个月.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.【考点】一次函数图象上点的坐标特征.【专题】新定义.【分析】(1)根据和谐点的定义,利用矩形的面积和周长公式进行证明即可;(2)利用和谐点的定义列出关于a的方程(a+3)×2=3a,由此可以求得a=6.然后把点P的坐标代入直线方程,通过方程来求b的值.【解答】解:(1)∵1×2≠2(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)由题意得,(a+3)×2=3a,∴a=6,∴P(6,3),∵点P在直线y=﹣x+b上,∴代入得3=﹣6+b,解得,b=9.综上所述,a、b的值分别是6,9.【点评】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.【考点】一次函数的应用.【分析】(1)如图,根据甲蓄水池的函数关系式求出放完水的时间,即函数图象与x轴的交点B,从而得到乙图象上的点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)联立两函数解析式,解方程组即可得到交点A的坐标,根据交点的纵坐标相等可知,两水池的水面高度相等;(3)求出甲、乙两个蓄水池的底面积的比,再求出乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比,然后根据两函数解析式列式求出x的值,然后代入甲求出相应的y的值即可.【解答】解:(1)如图,当y=0时﹣x+2=0,解得x=3.所以,点C的坐标为(3,4),设乙蓄水池中水的深度y与注水时间x之间的函数关系式为y=kx+b,则,解得.所以,函数关系式为y=x+1;(2)联立,解得.所以,交点A的坐标为(,),表示的实际意义是:当注水时间为小时,甲乙两水池的水面高度相同,为米,故答案为:当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)∵甲水池的水降低2米时乙水池的水上升3米,∴甲、乙两个蓄水池的底面积的比为3:2,∴乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比为9:2,∴x+1=(﹣x+2),解得x=2,把x=2代入y=﹣x+2得,y=米.答:甲池中水深米.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,联立两函数解析式求交点坐标,难点在于(3)求出甲、乙两蓄水池的底面积的比.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【考点】一次函数的应用;分段函数.【专题】压轴题;图表型.【分析】(1)根据销售记录每升利润为1元,所以销售利润为4万元时销售量为4万升;(2)设BC所对应的函数关系式为y=kx+b(k≠0),求出图象中B点和C点的坐标代入关系式中即可.(3)判断利润率最大,应该看倾斜度.【解答】解:解法一:(1)根据题意,当销售利润为4万元,销售量为4÷(5﹣4)=4(万升).答:销售量x为4万升时销售利润为4万元;设线段AB所对应的函数关系式为y=kx+b,则解得设线段BC所对应的函数关系式为y=mx+n,则解得(3)线段AB倾斜度最大,所以利润率最高.解法二:(1)根据题意,线段OA所对应的函数关系式为y=(5﹣4)x,即y=x(0≤x≤4).当y=4时,x=4.答:销售量为4万升时,销售利润为4万元.(2)设线段AB所对应的函数关系式为y=kx+b(k≠0),则解得设BC所对应的函数关系式为y=kx+b(k≠0),x=1(万升).又∵本月共销售10万升,∴本月总利润为:=11(万元).∴C点坐标为(10,11).将B点和C点坐标代入y=kx+b得方程组为:,解得:.(3)线段AB倾斜度最大,所以利润率最高.【点评】这是一道分段函数难度中上的考题,主要考查从图表获取信息和利用一次函数解决实际问题的能力.本题的关键是要仔细审题,找出数量变化与对应函数图象的关系,思考:险段AB,OA,BC对应的函数有哪些不同其根本原因是每升的成本,利润的变化,导致销售量的变化,正确计算出三种情形中的每升利润,是解决这一分段函数的重中之重.28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①连接CD,由直角三角形斜边上的中线性质得出CD=AD=BD,CD⊥AB,证出∠EDA=∠CDF,由ASA证明△ADE≌△CDF,即可得出结论;②连接CD、DG,由直角三角形斜边上的中线性质得出CG=EG=FG,DG=EG=FG,得出CG=DG,因此∠GCD=∠GDC,由角的互余关系得出∠GHD=∠HDG,证出GH=GD,即可得出结论;(2)分两种情况:①当E在线段AC上时,CG=GH=EG=GF,得出CH=EF=10,由(1)得出AE=CF=6,由勾股定理得出CE,即可得出结论;②当E在线段CA延长线上时,AC=EC﹣AE=8﹣6=2;即可得出结果.【解答】(1)①证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D为AB的中点,∴CD=AD=BD,CD⊥AB,∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,。
南京树人学校2015-2016学年第一学期八年级数学期末试卷
三、解答题(本大题共 10 小题,共 68 分.请在答题卷指定区域 内作答,解答时应写出文字说 ....... 明、证明过程或演算步骤) 17. (6 分)求下列各式中的 x: (1)4x =9;
2 3
(2)(x+1) =-8.
- 2 -
18. (5 分)如图,△ABC 的顶点均在格点上,利用网格线在图中找一点 O,使得 OA=OB=OC.
- 4 -
25. (8 分) 实际情境 甲、乙两人从相距 4 千米的两地同时、同向出发,甲每小时走 6 千米,乙每小时走 4 千米, 小狗随甲一起出发,每小时跑 12 千米.小狗遇到乙的时候它就往甲这边跑,遇到甲时又往 乙这边跑,遇到乙的时候再往甲这边跑„就这样一直跑下去. 数学研究 如图,折线 A-B-C、A-D-E 分别表示甲、小狗在行进过程中,离乙的路程 .....y(km)与甲行 进时间 x(h)之间的部分函数图像. (1)写出 D 点坐标的实际意义; (2)求线段 AB 对应的函数表达式; (3)求点 E 的坐标; (4)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出 为何值时 ,它离乙的路 ....x . .... 程与它离甲的路程相等?
三、解答题(本大题共 11 小题,共 88 分,解答时应写出必要的文字说明、证明过程或演算步
3 17. (1) ; (2) 3 . 2 18.略.
19.略.
x 2 1 20. (1) ; (2) . 2 y 1
21.略. 22. (1)略; (2)C(1,3) ,D(-3,-2) ,y 23. (1) (-3,0) ; (2) 3 b 2 . 24. (1) y1 60 x , y2 350 80 x , 60 x 350 80 x , x 2.5 ; (2)2 或 3 小时. 1 25. (1)出发 后,小狗追上乙; 2 (2) y1 2x 4 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年度第一学期期末考试
八年级数学试卷(2)
一、选择题(共10小题,每小题3分,共30分) 1.使2-x 有意义的x 的取值范围是( ).
A .2x <
B .2x ≤
C .2x ≥
D .2x > 2.下列运算中正确的是( ).
A .325x x x ⋅=
B .2x x x +=
C .426()x x =
D .22(2)4x x -=- 3.如图,过点C 的直线m 是多边形ABCD
E 的对称轴,其中∠A =120°, ∠ABC =110°,那么∠BCD 的度数等于( ).
A .50°
B .60°
C .70°
D .80° 4.根据分式的基本性质,分式
a
a b
--可变形为( ). A .a a b -- B .a
a b +
C .a a b --
D .a
a b
-+
5.下列各式能用完全平方公式........
分解因式的是( ). A .x 2
+2xy -y 2
B .x 2
-xy +4y 2
C .x 2
+5xy +10y 2
D .x 2
-xy +4
2
y
6.下列根式中,与3是同类二次根式的是( ) .
A.6
B.8
C.12
D.18 7.下列各整式分解因式,结果中不含有因式(1+x )的是( ).
A .12
-x
B . 122
++x x C .)2()2(x x x --- D .22-+x x
8.将代数式142-+x x 化成q p x ++2)(的形式,结果为( ). A .3)22+-x ( B .4)22-+x (
C . 5)22-+x (
D .
4)22++x ( 9.如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB , 若AB =9, AC =5,则AM = ( ). A .5
B .6
C .7
D .8
10.点P 是等边△ABC 所在平面上的一点,若点P 和△ABC 的三个顶点所组成的△P AB 、 △PBC 、△P AC 都是等腰三角形.......
,则这样的P 点的个数为( ). A .1个 B .4个 C .7个 D .10个 二、填空题(共6小题,每小题3分,满分18分)
11.计算:32)(b a -= ;化简16 = ;计算(-0.2 )2= .
12.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 . 13.一个正多边形每一个外角为36°,则这个多边形的内角和为 . 14.若则=22+-a a .
15.已知△ABC 中,∠ACB =90°,点I 为△ABC 各内角平分线
的交点,过I 点作AB 的垂线,垂足为H ,若BC =6,AC =8, AB =10,那么IH 的值为 . 16.观察:
2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;
324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-; 54326(1)(1)1x x x x x x x -+++++=-…;
根据以上各式的规律,
则20142013201220113222222221++++++++ 结果的末位数字是________. 三、解答题(共9小题,共72分) 17.(本题满分6分,每小题3分)计算:
(1)221
36
xy x y ⋅; (2)2232(5)(3)15a b bc a b -⋅-÷;
18.(本题满分9分,每小题3分)因式分解:
(1)24x -; (2)3ax 2+6axy +3ay 2; (3)(p -4)(p +1)+3p ; 19.(本题满分8分,每小题4分)解分式方程:
(1)解方程:1
23-=x x ; (2)解方程:48
122-=--x x x .
第15题图
第3题图
第9题图
11=-a
a
20.(本题满分5分)如图,在平面直角坐标系xoy 中,(15)A -,
,(10)B -,,(43)C -,. (1).在图中作出△ABC 关于y 轴对称的111A B C △
(2).写出点111A B C 、、的坐标:A 1( ),B 1( ),C 1(
);
(3).11
1A B C △的面积为 .
21.(本题满分6
分)先化简,再求值:23111x x x x -⎛⎫
÷+- ⎪--⎝⎭
,其中x =2.
22.(本题满分8分)如图,等边△ABC 中,D 、E 分别为AB 、AC 边上的两点,且AD =CE ,BE 与CD 交于点F ,连接AF , BG ⊥CD 于点G ; (1)求证:BF =2FG ;
(2)若AF ⊥BE ,则 CF
BF
= (只需写出结果,无需证明).
23.(本题满分8分)“元旦”之前,某商场根据市场调查,用32000元购进一批某种品牌的服装,上市后很快销售一空,又用68000元购进第二批这种品牌的服装,所购数量是第一批数量的2倍,但每套进价多了10元.
(1)该商场两次一共购进这种品牌的服装多少套?
(2)如果该商场这种品牌服装的每套售价相同,并且全部售完后总利润不低于20%,那么每套品牌服装售价至少是多少元?
24. (本题满分10分)将两块相同的直角三角板(∠ADB =∠BDC =30°)如图1摆放,再将另一个稍大些的同种直角三角板(Rt △PNM )如图2(P 与B 重合)放置, BM 交边AD 交于点E ,BN 交边CD 交于点F .
(1)如图2,当AE =CF 时,AE +CF EF (填“>”,“=”或“<”);
(2)如图3,当AE ≠CF 时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.
25.(本题满分12分)如图1,点A (0,b ),点B (a ,0),且a b 、(1)求A 、B 两点的坐标;
(2)若点C 是第一象限内一点,且∠OCA =45°,过点B 作BD ⊥OC 于点F ,
求证:FB =FC .
(3)如图2, F 是线段BO (不包括B 、O )上一动点,过点O 作AF 的垂线,过点
B 作x 轴的垂线,两垂线相交于点E ,G 为线段AB 的中点,连接EG 、FG 、EF ,当点F 运动时,请判断△GEF 的形状,并证明你的结论.
(P)
25题图1
25题图
D G
F
E
C
B A 第22题图 24题图3
N M F E D C B
A
24题图2 N M F E D C B A
C 图1
D B A。