药学分子生物学重点

合集下载

药学分子生物学PharmaceuticalMolecularBiology-PPT课件

药学分子生物学PharmaceuticalMolecularBiology-PPT课件

绪 论
2、现代分子生物学的建立和发展阶段
从20世纪50年代初——70年代初。 1953年Watson和Crick提出的DNA双螺旋结构 模型是现代分子生物学诞生的里程碑。 开创了分子遗传学基本理论建立和发展的黄金时代。
DNA双螺旋发现的最深刻意义在于:
确立了核酸作为信息分子的结构基础;提出了 硷基配对是核酸复制、遗传信息传递的基本方式; 从而最后确定了核酸是遗传的物质基础,
1945年 基因编码蛋白质


1951年 首次蛋白质测序
1953年 Watson和Crick发现DNA的双螺旋结构
绪 论
1954年 Crick提出分子生物学的中心法则 1958年 DNA半保留复制 1961年 Nirenberg发现遗传密码 1967年 发现DNA连接酶 1973年 建立了DNA重组技术 1975年 Temin和Baltimore发现逆转录酶 1981年 Gilbert和Sanger建立DNA 测序方法 1985年 Mullis发明PCR 技术 1990年 美国启动人类基因组计划(HGP) 1994年 中国人类基因组计划启动 2019年 第一只克隆羊多莉诞生 2019年 美、英等国完成人类基因组计划基本 框架 2019年人类基因组序列图绘制成功
分子生物学发展的三个阶段:
1、诞生的准备和酝酿阶段 19世纪后期——20世纪50年代初。
绪 论
在这一阶段产生了两点对生命本质认识上的 重大突破: (1) 确定了蛋白质是生命的主要物质基础 19世纪末Buchner第一次提出酶(enzyme) 的名称,酶是生物催化剂。
1902年EmilFisher证明蛋白质结构是8年 1903年 1910年 1913年 1927年 1931年 1944年

[医学]药学分子生物学

[医学]药学分子生物学
药学分子生物学
主要内容
一 Telomere 二 Telomerase 三 Telomerase and Senescence 四 Telomerase and Cancer

端粒(Telomere)
端粒是存在于真核细胞 线状染色体末端的一小 段DNA-蛋白质复合体, 它与端粒结合蛋白一起 构成了特殊的“帽子” 结构,作用是保持染色 体的完整性和控制细胞 分裂周期。
实例
著名的知名医学实验室曾针对端粒酶逆 转衰老进行了生物实验,取一只生理年 龄相当于80岁人类的老白鼠,在充分证 明其内部器官早已衰老到无法生育的情 况下,给其定期注射端粒酶药剂,神奇 的是在数周后,这相当于80岁的老白鼠 不仅内部脏器恢复了年轻状态,甚至具 备了生育能力,成功让母鼠通过生物自 行交配,产出了后代
人类TERT(hTERT)基因为一单拷贝基因,定位于5p15. 33 , 具有7个保守序列结构域单元和端粒酶特异性结构域单元T。 破坏TERT 将消除端粒酶活性并致端粒缩短。
端粒酶逆转录酶(TERT )
端粒酶RNA(hTR)
端粒酶RNA是第一个被克隆的端粒酶 组分。端粒酶RNA含有与同源端粒DNA 序列TTAGGG的互补序列,核糖核酸酶H 切割此模板区,能使体外消除端粒酶 延长端粒的功能。
功能
(1)防止染色体DNA降解、末端融合、缺失和 非正常重组; (2)保证染色体DNA能完成复制; (3)指导染色体与核膜相连接; (4)端粒的长度可作为细胞的分裂时钟。
端粒末端序列的维持——长生不老 (1)通过端粒酶的合成延长端粒序列; (2)非端粒酶介导途径。
端粒酶(Telomerase)
一种反转录酶, 由蛋白质和RNA两 部分组成核糖蛋 白复合体,其中 RNA是一段模板序 列,指导合成端 粒DNA的重复序列 片段。

药物分子生物学及基因工程在药学中的应用

药物分子生物学及基因工程在药学中的应用

药物分子生物学及基因工程在药学中的应用药物分子生物学和基因工程是现代药学领域中的两个重要分支,它们的应用为药物研发和治疗提供了许多新的机会和可能性。

本文将探讨药物分子生物学和基因工程在药学中的应用,并介绍一些相关的研究和实践。

一、药物分子生物学的应用药物分子生物学是研究药物与生物分子之间相互作用的科学。

它通过分析药物与生物分子的结构和功能,揭示药物的作用机制和药效学特性。

药物分子生物学的应用广泛,涉及药物设计、药物筛选、药物代谢、药物传递等多个方面。

1. 药物设计药物设计是通过对药物与靶标之间的相互作用进行研究,设计出具有高效率和选择性的药物分子。

药物分子生物学为药物设计提供了许多工具和方法,如计算机辅助药物设计、分子对接、药物分子模拟等。

这些技术可以加速药物研发过程,提高研发效率。

2. 药物筛选药物筛选是从大量的化合物中筛选出具有治疗效果的候选药物。

药物分子生物学在药物筛选中发挥着重要作用。

通过对药物与靶标之间的相互作用进行研究,可以筛选出具有高亲和力和选择性的药物。

同时,药物分子生物学还可以帮助研究人员了解药物的作用机制,为药物筛选提供理论依据。

3. 药物代谢药物代谢是药物在体内的转化和消除过程。

药物分子生物学可以通过研究药物与代谢酶之间的相互作用,揭示药物代谢途径和代谢产物的生成规律。

这对于了解药物的药代动力学特性和药物相互作用具有重要意义。

4. 药物传递药物传递是将药物输送到目标组织或器官的过程。

药物分子生物学可以通过研究药物与载体之间的相互作用,开发新型的药物传递系统。

这些系统可以提高药物的生物利用度和靶向性,减少副作用和毒性。

二、基因工程在药学中的应用基因工程是通过改变生物体的遗传信息,实现对生物体性状的改良和调控。

在药学领域,基因工程被广泛应用于药物生产、基因治疗和药物检测等方面。

1. 药物生产基因工程可以通过改造微生物、植物或动物细胞,使其具有合成特定药物的能力。

这种方法被称为重组DNA技术。

生物技术制药期末复习提纲

生物技术制药期末复习提纲

生物技术制药期末复习提纲
一、分子生物学
1.克隆技术:反应机理、克隆流程以及克隆技术的应用
2.基因工程:基因分子的识别、基因突变以及基因工程的应用
3.基因转录与转译:基因转录反应的步骤、转录末端修饰以及基因转录和转译的应用
4.基因表达:基因表达技术的基本原理、转录组研究方法以及应用
二、制药技术
1.生物技术制药:生物技术制药的优势、研发流程以及生物技术制药的应用
2.双孢制药:双孢药物的原理、双孢药物的药动学以及双孢药物的应用
3.化学合成制药:化学合成制药的优势、合成流程以及化学合成制药的应用
4.生物制药:生物制药的优势、研发流程以及生物制药的应用
三、制药公司
1.实验室:实验室设备、实验室运行方式以及实验室的重要性
2.生物制造:生物制造原理、生物制造过程以及应用
3.GMP质量控制:GMP质量控制的基本原则、GMP系统的运行原理以及GMP的应用
四、再生医学
1.再生植入物:再生植入物的分类、再生植入物的研发过程以及再生植入物的应用
2.细胞培养:细胞培养技术的基本原理、细胞培养的研究方法以及细胞培养的应用
3.细胞治疗:细胞治疗的优势、细胞治疗的产品开发过程以及细胞治疗的应用
五、细胞分子生物学。

药学分子生物学

药学分子生物学

第一章基因与基因组基因(gene) :是指合成有功能的蛋白质、多肽或RNA所需的全部DNA序列(除部分病毒RNA),是基因组的一个功能单位。

基因组(genome):是指生物体一套完整的单倍体遗传信息的总和,包括所有基因和基因间的区域。

基因组的主要功能是贮存和表达遗传信息,是物种及其个体之间区别和联系的最本质生物学特征。

基因组学(genomics):是研究生物基因组的结构、功能及表达调控的一门科学。

调控序列(顺式作用元件):一个基因的调控区和其结构基因位于同一个DNA分子的相邻部位,这种调节方式称为顺式调节,相应的DNA序列成为顺式作用元件。

(1)启动子:RNA聚合酶特异性识别和结合的DNA序列。

(2)增强子:能强化转录起始的一段DNA序列。

(3)沉默子(4)终止子。

反式作用因子:通过识别或结合顺式作用元件上的核心序列从而参与调控基因转录的蛋白质。

也称转录因子。

原核生物基因组结构特点:1. 具有类核结构2. 以操纵子为功能单位/多顺反子mRNA3. 结构基因大多为单拷贝,编码序列一般不重叠4. 结构基因大多没有内含子5. 非编码序列比例约为一半6. 含可移动DNA 序列操纵子(operon)⏹操纵子是原核生物的一段DNA序列,由几个串联排列的功能相关的结构基因,加上调节序列组成的一个完整的连续的功能单位。

⏹操纵子结构通常与启动子区域有部分重叠,可通过代谢物与调节蛋白相互作用而激活或抑制基因转录,这是原核生物最常见的转录调节方式。

真核生物基因组结构特点1. 基因组庞大,为线状双链DNA2. 断裂基因3. 非编码区与单顺反子4. 大量重复序列5. 基因家族与假基因断裂基因(split gene):真核生物结构基因由外显子与内含子间隔排列,内含子在转录后被剪切掉。

基因家族(multi gene family):是来源相同,结构相似,功能相关的一组基因,由某一共同祖先基因经重复和突变产生。

假基因(pseudogene):与具正常功能基因序列相似,但无转录功能或其转录产物无功能的基因。

药学分子生物学

药学分子生物学

一、名解1.DNA的一级结构:指四种脱氧核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过3’,5’磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。

2.DNA的二级结构:即DNA的双螺旋结构,DNA分子由两条多聚脱氧核糖核苷酸链(DNA 单链)组成。

两条链沿着同一根轴平行盘绕,形成右手双螺旋结构。

两条链的走向相反。

3.DNA的三级结构:即超螺旋DNA,指DNA双螺旋通过弯曲和扭转所形成的特定构象。

4.分子杂交:两条来源不同,但具有互补序列的核酸(DNA或RNA),按碱基配对原则复性形成一个杂交体,这个过程即杂交。

5.核酸探针:指能与靶分子核酸按碱基互补原则特异性相互作用的一段已知序列的寡核苷酸或核酸。

通常是人工合成的。

6.基因芯片:又称DNA 芯片,指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于微小载体后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

7.反义核酸:根据碱基互补原理,人工合成或生命体合成的特定的DNA或RNA片段,与目的核酸序列互补结合,通过空间位阻效应或诱导RNase活性的降解作用,抑制或封闭目的基因的表达。

8.染色体:真核细胞有丝分裂期(M期)高度螺旋化的DNA蛋白质纤维,是间期染色质进一步紧密盘绕折叠的结果。

9.核小体(nucleosome):是染色质的基本结构单位,由核心颗粒(core particle)和连接区DNA (linker DNA)二部分组成10 .重叠基因:是指两个或两个以上的基因共有一段DNA序列,或指一段DNA序列成为两个或两个以上基因的组成部分。

11.断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因12.复等位基因:每条基因位于染色体的特殊位点上,称为遗传基因座。

《药学分子生物学》第5章细胞信号转导基础

《药学分子生物学》第5章细胞信号转导基础

a
7
EGFR介导的信a 号转导过程
8
MAPK家族
ERK家族:调控细胞增殖与分化
JNK/SAPK家族:参与细胞对辐射、渗透压和温度变化的 应急反应,促进细胞修复
p38MAPK家族:介导炎症和细胞凋亡等应激反应
a
9
(2)其他RTK信号转导途径
PI3K/PKB途径: (Akt途径)
a
10
a
11
(二)酪氨酸激酶偶联受体介导的信号转导
4、形成SH2结合位点的空间结构, 与具有SH2结构域的下一级信号 分子结合;
5、信号逐级传递;
a
5
2、RTK信号转导途径
(1)Ras-MAPK级联反应信号转导途径
组成内容:
信号分子:生长因子、细胞因子等信号
RTK:催化型受体
Grb-2:衔接蛋白,与RTK的SH2结构域结合
SOS:富含脯氨酸,可与Grb-2SH3结合,
大多为单次跨膜糖蛋白;
胞外区N端一般由500-850个氨基酸残基组成,为配体结合 部位;
胞内区具有酪氨酸激酶结构域,位于C端,包括ATP结合区 和底物结合区。
a
3
受体酪氨酸蛋白激酶的分子结构
a
4
(2)RTK的活化
1、结合配体后,受体形成二聚体 或寡聚体;
2、受体膜内部分发生构象变化;
3、酪氨酸残基发生自体磷酸化;
➢受体量调节
受体减量调节
a
29
(2)信号蛋白直接参与负性调节
➢I-κB ➢iSmad
a
30
思考题
G蛋白偶联受体信号通路与酶偶联受体信号通路的 相互作用?
a
31
THANK YOU!

分子生物学在药学领域的应用

分子生物学在药学领域的应用

分子生物学在药学领域的应用分子生物学,这个听起来高大上的词,其实在我们的生活中可没少发挥作用,尤其是在药学这个领域。

想象一下,你正在看一部紧张刺激的悬疑片,而药学就是那位聪明的侦探,分子生物学则是它身后强大的支持团队。

今天,我们就来聊聊这两个领域的“兄弟情”,看看分子生物学是如何为药学打下坚实的基础的。

1. 分子生物学是什么?1.1 基础知识先来普及一下分子生物学的基本概念吧。

分子生物学,顾名思义,就是研究生命的分子基础。

我们说的那些DNA、RNA和蛋白质,都是它的“主角”。

它们就像是一支交响乐团,只有各自发挥作用,才能奏出生命的华美乐章。

通过研究这些分子,科学家们能够搞清楚生命体是如何运作的,从细胞分裂到遗传信息的传递,真是精彩纷呈。

1.2 药学与分子生物学的关系那么,药学又是怎么跟分子生物学扯上关系的呢?简单来说,药学需要了解生物体内发生了什么,才能设计出有效的药物。

比如说,某种疾病的成因,往往是因为某种蛋白质出问题了。

这时候,分子生物学的“侦探”精神就派上用场了。

通过对这些分子的分析,药学可以对症下药,开发出治疗方案。

2. 分子生物学在药物研发中的应用2.1 新药的发现咱们来聊聊新药的发现。

以前,药物的研发就像是在黑暗的隧道中摸索,偶尔碰碰壁,运气好的时候才找到出路。

而如今,有了分子生物学的帮助,科学家们就像拿到了手电筒,照亮了前方的路。

通过基因组学,研究人员能够识别与疾病相关的基因,从而找到潜在的新药靶点。

换句话说,分子生物学帮我们找到了药物研发的“金钥匙”。

2.2 个性化医疗除了新药研发,分子生物学还为个性化医疗铺平了道路。

你听说过“量身定制”吗?在医疗领域,这可不是随便说说的。

通过基因检测,医生能够了解患者的遗传特征,进而制定出更适合的治疗方案。

比如,某些药物对某些人有效,但对另一些人却没用。

这就是分子生物学的魅力所在,它让我们能够根据每个人的“独特DNA”来决定最佳的药物。

3. 分子生物学的未来3.1 持续创新分子生物学在药学领域的应用,真是如火如荼,未来也充满希望。

药学分子生物学

药学分子生物学

绪论分子生物学:在分子水平上研究生命现象的科学,现代科学的共同语言。

核心:通过研究生物的物质基础——核酸、蛋白质、酶等生物大分子的结构、功能和相互作用等方面来阐明生物分子基础,探索生命奥秘。

第一章1、DNA的结构和功能(一)DNA的一级结构DNA的基本组成单位——四种核苷酸(dAMP、dCMP、dGMP、dTMP)通过3′,5′磷酸二酯键彼此连接起来的线形多聚体,以及其组成单位的数量和排列顺序。

(二)DNA的二级结构两条脱氧核苷酸链以反向平行的形式,围绕同一个中心轴盘绕形成的双螺旋结构。

分为右手螺旋(ABCD型)和左手螺旋(D)型。

(三)DNA的三级结构DNA双螺旋结构的基础上,进一步扭曲折叠形成超螺旋结构。

2、DNA的拓扑结构DNA存在的一种形式,指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。

超螺旋结构是拓扑结构的主要形式,分为正超螺旋和负超螺旋,在相应条件下可以相互转变。

3、tRNA功能tRNA的主要功能是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。

即以mRNA 为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序。

tRNA与mRNA 是通过反密码子与密码子相互作用而发生关系的。

4、核酸变性:核酸双螺旋结构氢键断裂,双链解开,但共价键并未断裂的现象。

5、Southern印迹杂交将混合DNA经限制性内切酶酶切后,用琼脂糖凝胶电泳或聚丙烯酰胺凝胶电泳分离,将胶上的DNA泡碱变性,并转移至硝酸纤维素膜上,经干烤或者红外线照射固定,再与放射性同位素标记的变性后的DNA探针进行杂交,洗涤,放射自显影。

6、核酸分子杂交存在互补序列的不同来源的核酸分子,以碱基配对方式相互结合形成DNA-DNA或DNA-RNA杂交体的过程。

7、反义核酸根据剪辑互补原理,利用人工合成或生命有机体合成的特定互补的DNA和RNA片段与目的序列核酸结合,通过空间位阻效应或诱导RNAase活性的降解作用,在复制、转录、剪切、mRNA转运以及翻译等水平上,抑制或者封闭目的基因的表达。

药学分子生物学重点

药学分子生物学重点

绪论分子生物学(molecular biology):是在分子水平研究生命现象的科学,是现代生命科学的共同语言。

核心内容是通过生物的物质基础—规律的研究来阐明生命分子基础,从而探讨生命的奥秘。

药学分子生物学(pharmaceutical molecular biology):由于分子生物学的新理论、新技术渗入到药学研究领域,从而使药物学研究以化学、药学的培养模式转化为以生命科学、药学和化学相结合的新药模式。

分子生物学的主要研究对象:核酸、蛋白质、酶等生物大分子的结构、功能及相互作用分子生物学在医药工业中的应用:1、DNA重组技术与新药研究2、药物基因组学、药物蛋白质组学与现代药物研究3、药物蛋白质组学是基因、蛋白质、疾病三者相连的桥梁科学第一章核酸的分子结构、性质和功能核酸的基本结构(重点掌握):磷酸核苷碱基戊糖引起DNA构象改变的因素:核苷酸顺序、碱基组成、盐的种类、相对湿度。

DNA双螺旋结构有利氢键不利疏水力稳定性的影响:碱基堆积力静电斥力mRNA:遗传信息真核生物的mRNA结构:5'帽子—5’非编码区—编码区— 3’非编码区—3’polyA原核生物的mRNA结构:5'非编码区—调控序列—编码区—终止子—起始调控序列—编码区—终止区—3’非编码区tRNA的二级结构:三叶草形三级结构:倒L形功能:接受氨基酸、携带氨基酸,把氨基酸转运到核糖体上,然后按照mRNA上的密码顺序装配成多肽或蛋白质。

rRNA:组成核蛋白体核酸分子杂交的原理:复性(变性的DNA重新恢复成双链的过程称为复性也叫做退火。

)反义RNA的作用机制(掌握):Ⅰ类反义RNA:直接作用于靶mRNA的S D序列和(或)部分编码区,直接抑制翻译,或与靶mRNA结合形成双链RNA,从而易被RNA酶Ⅲ降解;Ⅱ类反义RNA:与mRNA的非编码区结合,引起mRNA构象变化,抑制翻译;Ⅲ类反义RNA:则直接抑制靶mRNA的转录。

双链RNA诱导诱导RNAi的过程主要分为两个阶段(重点掌握):Ⅰ启动阶段Ⅱ执行阶段启动阶段:当细胞中由于感染等原因出现双链RNA分子时,细胞中一种称为Dicer的核酸酶就会识别这些双链RNA,并将其降解成21-23bp长的小干扰RNA(siRNA),单链siRNA与一些蛋白形成复合体,构成“RNA诱导的沉默小体”(RISC)执行阶段:当目标mRNA与RISC中的siRNA完全配对时, RISC就会切割目标RNA,并由细胞中的核酸酶将其进一步降解,从而抑制目标基因的表达病毒核酸的特点(了解):(1)病毒只含一种核酸,构成病毒体的心髓。

分子生物学与药学

分子生物学与药学

分子生物学与药学
分子生物学和药学是紧密相关的学科,两者在药物研发和药理学中扮演了重要角色。

下面是分子生物学与药学之间的关系和应用:
1.药物研发:分子生物学为药物研发提供了基本的工具和技
术。

通过对生物分子(如蛋白质、基因和信号分子)的认
识,药物研究者可以利用分子生物学的方法寻找新的药物
靶点、设计和合成药物分子,并开发新的药物筛选和评估
方法。

2.药效学研究:分子生物学的技术可以用于研究药物的作用
机制和药效学。

通过分析药物与特定分子靶点之间的相互
作用,可以深入了解药物的作用方式和药效学特性,进而
优化药物设计和开发。

3.基因治疗和基因组学:分子生物学提供了基因治疗和基因
组学的关键工具和方法。

通过分子生物学技术,可以修复、替换或调节异常基因,实现基因治疗,用于治疗遗传性疾
病和其他疾病。

此外,基因组学研究揭示了个体基因组的
变异和相关基因对药物反应和药物代谢的影响,为个体化
药物治疗提供了基础。

4.药物安全性评估:分子生物学技术可用于药物的安全性评
估。

通过在体外和体内实验中使用细胞和动物模型,分子
生物学方法可以检测药物对基因表达的影响,识别可能的
毒性效应,并评估药物代谢和药物相互作用的潜在风险。

总之,分子生物学在药学领域中广泛应用,为药物研发、药效学、基因治疗和药物安全性评估提供了重要的技术和工具。

随着科技的不断发展,分子生物学和药学的交叉应用还将进一步推动药物研发和治疗的创新。

分子生物学的主要研究内容

分子生物学的主要研究内容

分子生物学的主要研究内容分子生物学是研究生物体内分子结构、功能和相互作用的学科。

其主要研究内容包括基因结构与功能、蛋白质结构与功能、分子遗传学、分子生物学技术和分子药理学等。

基因结构与功能是分子生物学的重要研究内容之一。

基因是生物体内遗传信息的基本单位,分子生物学通过研究DNA分子的组成和结构,揭示了基因的结构与功能之间的关系。

通过基因克隆、基因表达调控和基因突变等研究手段,分子生物学揭示了基因在生物体内转录、翻译和调控过程中的作用机制,为遗传病的诊断和治疗提供了理论基础。

蛋白质结构与功能是分子生物学的另一个重要研究内容。

蛋白质是生物体内最重要的功能分子,分子生物学研究了蛋白质的合成、折叠和功能调控等方面。

通过结构生物学和蛋白质组学等研究手段,分子生物学揭示了蛋白质结构与功能之间的关系,为疾病的发生机制和药物的设计提供了理论依据。

分子遗传学是分子生物学的重要分支学科。

它研究了基因的遗传规律、遗传变异和遗传信息的传递。

通过基因突变、基因表达调控和基因组学等研究手段,分子生物学揭示了基因在遗传信息传递中的作用机制,为遗传病的预防和治疗提供了理论指导。

分子生物学技术是分子生物学研究的重要手段。

它包括基因工程技术、蛋白质工程技术和基因组学技术等。

通过这些技术手段,分子生物学可以对基因进行克隆、修饰和表达,对蛋白质进行纯化和功能分析,对基因组进行测序和比较分析,从而揭示生物体内分子结构和功能的各个方面。

分子药理学是分子生物学的应用领域之一。

它研究了药物与分子靶点之间的相互作用机制,以及药物对生物体内分子结构和功能的影响。

通过研究药物的分子作用机制和药物代谢途径,分子生物学可以指导药物的设计和优化,提高药物的疗效和安全性。

分子生物学的主要研究内容包括基因结构与功能、蛋白质结构与功能、分子遗传学、分子生物学技术和分子药理学等。

这些研究内容的深入探索和理解,为深入了解生物体内分子结构和功能的机制,以及应用于医学和农业等领域提供了重要的理论基础和技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药学分子生物学绪论基因诊断:应用分子生物学技术,检测人体某些基因结构或表达的变化,或检测病原体基因组在人体内的存在,从而达到诊断或监控疗效的目的基因治疗:通过特定的分子生物学技术,关闭或降低异常表达的基因;或将正常的外源基因导入体内特定的靶细胞以弥补缺陷基因;或将某种特定基因导入体细胞表达一产生特定的蛋白质因子,实现对疾病的治疗作用药物基因组学:研究遗传变异对药物效能和毒性的影响,开辟药物研发的领域、促进合理用药的发展、加强临床前及临床药理的研究并对药物经济学产生重要影响。

第一章核酸的分子结构、性质和功能DNA双螺旋结构DNA分子是由两条互补的多核苷酸链组成的。

两条链以一定的空间距离,在同一轴上相互盘旋起来构成双螺旋结构。

DNA双链呈反向平行。

一条链的走向从5’到3’,另一条链的走向从3’到5’。

A=T,G≡C各对碱基上下之间的距离为3.4Å,每个螺距的距离34 Å,包括10对碱基。

★中心法则DNA是自身复制的模板DNA通过转录将遗传信息传递给中间物质RNARNA通过翻译将遗传信息表达为蛋白质在某些病毒中,RNA可以自我复制,并且在某些病毒蛋白质合成中,RNA可以在逆转录酶的作用下合成DNADNA的结构与功能一级结构:DNA分子中脱氧核苷酸连接及其排列顺序,是物种间差异的根本原因1为RNA和蛋白质一级结构编码的信息2基因选择性表达的调控信息二级结构:是指通过分子间相互作用形成的双链DNA或称为双螺旋DNA三级结构:双螺旋DNA进一步扭曲盘绕则形成其三级结构,超螺旋是DNA三级结构的主要形式三链DNA: DNA分子中的单链与双链相互作用形成的三链结构1基因表达抑制物:选择性阻断靶基因,抑制其转录2阻断序列专一性蛋白质的结合,影响DNA与蛋白质结合及DNA复制、转录RNA的结构与功能mRNA是蛋白质合成的直接模板,将细胞核内DNA的碱基顺序按互补配对原则,抄录并转送到胞质的核糖体,用以决定蛋白质合成的氨基酸序列★核内不均一RNA(hnRNA):真核生物mRNA的原始转录物是分子量极大的前体,在核内加工过程中形成分子大小不等的中间产物,被称为hnRNA★开放阅读框(ORF):mRNA分子上从起始密码(AUG)开始到终止密码子结束这一段连续的核苷酸序列,即mRNA分子上的编码区。

是一个特定蛋白质多肽链的编码序列L 型5、蛋白质生物合成中识别密码子,特异性搬运氨基酸的作用二级结构三级结构单链、三叶草叶形、四臂四环在二级结构基础上进一折叠扭曲形成倒L型rRNA与核糖体蛋白构成核糖体,是蛋白生物合成的场所mRNA结合位点、起始部分的识别、密码子与反密码子的相互作用肽键形成、AA-tRNA、肽基-tRNA的结合★核小RNA和胞浆小RNA(snRNA/scRNA)snRNA—核内、与蛋白质结合在一起形成小分子核内蛋白颗粒,参与mRNA的剪切加工scRNA—蛋白质定位于内质网的信号肽识别粒子的组成成分起始RNA—作为DNA生物合成的通用引物指导RNA—RNA编辑的模板端粒酶RNA和核酶端粒:短而数目精确的串联重复DNA小片段与蛋白质够成的特殊结构端粒酶(telomerase):自身携带RNA模板的逆转录酶,催化端粒DNA合成端粒酶RNA:形成端粒重复序列的模板RNA核酶(ribozyme):具有酶作用特征的一类RNA,无需能量可以自我催化和切割,使RNA被降解而无法进行转录和翻译★DNA的变性:维持双螺旋稳定性的氢键和疏水键的断裂,DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。

断裂可以是部分的或全部的,是可逆的或是非可逆的,但不涉及DNA一级结构的变化核酸分子杂交(hybridization):具有一定互补序列的不同来源的核苷酸单链在一定条件下,按照碱基互补配对原则形成异源双链的过程Southern blot=印迹: 检测目标DNANorthern blot=印迹: 定性分析mRNA原位杂交: 在组织或细胞水平,使用标记探针与细胞内DNA或RNA杂交Western—检测Protein生物芯片—通过微电子、微加工技术在平方厘米大小的固相介质表面构建的微型分析系统,以实现对组织细胞中DNA、蛋白质及其他生物组分的快速、高效敏感地处理分析反义核酸:是一段与靶基因的某段序列互补的天然存在或人工合成的核苷酸序列。

通过碱基配对与细胞内核酸特异结合形成杂交分子,从而在复制、转录和翻译水平调节靶基因的表达反义DNA:与DNA双链中的有义链互补结合的短小DNA分子反义RNA:与mRNA完全互补的小分子RNA或寡聚核苷酸片段RNAi—在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象1、长双链RNA被细胞源性的双链RNA特异的Dicer成21-23个碱基对的短双链RNA—小干扰性RNA (small interfering RNA,siRNA)2、siRNA与细胞源性的酶和蛋白质形成复合体—RNA诱导的沉默复合体(RISC)→识别与siRNA有同源序列的mRNA,并在特异的位点将该mRNA切断。

DNA病毒—多数动物病毒、双链DNA(环型或线型)RNA病毒—RNA携带全部遗传信息。

单链、双链和逆转录病毒第二章染色质、染色体、基因和基因组染色质(chromatin):是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的复合结构染色体(chromosome):是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。

1染色单体:中期染色体由两条染色单体组成,两者在着丝粒的部位相互结合,每一条染色单体是由一条DNA双链经过螺旋和折叠而形成的。

2★着丝粒:两条染色单体相连处染色较浅向内凹陷的缢痕(主缢痕)3副缢痕:染色体臂上狭窄浅染的缢缩的部分4随体:位于染色体末端的球形染色体节段5核仁组织区:是核糖体RNA基因所在的区域,位于副缢痕区6复制子与复制起始点:7★端粒(telomere):由端粒DNA与端粒结合蛋白形成的、染色体端部的特化部分。

★端粒的功能1防止染色体DNA降解、融合和缺失,维持染色体的稳定性2稳定和保护染色体的完整性,确保遗传信息完整复制3指导染色体与核膜相连4反映细胞分裂的能力染色质和染色体的化学成分及组成化学组成(1)DNA:约占30%,每条染色体一个双链DNA分子是遗传信息的载体。

(2)蛋白质组蛋白(histone):呈碱性,结构稳定;与DNA结合形成、维持染色质结构,与DNA含量呈一定的比例非组蛋白:呈酸性,种类和含量不稳定;作用还不完全清楚,可能与染色质结构调节有关,在DNA 遗传信息的表达中有重要作用(3)少量的RNA脱氧核糖核酸(DNA)1非重复序列:一个基因组中只有一个拷贝,是编码蛋白质和酶的结构基因2轻度重复序列:一个基因组中有2-10个拷贝的序列3中度重复序列:重复数十至数万(<105)次的重复顺序,在基因组中所占比例在不同种属之间差异很大,一般约占10-40。

大多不编码蛋白质,编码各种rRNA和tRNA及结构基因。

4高度重复序列:在基因组中重复频率高,可达百万(106)以上,不转录,多位于着丝粒处,是异染色质组分,可能与染色体稳定有关。

有丝分裂—细胞间接分裂的一种方式,由多种过程复合而成,藉此二子核接受原种属体细胞的特征,即相等数的染色体,得以有丝分裂,集体成长并更新细胞减数分裂—染色体复制一次而细胞连续分裂两次的分裂方式,其二倍体的原始生殖细胞染色体复制一次之后,要经过两次细胞分裂,结果子细胞(即生殖细胞)所含的染色体数目比亲代细胞减少一半。

染色体畸变是因为先天性染色体数目异常或(和)结构畸变数目畸变:整倍体:增加或减少整套的染色体①多倍体②三倍体非整倍体:增加或减少一条或几条染色体①缺体②单体③三体结构畸变:缺失、重复、倒位、易位基因(Gene) 是核酸分子中贮存遗传信息的遗传单位。

是DNA长链上一个由特定核苷酸组成并具有特定遗传功能的片段,包括编码蛋白质或RNA的核酸序列和调控序列。

特点:1能忠实地复制自己,以保持生物的基本特征2能够“突变”,致病或给自然选择带来原始材料1顺反子:可以编码一条多肽链的的一个遗传功能单位。

一个顺反子决定一条多肽链2重叠基因:是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。

3断裂基因:真核生物的基因是不连续的,其编码区(外显子),被一些非编码区(内含子)所隔断4假基因:与有功能的基因在核苷酸顺序的组成上非常相似,却不具有正常功能的基因。

5癌基因:人类或其他动物细胞(以及致癌病毒)固有的一类基因,又称转化基因。

是具有潜在的促发肿瘤发生活性的基因6抑癌基因:是指某种基因当其受阻抑、失活、丢失、或其表达产物丧失功能可导致细胞恶性转化基因组单倍体细胞中所含有的全部遗传信息,包括编码和非编码序列在内的全部DNA分子。

★原核生物基因组特征1基因组通常仅由一条双链DNA组成。

2基因组中只有一个复制起始点3基因是连续的,没有内含子4功能相关的基因高度集中构成操纵子5DNA大部分是用于编码蛋白质6编码蛋白质的基因通常为单拷贝7结构基因的重复序列少8基因组中存在可移动的DNA序列★真核生物基因组特点1真核基因组的复杂性:基因组大、主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传成分(如线粒体DNA等)2真核生物是一个结构基因转录生成一条mRNA,即mRNA是单顺反子,基本上没有操纵子的结构3结构基因所占区域远小于非编码区4结构基因大多为断裂基因,即有外显子(exon)和内含子(intron),转录后需经剪接去除内含子,才能翻译获得完整的蛋白质5基因组中存在大量重复序列高度重复序列:①反向重复序列:两个相同顺序的互补拷贝在同一DNA链上反向排列而成,与复制、转录的调控有关。

②卫星DNA:一般较短,采用密度梯度离心后,分布于DNA主带的旁边,参与复制水平的调节、表达的调控、参与染色体配对中度重复序列:重复次数在10~105,散布于基因组中。

一部分编码rRNA、tRNA、组蛋白及免疫球蛋白,另一些与基因调控有关Alu家族:哺乳动物中含量最丰富,有种属特异性KpnI家族:灵长类所特有,用作天然标记6基因家族:来源相同、结构相似、功能相关的基因构成串联重复基因簇:编码RNA的基因串联排列分散式基因簇:分布在不同部位,编码干扰素、珠蛋白、生长激素等假基因:不能产生有功能基因产物的基因★病毒和噬菌体基因组特征1基因组很小,但是不同的病毒之间其基因组相差大2基因组可以由DNA或RNA组成,但只能是其中之一3 RNA病毒基因组可以由数条不相连的RNA链组成4含有启动子和操纵基因5存在基因重叠6可以形成多顺反子mRNA7噬菌体基因是连续的,真核细胞病毒基因是不连续的第三章可移动的遗传因子(转座子)和染色体外的遗传因子转座子:是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。

相关文档
最新文档