大学物理13-0

合集下载

大学物理学第3版(课后答案)习题十三

大学物理学第3版(课后答案)习题十三

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝、首尾两点向方向发出的衍射线的光程差用来划分.对应于第级明纹和第级暗纹,单缝处波面可分成个和个半波带.∵由13-4 在单缝衍射中,为什么衍射角愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角愈大则值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应,而空气中为,∴,即,水中同级衍射角变小,条纹变密.如用来测光的波长,则应是光在水中的波长.(因只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由知,衍射角变大,条纹变稀; (2)变大,保持,不变,则衍射角亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时;斜入射时,,保持,不变,则应有或.即原来的级条纹现为级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为,描述的是两路相干波叠加问题,其波程A B ϕ2λ3478272)132(2)12(sin λλλϕ⨯=+⨯=+=k a 284sin λλϕ⨯==a ϕϕϕsin a ),2,1(2)12(sin =+±=k k a λϕ='='λϕk a sin n k λλϕk a =sin ϕϕ'=sin sin n ϕϕ'=n )12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k ϕsin a λϕk a =sin ϕλa k ϕλϕk a =sin λθϕk a '=-)sin (sin a λk k >'k k <'k k 'k k a 2sin ==λϕ2λϕλθk d =sin差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数成正比,所以明纹很亮;又因为在相邻明纹间有个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即可知,当时明纹缺级.(1)时,偶数级缺级;(2)时,级次缺级;(3),级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由,对同一值,衍射角. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为当时, 时,重合时角相同,所以有得13-12 单缝宽0.10mm ,透镜焦距为50cm ,用的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为半角宽度为(1)空气中,,所以2N )1(-N ⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕk a ba k '+=a b a 2=+⋅⋅⋅=,6,4,2k a b a 3=+⋅⋅⋅=,9,6,3k a b a 4=+⋅⋅⋅=,12,8,4k λϕk b a =+sin )(k λϕ∞οA )12(sin +=k a ϕ2λ6000=λoA 2=k x λλ=3=k ϕ)132(26000)122(sin +⨯=+⨯=ϕa 2xλ4286600075=⨯=x λoA 5000=λo A fnax λ2=∆na λθ1sin -=1=n(2)浸入水中,,所以有13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于点是明纹,故有,由故当,得,得 (2)若,则点是第级明纹;若,则点是第级明纹.(3)由可知,当时,单缝处的波面可分成个半波带; 当时,单缝处的波面可分成个半波带.13-14 用的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:由知,最多见到的条纹级数对应的,所以有,即实际见到的最高级次为.13-15 波长为5000的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m 33101100.51010.0105000sin ----⨯=⨯⨯=θrad 33.1=n 33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θrad P 2)12(sin λϕ+=k a ⋅⋅⋅=3,2,1k ϕϕsin tan 105.34004.13≈=⨯==-f x 3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 3=k 60003=λoA4=k 47004=λoA 60003=λoA P 347004=λoA P 42)12(sin λϕ+=k a 3=k 712=+k 4=k 912=+k 5900=λoA 5001=+b a mm 3100.2-⨯=mm 4100.2-⨯=oA λϕk b a =+sin )(m ax k2πϕ=39.35900100.24max ≈⨯=+=λba k 3max =k oA线成30°斜入射时,中央明条纹的位移为多少?解:(1)由光栅衍射明纹公式,因,又所以有即(2)对应中央明纹,有正入射时,,所以斜入射时,,即因,∴故这就是中央明条纹的位移值.13-16 波长的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在与处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>>-90°范围内,实际呈现的全部级数. 解:(1)由式 对应于与处满足:得(2)因第四级缺级,故此须同时满足解得取,得光栅狭缝的最小宽度为 (3)由当,对应3100.52001-⨯==+b a mm 6100.5-⨯m λϕk b a =+sin )(1=k f x==ϕϕtan sin λ=+f x b a 1)(62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ2100.6-⨯=m 6=cm 0=k 0sin )(=+ϕb a 0sin =≈ϕϕ0)sin )(sin (=±+θϕb a 0sin sin =±θϕ︒=30θ21tan sin ±==≈f x ϕϕ22103010602121--⨯=⨯⨯==f x m 30=cm 6000=λoA 20.0sin =ϕ30.0sin =ϕϕλϕk b a =+sin )(20.0sin 1=ϕ30.0sin 2=ϕ101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a 6100.6-⨯=+b a m λϕk b a =+sin )(λϕk a '=sin k k b a a '⨯='+=-6105.141='k 6105.1-⨯m λϕk b a =+sin )(λϕsin )(b a k +=2πϕ=max k k =∴因,缺级,所以在范围内实际呈现的全部级数为共条明条纹(在处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为(2)由缺级条件知即缺级.中央明纹的边缘对应,所以单缝衍射的中央明纹包迹内有共条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度∴ 爱里斑半径 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式∴13-20 已知入射的X 射线束含有从0.95~1.30范围内的各种波长,晶体的晶格常数为2.75,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射?解:由布喇格公式得时满足干涉相长当时, 10106000100.6106max =⨯⨯=+=--λba k 4±8±︒︒<<-9090ϕ9,7,6,5,3,2,1,0±±±±±±±=k 1510±=k ︒±=90k oA 02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm λϕk a '=sin λϕk b a =+sin )(k k a b a k k '='=+'=502.01.0⋅⋅⋅=',2,1k ⋅⋅⋅=,15,10,5k 1='k 4,3,2,1,0±±±±=k 9oA 47105.302.010500022.122.1--⨯=⨯⨯==D λθ5.1105.30500tan 24=⨯⨯=≈=-θθf f dmm oA D λθ22.1=86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm oA oA λϕk d =sin 2k d ϕλsin 2=1=k 89.345sin 75.22=⨯⨯=︒λoA时,时,时,故只有和的射线能产生强反射.2=k 91.1245sin 75.22=⨯⨯=︒λoA 3=k 30.1389.3==λoA 4=k 97.0489.3==λoA 30.13=λo A 97.04=λoA X。

大学物理(上)13相对论习题课

大学物理(上)13相对论习题课
(A) (4/5) c. (B) (3/5) c. (C) (2/5) c. (D) (1/5) c.
解: 利用时间膨胀公式

0 4s, 5s
0
1 u2 c2

1 u2 c2
0

4 5
u 3 c 5
B
2020/1/6
23
3、一匀质矩形薄板在它静止时测得其长为 a ,宽为 b ,质量为
真空中光速),则在地球坐标系中测出的m子的寿命 =
处理力学问题时,一定要搞清问题
是否满足经典极限条件(v≤0.1c)。
2020/1/6
14
例1: 有两静止质量均为 m0的粒子,一个静止,另一 个以 0.8c与静止的粒子碰撞,碰后粘在一起
运动。求:碰后合成物的静止质量 M0 ?

V
解: 能量守恒:mc 2 m0c2 Mc 2 (1)
2020/1/6
4
3.3 相对论动力学
一、相对论质量与动量
1. 相对论质量(质速关系式)
一个正确的力学定律必须满足两个前提:
第一,在洛仑兹变换下形式保持不变;
第二,在u<<c条件下,能够还原为经典力学的形式
m m
m
0
1 v2 c2
0
m 静止质量
v0 物体运动速率
m 相对论质量
(1) 当v c 时, 1,
2020/1/6
p E h h c c
12
五、相对论动力学主要结论
1.
2. 3.
质动动F量 量 力学的ddmPP基t 本方mdd程1tv(mmv02vc)12mmv0m2ddcv0t2
v
v

内蒙古科技大学马文蔚大学物理(下册)第六版答案解析

内蒙古科技大学马文蔚大学物理(下册)第六版答案解析

第九章振动习题:P37~39 1,2,3,4,5,6,7,8,16.9-4 一质点做简谐运动,周期为T,当它由平衡位置向X 轴正方向运动时,从1/2 最大位移处到最大位移处这段路程所需的时间( )A、T/12B、T/8C、T/6D、T/4分析(C),通过相位差和时间差的关系计算。

可设位移函数y=A*sin(ωt),其中ω=2π/T;当y=A/2, ω t1= π /6 ;当y=A, ω t2= π /2 ;△ t=t2-t1=[ π /(2 ω )]-[ π /(6 ω )]= π/(3ω)=T/69-回图(a)中所阿的是两个简谐运动的曲线,若这两个简谐j⅛动可叠加* 则合成的余弦振动的初相位为()3 1(A)-7W (B)—IT(C)F (D)O分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动, 它们的相位差是TT(即反相位)•运动方程分别为X I= Acos ωt利%2= -^-CoS(((;« + 瓷)・它们的振幅不同.对于这样两个简谐运动M用旋转欠量送,如图(b)很方便A求得合运动方程为x=ycos ωt.因而正确答案为(D).9-目有一个弹簧振子,振幅4 =2-0 X 10-2 m,周期T = 1.0 s,初相<p = 3ιτ∕4.试写出它的运动方程,并作出X - 1图I e - i图和a - t图.解因3=X∕T,则运动方程/ 2πf≡½cos(ωt + φ) =ACUS根据题中给出的数据得X = 2. 0 Xio '2cos( 2irf + O- 75τr) ( m ) 振子的速度和加速度分别为t) = dx∕(It = -4π × 10^2Rin(2ττt + 0. 75ττ) (m * s^,)(Z = ∂2χ∕df2 = - 8TT2X 10 ^2cos( 2τrt + 0. 75τT) ( m ∙ s ^2) X-I^V-C及Oft图如图所示.9若简谐运动方程为x=0. 10 cθs(201r∕+0. 25ιτ)(m),求:(1)振幅,频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.解(1)将x-0. IoeOS(20Trf + 0. 25Ir) ( m)与为=Λυos(<wi + ¢)比较后可得;振幅4=0. 10叫角频率e =20π√j,初相管=0. 25TF,则周期T = 2ττ∕ω = O. I s,频率P = 1∕71=10 Hz.(2) t=2s时的位移、速度、加速度分别为X =0. 10co√40π +0.25Tr) =7.07 ×W2 m1; = djj/dt = -2<ττsin(4θιτ +O.25ττ) = -4, 44 m ∙ E-Ia= d2x∕dt2= -40Ir i COS(40π +0.25TT) = -2. 79 X IO2m ∙ s^29-冋某振动质点的X"曲线如图(a)所示,试求:(1)运动方程;(2)点P对应的相位;(3)到达点尸相应位置所需的时间.第十章波动习题:P89~93 1,2,3,4,5,6,12,16,25,10-6 在驻波中,两个相邻波节间各质点的振动()A.振幅相同,相位相同B.振幅不同,相位相同C.振幅相同,相位不同D.振幅不同,相位不同答案:波函数叠加检验.(C)振幅相同,相位相反优质. 参考. 资料IQ +冋已知一波动方程为y =0. 05sin( IO J ni -2χ)(m)I(1)求波长、频率、波速和周期;(2)说明-τ =0时方程的意义,并作图表示.解(1)将题给的波动方程改写为y =0. 05cos[ 10ιτ( i -x∕5ττ}~ ττ∕2]( m) 题1。

大学物理课后习题答案13电磁感应习题

大学物理课后习题答案13电磁感应习题
结束 目录
(2) v = at
(3)
e =0.2t(V)
e
=0
0.2 (4) I = = =0.1 t (A) 2 R
e
结束 目录
13-5 在两平行导线的平面内,有一矩 形线圈,如图所示。如导线中电流I随时间 变化,试计算线圈中的感生电动势。
l2 I I d1
l1
d2
结束 目录
已知: I, I1, I2, d1, d2 。 求:ei 解: Φ =Φ 1 Φ 2 m I I1 d1+ I2 m I I1 d2+ I2 ln ln = 2 2 π π d1 d2 m I I1 d1+ I2 d2+ I2 ln ln = 2 π d1 d2 m I I1 ( d1+ I2 )d2 ln = 2 ( d2+ I2 )d1 π m I1 ( d1+ I2 )d2 d I d Φ ln ei = d t = 2 ( d2+ I2 )d1 d t π
结束 目录
已知:Φ = 6t2+7t+1(Wb) 求:e (t =2s) 解: Φ e= d = -(12 t +7) ×10-3 dt
t =2
× × × × × × × × × × × × × × × × × × ×
e = -(12×2+7)×10
=-3.1×10 (V)
-2
-3
× × ×

×
0 0 0 0
目录
2 dy 2 r m I π R 3 e dt 2y 4 y d 将 y=NR 及 v = 代入得到: dt 2 r m I π e = 32R2N 4 v
d Φ = dt =

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)
第 13 章 稳恒磁场
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R

(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,

大学物理-13 麦克斯韦方程组(1)

大学物理-13 麦克斯韦方程组(1)

H dl Id
L1
H dl Id L3
L
H
dl
S
(
j传
D t
)
dS
空间没有传导电流的情况下,有:
L
H
d
dl
S
D t
dS
比较
l
E感
dl
S
B t
dS
(Hd为Id产生的涡旋磁场)
D
B
t
t
对称美
右旋 Hd
E感 左旋
§13-2 电磁场 麦克斯韦方程组
一、电磁场
E
t
H t
James ClerkMaxwell(1831-1879)
十九世纪四十年代,关于电磁现象的三个最 基本的实验定律已经总结出来:
库仑定律(1785年) 毕奥-萨伐尔定律(1820年) 法拉第电磁感应定律(1831-1845年)
摆在物理学家面前的课题是把已发现的各个 规律囊括起来,建立电磁现象的统一理论。
“只有上帝才能创造出这样完美的诗句!”
James ClerkMaxwell (1831-1879)
麦克斯韦
是经典电磁理论的奠基 人。他在电磁理论方面的 工作可以和牛顿在力学方 面的工作相媲美。他提出 了有旋场和位移电流的概 念,建立了经典电磁场理论 的完整体系,并预言了电磁 波的存在。1873年他的«电 磁学通论»问世,这是一本 划时代的巨著。是人类探 索电磁规律的里程碑。
H
变化的电场激发磁场;
E
E
E
变化的磁场激发电场;
E
E
H
H
H
H
H
两种变化的场永远互相联系着,形成统一的电磁场
这种变化的电磁场在空间的传播就称为电磁波

大学物理下册课后答案 超全超详细

大学物理下册课后答案 超全超详细

第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。

A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。

然后使该球壳与地接触一下,再将点电荷+q 取走。

此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。

充电后,两极板间相互作用力为F 。

则两极板间的电势差为 ;极板上的电荷为 。

C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。

大学物理习题答案13波动

大学物理习题答案13波动

大学物理练习题十三一、选择题1. 下列函数f (x, t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常数。

其中哪个函数表示沿X 轴负方向传播的行波? [ A ] (A )()()bt ax A t x f +=cos , (B ))cos(),(bt ax A t x f -= (C )bt ax A t x f cos cos ),(⋅= (D )bt ax A t x f sin sin ),(⋅=2. 如图所示为一平面简谐波在t=2s 时刻的波形图,质点P 的振动方程是 [ C ](A )[]3/)2(cos 01.0ππ+-=t y p (SI) (B )[]3/)2(cos 01.0ππ++=t y p (SI) (C )[]3/)2(2cos 01.0ππ+-=t y p (SI) (D )[]3)2(2cos 01.0ππ--=t y p (SI)解:m A 01.0=,m 200=λ,s m u /200=,πλππνω222===u设P 点振动方程为)cos(φω+=t A y p ,t=2s 时 ⎪⎩⎪⎨⎧<+⨯-==+⨯=0)22cos(sin 005.0)22cos(01.0φπωφπA v y pp ,⎩⎨⎧>+⨯=+⨯0)22sin(5.0)22cos(φπφπ 322πφπ=+⨯ , 34ππφ+-= =+-=)342cos(01.0πππt y p )3)2(2cos[01.0ππ+-t3. 一平面简谐波在弹性媒质中传播,在某一瞬时,波传播到的媒质中某质元正处于平衡位置,此时它的能量是 [ C ] (A )动能为零,势能最大。

(B )动能为零,势能为零。

(C )动能最大,势能最大。

(D )动能最大,势能为零。

解:媒质中质元的能量pk W W ∆=∆)(22y A -∝ 平衡位置y=0,所以动能与势能均最大。

注意:不同于弹簧振子的动能与势能关系!二、填空题1. 一个余弦横波以速度u 沿X 轴正向传播,t 时刻波形曲线如图所示。

同济大学大学物理13相对论答案市公开课一等奖省赛课获奖课件

同济大学大学物理13相对论答案市公开课一等奖省赛课获奖课件

m s1
8.89 108 s
第2页
例2:
A
第3页
例3: 某宇宙飞船以 0.8c 速度离开地球,若地 球上接收到它发出两个信号之间时间间隔为 10 s ,则宇航员测出对应时间间隔为:
(A) 6 s
(B) 8 s
(C) 10 s
(D) 16.7 s
10s t0 1 0.82
t0 6s
第4页
例4: 一火箭固有长度为 L ,相对于地面匀速直线 运动速率为 v1 ,火箭上人从火箭后端向位于前端 靶发射子弹,子弹相对于火箭速率为 v2 ,在火箭 上测得子弹从射出到击中靶时间间隔是:
解: 按地球钟, 导弹发射时间是在火箭发射后
t1
t 12.5 s
1 v c2
3分
第15页
这段时间火箭在地面上飞行距离:
S v t1
则导弹飞到地球时间是:
t2
S v1
v v1
t1
25 s
1分
那么从火箭发射后到导弹抵达地面时间是:
t t1 t2 12.5 25 37.5 s 1分
第16页
x
那么,当 A 钟与 B 钟相遇时, S 系中 B 钟读数是

此时S 系中A 钟读数是 1 v 2 c2 x
。v
v
y y′
y′
A
x′ x
A
x′
x
t
t '
1 (v / c)2
A
B
x tC t' v
1 (v / c)2
第37页
填空题3. 一列高速火车以速率 u 驶过车站,站台 上观察者甲观察到固定于站台、相距 1m 两只机械 手在车厢上同时划出两个痕迹,求车厢上观察者乙 测出两个痕迹间距离为多少?

大学物理 实验13 分光计的调节与应用-光栅

大学物理 实验13 分光计的调节与应用-光栅

实验10 分光计的调节与应用——光栅衍射法测光波波长分光计是一种精确测量角度的光学仪器。

利用它不但能测出反射角、透明介质的折射角、光栅的衍射角、棱镜的顶角、劈尖的角度,从而确定与这些角度有关的物理量,如折射率、光波波长、色散率、光栅常数等,而且它的结构和调节方法与其它一些光学仪器(如摄谱仪、单色仪等)相类似。

因此,有必要掌握分光计的调整和使用方法。

【实验目的】1.了解分光计的主要构造及各部分的作用。

2.掌握分光计的调节要求和使用方法。

3.观察光栅衍射现象,测量汞灯在可见光范围内几条强光光谱线的波长。

【仪器用具】JJY型分光计、汞灯及电源、透射式平面刻痕光栅、平面反射镜【实验原理】1.光栅衍射的原理光的衍射现象是光的波动性的一种表现,它说明光的直线传播是衍射现象不显著时的近似结果。

研究光的衍射不仅有助于加深对光的波动特性的理解,也有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光学信息处理等。

光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距较宽的匀排光谱。

光栅不仅适用于可见光,还能用于红外和紫外光波,常用在光谱仪上。

光栅在结构上有平面光栅、阶梯光栅和凹面光栅等几种,从观察的方向又分为透射式和反射式两类。

本实验选用透射式平面刻痕光栅。

透射式平面刻痕光栅是在光学玻璃片上刻划大量相互平行、宽度和间隔相等的刻痕而制成的。

光栅上的刻痕起着不透光的作用,光线只能在刻痕间的狭缝中通过,因此,光栅实际上是一排密集、均匀而又平行的狭缝,刻痕间的距离称为光栅常数。

d=的光栅G,一束平行如图15-1所示,设有一光栅常数AB光以入射角i(入射光与光栅法线的夹角),入射于光栅上产生衍射,衍射角为ϕ(衍射光与光栅法线的夹角)。

从B点作BC垂直于入射线CA,作BD垂直于衍射线AD,则这两条相邻的入射光线的光程差为CA+AD。

如果在这个方向上由于光振动的加强而在F处产生一个明条纹,则光程差CA+AD应等于波长的整数倍,即:图15-1光栅的衍射λϕK i d =±)sin (sin ,,2,10 ±=,K (15-1) (15-1)式就是光栅方程式。

四川师范大学 大学物理 波动光学(13、14、15章)题解

四川师范大学 大学物理 波动光学(13、14、15章)题解

第十三章 光的干涉13–1 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的位相差 。

解:加入透明薄膜后,两束相干光的光程差为n 1e –n 2e ,则位相差为en n e n e n )(2)(22121-=-=∆λλλλφ13–2 如图13-1所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为21θθ和,折射率分别为n 1和n 2,若二者分别形成的干涉条纹的明条纹间距相等,则21,θθ,n 1和n 2之间的关系是 。

解:劈尖薄膜干涉明条纹间距为θλθλn n L 2sin 2≈=(θ 很小)两劈尖干涉明条纹间距相等221122θλθλn n =,所以2211θθn n =或1221n n =θθ13–3 用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: ; 。

解:因为干涉条纹的间距与两缝间距成反比,与屏与双缝之间的距离成正比。

故填“使两缝间距变小;使屏与双缝之间的距离变大。

”13–4 用波长为λ的单色光垂直照射如图13-2示的劈尖膜(n 1>n 2>n 3),观察反射光干涉,从劈尖顶开始算起,第2条明条纹中心所对应的膜厚度e = 。

解:劈尖干涉(n 1>n 2>n 3)从n 1射向n 2时无半波损失,产生明条纹的条件为2n 2e = k λ,k = 0,1,2,3…在e = 0时,两相干光相差为0,形成明纹。

第2条明条纹中心所对应的膜厚度为k = 1,即2n 2e = λ,则22n e λ=。

13–5 若在迈克耳孙干涉仪的可动反射镜移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 。

解:设迈克耳孙干涉仪空气膜厚度变化为∆e ,对应于可动反射镜的移动,干涉条纹每移动一条,厚度变化2λ,现移动2300条,厚度变化mm620.022300=⨯=λ∆e ,则λ = 539.1nm 。

大学物理ⅠPPT-电子科技大学中山学院

大学物理ⅠPPT-电子科技大学中山学院
电磁感应定律 动生电动势 感生电动势 感生电场
自感应和互感应 磁场的能量 位移电流 电磁场理论
电子科技大学中山学院
《大学物理学 》电子教案
第十章
10 – 0
10 – 1 10 – 2 10 – 3 10 – 4 10 – 5 10 – 6
机械振动和电磁振荡
第十章教学基本要求
谐运动 阻尼振动 受迫振动 电磁振荡 谐振动的合成 振动的分解 频谱
第十二章
12 – 7 12 – 8 12 – 9
波 动 光 学
单缝夫琅禾费衍射 圆孔夫琅禾费衍射 射
12 – 11 自然光和偏振光
12 – 12 起偏和检偏 12 – 14 光的双折射
电子科技大学中山学院
马吕斯定律
12 – 13 反射和折射时的偏振
5 – 1 5 – 2
5 – 3 5 – 4
电荷 电场
库仑定律 电场强度
静电场的高斯定理 静电场的环路定理 电势
5 – 5
等势面
场强与电势梯度的关系
电子科技大学中山学院
《大学物理学 》电子教案
第五章
5 – 6 5 – 7
5 – 8
静电荷的电场
静电场中的导体 电容器的电容
静电场中的电介质
5 – 9
有电介质时的高斯定理 电位移
电子科技大学中山学院
共振
《大学物理学 》电子教案
第十一章
11 – 0
11 – 1 11 – 2 11 – 3 11 – 4 11 – 5 11 – 6 11 – 7
机械波和电磁波
第十一章教学基本要求
机械波的产生和传播 平面简谐波 波的能量 电磁波 惠更斯原理 波的衍射 反射和折射 波的叠加原理 波的干涉 驻波 多普勒效应

大学物理B2_第13章_4

大学物理B2_第13章_4
T2 1 T1
2014年10月15日星期三
T1
D
W
B
p3
o V1 V4
T2
V2
C
V
V3
卡诺热机效率与工作物质无关,只与两个热源的温
度有关,两热源温差越大,则卡诺循环的效率越高。 只要提高T1或降低T2, 就可以要提高热机效率。
3
第十三章 热力学基础4
例1. 图中两卡诺循环 1
2 吗 ?
b
2014年10月15日星期三
第十三章 热力学基础4
五、熵增加原理 热二律指出,自然界所发生的物理过程是有一定方向的,那
判断过程进行方向的公共准则是什么呢? 孤立系统可逆过程 S 0 孤立系统中所发生的一切不可逆过程的熵总是增加,可逆过程 熵不变,这就是熵增加原理。 熵增加原理成立的条件: 孤立系统或绝热过程。 熵增加原理的应用:给出实际过程进行方向的判椐。 孤立系统不可逆过程 S 0
1954年国际计量大会决定:规定水的三相点定义为热力学温 度的273.16K,这样热力学温标的1个刻度值就等于水的三相点 1 的热力学温度的 273.16 12 2014年10月15日星期三
第十三章 热力学基础4
13-7 熵 熵增加原理
一、问题的引出 热力学第二定律表明,一切与热现象有关的实际过程都是不 可逆的。能否找到一个状态函数,并用这个状态函数在初、终两 态的差异或单向变化的性质来判断实际过程进行的方向呢? 这个状态函数就是熵! 二、状态函数熵的引入 Q T Q Q 1 2 1 2 1 2 可逆卡诺热机的效率为: Q1 T1 T1 T2 Q1 Q2 0 其中Q1是吸热,Q2是放热。 上式称克劳修斯等式 T1 T2 Q1 Q2 0 Q >0 吸热,Q 0 放热。 统一用热一律的符号规定: T1 T2 Q 称热温比 上式表明可逆卡诺循环热温比之和为零。 T

大学物理学—循环和效率

大学物理学—循环和效率

在定压过程ca中
Ua
Uc
5 2
(
paVa
pcVc
)
5 2
(1
20
1
40) 105
103
0.5 104 (J)
11
08:12
Aca
Va p dV
Vc
pa (Va Vc ) 1105 (20 40)103
0.2104(J)
Qca
M
C
p
,m(Ta
Tc )
M
7 2
R(Ta
Tc )
7 2
(paVa
热机:将热能转化为机械能的装置 循环过程重要特征:经历循环回到初始状态,系统内 能不变。由热力学第一定律有:
U 0, Q净=A净 (循环过程)
系统吸收的净热量等于系统对外所做的净功
在P-V图上,循环过程表示为一条闭合曲线。
沿顺时针方向进行的循环称为正
循环,如右图所示,系统在正循环中
对外做正功,即A净>0,故Q净>0;系
2015-2016 第一学期
Flash tracking the key points of last lecture
过程 热容 过程方程 吸收热量 对外做功 内能增量
等体
Cv
( dU dT
)
p 常量 T
M M mol
CV
(T2
T1)
0
M M mol CV (T2 T1)
等压
Cp
( dH dT
T2
V1
08:12
解得: (V2 ) 1 (V3 ) 1 即 V2 V3
V1
V4
V1 V4
Q2
RT2
ln V3 V4

大学物理第十三章

大学物理第十三章

3、理想气体做绝热膨胀,由初状态()00,V p 至末状态()Vp ,,试证明此过程中气体做的功为:100--=γpVV p W 。

证明:绝热过程0=Q ,所以E W ∆-=,)(0,T T C Mm W m V --=, 初状态和末状态的方程分别为:000RT Mm V P =,RT Mm PV =,解出0T 与T 代入W 有:RpV V p C W m V )(00,-=,又因为m V m p C C R ,,-=,mV m p C C ,,=γ,所以,100--=γpVV p W解:∵外界对物体做功 ∴W =300J ∵气体的内能减少了 ∴△U =-300J 根据热力学第一定律 得Q =△U - W =-300J – 300J= -600J Q 是负值,表示气体放热,因此气体放出了600J 的热量。

7.奥托(内燃机)循环是由两个等容过程和两个绝热过程组成的,试求此循的热机效率是多少? 解:)(d a V T T C Q -=ν吸)(c b V T T C Q -=ν放吸Q A =η=吸放Q Q -1,V=da cb T T T T ---1,ab :11--=γγbb a a V T V T ,dc :11--=γγcc dd V T V Tcb da T T T T =,ccb dda T T T T T T -=-,dc da cb T T T T T T =--11)(1)(--==γγdc cd dc V V V V T T ,令δ=dc V V :压缩比111--=γδη,↑δ,↑η8.逆向斯特林循环是由两个等容过程和两个等温过程组成的,则逆向斯特林循环的致冷系数是多少? 解:cd ba V V RT V V RT A lnln21νν-=1T acd V V RT Q ln 2ν='吸AQ e 吸'==cd ba cd V V RT V V RT V V RT lnlnln212ννν-,212T T T e -=11. 汽缸内贮有36g 水蒸汽(水蒸汽视为刚性分子理想气体),图4.9经abcda 循环过程,如图4.9所示.其中a -b 、c -d 为等容过程,b -c 为等温过程,d -a 为等压过程.试求: (1) A da = ? (2) ∆E ab =?(3) 循环过程水蒸汽作的净功 A =?(4) 循环效率η是多少? 解:(1)A da =p a (V a -V d )= -5.065⨯10-3J (2) ∆E ab =(M/M mol )(i/2)R(T b -T a )= (i/2)(p b -p a )V a =3.039⨯104J (3) A bc =(M/M mol )RT b ln(V c /V b )=p b V b ln(V c /V b )=1.05⨯104J A=A bc +A da =5.47⨯103J (3) Q 1=Q ab +Q bc =∆E ab +A bc =4.09⨯104J ,η=A/Q 1=13.4%12、如图(a )是某理想气体循环过程的T V -图。

大学物理题库-第13章 热力学基础

大学物理题库-第13章 热力学基础

热力学基础一 选择题01功、热量、内能,热力学第一定律及其对典型的热力学过程的应用,绝热过程1. 对于理想气体系统来说,在下列过程中的哪个过程,所吸收的热量、内能的增量和对外作功三者均为负值: [ ](A )等体降压过程(B )等温膨胀过程(C )绝热膨胀过程 (D )等压压缩过程答案:D2.一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定:(1) 该理想气体系统在此过程中吸了热.(2) 在此过程中外界对该理想气体系统作了正功.(3) 该理想气体系统的内能增加了.(4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功.以上正确的断言是:(A) (1)、(3). (B) (2)、(3).(C) (3). (D) (3)、(4).(E) (4). [ ]答案:C(060101104)3. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。

[ ]答案:C(060101106)4. 如图所示,一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分,两边分别装入质量相等、温度相同的2H 和2O 。

开始时绝热板P 固定。

然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气,且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A ) 2H 比2O 温度高;(B ) 2O 比2H 温度高;(C ) 两边温度相等且等于原来的温度;(D ) 两边温度相等但比原来的温度降低了。

答案:DV5. 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是: (A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功. (C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功. [ ] 答案:B6. 如图所示,一定量的理想气体,沿着图中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中:(A) 气体对外作正功,向外界放出热量. (B) 气体对外作正功,从外界吸热.(C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少. [ ] 答案:B7. 一定量的理想气体,其状态改变在p -T 图上沿着一条直线从平衡态a 到平衡态b (如图).(A) 这是一个膨胀过程. (B) 这是一个等体过程. (C) 这是一个压缩过程. (D) 数据不足,不能判断这是那种过程. [ ] 答案:C8. 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经②过程a′cb 到达相同的终态b ,如p -T 图所示,则两个过程中气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2.(C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ]答案:B 02 理想气体的定容摩尔热容,定压摩尔热容,迈耶公式和比热比1、在等压、等容、等温、绝热四种过程中,某单原子分子理想气体的摩尔热容依次应该是:[ ] 、[ ] 、[ ] 、[ ](A ) 0 (B ) 3R /2 (C ) 5R /2 () ∞答案:C ;B ;D ;A03循环过程,卡诺循环,热机效率,制冷系数1、一条等温线和一条绝热线不能组成循环过程的原因是:[ ](A ) 违背了热力学第一定律p OV b 1 2 a c 123412 p(B)违背了热力学第二定律(C)一条等温和一条绝热线不能相交两次(D)一个循环过程至少应由三条曲线组成答案:BC2、两个卡诺热机的循环曲线如图所示,一个工作在温度为T1 与T3的两个热源之间,另一个工作在温度为T2与T3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知:(A)两个热机的效率一定相等.(B)两个热机从高温热源所吸收的热量一定相等.(C)两个热机向低温热源所放出的热量一定相等.(D)两个热机吸收的热量与放出的热量(绝对值)的差值一定相等.[ ]答案:D3、一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3) 等温压缩到原来体积V,则此整个循环过程中(A) 气体向外界放热(B) 气体对外界作正功(C) 气体内能增加(D) 气体内能减少[]答案:A4、一定量的理想气体,起始温度为T,体积为V0.后经历绝热过程,体积变为2 V0.再经过等压过程,温度回升到起始温度.最后再经过等温过程,回到起始状态.则在此循环过程中(A) 气体从外界净吸的热量为负值.(B) 气体对外界净作的功为正值.(C) 气体从外界净吸的热量为正值.(D) 气体内能减少.[]答案:A5、一定质量的理想气体完成一循环过程.此过程在V-T图中用图线1→2→3→1描写.该气体在循Array环过程中吸热、放热的情况是(A) 在1→2,3→1过程吸热;在2→3过程放热.(B) 在2→3过程吸热;在1→2,3→1过程放热.(C) 在1→2过程吸热;在2→3,3→1过程放热.(D) 在2→3,3→1过程吸热;在1→2过程放热.[]答案: C6、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定. [ ]答案:B7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中. (A) 对外作的净功为正值. (B) 对外作的净功为负值.(C) 内能增加了. (D) 从外界净吸的热量为正值. [ ]答案:B8、如图所示,工作物质进行a Ⅰb Ⅱa 可逆循环过程,已知在过程a Ⅰb 中,它从外界净吸收的热量为Q ,而它放出的热量总和的绝对值为Q 2,过程b Ⅱa 为绝热过程;循环闭曲线所包围的面积为A .该循环的效率为(A) Q A =η . (B) Q A >η. (C) 2Q Q A +=η. (D) 121T T -=η. [ ] (式中T 1、T 2为a 、b 两点的温度)答案:C04可逆过程,不可逆过程,卡诺定理,热力学第二定律得两种表述1、 “理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]答案:C2、根据热力学第二定律可知:(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的. [ ]答案:D3、关于在相同的高温恒温热源和相同的低温恒温热源之间工作的各种热机的效率,以及它们在每一循环中对外所作的净功,有以下几种说法,其中正确的一种说法是:(A)这些热机的效率相等,它们在每一循环中对外作的净功也相等.(B)不可逆热机的效率一定小于可逆热机的效率,不可逆热机在每一循环中对外所作的净功一定小于可逆热机在每一循环中对外所作的净功.p V O a (T 1)b (T 2)ⅠⅡ(C)各种可逆热机的效率相等,但各种可逆热机在每一循环中对外所作的净功不一定相等.(E) 这些热机的效率及它们在每一循环中对外所作的净功大小关系都无法断定. [ ]答案:C05热力学第二定律的统计意义,熵的概念和熵增原理。

大学物理实验实验13 牛顿环实验

大学物理实验实验13  牛顿环实验

• 问题:你能推导利用牛顿环测量折射率的 公式吗?
难点解说
k 级暗环 r k
暗环
k R
• 测量时,只需测量 x2, x3, x4
r
2 k
k R ,
r
2 k 2 k m
r
2 k m
( k m )R
k +m级 k级
r
R
2 k m
( k m ) R k R m R r
目标: 消去e 计算环的半径 r (why ?)
k , k 1, 2, ( 加强) 2e 2 (2k 1) , k 0, 1, 2, ( 减弱) 2

r 2 R 2 (R e )2 2eR e 2
k 级暗环 r k k R
思考题:
• (1) 什么是光的干涉?产生光的干涉现象的条件是什么? • (2) 观察牛顿环为什么选用钠光灯作光源?若用白光照射将如 何? • (3) 本实验处理数据时,为什么要用逐差法?用算术平均法行 吗?为什么? • (4) 使用读数显微镜进行测量时,手轮为什么必须向一个方向 旋转,中途不可倒退? • (5) 使用读数显微镜进行测量时,为什么读数显微镜镜筒必须 自下而上移动? • 有兴趣的同学可以参考相关资料思考一下以上问题!
21
(mm2);
误差的主要来源与分析:
1.条纹的定位精度(偶然误差)
• 定位误差的大小在条纹宽度的1/5~1/10。 • 解决办法:取级次较高的环进行测量。
2.叉丝不平的影响(系统误差)
• 显微镜叉丝与显微镜移动方向不平行产生的误差。 • 解决办法:改直径测量为弦长测量。
3.平凸透镜的不稳定性(偶然误差/系统误差)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 电磁感应 电磁场
第十三章 电磁感应 电磁场
本章教学内容
13-1 电磁感应定律 13-2 动生电动势和感生电动势 13-3 自感和互感 13-5 磁场的能量 磁场能量密度 13-6位移电流 电磁场基本方程的积分形式 位移电流
பைடு நூலகம்
第十三章 电磁感应 电磁场
本章教学基本要求
掌握并能熟练应用法拉第电磁感应定律和 一 掌握并能熟练应用法拉第电磁感应定律和 楞次定律来计算感应电动势,并判明其方向. 楞次定律来计算感应电动势,并判明其方向 理解动生电动势和感生电动势的本质 动生电动势和感生电动势的本质.了 二 理解动生电动势和感生电动势的本质 了 解有旋电场的概念. 解有旋电场的概念 三 了解自感和互感的现象 会计算几何形状简 了解自感和互感的现象 自感和互感的现象,会计算几何形状简 单的导体的自感和互感. 单的导体的自感和互感 了解磁场具有能量和磁能密度的概念 磁场具有能量和磁能密度的概念, 四 了解磁场具有能量和磁能密度的概念 会 计算均匀磁场和对称磁场的能量. 计算均匀磁场和对称磁场的能量 了解位移电流和麦克斯韦电场的基本概念 五 了解位移电流和麦克斯韦电场的基本概念 以及麦克斯韦方程组(积分形式)的物理意义. 以及麦克斯韦方程组(积分形式)的物理意义
相关文档
最新文档