山东省海洋与渔业科技成果汇编表

合集下载

海洋环境科学类书籍

海洋环境科学类书籍
8
16开
林炳尧
潜水气体
58.00
2007.09
16开
李晓虹
第二十届全国水动力学研讨会文集
160.00
2007.08
16开
朱德祥 周连第 杨显成 孙西欢
水波相似与模拟
68.00
2006-06
7
16开
左其华
紊流及泥沙运动的随机理论及三维数学模型(英文)
50.00
(估)
2006-04
1
16开
(精)
李元亚
河口科学研究与实践的综合方法
18.00
2005.09
30
16开
高正荣等
合成孔径雷达海面风场海浪和内波遥感技术
40.00
2005.09
10
16开
杨劲松
河流海岸模型测试技术
68.00
2004.11
7
16开
蔡守充等
海岸带污水排放工程环境设计导论
48.00
2004.07
10
16开
孟伟等
波浪对海上建筑物的作用(第二版)
45.00
2002.11
中国近海海面热平衡
66.00
2008.01
7
16开
陈锦年

海洋溢油生态损害评估的理论、方法及案例研究
88.00
2008.01
5
16开
高振会
杨建强
王培刚
海洋保护区——概念与应用
58.00
2007.11
7
16开
刘洪宾刘康
中国沿海甲藻孢囊与赤潮研究
40.00
2007.07
10
16开
王朝晖编著
中国海岸带灾害地质特征及评价

MC1R基因多态性与杜黑猪毛色关系研究

MC1R基因多态性与杜黑猪毛色关系研究

㊀山东农业科学㊀2023ꎬ55(10):152~157ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.10.021收稿日期:2023-01-10基金项目:山东省农业良种工程项目(2020LZGC012ꎬ2022LZGCQY007)ꎻ枣庄市自主创新及成果转化项目(2022GH-27)ꎻ山东省生猪产业技术体系(SDAIT-08-03)作者简介:巩静(1999 )ꎬ女ꎬ硕士研究生ꎬ主要从事猪遗传育种与繁殖研究ꎮE-mail:1578433175@qq.com通信作者:王继英(1977 )ꎬ女ꎬ博士ꎬ研究员ꎬ研究方向为猪遗传育种与繁殖ꎮE-mail:jnwangjiying@163.com耿立英(1974 )ꎬ女ꎬ博士ꎬ教授ꎬ研究方向为动物遗传育种与繁殖ꎮE-mail:rosegengly@126.comMC1R基因多态性与杜黑猪毛色关系研究巩静1ꎬ2ꎬ杨晴1ꎬ2ꎬ王艺盼3ꎬ王彦平2ꎬ朱晓东3ꎬ张传生1ꎬ耿立英1ꎬ王继英2(1.河北科技师范学院动物科技学院ꎬ河北秦皇岛㊀066600ꎻ2.山东省农业科学院畜牧兽医研究所/山东省畜禽疫病防治与繁育重点实验室/农业农村部畜禽生物组学重点实验室ꎬ山东济南㊀250100ꎻ3.枣庄黑盖猪养殖有限公司ꎬ山东枣庄㊀277100)㊀㊀摘要:黑色素皮质素受体1(MC1R)基因是调控哺乳动物毛色的一个关键基因ꎮ为了解杜洛克和枣庄黑盖猪杂交组合(简称杜黑猪)中MC1R基因多态性与毛色表型的关系ꎬ本研究以390头杜黑猪F2代个体和18头枣庄纯种黑盖猪为研究对象ꎬ对F2代群体进行毛色表型类型分组ꎬ利用液相芯片捕获测序技术鉴定MC1R基因中影响毛色的10个SNP位点的基因型ꎮ结果表明ꎬ杜黑猪F2代群体出现了毛色分离ꎬ其中ꎬ75.13%的个体为全黑色ꎬ13.08%的个体为棕红色ꎬ其余11.79%的个体呈现混杂色ꎬ包括黑红条纹㊁棕色偏黄㊁棕色偏白等ꎮ测定的5个多态SNP位点中ꎬED1等位基因3个SNP位点(rs45435031㊁rs45434630㊁rs45434629)的突变纯合型(GG㊁GG㊁TT)个体表现为黑红条纹ꎬ野生纯合型(AA㊁AA㊁CC)个体表现为棕红色ꎬ杂合基因型(GA㊁GA㊁TC)个体大部分(80.83%)表现为黑色ꎬ少部分(19.17%)为黑色红纹㊁棕色偏黄和棕色偏白ꎮe等位基因2个SNP位点(rs45435032㊁rs321432333)的突变纯合基因型(AA㊁TT)个体全部为棕红色ꎬ野生纯合基因型(GG㊁CC)个体全部为黑色毛色ꎬ杂合基因型(GA㊁TCꎬAA㊁TCꎬGA㊁TT)大部分(80.99%)为黑色毛色ꎬ少部分个体(19.01%)毛色为黑红条纹㊁棕色偏黄和棕色偏白ꎮHaploView单倍型分析表明5个SNP高度连锁ꎬ位于1个单倍型块内ꎮ本研究结果表明ꎬ杜黑猪毛色黑色对棕红色为不完全显性ꎬ利用MC1R基因的5个SNP标记进行毛色分子标记辅助选择可快速剔除隐性棕红色等位基因ꎬ使杜黑猪新品种的毛色迅速固定为全黑色ꎬ以加速新品种培育进程ꎮ关键词:杜黑猪ꎻ毛色ꎻMC1R基因ꎻSNPꎻ基因型中图分类号:S828.13㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)10-0152-06RelationshipbetweenPolymorphismofMC1RGeneandCoatColorofDuheiPigsGongJing1ꎬ2ꎬYangQing1ꎬ2ꎬWangYipan3ꎬWangYanping2ꎬZhuXiaodong3ꎬZhangChuansheng1ꎬGengLiying1ꎬWangJiying2(1.CollegeofAnimalScienceandTechnologyꎬHebeiNormalUniversityofScienceandTechnologyꎬQinhuangdao066600ꎬChinaꎻ2.InstituteofAnimalScienceandVeterinaryMedicineꎬShandongAcademyofAgriculturalSciences/ShandongKeyLaboratoryofAnimalDiseaseControlandBreeding/KeyLaboratoryofLivestockandPoultryMulti ̄omicsꎬMinistryofAgricultureandRuralAffairsꎬJinan250100ꎬChinaꎻ3.ZaozhuangHeigaiPigBreedingCo.ꎬLtd.ꎬZaozhuang277100ꎬChina)Abstract㊀Themelanocortin ̄1receptor(MC1R)geneisakeygeneregulatingmammaliancoatcolor.InordertounderstandtherelationshipbetweenthepolymorphismofMC1RgeneandcoatcolorofthecrossbredpigsfromDurocandZaozhuangHeigaipigs(Duheipigsforshort)ꎬinthisstudyꎬthecoatcolorof390F2Du ̄heipigswererecordedꎬand10SNPlociofMC1Rof390F2Duheipigsand18ZaozhuangHeigaipigsweregenotypedbytargetsequencingwithliquidchip.TheresultsshowedthatthecoatcolorofF2pigswassepara ̄ted.Specificallyꎬ75.13%oftheF2pigswereblackꎬ13.08%ofthemwerebrownꎬandtheother11.79%showedmixedcolorsuchasblackwithredstripesꎬyellowishbrownandwhitishbrown.Amongthefivemeas ̄uredpolymorphicSNPsꎬpigswithmutanthomozygousgenotypes(GGꎬGGꎬTT)at3SNPloci(rs45435031ꎬrs45434630ꎬrs45434629)ofED1alleleexhibitedblackcoatcolorꎬwhilethosewithwildhomozygousgeno ̄types(AAꎬAAꎬCC)exhibitedbrowncoatcolor.Themajority(80.83%)ofheterozygousgenotypepigs(GAꎬGAꎬTC)showedblackcoatcolorꎬandtheother(19.17%)showedblackwithredstripesꎬyellowishbrownandwhitishbrown.Pigswithmutanthomozygousgenotypes(AAꎬTT)at2SNPloci(rs45435032㊁rs321432333)ofealleleexhibitedbrowncoatcolorꎬwhilethosewithwildhomozygousgenotypes(GGꎬCC)exhibitedblackcoatcolor.Themajority(80.99%)ofheterozygousgenotypepigs(GAꎬTC)showedblackcoatcolorꎬandtheother(19.01%)showedblackwithredstripesꎬyellowishbrownandwhitishbrown.Hap ̄loViewhaplotypeanalysisshowedthatthefiveSNPswerehighlylinkedꎬandlocatedinonehaplotypeblock.TheresultsofthisstudyindicatethatblackcoatcolorisnotcompletelydominantoverbrownishredcoatcolorinDuheipigsꎬmarkerassistedselectionbasedonthefiveSNPsofMC1RcouldquicklyeliminaterecessivebrowncoatcolorallelesandfixtheblackcoatcolorinthebreedingofDuheipigsꎬandfinallyacceleratethecultivationofthenewvarieties.Keywords㊀DuheipigꎻCoatcolorꎻMC1RgeneꎻSNPꎻGenotype㊀㊀毛色是猪的重要品种特征之一[1]ꎬ一直以来备受人们关注ꎮ在养猪生产中ꎬ毛色被广泛应用于评判品种的纯度㊁遗传稳定性㊁亲缘关系ꎬ以及在配套系培育中确定亲本的杂交组合类型等方面ꎮ揭示猪毛色的遗传机制及影响毛色的相关基因的遗传规律ꎬ对猪的育种具有重要意义[2-3]ꎮ毛色不同的品种或品系杂交时ꎬF1代呈现显性毛色ꎬF2代群体则会出现毛色分离[4]ꎬ选择毛色一致性强的种猪ꎬ淘汰毛色分离严重的个体ꎬ提高群体的整齐度ꎬ是新品种或配套系培育过程中的重要步骤[5]ꎮ哺乳动物毛色的形成是由一系列与黑色素细胞种类与形成有关的生理㊁生化反应的最终结果ꎬ遗传机制较复杂ꎮ猪的毛色大致分为野生型毛色㊁纯黑色㊁纯白色㊁棕红色㊁两头乌㊁花猪等ꎮ虽然属于质量性状ꎬ由少数几对基因决定ꎬ但由于基因之间有上位效应等遗传互作效应ꎬ调控毛色的基因及其作用机制尚未完全搞清楚ꎮ黑色素皮质素受体1(MC1R)基因是调控哺乳动物毛色的一个关键基因[6-8]ꎮMC1R是G蛋白偶联受体家族的一员ꎬ由Extension基因座编码ꎬ通过与其配体促进剂α-黑素细胞刺激激素(α-MSH)或颉颃剂刺鼠蛋白(Agouti)的竞争性结合分别形成真黑素或褐黑素ꎬ从而影响猪毛色表型[9]ꎮKijas等[10-11]在欧洲野猪㊁欧洲大黑猪㊁中国梅山猪㊁汉普夏猪㊁大白猪㊁皮特兰猪及杜洛克猪的MC1R基因部分序列中发现8个突变构成5种等位基因ꎬ其中E+对应于野猪的灰毛色ꎬED1对应于欧洲大黑猪和中国梅山猪的黑毛色ꎬED2对应于汉普夏猪的黑毛色ꎬEp对应于皮特兰猪的黑色斑点及大白猪的白毛色ꎬe对应于杜洛克猪的棕红毛色ꎮFang等[12]在31头欧洲家猪和19个亚洲品种家猪及15头亚欧野猪的MC1R基因编码区内共发现14个突变ꎬ其中包括Kijas等发现的8个突变ꎮ枣庄黑盖猪是山东省著名地方品种ꎬ毛色为351㊀第10期㊀㊀㊀㊀㊀㊀㊀㊀㊀巩静ꎬ等:MC1R基因多态性与杜黑猪毛色关系研究纯黑色ꎬ具有肉质鲜嫩㊁产仔数多㊁抗病能力强㊁适应性强等优良特征ꎬ但其生长缓慢ꎬ产肉性能和胴体瘦肉率低[13-14]ꎮ利用杜洛克对枣庄黑盖猪进行杂交改良ꎬ瘦肉率㊁肉质性能及胴体性能均明显提高ꎬ为枣庄黑盖猪杂交改良的优良杂交组合之一ꎮ我国多数黑猪毛色黑色对棕红色呈显性遗传ꎬ杜洛克猪与枣庄黑盖猪(以下简称杜黑猪)F1杂交后代的毛色全部为全黑色ꎬF2代群体出现了毛色分离ꎮ常规育种对猪毛色的选育是横交固定后ꎬ通过持续的世代选育逐渐剔除后代中毛色出现分离的个体ꎬ周期长㊁效率低ꎬ严重影响和制约了专门化品系选育和新品种(配套系)育种进程ꎮ本研究以杜黑猪F2杂交群体和枣庄纯种黑盖猪为研究对象ꎬ对F2群体进行毛色表型类型分组ꎬ利用液相芯片捕获测序技术[15]鉴定MC1R基因中影响毛色的10个SNP的基因型ꎬ研究不同基因型与毛色表型的关系ꎬ筛选可用于毛色分子标记辅助育种的SNP位点ꎬ为快速建立毛色稳定的杜黑猪新品种培育体系奠定基础ꎮ1㊀材料与方法1.1㊀试验动物及毛色表型收集试验动物包括390头杜黑猪F2杂交后代和18头枣庄纯种黑盖猪ꎬ均来自枣庄黑盖猪养殖有限公司ꎮ将毛色分为全黑色(枣庄黑盖猪毛色)㊁棕红色(杜洛克毛色)㊁黑红条纹㊁棕色偏黄色㊁棕色偏白色等类型ꎬ对F2代群体打耳号时记录每头试验猪的毛色ꎬ按毛色表型类型进行分组ꎬ统计每组毛色的个体数ꎮ1.2㊀基因组提取及SNP基因型检测采集试验猪耳组织放入装有75%乙醇的离心管中ꎬ-20ħ冰箱存储ꎮ利用血液/组织/细胞提取试剂盒[天根生化科技(北京)有限公司]提取耳组织基因组DNAꎮ经Nanodrop(260/280在1.7~2.1范围之间ꎬ浓度>50ng/mL)和0.8%琼脂糖凝胶电泳(条带清晰)检测合格后ꎬ委托博瑞迪生物技术有限公司利用定制的液相芯片进行基因组SNP测定ꎮ该液相芯片为山东省农业科学院畜牧兽医研究所猪繁育饲养团队集成了近年来候选基因㊁功能基因组研究方面公开发表的功能SNP㊁Del㊁Insertion等标记ꎬ采用博瑞迪GBTS技术体系中的GenoBaits技术[15]设计并优化开发的一款中低密度(6K)猪功能标记液相芯片ꎬ其中MC1R基因中影响毛色的10个SNP位点信息参考Fang等[12]ꎬ详见表1ꎮ㊀㊀表1㊀MC1R基因10个SNPs位点信息突变名称突变ID基因组位置密码子碱基变化氨基酸变化突变类型X301rs3377647236_181285301GңATyrңTyr同义突变X243rs3214323336_181461243CңTAlaңThr错义突变X166rs7864416736_181692166GңAArgңTrp错义突变X164rs454350326_181697164GңAAlaңVal错义突变X124rs3269215936_181818124CңTAspңAsn错义突变X122rs7052224336_181824122CңTValңIle错义突变X121rs454350316_181825121AңGAsnңAsn同义突变X117rs6917298096_181837117CңTGlnңGln同义突变X102rs454346306_181883102AңGLeuңPro错义突变X95rs454346296_18190595CңTValңMet错义突变1.3㊀数据处理与分析利用MicrosoftExcel软件对杜黑猪毛色表型类型进行统计分析ꎮ利用PLINKv1.90软件[16]从液相芯片数据中调取出MC1R基因10个SNP的基因型数据ꎬ并计算基因型频率㊁基因频率和哈代温伯格平衡显著性ꎮ使用HaploView4.1软件[17]对SNP进行单倍型分析ꎮ2㊀结果与分析2.1㊀杜黑猪F2代群体毛色表型分析杜黑猪F2代个体出现了毛色的分离ꎮ其中ꎬ与母本(枣庄黑盖猪)全黑色毛色一致的个体最451㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀多(293头)ꎬ占总数的75.13%ꎻ呈现父本(杜洛克)棕红色毛色的51头ꎬ占总数的13.08%ꎻ其余46头(11.79%)毛色呈现混杂颜色ꎬ其中5头呈黑红条纹ꎬ另外41头毛色既不是黑色也不是棕红色ꎬ而是呈棕色偏黄(24头)或棕色偏白(17头)ꎮ2.2㊀杜黑猪F2代MC1R基因SNP基因型和等位基因频率分析本研究测定的MC1R的10个SNP中ꎬ5个SNP(rs337764723㊁rs786441673㊁rs326921593㊁rs705222433㊁rs691729809)在杜黑F2代群体中只有一种基因型ꎬ为单态SNPꎮ另外5个多态SNP的基因型和等位基因信息详见表2ꎮ可以看出ꎬ5个多态SNP的等位基因频率均在0.5左右ꎬ处于哈代温伯格平衡状态(P>0.05)ꎬ这与试验猪为未经毛色选择的F2代群体有关ꎮ另外ꎬ5个多态SNP不同基因型的个体数基本一致ꎬ推测可能存在紧密连锁ꎮ利用HaploView4.1进一步分析了5个多态SNP单倍型ꎬ定义了1个单倍型块(图2)ꎮ单倍型块中各个方块的颜色由浅至深ꎬ表示变异位点连锁程度由低到高ꎬ深红色表示完全连锁ꎮ结果显示ꎬ组成5个SNP的各个方块均为深红色ꎬ表示它们紧密连锁在一起ꎮ单倍型CGGGT的频率为0.526ꎬ含有该单倍型的个体全部为黑色毛色ꎬ单倍型TAAAC的频率为0.469ꎬ含有该单倍型的个体全部为棕红色毛色ꎮ图1㊀杜黑猪F2代群体毛色统计㊀㊀表2㊀杜黑猪MC1R基因多态SNP位点等位基因和基因型信息突变名称突变ID基因型个体数㊁频率等位基因频率哈代温伯格平衡P值X243rs321432333CCTCTTCT95(0.2436)208(0.5333)87(0.2231)0.51030.48970.2283X164rs45435032AAAGGGAG87(0.2231)207(0.5308)96(0.2462)0.48850.51150.2687X121rs45435031AAGAGGAG87(0.2231)206(0.5282)97(0.2487)0.48720.51280.3136X102rs45434630AAGAGGAG87(0.2231)208(0.5333)95(0.2436)0.48970.51030.2283X95rs45434629CCTCTTCT87(0.2231)209(0.5359)94(0.241)0.49100.50900.1924图2㊀MC1R基因5个多态SNP位点单倍型块2.3㊀毛色与基因型关系分析按照Kijas等[10]的划分标准ꎬ本研究中的5个多态SNP位点可以划分为ED1和e等位基因ꎬ其中ED1等位基因包含rs45435031㊁rs45434630㊁rs454346293个位点ꎬe等位基因包含rs45435032㊁rs3214323332个位点ꎮED1等位基因SNP位点中ꎬ突变纯合基因型(GG㊁GG㊁TT型)的F2代杜黑猪全部为黑色毛色ꎬ野生纯合基因型(AA㊁AA㊁CC)为棕红色ꎬ杂合基因型(GA㊁GA㊁TC)个体中大部分(80.83%)为黑色毛色ꎬ少部分个体(19.17%)毛色为黑红条纹㊁棕色偏黄和棕色偏白(表3)ꎮe等位基因SNP位点中ꎬ突变纯合基因型(AA㊁TT)个体全部为棕红毛色ꎬ野生纯合基因型(GG㊁CC)个体全部为黑色毛色ꎬ杂合基因型(GA㊁TCꎬAA㊁TCꎬGA㊁TT)大部分个体551㊀第10期㊀㊀㊀㊀㊀㊀㊀㊀㊀巩静ꎬ等:MC1R基因多态性与杜黑猪毛色关系研究(80.99%)为黑色毛色ꎬ少部分个体(19.01%)毛色为黑红条纹㊁棕色偏黄和棕色偏白(表3)ꎮ5个多态SNP位点在枣庄黑盖猪群体内均只有2种基因型ꎮED1等位基因有突变纯合基因型和杂合基因型ꎬ频率分别为83.33%和16.67%ꎻe等位基因有野生纯合基因型和杂合基因型ꎬ频率分别为83.33%和16.67%(表4)ꎮ㊀㊀表3㊀杜黑猪F2代毛色与SNP基因型关系毛色rs321432333基因型个体数rs45435032基因型个体数rs45435031基因型个体数rs45434630基因型个体数rs45434629基因型个体数黑色CC95GG96GG97GG95TT94黑色TC196GA195GA194GA196TC197黑红条纹TC5GA5GA5GA5TC5棕红色TT53AA53AA53AA53CC53棕色偏黄TC22AA22GA22GA22TC22棕色偏黄TT2GA2GA2GA2TC2棕色偏白TC12AA12GA12GA12TC12棕色偏白TT5GA5GA5GA5TC5㊀㊀表4㊀枣庄黑盖猪毛色与SNP基因型关系毛色rs321432333基因型个体数rs45435032基因型个体数rs45435031基因型个体数rs45434630基因型个体数rs45434629基因型个体数黑色CC12GG12GG12GG12TT12黑色TC6GA6GA6GA6TC6等位基因频率/%C83.33G83.33G83.33G83.33T83.33T16.67A16.67A16.67A16.67C16.673㊀讨论与结论我国绝大多数地方猪种毛色均为黑色ꎬ而我国消费者对黑猪肉具有一种与生俱来的青睐感ꎮ市场需求决定育种目标ꎬ因此ꎬ利用国内外两类基因资源ꎬ培育优质高效㊁适应不同市场需求的专门化品系并配套生产黑色优质风味猪成为猪育种领域的主攻目标ꎮ然而ꎬ很多黑毛色的专门化品系选育和新品种(配套系)培育过程中后代会出现明显毛色分离ꎬ从而影响产品经济价值ꎮ研究毛色关键基因的突变位点与毛色类型的关系ꎬ寻找目标毛色的分子标记ꎬ可利用分子标记辅助育种快速建立育种目标毛色类型种群ꎮMC1R基因位于E座位ꎬ定位在猪第6号染色体短壁的末端[18]ꎮKijas等[10]研究认为ED1等位基因rs45435031㊁rs45434630和rs45434629对应于欧洲大黑猪和中国梅山猪的黑毛色ꎬ其中ꎬrs45435031为同义突变ꎬrs45434630和rs45434629是错义突变ꎬ使所编码的氨基酸Leu和Val突变为Pro和Metꎮ本研究中枣庄黑盖猪毛色为黑色ꎬ大部分个体(83.33%)为ED1等位基因突变基因型(GG㊁GG和TT)ꎬ与邓素华[19]㊁师科荣[20]等的研究结果相一致ꎬ表明我国地方猪种的黑毛色可能主要由显性黑等位基因ED1调控ꎮ杜黑猪群体中ꎬED1等位基因突变基因型个体全部表现为黑色毛色ꎬ杂合基因型(GA㊁GA和TC)个体中大部分(80.83%)表现为黑色毛色ꎬ其他表现为黑红条纹㊁棕色偏黄和棕色偏白ꎬ表明黑色对棕红色为不完全显性ꎬ与张建[21]㊁曾检华[22]等的报道一致ꎮrs45435032和rs3214323332个SNP位点皆为错义突变ꎬ使Ala分别突变为Thr和Valꎬ对应于Kijas等[10]研究中的等位基因eꎬ其突变纯合基因型(AA和TT)决定了杜洛克猪的棕红毛色ꎮ本研究中ꎬ因为没有采集杜黑杂交猪的父本杜洛克样本ꎬ故没有检测杜洛克的MC1R基因SNP基因型ꎮ但杜黑猪F2中棕红色猪全部为突变纯合基因型ꎬ与Kijas等[10]报道的等位基因e突变纯合基因型影响棕红色毛色的结论一致ꎮ651㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀MC1R基因中ED1和e等位基因的5个多态SNP位于444bp的序列上ꎬ在分析杜黑猪F2个体时发现呈现相似的基因频率ꎬ推测可能存在紧密连锁ꎮ利用HaploView4.1进行5个SNP单倍型分析ꎬ结果显示5个SNP定义了1个高度连锁的单倍型块ꎮ单倍型CGGGT的频率为0.526ꎬ含有该单倍型的个体全部为黑色毛色ꎬ单倍型TA ̄AAC的频率为0.469ꎬ含有该单倍型的个体全部为棕红色毛色ꎮ该结果提示在杜黑猪新品种选育中ꎬ对MC1R基因的5个SNP位点进行毛色分子标记辅助选择ꎬ有助于快速剔除隐性棕红色等位基因ꎬ使杜黑猪新品种的毛色迅速固定为全黑色ꎮ综上ꎬ本研究分析了MC1R基因多态性与杜黑猪F2群体毛色的关系ꎬ揭示了杜黑猪毛色中黑色对棕红色为不完全显性ꎬ利用MC1R基因的5个多态SNP标记进行分子标记辅助选择可快速剔除隐性棕红色等位基因ꎬ为杜黑猪新品种培育中黑色毛色固定奠定基础ꎮ参㊀考㊀文㊀献:[1]㊀国家畜禽遗传资源委员会.中国畜禽遗传资源志[M].北京:中国农业出版社ꎬ2011.[2]㊀LüMDꎬHanXMꎬMaYFꎬetal.Geneticvariationsassociat ̄edwithsix ̄white ̄pointcoatpigmentationinDiannansmall ̄earpigs[J].ScientificReportsꎬ2016ꎬ6:27534. [3]㊀LiuRꎬJinLꎬLongKRꎬetal.Detectionofgeneticdiversityandselectionatthecodingregionofthemelanocortinreceptor1(MC1R)geneinTibetanpigsandLandracepigs[J].Geneꎬ2016ꎬ575(2):537-542.[4]㊀AnderssonL.Theuseofawildpigˑdomesticpigintercrosstomapphenotypictraitloci[J].TheJournalofHeredityꎬ1997ꎬ88(5):380-383.[5]㊀李玉莲ꎬ吴买生ꎬ夏敏ꎬ等.湘沙猪配套系毛色遗传研究[J].养猪ꎬ2021(4):70-72.[6]㊀ZhongHWꎬZhangJꎬTanCꎬetal.Pigcoatcolormanipula ̄tionbyMC1Rgeneediting[J].InternationalJournalofMolec ̄ularSciencesꎬ2022ꎬ23(18):10356.[7]㊀JiRLꎬTaoYX.Melanocortin-1receptormutationsandpig ̄mentation:insightsfromlargeanimals[J].ProgressinMolecu ̄larBiologyandTranslationalScienceꎬ2022ꎬ189(1):179-213.[8]㊀FanYKꎬWuXWꎬLiYMꎬetal.Effectofpolymorphismsinthe5ᶄ ̄flankingsequenceofMC1RonfeathercolorinTaihangchickens[J].PoultryScienceꎬ2022ꎬ101(12):102192. [9]㊀García ̄BorrónJCꎬSánchez ̄LaordenBLꎬJiménez ̄CervantesC.Melanocortin ̄1receptorstructureandfunctionalregulation[J].PigmentCellResearchꎬ2005ꎬ18(6):393-410. [10]KijasJMHꎬWalesRꎬTörnstenAꎬetal.Melanocortinrecep ̄tor1(MC1R)mutationsandcoatcolorinpigs[J].Geneticsꎬ1998ꎬ150(3):1177-1185.[11]KijasJMHꎬMollerMꎬPlastowGꎬetal.Aframeshiftmuta ̄tioninMC1Randahighfrequencyofsomaticreversionscauseblackspottinginpigs[J].Geneticsꎬ2001ꎬ158(2):779-785.[12]FangMYꎬLarsonGꎬRibeiroHSꎬetal.Contrastingmodeofevolutionatacoatcolorlocusinwildanddomesticpigs[J].PLoSGeneticsꎬ2009ꎬ5(1):e1000341.[13]王彦平ꎬ林松ꎬ呼红梅ꎬ等.枣庄黑盖猪生长和胴体品质性能测定的初步研究[J].猪业科学ꎬ2019ꎬ36(5):130-131. [14]王继英ꎬ王彦平ꎬ林松ꎬ等.屠宰体重对枣庄黑盖猪胴体及肉质的影响[J].猪业科学ꎬ2020ꎬ37(9):130-132. [15]徐云碧ꎬ杨泉女ꎬ郑洪建ꎬ等.靶向测序基因型检测(GBTS)技术及其应用[J].中国农业科学ꎬ2020ꎬ53(15):2983-3004.[16]PurcellSꎬNealeBꎬTodd-BrownKꎬetal.PLINK:atoolsetforwhole-genomeassociationandpopulation-basedlinkageanalyses[J].TheAmericanJournalofHumanGeneticsꎬ2007ꎬ81(3):559-575.[17]BarrettJCꎬFryBꎬMallerJꎬetal.Haploview:analysisandvi ̄sualizationofLDandhaplotypemaps[J].Bioinformaticsꎬ2005ꎬ21(2):263-265.[18]MarianiPꎬMollerMJꎬHøyheimBꎬetal.TheextensioncoatcolorlocusandthelociforbloodgroupOandtyrosineamin ̄otransferaseareonpigchromosome6[J].TheJournalofHe ̄redityꎬ1996ꎬ87(4):272-276.[19]邓素华ꎬ高军ꎬ任军ꎬ等.猪黑素皮质素受体1(MC1R)基因与毛色表型的研究[J].遗传学报ꎬ2003ꎬ30(10):949-954.[20]师科荣ꎬ王爱国ꎬ李宁ꎬ等.中国地方猪种黑素皮质激素受体1基因(MC1R)的单核苷酸多态性[J].中国科学(C辑:生命科学)ꎬ2004ꎬ34(2):144-149.[21]张建ꎬ陈伟ꎬ王慧ꎬ等.猪毛色遗传机制的研究进展[J].猪业科学ꎬ2013ꎬ30(1):100-103.[22]曾检华ꎬ罗艳凤ꎬ胡杰ꎬ等.不同黑猪杂交组合生产性能研究与分析[J].养猪ꎬ2015(1):61-64.751㊀第10期㊀㊀㊀㊀㊀㊀㊀㊀㊀巩静ꎬ等:MC1R基因多态性与杜黑猪毛色关系研究。

山东省农业农村厅关于公布山东省农牧渔业丰收奖获奖项目的通知

山东省农业农村厅关于公布山东省农牧渔业丰收奖获奖项目的通知

山东省农业农村厅关于公布山东省农牧渔业丰收奖获
奖项目的通知
文章属性
•【制定机关】山东省农业农村厅
•【公布日期】2021.06.04
•【字号】鲁农科教字〔2021〕12号
•【施行日期】2021.06.04
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】农业科技
正文
山东省农业农村厅关于公布山东省农牧渔业丰收奖获奖项目
的通知
各市农业农村局,有关高校、科研院所,厅属有关单位:
根据《山东省农牧渔业丰收奖奖励办法》,经专家评审和公示,共有55个项目获2021年山东省农牧渔业丰收奖,其中,农业技术推广成果奖52项,农业技术推广合作奖3项(详见附件)。

现予公布。

附件:山东省农牧渔业丰收奖获奖项目名单
山东省农业农村厅
2021年6月4日。

青岛海洋科技成果转化典型案例

青岛海洋科技成果转化典型案例

青岛海洋科技成果转化典型案例
青岛海洋科技成果转化典型案例包括多个领域,以下为您列举其中两个:
1. 金刚石薄膜电极式海洋盐度传感器项目:由山东省科学院海洋仪器仪表研究所牵头,联合山东山科创新股权投资有限公司成立青岛浦泽海洋科技有限公司,推动项目落地转化。

该科研单位及项目团队以知识产权和自有资金持股75%,资方出资1000万元,持股25%。

该相关成果已在国内10家机构得到应用,累计实现经济效益3000余万元,间接经济效益超亿元。

2. 海洋渔业领域:青岛在海洋渔业领域也取得了多项成果,包括刺参“参优1号”育繁推技术体系建设及产业化示范、高质牡蛎“海蛎1号”新品种培育及产业化,以及石斑鱼速生抗逆新种质创制及产业化应用项目等。

这些成果不仅提升了青岛的海洋渔业水平,也为相关产业的发展提供了有力支持。

以上信息仅供参考,更多青岛海洋科技成果转化案例,建议访问青岛科技局官网查阅相关资料。

2017山东海洋与渔业科学技术奖

2017山东海洋与渔业科学技术奖

2017山东海洋与渔业科学技术奖2017年度山东省海洋与渔业科学技术奖(海洋科技奖、渔业科技奖)拟获奖项目名单序号项目名称项目完成单位完成人一等奖1节能环保型循环水养殖技术研发与示范中国水产科学研究院黄海水产研究所,海阳市黄海水产有限公司,中国水产科学研究院渔业机械仪器研究所,中国科学院海洋研究所,中国海洋大学1.曲克明2.刘寿堂3.朱建新4.张宇雷5.崔正国6.尤锋7.刘鹰8.宋协法9.刘晃10.李勇2 克氏原螯虾产业技术研究与试验示范山东省淡水渔业研究院,济宁市水产技术推广站,东平县第一淡水养殖试验场1.朱永安2.孟庆磊3.陈奇5.王兰明6.李娴7.张龙岗8.朱树人9.董俊10.付佩胜11.刘峰12.张广月13.杨玲14.张志山3 斑点鳟健康养殖关键技术研究与应用山东省海洋生物研究院 1.菅玉霞 2.王雪 3.胡发文4.李莉5.刘元文6.潘雷7.高凤祥8.房慧4 水产品中激素及标识残留物测定技术研究及应用山东省海洋资源与环境研究院 1.徐英江2.田秀慧3.张秀珍4.宫向红5.任传博6.黄会7.任利华8.刘小静9.刘慧慧10.薛敬林11.韩典峰12.张华威二等奖1 新型铜合金网衣网围研发与应用示范威海正明海洋科技开发有限公司、荣成市斥山金海渔网绳有限公司、荣成市泓泰渔业有限公司、威海正通海洋科技有限1.姜泽明2.石建高3.常忠岳4.李连森5.田金玲6.刘阳7.刘瑶8.王刚9.张志新10.徐玉珊11.韩淑丽12.王德强2 中华鳖高效生态饲料和生态养殖新模式的开发与应用山东省淡水渔业研究院 1.宋理平 2.冒树泉 3.胡斌4.秦玉广5.吴君6.许鹏7.马国红8.张延华9.王秉利10.王爱英11.卢红12.张媛媛3 黄河三角洲南美白对虾高位水池养殖滨州市海洋与渔业研究所、滨州市渔业技术推广站、山东省1.王玉清2.郑述河3.孙同秋4.张凯5.王淑生6.王冲技术研究与示范友发水产有限公司7.付壤辉8.冯晓9.张新峰4 黄河三角洲刺参池塘稳产关键技术开发与应用山东省海洋资源与环境研究院、山东华春渔业有限公司1.刘相全2.韦秀梅3.冯艳微4.刘义豪5.姜绪6.李斌7.王忠全8.周全利9.刘兆存5 黄海鳕人工繁育与苗种规模化生产技术集成应用山东省海洋生物研究院 1.于道德2.刘洪军3.官曙光4.刘莹5.于超勇6.宋静静7.赵文溪8.李绍彬6 泥鳅苗种繁育及健康养殖技术研究及示范东营市一邦农业科技开发有限公司、东营市农业科学研究院1.范庆明2.袁玲3.王明珍4.薄学峰5.王树海7.杨国岭8.刘金明9.刘菁10.李丽霞11.张茂林12.董晓亮7 黄河入海口滨海湿地生态安全评价与调控技术研究山东省淡水渔业研究院,东营市海洋经济发展研究院1.李秀启2.朱永安3.董贯仓4.刘峰5.陈有光6.张婧一7.高云芳8.冷春梅9.师吉华10.张士华11.朱士祥12.王亚楠8 南四湖渔业资源环境调查与渔业生态修复技术研究济宁市渔业监测站 1.孟娟 2.吴广州 3.蒋帮铜4.张丽娜5.马迎丽6.时彦民7.时兵8.邓晨曦9.魏勋10.孟丽华11.史艳伟12.刘方三等奖1 长蛸规模化繁育与增养殖关键技术集中国海洋大学、烟台市水产研究所、马山集团有限公司1.郑小东2.刘永胜3.王培亮4.王晓东5.陈相堂6.李琪7.刘兆胜8.王鹤2 东平湖鲤种质资源发掘与良种选育山东省淡水渔业研究院,山东大学,山东农业大学1.杨玲2.季相山3.张燕君4.孟庆磊5.赵丽娟6.张婧一7.付佩胜8.张龙岗3 黄河口刺参规模化苗种繁育及池塘生态健康养殖技术研究与集成应用东营海跃水产科技有限公司、东营市黄河口海参产业技术研究院1.薄学锋2.刘金明4.王树海5.张琦6.赵磊7.董晓亮8.刘俊龙 9.李帅帅4 刺参多样性blup复合育种山东安源水产股份有限公司 1.王亮 2.谭杰 3.邹士方4.刘永旗5.刘蓬6.胡丽萍7.孙晓杰8.燕敬平5 鲟鱼良种人工繁育临沂市淡水水产研究所1.孙自军2.孙宝超3.房洁4.刘胜江 5.郭从霞6.葛世成及产业化开发7.张庆杰6 红白锦鲤人工繁育与养殖技术研究济南市淡水养殖科学研究所 1.李翠云 2.娄彝春 3.张波4.杨波5马嵩 6.陈晓7.臧涛7 东平湖黄河鲤选育与推广泰安市水产研究所 1.邹兰柱2.鹿海锋 3.李宝国4.朱宁东5.李剑6.王光友7.赵峰8 海草场修复与构建技术开发与示范山东东方海洋科技股份有限1.江鑫2.潘金华3.李晓捷4.韩厚伟5.彭捷6.崔翠菊7.于深辉 8.王伟伟9 山东省虾蟹类营养与饲料研究山东省淡水渔业研究院 1.曹振杰 2.胡斌 3.李娴4.姜燕5.董俊6.徐海强7.轩子群 8.杨凤香10 沿海大型工程海洋灾害风险排查潍坊滨海旅游度假区防潮堤试点项目山东省海洋工程咨询协会、国家海洋局北海预报中心、中国海洋大学1.贺志鹏2.毕永坤3.刘清容4.赵玲5.蔡伟伟6.张伟11 除藻剂对养殖产业安全性影响评价及烟台市水产研究所、山东省海洋资源与环境研究院、烟台海益苗业有限公司1.孙灵毅2.刘丽娟3.陈相堂4.王田田5.姜向阳6.赵强7.任利华8.王玮云12 山东省浅海底栖渔业资源开发战略研究山东省海洋生物研究院 1.宋爱环 2.邹琰 3.王英俊4.高翔5.刘广斌6.刘童7.李翘楚8.辛美丽13 滨州贝壳堤岛与湿地系统自然保护区生物多样性研究滨州市海洋环境监测站 1.任贵如2.宋瑞强 3.刘鸿艳4.崔达铭5.冯晓6.苏兆军7.刘帅 8.许建方14 鱼的致病性嗜水气单胞菌分离鉴定及浒苔多糖对分离菌株抑制作用的研究山东省潍坊市海洋环境监测中心站、山东畜牧兽医职业学院1.赵迎东2.孙秋艳3.韩伟涛4.吴倩倩15 海参加工副产物的高效利用及功能产品开发山东省海洋资源与环境研究院1.张健2.孙永军3.赵云苹4.鞠文明5.刘京熙6.乔瑞光7.王共明 8.井月欣16 引进“黄选一号”威海市文登区水产技术推广1.王世党2.王海涛 3.郑春波4.王浩5.于夕有梭子蟹池塘生态养殖技术研究与应用站17 黄河三角洲刺参苗种培育关键技术研究与示范山东通和水产有限公司、东营市河口区渔业技术推广站、东营市河口区海洋与水产研究所1.王树海2.许家磊3.常婧4.常越峰5.单宝凯6.于浩平7.孟卫芳 8.宋伟18 吉富罗非鱼引进及海水养殖实验研究与应用滨州市海洋与渔业研究所 1.王冲 2.孙同秋3.王玉清4.张凯5.孙清秀6.尹琳7.李永明8.曾海祥19 渔业水质中同时检测多西环素、四环素、土霉素、金霉素残留量的方法研究及应用济宁市渔业监测站 1.史艳伟2.纪杰善 3.孟丽华4.蒋帮铜5.刘方6.孟娟7.邓晨曦8.吴广州20 大鲵仿生态养殖模式技术构建及人工繁殖技术研究山东省淡水渔业研究院 1.田功太 2.陈晓 3.张金路4.张明磊5.刘飞6.张波7.董俊 8.许国晶。

创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用

创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用

㊀山东农业科学㊀2024ꎬ56(1):147~155ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.01.020收稿日期:2023-04-07基金项目:国家重点研发计划 食品安全关键技术研发 重点专项(2017YFC1601400)ꎻ山东省重点研发计划项目(2022TZXD0022)ꎻ泰山学者工程专项经费资助(tsqn201909168)ꎻ山东省自然科学基金青年基金项目(ZR2020QC226)ꎻ济南市 新高校20条 项目(202228062)ꎻ山东省农业科学院国际科技合作专项(CXGC2022F09)作者简介:袁玮(1997 )ꎬ女ꎬ硕士研究生ꎬ研究方向为食品微生物检测技术研究ꎮE-mail:794393617@qq.com通信作者:陈相艳(1973 )ꎬ女ꎬ研究员ꎬ研究方向为食源性病原微生物检测及标准物质研究ꎮE-mail:315478845@qq.com创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用袁玮1ꎬ2ꎬ陈蕾蕾1ꎬ2ꎬ杨金玉1ꎬ周庆新1ꎬ2ꎬ裘纪莹1ꎬ赵双枝1ꎬ付恩君1ꎬ赵国琰2ꎬ陈相艳1(1.山东省农业科学院农产品加工与营养研究所/山东省农产品精深加工技术重点实验室/农业农村部新食品资源加工重点实验室ꎬ山东济南㊀250100ꎻ2.山东师范大学生命科学学院ꎬ山东济南㊀250014)㊀㊀摘要:针对我国缺乏适用于创伤弧菌检测的质粒标准样品的现状ꎬ本研究开展了创伤弧菌鉴定即用型定性质粒标准样品的研制和应用工作ꎮ首先构建了创伤弧菌毒力基因vvhA的重组质粒ꎬ经测序验证后制备成质粒标准样品冻干粉ꎬ然后对其进行PCR定性检测及紫外分光光度计法定量分析ꎮ均匀性检验结果表明ꎬ样品间无显著差异ꎬ均匀性良好ꎬ符合预期目标ꎻ短期稳定性检验结果表明ꎬ样品能在4ħ㊁37ħ条件下稳定保存14天ꎻ长期稳定性检验结果表明ꎬ样品能在-20ħ条件下稳定保存至少12个月ꎮ研究结果表明ꎬ创伤弧菌质粒定性标准样品的均匀性和稳定性均符合国家定性标准样品的要求ꎬ为创伤弧菌的快速㊁高通量的定性鉴定分析提供了可靠的参考物质ꎮ将标准样品应用于鱼类㊁贝类等10份海鲜类食品样品的检测中ꎬ经传统培养法验证ꎬ检测结果准确无误ꎮ本研究所研制的创伤弧菌质粒定性标准样品具有较好的商业应用潜力ꎬ为其在食品检测领域的推广应用奠定了重要基础ꎮ关键词:创伤弧菌ꎻ质粒定性标准样品ꎻ水产品ꎻ检测中图分类号:S852.61㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)01-0147-09DevelopmentofCertifiedPlasmidReferenceMaterialforHemolysinGenevvhAofVibriovulnificusandIt sApplicationinAquaticProductsDetectionYuanWei1ꎬ2ꎬChenLeilei1ꎬ2ꎬYangJinyu1ꎬZhouQingxin1ꎬ2ꎬQiuJiying1ꎬZhaoShuangzhi1ꎬFuEnjun1ꎬZhaoGuoyan2ꎬChenXiangyan1(1.InstituteofFood&NutritionScienceandTechnologyꎬShandongAcademyofAgriculturalSciences/KeyLaboratoryofAgro ̄productsProcessingTechnologyofShandongProvince/KeyLaboratoryofNovelFoodResourcesProcessingꎬMinistryofAgricultureandRuralAffairsꎬJinan250100ꎬChinaꎻ2.CollegeofLifeSciencesꎬShandongNormalUniversityꎬJinan250014ꎬChina)Abstract㊀DuetolackofplasmidstandardsamplesuitablefordetectionofVibriovulnificusinChinaꎬaready ̄to ̄usecertifiedplasmidreferencematerialwasdevelopedherein.TherecombinantplasmidsofvvhAgeneofV.vulnificuswasconstructedfirstlyandthentheirfreeze ̄driedplasmidpowderswerepreparedaftersequen ̄cingverificationandbeingdetectedbyPCRandUVspectrophotometry.Theuniformitytestshowednosignifi ̄cantdifferencebetweensamplesꎬandtheuniformitywasasexpected.Thestabilitytestshowedthatthepre ̄paredplasmidsamplescouldbestablypreservedfor14daysat4ħor37ħꎬandforatleast12monthsat-20ħ.TheoverallresultsindicatedthattheuniformityandstabilityofthevvhAgenerecombinantplasmidqualitativestandardsamplescouldmeettherequirementsofnationalqualitativestandardsamplesꎬwhichpro ̄videdreliablereferencematerialforrapidandhigh ̄throughputqualitativeidentificationofV.vulnificus.Thesampleswereusedaspositivecontrolinthedetectionof10seafoodsamplessuchasfishandshellfish.andtheresultswereconfirmedtobeaccuratebytraditionalculturemethod.AboveallꎬthequalitativestandardsamplesofvvhAgenerecombinantplasmiddevelopedinthisstudyhadgreatpotentialincommercialapplicationꎬlayinganimportantfoundationforitsapplicationinfooddetection.Keywords㊀VibriovulnificusꎻCertifiedplasmidreferencematerialꎻAquaticproductsꎻDetection㊀㊀创伤弧菌(Vibriovulnificus)是一种革兰氏阴性菌ꎬ主要特性为嗜盐㊁喜温ꎬ自然分布于世界各地沿海和河口水域[1-2]ꎬ是一种人畜共患病原菌ꎬ容易感染鱼㊁虾㊁牡蛎㊁蛤㊁螃蟹等海产品ꎬ人类通过生食或食用未完全煮熟的海产品㊁破损皮肤直接接触被其污染的海水或海产品而患病[3]ꎮ创伤弧菌与霍乱弧菌㊁副溶血弧菌并称为人类三大致病弧菌[4]ꎬ弧菌感染病例具有明显的季节性ꎬ大多数发生在夏季和初秋气温较高的时期[5]ꎮ随着全球气候变暖㊁海洋温度升高等自然条件的变化ꎬ创伤弧菌的感染率也逐年增加ꎮ在全世界范围内创伤弧菌感染的死亡率高达60%ꎬ在美国约为33%ꎬ使其成为严重的公共卫生和食品安全问题[6-7]ꎮ创伤弧菌感染的主要症状包括肠胃炎㊁原发创伤性感染㊁败血症和坏死性筋膜炎等ꎬ免疫力低下或患有糖尿病㊁肝脏疾病等慢性基础病的患者属于易感人群[8]ꎮ创伤弧菌伤口感染通常以肿胀㊁红斑和剧烈疼痛为特征ꎬ潜伏期短ꎬ发病迅速ꎬ病变经常演变为可坏死的囊泡或充满液体的大泡ꎬ最终引起多脏器衰竭[9]ꎮ创伤弧菌菌体产生的创伤弧菌外毒素通过特定的毒力机制引发疾病ꎮ创伤弧菌毒力因子主要包括溶细胞素㊁铁载体㊁金属蛋白酶㊁荚膜多糖等[10]ꎬ由vvhA基因编码的创伤弧菌溶细胞素是唯一分泌到细胞外的外毒素ꎬ具有创伤弧菌种属特异性ꎬ可作为鉴定创伤弧菌的指标[11]ꎮ当前ꎬ对创伤弧菌进行定量检测主要通过平板计数㊁MPN法等传统培养法ꎬ这些方法需要进行过夜培养㊁选择性平板分离㊁生化鉴定㊁血清学检测等繁琐的试验步骤ꎬ不仅耗时费力ꎬ同时样本中杂菌的过量繁殖也会对鉴别结果产生影响ꎮ另外ꎬ由于水产品中的创伤弧菌通常处于 活的且不可培养 的状态[12-13]ꎬ传统的培养方法很难对该部分创伤弧菌进行有效鉴定ꎬ严重降低了检测结果的准确度ꎮ作为最危险的食源性细菌之一ꎬ创伤弧菌造成了95%的海鲜相关死亡ꎬ已成为一个主要的食品安全问题[14]ꎮ随着食品供应链的全球化ꎬ创伤弧菌的定期监测变得更加重要ꎮ为了满足当下快速㊁高通量检测的需求ꎬ分子生物学方法在食品微生物的检测中得到了越来越广泛的应用ꎬ但相关的参考物质相对匮乏ꎮ食源性微生物检测即用型标准样品的研制ꎬ有助于解决目前国内食品微生物检测中存在的参考物质不足的难题ꎬ使具有自主知识产权的标准样品在相关领域得到更好的推广和应用ꎬ从而摆脱对国外标准样品的依赖ꎮ因此ꎬ建立创伤弧菌鉴定检测即用型质粒定性标准样品用于其快速㊁高通量鉴定ꎬ对提高水产品的质量安全㊁保证人类健康具有重要意义ꎮ1㊀材料与方法1.1㊀试验材料1.1.1㊀菌株来源㊀创伤弧菌(CICC21615)来源于中国工业微生物保藏中心ꎮ1.1.2㊀主要试剂㊀琼脂糖购自上海贝晶生物技术有限公司ꎻPNCC增菌液基础培养基㊁PNCC添加剂㊁mCPC琼脂基础培养基㊁多粘菌素E㊁多粘菌素B购自北京陆桥技术股份有限公司ꎻ核酸染料GelStain㊁Trans15000marker㊁Trans2000mark ̄er㊁质粒大提试剂盒购自北京全式金生物技术股份有限公司ꎻ50ˑTAE缓冲溶液购自生工生物工程(上海)股份有限公司ꎻ2ˑTaqPCRMix㊁琼脂糖841山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀凝胶DNA回收试剂盒㊁pLB零背景快速克隆试剂盒购自天根生化科技(北京)有限公司ꎮ1.1.3㊀仪器和设备㊀ZHWY-200H恒温培养振荡器购自上海智城分析仪器制造有限公司ꎻSW-CJ-2D双人净化工作台购自苏州净化设备有限公司ꎻC1000TouchPCR仪㊁NanoDropTM2000超微量分光光度计购自赛默飞世尔科技公司ꎻJY600C水平电泳仪㊁JY04S-3C凝胶成像系统购于北京君意东方电泳设备有限公司ꎮ1.2㊀试验方法1.2.1㊀重组质粒的获取与验证㊀创伤弧菌vvhA基因片段由生工生物工程(上海)股份有限公司合成ꎬ获得重组质粒PUC-SP-vvhAꎬ并保存于大肠埃希氏菌Top10菌株中ꎮ依据GB4789.44 2020«食品安全国家标准食品微生物学检验创伤弧菌检验»[15]中创伤弧菌PCR检测的引物序列ꎬ由生工生物工程(上海)股份有限公司合成引物(表1)ꎮ以重组质粒为模板ꎬ利用创伤弧菌鉴定引物ꎬ对目的基因进行PCR扩增ꎬ扩增产物进行琼脂糖凝胶电泳分析ꎬ使用琼脂糖凝胶DNA回收试剂盒对PCR产物进行胶回收ꎬ使用pLB零背景快速克隆试剂盒将PCR纯化产物连接至pLB-simpleVector上ꎬ并转化大肠杆菌DH5α感受态细胞ꎬ置于37ħ培养箱培养12hꎮ从平板上挑取单菌落ꎬ经PCR反应鉴定为阳性的克隆送生工生物工程(上海)股份有限公司进行测序鉴定ꎬ测序结果与预期一致的ꎬ即为验证正确的重组质粒ꎮ将携带正确重组质粒的大肠埃希氏菌于-80ħ超低温冰箱中甘油管保存ꎮ㊀㊀表1㊀创伤弧菌vvhA基因的引物序列引物名称引物序列(5ᶄң3ᶄ)片段大小/bpvvhA-FCCGCGGTACAGGTTGGCGCAvvhA-RCGCCACCCACTTTCGGGCC5191.2.2㊀重组质粒的提取㊀将携带重组质粒的大肠埃希氏菌甘油管解冻ꎬ接入4mLLB液体培养基中ꎬ放入200r/min的振荡摇床中37ħ培养12hꎬ取2mL种子液转接于200mL的LB液体培养基中扩大培养ꎬ获取大量携带重组质粒大肠埃希氏菌的培养液ꎬ利用细菌质粒大提试剂盒提取质粒ꎮ琼脂糖凝胶电泳分析质粒完整性ꎬPCR验证目的基因ꎬ紫外分光光度计检测质粒的浓度和纯度ꎮ1.2.3㊀重组质粒的含量检测㊀取重组质粒样品1μLꎬ于NanoDropTM2000超微量分光光度计中检测浓度ꎬ每管检测两次ꎮ1.2.4㊀重组质粒的分装㊀将大提的质粒样品混合至1管中ꎬ采用紫外分光光度计测定浓度ꎬ然后用无菌去离子水稀释至20ng/μLꎬ每管100μL分装至螺口冻存管中ꎬ贴上标签ꎮ1.2.5㊀重组质粒的冷冻干燥㊀由于质粒样品较为稳定ꎬ分装后可直接冻干ꎮ在-25ħ㊁真空度为50Pa条件下冻干20hꎮ1.2.6㊀质粒定性标准样品的均匀性分析㊀按照随机抽号系统抽取的号码ꎬ抽取质粒定性标准样品12管ꎬ用100μL无菌水溶解质粒冻干粉ꎮ取0.5μL溶解的质粒样品作为PCR模板ꎬ按照1.2.1方法进行基因定性检测ꎻ取质粒样品2μLꎬ按照1.2.1方法琼脂糖凝胶电泳分析质粒样品的完整性ꎻ取质粒样品1μLꎬ采用紫外分光光度计法进行复溶质粒样品的定量试验ꎬ检测样品的浓度ꎬ每管测两次ꎬ核酸含量=核酸浓度ˑ水化体积ꎬ核酸含量结果统计分析采用方差分析法ꎮ1.2.7㊀质粒定性标准样品的稳定性分析㊀稳定性检验方法同均匀性检验ꎬ核酸含量结果统计分析采用单因素方差分析法ꎮ短期稳定性检验:采取两种短期稳定性试验ꎮ第一种模拟冰袋运输:在4ħ条件下的短期储存稳定性试验ꎬ随机取样21管置于4ħ保温箱ꎬ分别在第1㊁3㊁5㊁7㊁9㊁11㊁14天每天检测3管ꎬ每管2个重复ꎻ第二种模拟高温运输:在37ħ条件下稳定性试验ꎬ随机取样21管置于37ħ保温箱ꎬ分别在第1㊁3㊁5㊁7㊁9㊁11㊁14天时每天检测3管ꎬ每管2个重复ꎮ长期稳定性检验:质粒样品经冷冻干燥后ꎬ需要在-20ħ条件下长期冷冻保存ꎮ为了测定质粒样品长期保存时间及其稳定性ꎬ每次检测时ꎬ从冷冻样品中随机取出3管样品ꎬ每管重复2次ꎮ抽样时间点遵循先密后疏的原则ꎬ分别在第1㊁2㊁4㊁6㊁8㊁10㊁12个月共7个时间点抽样检测ꎮ1.2.8㊀创伤弧菌质粒定性标准样品在食品检测中的应用㊀食品样本的前处理:将购买的食品样本按照GB4789.44 2020要求处理ꎬ在无菌条件941㊀第1期㊀㊀㊀㊀袁玮ꎬ等:创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用下ꎬ称取鲫鱼㊁偏口鱼㊁银鲳鱼㊁鲤鱼㊁鲅鱼㊁黄花鱼6种鱼类样品的表面组织㊁肠和腮各25gꎬ花蛤㊁海蛎子和生蚝3种贝类样品内容物各25gꎬ明虾的头足部组织25gꎬ分别放入含225mLPNCC增菌液的无菌均质袋ꎬ用拍打式无菌均质器拍打2min制成样品匀液ꎻ将均质袋放入培养箱37ħ培养18h获得增菌液ꎬ取距液面1cm深处菌液1mL放入离心管中ꎬ9000r/min离心3minꎬ去上清ꎻ用1mLPBS磷酸盐缓冲液悬浮清洗后9000r/min离心3minꎬ去上清ꎬ重复2次ꎻ加入1mL无菌去离子水ꎬ煮沸10minꎬ12000r/min离心5minꎬ吸取上清液ꎮPCR分析:将上清液用作PCR反应的DNA模板ꎻ随机抽取1管创伤弧菌重组质粒定性标准样品ꎬ加入100μL无菌去离子水溶解ꎬ作为阳性对照ꎻ将大肠埃希氏菌CICC10003基因组DNA冻干粉用300μL无菌水溶解(终浓度为20ng/μL)后作为阴性对照ꎻ无菌去离子水为空白对照ꎬ按照1.2.1的方法进行PCR分析ꎮ创伤弧菌的分离验证:取检测为阳性的食品样本的增菌液ꎬ用接种环将其划线接种于CC平板和mCPC平板ꎬ37ħ培养18hꎬ验证菌落形态是否符合创伤弧菌菌落形态特征ꎬ即圆形㊁扁平ꎬ光照下透明但中心不透明的黄色或橘黄色菌落ꎬ直径1~2mmꎮ创伤弧菌的生化鉴定:按照GB4789.442020进行创伤弧菌的培养和生化特性鉴定ꎮ1.3㊀数据统计与分析使用SPSS26.0软件的ANOVA法进行单因素方差分析ꎬ统计各处理组之间的差异性ꎬ数据用平均值ʃ标准误 表示ꎬP<0.05表示差异显著ꎮ2㊀结果与分析2.1㊀创伤弧菌重组质粒的验证以创伤弧菌重组质粒为模板ꎬ对其进行目的基因PCR扩增验证ꎬ以大肠埃希氏菌CICC10003为阴性对照ꎬ无菌去离子水为空白对照ꎮ琼脂糖凝胶电泳分析PCR扩增结果(图1A)显示ꎬ创伤弧菌重组质粒vvhA基因为阳性ꎬ条带清晰ꎬ片段大小为519bpꎬ符合目的条带大小ꎬ说明成功构建了创伤弧菌溶血素基因vvhA重组质粒ꎬ质粒图谱如图1B所示ꎮM:Trans2000markerꎻ1:vvhA质粒ꎻ2:阴性对照ꎻ3:空白对照ꎮ图1㊀创伤弧菌重组质粒PCR扩增(A)及PUC-SP-vvhA重组质粒图谱(B)2.2㊀创伤弧菌重组质粒的浓度及纯度分析取重组质粒1μLꎬ利用NanoDropTM2000测定其浓度和纯度ꎬ结果如表2所示ꎬA260/280㊁A260/230均超过1.8ꎬ说明所提取的质粒纯度高ꎬ无蛋白质和有机物污染ꎻ对其携带的基因进行PCR扩增ꎬ琼脂糖凝胶电泳分析结果(图2A)显示ꎬ目的基因vvhA条带单一且片段大小符合预期ꎬ质粒完整性分析(图2B)显示质粒条带完整ꎬ说明所制备的质粒符合预期ꎮ㊀㊀表2㊀创伤弧菌重组质粒的浓度与纯度样品管号浓度/(ng/μL)A260/A280A260/A230VA1167.01.862.21VA2189.51.882.29VA3173.61.882.26VA482.11.892.53051山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀M:Trans15000markerꎻ1~8:vvhA质粒样品ꎮ图2㊀创伤弧菌重组质粒vvhA的PCR扩增(A)及质粒完整性(B)分析㊀㊀将4管大提的创伤弧菌重组质粒样品混合至1管中ꎬ采用紫外分光光度计测定浓度ꎬ然后用无菌去离子水稀释至20ng/μLꎬ取100μL分装至2mL螺口冻存管中ꎬ所有质粒溶液分装450管后ꎬ置于真空冷冻干燥机中按照冷冻程序真空冷冻干燥ꎬ获得白色粉末状的冻干质粒样品ꎬ设计创伤弧菌重组质粒定性标准样品标签纸ꎬ打印并贴在管外(图3)ꎮ质粒定性标准样品置于-20ħ冰箱冻存ꎮ2.3㊀创伤弧菌溶血素基因vvhA质粒定性标准样品的均匀性分析从450管质粒标准样品中随机抽取12管进行PCR定性试验ꎬ结果如图4A所示ꎬ各管PCR扩增目的基因均为阳性ꎬ条带单一且清晰ꎬ图4B显示质粒完整无降解ꎮ使用NanoDropTM2000超微量分光光度计进行质粒标准样品的浓度㊁纯度分析ꎬ对所测数据进行单因素方差分析ꎬ结果如表3所示ꎬ在95%的置信概率下ꎬF值小于F临界值ꎬ各管间质粒含量无显著性差异ꎬ表明质粒定性标准样品均匀性良好ꎮ图3㊀创伤弧菌溶血素基因vvhA质粒定性标准样品M:DNAmarkerꎻ1~12:vvhA质粒标准样品ꎮ图4㊀创伤弧菌溶血素基因vvhA质粒定性标准样品PCR扩增(A)及均匀性(B)分析㊀㊀表3㊀创伤弧菌溶血素基因vvhA质粒定性标准样品均匀性试验方差分析平方和SS自由度均方MSF值F临界值置信概率P值组间0.021110.022.7002.720.950.051组内0.008120.012.4㊀创伤弧菌溶血素基因vvhA质粒定性标准样品的稳定性分析温度是运输过程中影响质粒定性标准样品质量的主要因素ꎬ因此设计不同温度模拟质粒样品运输条件ꎬ以质粒标准样品目的基因阳性检出㊁质粒完整性及核酸含量变化确定其短期稳定性(运输稳定性)ꎮ创伤弧菌溶血素基因vvhA质粒定性标准样品分别在4ħ和37ħ条件下保存14dꎬ琼脂糖凝胶电泳分析结果(图5㊁图6)显示第1天和第14天目的基因均为阳性ꎬ电泳条带单一ꎬ符合预期条带大小ꎬ质粒无降解ꎻ质粒含量统计学分析结果如图7所示ꎬ各时间点间无显著性差异ꎬ表明质粒含量无明显变化ꎬ说明质粒定性标准样品在上述条件下是稳定的ꎮ因此创伤弧菌溶血素基因vvhA质粒定性标准样品可与冰袋(4ħ)一起运输ꎬ也可在温度较高(37ħ)且无降温装置条件下运输ꎮ151㊀第1期㊀㊀㊀㊀袁玮ꎬ等:创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用M:DNAmarkerꎻ1~6:vvhA质粒标准样品ꎻ7:阴性对照ꎻ8:空白对照ꎬ下同ꎮ图5㊀4ħ条件下保存1天创伤弧菌溶血素基因vvhA质粒定性标准样品PCR扩增(A㊁B)及完整性(C㊁D)分析图6㊀37ħ条件下保存14天创伤弧菌溶血素基因vvhA质粒定性标准样品PCR扩增(A㊁B)及完整性(C㊁D)分析图7㊀创伤弧菌溶血素基因vvhA质粒定性标准㊀㊀样品短期稳定性定量分析为了分析创伤弧菌溶血素基因vvhA质粒定性标准样品的长期稳定性ꎬ在第1㊁2㊁4㊁6㊁8㊁10㊁12个月随机抽取3管样品进行定性和定量分析ꎮ创伤弧菌溶血素基因vvhA质粒定性标准样品在-20ħ条件下保存12个月ꎬ琼脂糖凝胶电泳分析结果显示第1个月和第12个月目的基因均为阳性ꎬ电泳条带单一ꎬ符合预期条带大小(图8A㊁B)ꎬ质粒无降解(图8C㊁D)ꎮ质粒含量统计学分析结果如图9所示ꎬ各时251山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀间点间无显著性差异ꎬ表明质粒定性标准样品在-20ħ条件下稳定ꎬ说明创伤弧菌溶血素基因vvhA质粒定性标准样品能在-20ħ条件下稳定保存至少12个月ꎮ图8-20ħ条件下保存1㊁12个月创伤弧菌溶血素基因vvhA质粒定性标准样品PCR扩增(A㊁B)及完整性(C㊁D)分析图9-20ħ条件下创伤弧菌溶血素基因vvhA质粒㊀㊀定性标准样品长期稳定性定量分析2.5㊀创伤弧菌溶血素基因vvhA质粒定性标准样品在水产品检测中的应用为了验证创伤弧菌溶血素基因vvhA质粒定性标准样品在水产品检测中的应用效果ꎬ将其作为阳性对照ꎬ参照GB4789.44 2020的方法ꎬ利用PCR对10种水产品中的创伤弧菌基因vvhA进行检测ꎬ每种样品取样7次ꎬ每个样品7个重复ꎮ结果如表4所示ꎬ在10种水产品样本中检测出1例vvhA基因阳性ꎮ将阳性样本的增菌液划线至创伤弧菌鉴定平板CC平板和mCPC平板中ꎬ每种平板重复划线3次ꎬ37ħ培养18hꎬ平板菌落为黄色㊁圆形且扁平(图10)ꎮ挑取菌落按照GB4789.44 2020要求进行生化鉴定(图11㊁表5)ꎬ验证此阳性样本感染创伤弧菌ꎮ㊀㊀表4㊀海鲜样品中创伤弧菌溶血素基因vvhA检出结果海鲜类型检测份数检出阳性次数鱼类60贝类31虾类10总计101㊀㊀表5㊀创伤弧菌溶血素基因vvhA阳性样本生化鉴定结果项目结果赖氨酸紫色氨基酸对照黄色无盐胰胨水微弱生长6%氯化钠胰胨水生长旺盛8%氯化钠胰胨水不生长10%氯化钠胰胨水不生长V-P半固体穿刺周围扩散增长351㊀第1期㊀㊀㊀㊀袁玮ꎬ等:创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用图10㊀CC平板和mCPC平板创伤弧菌菌落特征图11㊀创伤弧菌溶血素基因vvhA阳性样本菌体的生化鉴定结果3㊀讨论与结论本研究构建了创伤弧菌溶血素基因vvhA的重组质粒PUC-SP-vvhAꎬ经测序验证后ꎬ将质粒样品真空冷冻干燥制成创伤弧菌溶血素基因vvhA质粒定性标准样品冻干粉ꎮ对其进行均匀性和稳定性分析ꎬ检测结果均为阳性且符合目的基因片段的大小ꎬ质粒样品无降解ꎻ均匀性分析定量检测结果表明ꎬ质粒定性标准样品无管间差异ꎬ均匀性良好ꎻ稳定性分析定量检测结果表明ꎬ质粒定性标准样品在低温(4ħ)或高温(37ħ)下可稳定保存14天ꎻ在-20ħ下长期存储12个月ꎬ亦未观测到不稳定性ꎮ将所研制的创伤弧菌溶血素基因vvhA质粒定性标准样品应用于10种海鲜产品的检测ꎬ检出1份阳性样本ꎬ经传统培养法和生化鉴定验证ꎬ证实阳性样本确为创伤弧菌污染ꎬ表明质粒定性标准样品能够满足水产品中创伤弧菌溶血素基因vvhA的快速㊁精确检测ꎮ该研究填补了我国创伤弧菌鉴定即用型质粒定性标准样品的空白ꎬ为创伤弧菌质粒定性标准样品在食品检测领域的应用研究打下了良好的基础ꎮ参㊀考㊀文㊀献:[1]㊀YunNRꎬKimDM.Vibriovulnificusinfection:apersistentthreattopublichealth[J].KoreanJournalofInternalMedi ̄cineꎬ2018ꎬ33(6):1070-1078.[2]㊀Hernánde ̄CabanyeroCꎬAmaroC.PhylogenyandlifecycleofthezoonoticpathogenVibriovulnificus[J].EnvironmentalMicrobiologyꎬ2020ꎬ22(10):4133-4148.[3]㊀彭钟琴ꎬ黄璐.水产品中创伤弧菌检测方法的研究进展[J].食品安全导刊ꎬ2021(36):190-192.[4]㊀WangMYꎬHuCJ.PathogenicityandvirulencefactorsofVib ̄riovulnificus:researchadvances[J].ChineseJournalofMicro ̄ecologyꎬ2017ꎬ29(12):1470-1473.[5]㊀IwamotoMꎬAyersTꎬMahonBEꎬetal.Epidemiologyofsea ̄food ̄associatedinfectionsintheUnitedStates[J].ClinicalMi ̄crobiologyReviewsꎬ2010ꎬ23(2):399-411.[6]㊀JonesMKꎬOliverJD.Vibriovulnificus:diseaseandpathogen ̄esis[J].InfectionandImmunityꎬ2009ꎬ77(5):1723-1733.[7]㊀HengSPꎬLetchumananVꎬDengCYꎬetal.Vibriovulnificus:anenvironmentalandclinicalburden[J].FrontiersinMicrobi ̄ologyꎬ2017ꎬ8:997.[8]㊀HorsemanMAꎬSuraniS.AcomprehensivereviewofVibriovulnificus:animportantcauseofseveresepsisandskinandsoft ̄tissueinfection[J].InternationalJournalofInfectiousDis ̄easesꎬ2011ꎬ15(3):e157-e166.451山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀[9]㊀Baker ̄AustinCꎬTrinanesJꎬGonzalez ̄EscalonaNꎬetal.Non ̄choleravibrios:themicrobialbarometerofclimatechange[J].TrendsinMicrobiologyꎬ2017ꎬ25(1):76-84.[10]LiGꎬWangMY.TheroleofVibriovulnificusvirulencefactorsandregulatorsinitsinfection ̄inducedsepsis[J].FoliaMicro ̄biologicaꎬ2020ꎬ65(2):265-274.[11]GavinHEꎬBeubierNTꎬSatchellKJ.Theeffectordomainre ̄gionoftheVibriovulnificusMARTXtoxinconfersbiphasicepi ̄thelialbarrierdisruptionandisessentialforsystemicspreadfromtheintestine[J].PLoSPathogensꎬ2017ꎬ13(1):e1006119.[12]RaoNVꎬShashidharRꎬBandekarJR.Inductionꎬresuscita ̄tionandquantitativereal ̄timepolymerasechainreactionanaly ̄sesofviablebutnonculturableVibriovulnificusinartificialseawater[J].WorldJournalofMicrobiologyandBiotechnologyꎬ2014ꎬ30(8):2205-2212.[13]包秋华ꎬ刘倩宇.基于WebofScience细菌活的非可培养状态研究文献的可视化分析[J].食品科学ꎬ2023ꎬ44(5):248-256.[14]ZhangXꎬGuoBꎬYangLHꎬetal.CRISPR/Cas12acombinedwithrecombinasepolymeraseamplificationforrapidandsensi ̄tivedetectionofVibriovulnificusinonetube[J].ActaBio ̄chimicaetBiophysicaSinicaꎬ2023ꎬ55(2):322. [15]中华人民共和国国家卫生和计划生育委员会.食品安全国家标准:食品微生物学检验创伤弧菌检验:GB4789.442020[S].北京:中国标准出版社ꎬ2020.551㊀第1期㊀㊀㊀㊀袁玮ꎬ等:创伤弧菌溶血素基因vvhA质粒定性标准样品的研制及其在水产品检测中的应用。

中国渔业统计年鉴_札记

中国渔业统计年鉴_札记

《中国渔业统计年鉴》读书札记目录一、概述 (2)1.1 书籍背景 (3)1.2 内容概览 (4)1.3 出版意义 (5)二、渔业发展现状分析 (6)2.1 渔业资源概况 (8)2.1.1 水域资源分布 (9)2.1.2 渔业资源种类与数量 (10)2.2 渔业经济现状 (11)2.2.1 渔业产值及增长趋势 (12)2.2.2 渔业产业结构 (13)三、重点问题研究 (14)3.1 渔业生态环境保护问题 (15)3.1.1 渔业水域污染现状 (17)3.1.2 生态环境保护措施及成效 (18)3.2 渔业安全生产问题 (19)3.2.1 安全生产现状及问题 (20)3.2.2 安全管理与应对措施 (22)四、案例分析与解读 (23)4.1 典型案例选取背景及意义 (24)4.2 案例详细分析 (25)4.2.1 案例一 (27)4.2.2 案例二 (28)4.2.3 案例三 (30)一、概述《中国渔业统计年鉴》是一部全面反映中国渔业发展状况的重要文献,通过详实的数据和系统的分析,为渔业从业者、研究人员和政策制定者提供了宝贵的信息资源。

本书旨在记录中国渔业在过去一年的发展轨迹,展示渔业经济的增长、产业结构的变化以及资源保护的书中不仅收录了全国各主要渔区的统计数据,还涵盖了养殖、捕捞、加工、销售等多个环节的信息,全方位展现了中国渔业的整体面貌。

年鉴还详细分析了渔业政策的影响、市场需求的变化以及国际贸易形势对渔业发展的影响,为读者提供了一个观察和理解中国渔业发展的窗口。

在编纂过程中,本年鉴注重数据的准确性和时效性,确保所引用的数据能够真实反映中国渔业的实际情况。

通过规范的数据处理方法和科学的分析手段,提高了年鉴的可读性和实用性,使其成为了一个兼具学术价值和实用价值的参考资料。

《中国渔业统计年鉴》是了解中国渔业现状、把握渔业发展趋势的重要工具书,对于推动中国渔业的持续健康发展具有重要意义。

1.1 书籍背景《中国渔业统计年鉴》是一本关于中国渔业发展的专业性统计资料,由中华人民共和国国家统计局和农业农村部联合出版。

2013年山东省农牧渔业丰收奖

2013年山东省农牧渔业丰收奖

优质高产强抗逆 蚕桑新品种 及配套 技 术 的 推 广 应 用 “ 伏脆蜜”枣选育与标准化示范
枣庄市果树科学研究所
赵元伦
1 2
机械化保 护性耕 作技术示范与推广 山东省农业机械技术推广站 蓖麻产业化技术研 究与推广 淄博市农业科学研究院
马根众
王光 明
2 0 1 3 年省农牧渔业丰收奖 ( 成果奖 ) 获 奖名 单

等奖


= .


南 四湖湿地功能植物菰茭草的生态 恢复技术研究与开发
蔬菜安全生产 区域控制技术研究集 成 与应用
微 山县农业质量检测 中心 安丘市植物保护站


王 本 明
蓥 进 河 三 洲 耋 踅 曼 稚 引 滨 州 泰 裕 业 有 限 公 司 示范 、推广及产业化开发 。 麦 。 … “

孙福 来 崔艳秋 李炳华 王树波 王照红 3 . 3 3 万 公顷设施 蔬菜简约化栽培新 技术推广应用
济宁市蔬菜工作指导 站
淄博市农业科 学研究 院 威海市 果树 茶叶工作站
山东 省 蚕 业 研 究 所
优质高 产茄子新品种 选育 与推 广 威海市苹果提质增效综合配套 技术
研 究 与 开 发
妻 宴 ! ! ! ! ! ! ! ! : : :
: 二 二 二 警 纂 霞 鸶
2 0 1 3 年山东省衣牧渔业 丰收奖, 经过评审委员会无记名投票,5 4 个项 目获2 0 1 3 年山 东省农牧渔业丰收奖,其中,农业技术推广成果奖5 2 项 ,农业技术推广合作奖2 项。

遥感技术在农业资源与土壤环境综合监测上的应用

遥感技术在农业资源与土壤环境综合监测上的应用

㊀山东农业科学㊀2024ꎬ56(3):163~170ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.03.022收稿日期:2023-08-24基金项目:国家自然科学基金面上项目(41977019)ꎻ山东省本科教学改革研究面上项目(M2021062)ꎻ山东省科技型中小企业创新能力提升工程项目(2022TSGC2437)作者简介:鄂高阳(2002 )ꎬ男ꎬ黑龙江佳木斯人ꎬ在读本科生ꎬ研究方向为土地资源管理ꎮE-mail:2966281708@qq.com韩芳(1981 )ꎬ女ꎬ博士ꎬ副教授ꎬ研究方向为资源环境遥感应用ꎮE-mail:hanf@lreis.ac.cn∗同为第一作者ꎮ通信作者:刘之广(1987 )ꎬ男ꎬ山东招远人ꎬ博士ꎬ副教授ꎬ主要从事土壤肥料资源高效利用研究ꎮE-mail:liuzhiguang8235126@126.com遥感技术在农业资源与土壤环境综合监测上的应用鄂高阳1ꎬ韩芳2∗ꎬ秦秉希3ꎬ刘之广1(1.山东农业大学资源与环境学院ꎬ山东泰安㊀271018ꎻ2.山东理工大学建筑工程与空间信息学院ꎬ山东淄博㊀255049ꎻ3.山东农业大学信息科学与工程学院ꎬ山东泰安㊀271018)㊀㊀摘要:近年来ꎬ遥感技术和遥感设备已被普遍应用于农业资源与土壤环境综合监测中ꎬ且在农业生产㊁环境保护和自然资源管理等几个方面成效卓著ꎮ但是ꎬ土壤问题依然影响着人类的生态文明建设ꎬ制约着人类健康和发展的稳定性ꎮ随着国内外对土壤问题研究和调查的不断深入ꎬ针对性提出的一系列解决方案和政策措施在一定程度上改善了土壤环境问题ꎬ但也暴露出监测技术不足㊁监测方法亟待改进等很多新问题ꎮ本文综述了遥感监测技术在农业生产㊁环境保护和自然资源管理三个方面的应用现状ꎬ重点对遥感监测手段㊁遥感技术在土壤监测方面的应用进行了较全面的阐述ꎬ对现有工作中存在的问题进行总结ꎬ并对今后的发展方向做出展望ꎮ关键词:遥感技术ꎻ土壤综合监测ꎻ农业生产ꎻ环境保护ꎻ自然资源管理中图分类号:S127㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)03-0163-08ApplicationofRemoteSensingTechnologyonIntegratedMonitoringofAgriculturalResourcesandSoilEnvironmentEGaoyang1ꎬHanFang2∗ꎬQinBingxi3ꎬLiuZhiguang1(1.CollegeofResourcesandEnvironmentꎬShandongAgriculturalUniversityꎬTaian271018ꎬChinaꎻ2.SchoolofCivilEngineeringandGeomaticsꎬShandongUniversityofTechnologyꎬZibo255049ꎬChinaꎻ3.CollegeofInformationScienceandEngineeringꎬShandongAgriculturalUniversityꎬTaian271018ꎬChina)Abstract㊀Therecentdevelopmentofremotesensingtechniqueandequipmenthasadvanceditsapplica ̄tiononintegratedmonitoringofagriculturalresourcesandsoilenvironmentꎬwhichhasoutstandingeffectsinagriculturalproductionꎬenvironmentalprotectionandnaturalresourcesmanagement.Howeverꎬsoilproblemsstillaffecttheconstructionofhumanecologicalcivilizationandrestrictthestabilityofhumanhealthanddevel ̄opment.Withthedeepeningofresearchandinvestigationofsoilproblemsathomeandabroadꎬaseriesoftar ̄getedsolutionsandpolicymeasureshadbeenputforwardandhadimprovedsoilenvironmenttoacertainex ̄tent.Butmanynewproblemssuchasinadequacyandneedtoimprovingofmonitoringtechnologyhavebeenexposed.Inthispaperꎬtheapplicationstatusofremotesensingmonitoringtechniqueonagriculturalproduc ̄tionꎬenvironmentalprotectionandnaturalresourcemanagementwerereviewedꎬtheapplicationofremotesensingmonitoringtoolsandtechniquesonsoilmonitoringwaselaboratedꎬtheexistingproblemsweresumma ̄rizedꎬandtheoutlookofresearchdirectionwasproposed.Keywords㊀RemotesensingtechnologyꎻIntegratedmonitoringofsoilꎻAgriculturalproductionꎻEnviron ̄mentalprotectionꎻNaturalresourcesmanagement㊀㊀土壤作为农业㊁林业㊁畜牧业等领域的重要资源ꎬ其质量㊁特性及变动会对作物产量和品质产生直接影响ꎮ在社会与经济不断发展的大背景下ꎬ土壤开发利用中的损害和污染问题日益凸显ꎮ近年来ꎬ土壤问题已引起广泛关注ꎬ不仅关系到人类的生活品质ꎬ更是国家可持续发展战略的重要组成部分ꎮ因此ꎬ加强土壤综合监测和保护能力ꎬ有利于推进国家生态文明建设和提高生态兼容性[1-2]ꎮ工业经济的迅速发展对生态环境造成了极大的破坏ꎬ且土壤处于脆弱状态ꎬ易遭受到来自物理㊁化学等多方面的影响ꎮ研究显示ꎬ人类活动引起的全球生态环境变化ꎬ致使土壤严重受损ꎬ直接或间接导致全球生物多样性和生态功能的退化[3-4]ꎮ例如ꎬ乙撑双二硫代氨基甲酸酯类杀菌剂和各种有毒杀虫剂的滥用对环境造成了大量原生和次生污染ꎬ有毒物质通过食物链积累ꎬ最终进入人体ꎬ产生与癌症㊁遗传毒性等相关的物质[5-6]ꎮ工业化进程不断推进ꎬ土壤环境恶化加剧ꎬ工业废水排放等导致土壤污染问题日益严重ꎬ土壤中重金属含量急剧上升ꎬ给食物链的中高层生物带来严重威胁[7-8]ꎮ在我国ꎬ土壤问题主要表现为不合理开发㊁不合规排放和有毒农药及化肥的过度使用等ꎬ水土流失㊁土壤侵蚀和土壤污染等问题尤为严重[1-2]ꎮ与此同时ꎬ我国土壤监测发展相对滞后ꎮ国外土壤监测的相关研究可追溯至20世纪60年代末ꎬ而我国则在20世纪80年代才开始ꎮ因此ꎬ我国亟需采取有效措施进行土壤环境监测和修复ꎮ传统的土壤监测方法主要依赖于现场调查和实验室分析ꎬ耗时长㊁费用高ꎬ且难以实现大范围㊁高效率的监测ꎮ遥感监测是指利用遥感技术进行监测的技术方法ꎬ在获取大面积信息方面具有快而全的优势ꎬ为土壤监测提供了新的可能性[9]ꎮ1㊀土壤综合监测及遥感技术概述遥感技术具有监测范围广㊁信息连续性强㊁信息处理效率高等优势ꎮ相较于传统监测技术ꎬ遥感技术可大幅降低人工和经济成本ꎬ缩短信息处理周期ꎬ保证信息时效性ꎬ有助于加快土壤信息汇总进度ꎬ及时处理土壤污染事件ꎮ遥感技术还可进行非常规监测ꎬ扩大土壤监测范围且对极端地形的监测效果显著ꎬ还能够实现全天候环境监测ꎮ遥感技术可实现对单个区域的动态监测ꎬ有助于监测土壤变化ꎬ及时了解土壤受污染程度ꎬ实时监控土壤修复进程ꎬ提升土壤污染治理效果ꎮ遥感技术作为一项综合技术ꎬ实现了土壤资源整合的统一与信息化ꎬ推进了土壤综合监测等的研究进度ꎮ土壤遥感监测基本流程如图1所示ꎮ图1㊀土壤遥感监测流程461山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀㊀㊀土壤遥感监测通常包含8个理化指标㊁3种放射性监测方式㊁17种有机监测方式和23种无机监测方式[9]ꎮ数据源主要有多源遥感卫星数据㊁无人机遥感数据以及地面测量数据等ꎮ多源遥感卫星数据包括Landsat㊁MODIS㊁Sentinel等ꎬ这些卫星的光谱范围广㊁时间分辨率高ꎬ可满足不同尺度㊁不同时相的土壤监测需求ꎻ无人机遥感数据优势在于具有高空间㊁高时间分辨率和高精度ꎬ利于细节特征的精细化监测ꎻ地面测量数据包括传统的土壤样点信息和高精度的地形数据ꎬ可与遥感数据交叉验证ꎬ提高监测精度和可信度ꎮ2㊀土壤遥感监测技术土壤遥感监测技术通过遥感和地面探测等技术手段ꎬ对土壤进行非接触式的监测和评估ꎬ可以为土地利用㊁农业生产㊁环境保护等领域提供丰富的信息ꎬ是实现土壤可持续发展的重要工具ꎮ常用的土壤遥感监测技术包括: (1)遥感影像分析技术ꎮ利用高分辨率卫星或无人机获取的影像数据ꎬ分析土壤覆盖类型㊁土地利用状况以及土壤质量[10]ꎮ如利用Landsat卫星数据进行耕地㊁林地㊁草地等土地利用类型的分类和监测ꎻ通过NDVI(normalizeddifferencevege ̄tationindex)指数评估植被覆盖程度ꎬ从而反映土壤肥力状况ꎮ(2)土壤光谱技术ꎮ这是一种利用光谱仪器测量土壤反射光谱ꎬ推断土壤性质和特征的方法[11]ꎮ例如ꎬ近红外光谱技术可以获取土壤有机质含量㊁水分含量和pH值等信息ꎻ红外光谱技术可以获得土壤粘粒含量和矿物成分信息ꎮ通过这些信息可以评估和监测土壤质量ꎮ(3)地球物理勘探技术ꎮ这是通过测量土壤的物理特征ꎬ如电阻率㊁磁性和声波传播速度等ꎬ推断土壤性质和结构的方法ꎮ例如ꎬ电磁法测量土壤电阻率可以获取土壤含水量和盐分信息ꎻ地震波速度测量技术可以获得土壤密度和压缩模量信息ꎮ通过这些信息可以评估和监测土壤结构和性质ꎮ综上所述ꎬ通过三种土壤遥感监测技术ꎬ可获取土壤覆盖类型㊁土地利用状况㊁土壤质量与结构等信息ꎬ实现无接触的土壤监测和评估ꎬ为土地利用㊁农业生产与环境保护等提供丰富的数据和信息ꎬ为土壤资源的管理与保护提供科学有效的数据支持ꎮ3㊀遥感技术应用3.1㊀农业生产遥感技术在农业领域应用非常广泛ꎮ郭广猛等[12]使用中红外波段对土壤湿度进行遥感监测ꎬ通过回归分析发现土壤水分与MODIS(moderate ̄resolutionimagingspectroradiometer)第7波段的反射率之间具有较好的相关关系ꎮZhu等[13]利用机器学习对根际土壤湿度进行预测ꎬ显著提高了土壤水分预测的准确率与服务水平ꎮLiu等[14]研究表明土壤光谱反射率与土壤湿度存在相关性ꎬ在一定土壤水分临界值下土壤光谱反射率与土壤湿度呈负相关ꎮ通过对土壤盐碱性㊁腐蚀㊁水分以及农作物生长环境等进行遥感监测分析ꎬ可以连续监测并发现其变化趋势ꎬ为其管理提供科学的指导和建议ꎮ例如提出农业用水管理决策ꎬ提高农业灌溉用水效率等[15]ꎮ同时ꎬ遥感技术也可监测草地的长势㊁产量㊁退化㊁沙化及耕地与草地的面积变化等[16]ꎬ为草原与畜牧业管理决策提供有价值的信息ꎮ通过遥感数据可以了解农业有效灌溉面积的增长情况[17]ꎬ并预测未来的发展趋势ꎬ对于解决灌溉节水及水土流失等问题具有重要意义ꎮ遥感技术还可以通过监测土地利用变化情况ꎬ对农业生产提供支持ꎮ例如ꎬ可以对农田土地利用类型进行分类ꎬ了解耕地的变化情况ꎬ以便能够及时调整农业生产布局ꎮ同时ꎬ遥感技术还可以监测农作物的生长状况(生长阶段㊁病虫害等)ꎬ为农业生产提供实时数据支持ꎬ帮助农民及时采取相应的管理措施ꎮRomanak等[18]利用气相色谱法对土壤环境(如二氧化碳㊁氧气㊁温度㊁水分和压力等)进行了长期监测ꎮJiao等[19]利用极化细束影像对加拿大安大略东北部地区的小麦㊁大豆等主要作物进行了分类和面积提取ꎮ岳云开等[20]利用无人机多光谱遥感反演苎麻叶绿素含量ꎬ为高效检测苎麻叶绿素提供新方法ꎮ杨娜等[21]利用SMOS㊁SMAP数据技术对青藏高原季风及植被生长季土壤水分消长特征进行了研究ꎬ明确了近期青藏高原土壤水分的总体分布状况ꎬ为地区和全球气候及灾害的预测预报提供了561㊀第3期㊀㊀㊀㊀㊀㊀鄂高阳ꎬ等:遥感技术在农业资源与土壤环境综合监测上的应用借鉴和科学依据ꎮBala等[22]基于MODIS影像的NDVI数值进行土豆长势监测ꎮ何亚娟等[23]对冬小麦不同生育期的产量三因子(穗数㊁穗粒数㊁千粒重)进行双因子建模ꎬ使预报时间提前至抽穗后期至灌浆期ꎬ并且有90%的拟合精度ꎮSon等[24]利用MODIS数据建立了水稻生长期与单产的关系模型ꎬ并成功应用于湄公河三角洲水稻的长势监测与产量预测ꎮ韩文霆等[25]利用无人机多光谱遥感平台结合机器学习模型估测不同深度土壤含盐量ꎬ为农业生产提供了科学依据ꎮ3.2㊀环境保护遥感技术可以实时监测土壤质地㊁营养成分等的变化ꎬ进而对土壤质量和健康进行评估ꎮ其中ꎬ遥感技术在土壤侵蚀㊁土壤污染和土地利用监测等方面具有重要的应用价值ꎮ3.2.1㊀土壤侵蚀监测㊀遥感技术可以通过监测土壤的光谱信息ꎬ实现土壤侵蚀情况的监测ꎮ研究表明ꎬ450nm波段光谱值与土壤水分含量有关ꎬ500~640nm波段与土壤中氧化铁含量有关ꎬ660nm波段与土壤有机质含量呈负相关[26]ꎮ杨丽娟等[27]利用无人机遥感影像分析土壤侵蚀重要表现形式的新成切沟发生规律ꎬ为切沟的预防与治理提供科学依据ꎮ遥感监测技术为及时制定对策防止土壤流失和泥石流等自然灾害情况发生提供了重要的数据支撑ꎮ张晓远等[28]利用卫星遥感影像结合GIS和RS技术对RCSLE模型进行修正ꎬ使之能够对小流域水土流失动态变化进行分析和评价ꎮ3.2.2㊀土壤利用监测㊀遥感技术可以通过土地利用监测ꎬ帮助农业决策者确定土地分类和资源要求等信息ꎮ例如ꎬ黄应丰等[29]利用土壤光谱特性对华南地区主要土壤类型进行分类ꎬ提取10个光谱特征作为土壤光谱特征指标ꎬ综合应用土壤特征指标及其他分类指标对土壤进行分类ꎬ结果与中国土壤系统分类[30]中的相关内容相一致ꎮ李娜等[31]利用基于POI数据的城市功能区识别与分布特征研究ꎬ开展了遥感技术在农业资源与环境领域土壤综合监测方面的应用研究ꎬ为土壤分类识别在城市规划㊁城市管理㊁经济分析和环境保护等方面的应用提供了借鉴ꎮSenanayake等[32]利用遥感影像对降水量㊁土地利用率㊁土地覆盖和作物多样性等几个变量进行了时间序列分析和空间建模ꎬ监测土壤侵蚀㊁作物多样性和降水量变化ꎮ赵建辉等[33]提出了一种基于特征选择和GA-BP(geneticalgorithm ̄backpropagation)神经网络的多源遥感农田地表土壤水分反演方法ꎬ为多源遥感农田地表土壤水分反演提供了新思路ꎮ冯泉霖等[34]利用多光谱影像生成聚类深度网络遥感估算模型ꎬ完成SOM的含量估算与区域尺度上的数字制图ꎬ可为区域尺度上的土壤质量精细监测及管理提供有效的技术支持ꎮ3.2.3㊀土壤污染与重金属监测㊀通过遥感技术提取大面积土地的红外㊁雷达和光谱信息ꎬ实现土壤污染监测ꎮ遥感数据的采集㊁处理和分析可以揭示出地表环境的空间分布ꎬ便于地理信息系统(GIS)管理地表资源ꎮ遥感图像的特征分析和遥感模型构建可以确立土壤污染区域ꎬ依据土壤类别㊁地形地貌㊁气象特征㊁植被类型和人类活动等因素变化进行污染物模型构建ꎮ刘雯等[35]利用高分五号卫星高光谱影像对土壤Cd含量进行的大范围反演ꎬ可为环境污染评价及生态保护提供更好的数据支撑ꎮMesquita等[36]通过对土壤淋滤过程进行模拟分析ꎬ得出了一种利用在线模拟降水监测土壤铁元素及其配合物流失的方法ꎮ宋子豪等[37]通过对石油污染的农田土和湿地土进行采样分析ꎬ考察了石油污染对两种类型土壤的影响ꎮ黄长平等[38]利用遥感数据反演分析了南京城郊土壤重金属铜的10个敏感波段ꎮ张雅琼等[39]基于高分1号卫星影像快速提取了深圳市部九窝余泥渣土场的信息ꎬ验证表明归一化绿红差异指数的提取精度在97.5%以上ꎮ蔡东全等[40]利用HJ-1A高光谱遥感数据研究发现ꎬ铜㊁锰㊁镍㊁铅㊁砷在480~950nm波段内具有较好的遥感建模和反演效果ꎮ宋婷婷等[41]基于ASTER遥感影像研究土壤锌污染ꎬ发现481㊁1000㊁1220nm是锌的敏感波段ꎬ相关性最好的波段在515nm处ꎮDvornikov等[42]利用便携式分析仪测量了俄罗斯科拉半岛土壤中铜和镍的含量ꎬ并根据地形建立了回归模型ꎬ得出1.0~1.5m分辨率的辅助数据是预测该研究地区表层土中Cu和Ni含量的最佳方法ꎮ钟亮等[43]以遗传算法优化的偏最小二乘回归算法ꎬ对预处理后的农田土壤样品和小麦叶片光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型ꎬ为将来实现定661山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀量㊁动态㊁无损遥感监测大面积农田土壤重金属污染状况提供了参考依据ꎮ综上所述ꎬ随着遥感技术的不断升级和完善ꎬ其在土壤侵蚀监测㊁土壤污染监测和土地利用监测方面的应用将会更加广泛和深入ꎮ遥感技术可以为农业生产提供科学依据ꎬ帮助农业决策者制定更加科学的农业规划ꎬ促进农业可持续发展ꎮ3.3㊀自然资源管理遥感技术可以通过多角度㊁多时相的综合分析和评估ꎬ获取综合性土壤信息ꎬ进而对整个地区的土地资源状况和变化进行精细分类和数量分析ꎬ辅助GIS等信息技术分析手段对土地资源进行评估㊁监测和管理ꎮ其主要应用包括土壤类型识别㊁土壤水分监测㊁土壤质量评估和土地利用变化监测ꎮ3.3.1㊀土壤类型识别㊀遥感技术可以在短时间内获取大面积土壤类型信息ꎬ为构建土地利用/覆盖类型分类提供基础数据ꎬ为土地利用管理提供科学参考ꎮ例如ꎬ徐彬彬等[44]通过测定我国23类主要土壤类型的反射光谱曲线ꎬ将其归纳为平直型㊁缓斜型㊁陡坎型和波浪型ꎬ为构建土地类型分类提供了依据ꎮWei等[45]利用机器学习和高光谱技术ꎬ构建基于特征波段的土壤有机质(SOM)反演模型并取得了较好成果ꎬ为土壤类型识别提供了借鉴ꎮChimelo等[46]利用PlanetScope卫星星座和随机森林算法预测土壤中的粘土含量ꎮTunçay等[47]利用SFI等级与卫星图像的植被指数值进行比较ꎬ量化干旱与半干旱地区土壤的物理㊁化学和肥力指标的空间动态ꎮ杨栋淏等[48]通过结合多光谱与高光谱遥感数据ꎬ对云南山原红壤主要养分含量的高光谱特性进行研究ꎬ并利用机器学习建立相关模型ꎬ为土壤养分含量估测提供了依据ꎮ3.3.2㊀土壤水分监测㊀遥感技术可以多角度㊁多时相地获取土壤水分动态变化信息ꎬ结合植被生长指数等参数ꎬ帮助实现农林生产㊁荒漠化和水土流失等环境问题的监测ꎮ陈怀亮等[49]利用归一化植被指数NDVI和AVHRR4通道亮温建立回归方程ꎬ将土壤含水量与遥感指数联系起来ꎮ国外学者通过对比分析ERS-1的SAR图像与地面土壤水分实测值ꎬ发现土壤含水量与雷达后向散射系数间呈线性关系[50]ꎮ许泽宇等[51]利用增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类技术ꎬ通过改变编码器和解码器的结合方式增强二者的连接状态ꎬ加入自适应权重以及进行多通道训练等多方面改进ꎬ提高了地物高精度分类网络E-DeepLab的性能ꎬ为适用于遥感地物的自动分类和提取提供了借鉴ꎮDari等[52]利用K-Means聚类算法对意大利中部某地区2017年至2019年生成的100m空间分辨率灌溉区地图与地面实况数据相比较ꎬ取得较好结果ꎬ可为土壤水分遥感分析工作提供依据ꎮ3.3.3㊀土壤质量评估与土地利用变化监测㊀遥感技术可以精准㊁快速地获取相关土壤信息ꎬ用于土壤质量变化趋势分析㊁预测和评估ꎮDalal等[53]使用近红外光谱法预测土壤水分㊁有机碳和总氮含量ꎬ发现土壤有机质含量在0~2.6%范围内时ꎬ近红外法预测结果相对准确ꎻ而在有机质含量高于2.6%时ꎬ预测结果存在偏差ꎮBen ̄Dor等[54]利用近红外光谱法预测土壤有机质含量ꎬ通过分析土壤有机质的C/N比率来改进近红外法的预测准确度ꎮ沙晋明等[55]使用VF991地物光谱测量仪对不同环境条件下的土壤样本剖面进行测量ꎬ并测定了各土层土壤的有机质含量ꎮGuo等[56]利用多光谱㊁高光谱数据与植被指数ꎬ结合机器学习实现了土壤有机碳含量的测量与绘制相关图像ꎮ张智韬等[57]利用无人机遥感平台计算归一化植被指数并代入像元二分模型计算植被覆盖度ꎬ利用偏最小二乘回归算法和极限学习机算法构建不同覆盖度下各深度土壤含盐量反演模型ꎬ为无人机多光谱遥感监测农田土壤盐渍化提供了思路ꎮ吴倩等[58]使用便携式光谱仪采集陕西省黄土高原区黄绵土土壤的光谱数据ꎬ利用机器学习方法得出土壤碳酸钙含量与光谱反射率呈现正相关态势的结论ꎮ佘洁等[59]分析土壤养分空间变异来源ꎬ兼述遥感㊁GIS与人工智能等研究现状ꎬ并对当前存在的问题进行剖析ꎮ遥感技术还可以通过遥感数据解析和分类实现土地利用变化监测ꎬ并进一步提供多维度数据可视化和地表覆被变化分析等ꎬ快速监测不可再生土地用途的变化情况ꎬ这对于土地资源管理和保护具有重要意义ꎮ综上所述ꎬ遥感技术在土地资源管理和评估中具有重要的应用价值ꎬ可以为土地利用/覆盖类761㊀第3期㊀㊀㊀㊀㊀㊀鄂高阳ꎬ等:遥感技术在农业资源与土壤环境综合监测上的应用型分类㊁土壤水分监测㊁土壤质量评估和土地利用变化监测等提供科学依据和技术支持ꎮ随着遥感技术的不断发展和创新ꎬ其在土地资源管理和评估中的应用将会更加广泛和深入ꎬ为土地可持续利用和保护提供更强大的支持ꎮ4㊀展望土壤综合遥感监测技术已经在农牧业㊁林业㊁荒漠化和环境保护中得到广泛应用ꎮ综合遥感监测具有较高的实用价值ꎬ为土地资源的监测和管理提供了较为可靠的科学依据ꎮ尤其在当前科技发展较为迅速的大背景下ꎬ综合遥感监测技术的进一步推广和应用将为土地资源中长期规划㊁生态环境保护㊁自然灾害预警㊁公共安全等领域提供科学的数据基础和服务支撑ꎮ4.1㊀农业生产应用展望随着遥感技术的不断升级和完善ꎬ其在农业领域的应用将更加广泛和深入ꎮ例如ꎬ随着卫星分辨率的提高ꎬ可以更加精确地监测农田的土地利用㊁土壤水分等情况ꎬ为农业生产提供更加精准的数据支持ꎻ同时ꎬ随着人工智能和机器学习技术的发展ꎬ可以利用遥感数据进行数据挖掘和分析ꎬ提高数据的处理效率和准确性ꎬ帮助农业生产做出更加科学的管理决策ꎻ此外ꎬ还可以将遥感技术与其他技术相融合ꎬ如地理信息系统㊁无人机等技术ꎬ实现更加全面㊁精准的农业监测和管理ꎮ4.2㊀环境保护应用展望随着无人机㊁多光谱/高光谱等多源遥感设备的普及以及计算机技术的发展ꎬ土壤综合遥感监测技术在环境保护中将越来越得到更加广泛的应用ꎮ例如ꎬ利用无人机㊁卫星等搭载光谱设备的遥感平台可以高效监测大范围土壤情况ꎬ实现土地利用㊁植被覆盖等信息的分析ꎬ结合地面监测数据ꎬ可以及时发现土壤污染情况并进行污染程度评估ꎻ通过遥感技术可以对土地利用类型及其变化进行监测和分析ꎬ包括农地㊁城市扩展㊁森林覆盖等情况ꎬ有助于合理规划土地利用结构ꎬ保护耕地和生态环境ꎻ通过长时间㊁高时空和高分辨率的遥感影像监测土壤侵蚀㊁土地滑坡㊁沙漠化等自然灾害ꎬ及时发现灾害隐患并评估风险ꎬ可为防灾减灾提供技术支持等ꎮ4.3㊀自然资源管理展望随着大数据技术以及多源遥感技术的发展ꎬ土壤综合遥感监测技术在自然资源管理中发挥着越来越重要的作用ꎮ例如ꎬ通过监测土地利用类型㊁土地覆盖变化㊁土地利用强度等信息ꎬ利用大数据以及人工智能技术帮助制定土地规划㊁土地整治和土地利用政策等ꎻ通过对土地资源进行监测和评估ꎬ实现土地资源的合理利用ꎬ保护农田㊁森林㊁草原等重要生态系统ꎬ维护生态平衡ꎻ通过监测土壤水分含量㊁地下水位㊁土壤侵蚀情况等ꎬ合理利用和保护水资源等ꎮ综上ꎬ土壤综合遥感监测在农业生产发展㊁环境保护和自然资源管理等场景中具有重要的应用价值ꎬ未来还需加强遥感数据与地面测量数据的协同应用ꎬ优化反演模型㊁特征提取和分类识别方法ꎬ发挥遥感技术在土壤监测研究和应用中的更大潜力ꎮ参㊀考㊀文㊀献:[1]㊀王慧婷ꎬ王洪敏ꎬ李百庆.土壤资源环境保护研究[J].环境与发展ꎬ2018ꎬ30(5):240-242.[2]㊀郝梦洋ꎬ朱欣.重金属土壤污染的来源和影响[J].现代盐化工ꎬ2017(3):11ꎬ26.[3]㊀SmithPꎬHouseJIꎬBustamanteMꎬetal.Globalchangepres ̄suresonsoilsfromlanduseandmanagement[J].GlobalChangeBiologyꎬ2016ꎬ22(3):1008-1028.[4]㊀LalR.Restoringsoilqualitytomitigatesoildegradation[J].Sustainabilityꎬ2015ꎬ7(5):5875-5895.[5]㊀LemosPVRBꎬMartinsJLꎬLemosSPPꎬetal.Hepaticdamageinnewbornsfromfemaleratsexposedtothepesticidederivativeethylenethiourea[J].ActaCirurgicaBrasileiraꎬ2012ꎬ27(12):897-904.[6]㊀MaranghiFꎬdeAngelisSꎬTassinariRꎬetal.ReproductivetoxicityandthyroideffectsinSpragueDawleyratsexposedtolowdosesofethylenethiourea[J].FoodandChemicalToxicolo ̄gyꎬ2013ꎬ59:261-271.[7]㊀HuangYFꎬChenGFꎬXiongLMꎬetal.Currentsituationofheavymetalpollutioninfarmlandsoilandphytoremediationap ̄plication[J].AsianAgriculturalResearchꎬ2016ꎬ8(1):22-24.[8]㊀SunYJ.EcologicalriskevaluationofheavymetalpollutioninsoilinYanggu[J].GeostatisticsValenciaꎬ2017ꎬ19:919-931. [9]㊀林龙飞.论遥感技术在土壤方面的应用[J].中国资源综合利用ꎬ2021ꎬ39(1):117-120.[10]黄仲良ꎬ何敬ꎬ刘刚ꎬ等.面向GEE平台的遥感影像分析与应用研究进展[J].遥感技术与应用ꎬ2022ꎬ37(3):1-8.861山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀[11]刘云鹤ꎬ殷长春ꎬ蔡晶ꎬ等.电磁勘探中各向异性研究现状和展望[J].地球物理学报ꎬ2018ꎬ61(8):3468-3487. [12]郭广猛ꎬ赵冰茹.使用MODIS数据监测土壤湿度[J].土壤ꎬ2004ꎬ36(2):219-221.[13]ZhuQꎬWangYSꎬLuoYL.Improvementofmulti ̄layersoilmoisturepredictionusingsupportvectormachinesandensembleKalmanfiltercoupledwithremotesensingsoilmoisturedatasetsoveranagriculturedominantbasininChina[J].HydrologicalProcessesꎬ2021ꎬ35(4):e14154.[14]LiuWDꎬBaretFꎬGuXFꎬetal.Relatingsoilsurfacemois ̄turetoreflectance[J].RemoteSens.Environ.ꎬ2002ꎬ81(2/3):238-246.[15]韩文霆ꎬ张立元ꎬ牛亚晓ꎬ等.无人机遥感技术在精量灌溉中应用的研究进展[J].农业机械学报ꎬ2020ꎬ51(2):1-14. [16]李飞ꎬ李冰ꎬ闫慧ꎬ等.草地遥感研究进展与展望[J].中国草地学报ꎬ2022ꎬ44(12):87-99.[17]宋文龙ꎬ李萌ꎬ路京选ꎬ等.基于GF-1卫星数据监测灌区灌溉面积方法研究 以东雷二期抽黄灌区为例[J].水利学报ꎬ2019ꎬ50(7):854-863.[18]RomanakKDꎬBomseDS.Fieldassessmentofsensortechnol ̄ogyforenvironmentalmonitoringusingaprocess ̄basedsoilgasmethodatgeologicCO2storagesites[J].InternationalJournalofGreenhouseGasControlꎬ2020ꎬ96:103003.[19]JiaoXFꎬKovacsJMꎬShangJLꎬetal.Object ̄orientedcropmappingandmonitoringusingmulti ̄temporalpolarimetricRA ̄DARSAT ̄2data[J].ISPRSJournalofPhotogrammetryandRemoteSensingꎬ2014ꎬ96:38-46.[20]岳云开ꎬ陈建福ꎬ赵亮ꎬ等.基于无人机多光谱遥感的苎麻叶绿素含量反演[J].山东农业科学ꎬ2023ꎬ55(7):152-158.[21]杨娜ꎬ汤燕杰ꎬ张宁馨ꎬ等.基于SMOS㊁SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究[J].遥感技术与应用ꎬ2022ꎬ37(6):1373-1384.[22]BalaSKꎬIslamAS.CorrelationbetweenpotatoyieldandMO ̄DIS ̄derivedvegetationindices[J].InternationalJournalofRe ̄moteSensingꎬ2009ꎬ30(9/10):2491-2507.[23]何亚娟ꎬ汪庆发ꎬ裴志远ꎬ等.冬小麦产量分阶段预测模型[J].农业机械学报ꎬ2012ꎬ43(1):89-93ꎬ133.[24]SonNTꎬChenCFꎬChenCRꎬetal.PredictionofricecropyieldusingMODISEVI ̄LAIdataintheMekongDeltaꎬViet ̄nam[J].InternationalJournalofRemoteSensingꎬ2013ꎬ34(20):7275-7292.[25]韩文霆ꎬ崔家伟ꎬ崔欣ꎬ等.基于特征优选与机器学习的农田土壤含盐量估算研究[J].农业机械学报ꎬ2023ꎬ54(3):328-337.[26]姚艳敏ꎬ魏娜ꎬ唐鹏钦ꎬ等.黑土土壤水分高光谱特征及反演模型[J].农业工程学报ꎬ2011ꎬ27(8):95-100. [27]杨丽娟ꎬ王春梅ꎬ张春妹ꎬ等.基于遥感影像研究极端暴雨条件下新成切沟发生发展规律[J].农业工程学报ꎬ2022ꎬ38(6):96-104.[28]张晓远ꎬ刘朱婷ꎬ连少宏ꎬ等.基于RCSLE的粤西均墟河小流域水土流失动态变化[J].中国水土保持科学:中英文ꎬ2022ꎬ20(4):42-49.[29]黄应丰ꎬ刘腾辉.华南主要土壤类型的光谱特性与土壤分类[J].土壤学报ꎬ1995ꎬ32(1):58-68.[30]张保华ꎬ何毓蓉.中国土壤系统分类及其应用研究进展[J].山东农业科学ꎬ2005(4):76-78.[31]李娜ꎬ吴凯萍.基于POI数据的城市功能区识别与分布特征研究[J].遥感技术与应用ꎬ2022ꎬ37(6):1482-1491. [32]SenanayakeSꎬPradhanBꎬHueteAꎬetal.Spatialmodelingofsoilerosionhazardsandcropdiversitychangewithrainfallvari ̄ationintheCentralHighlandsofSriLanka[J].ScienceofThetotalEnvironmentꎬ2022ꎬ806(Pt2):150405.[33]赵建辉ꎬ张晨阳ꎬ闵林ꎬ等.基于特征选择和GA-BP神经网络的多源遥感农田土壤水分反演[J].农业工程学报ꎬ2021ꎬ37(11):112-120.[34]冯泉霖ꎬ李洪涛ꎬ徐夕博ꎬ等.基于聚类深度网络模型的莱州湾近岸平原表层土壤有机质含量遥感估算[J].安全与环境学报ꎬ2022ꎬ22(4):2248-2258.[35]刘雯ꎬ韩玲ꎬ刘明ꎬ等.基于高分五号高光谱波段选择的矿区周边土壤Cd含量反演[J].激光与光电子学进展ꎬ2023ꎬ60(17):1728001.[36]MesquitaLSꎬMesquitaRBRꎬLeiteAꎬetal.Integratedflow ̄basedsystemdisplayinganin ̄lineminisoilcolumntomonitorironspeciesinsoilsleachates[J].CommunicationsinSoilSci ̄enceandPlantAnalysisꎬ2020ꎬ51(8):1089-1100. [37]宋子豪ꎬ韩阳ꎬ韦晨阳ꎬ等.受石油污染的农田土和湿地土的偏振光谱特征对比[J].光谱学与光谱分析ꎬ2022ꎬ42(8):2603-2609.[38]黄长平ꎬ刘波ꎬ张霞ꎬ等.土壤重金属Cu含量遥感反演的波段选择与最佳光谱分辨率研究[J].遥感技术与应用ꎬ2010ꎬ25(3):353-357.[39]张雅琼ꎬ赵宇昕ꎬ屈冉ꎬ等.基于GF-1卫星遥感影像的生态空间周边建筑余泥渣土场提取方法研究[J].环境保护科学ꎬ2018ꎬ44(6):50-55ꎬ89.[40]蔡东全ꎬ吴泉源ꎬ曹学江ꎬ等.基于HJ1A-HSI的龙口污水灌溉区土壤重金属含量反演[J].安全与环境工程ꎬ2015ꎬ22(5):33-39.[41]宋婷婷ꎬ付秀丽ꎬ陈玉ꎬ等.云南个旧矿区土壤锌污染遥感反演研究[J].遥感技术与应用ꎬ2018ꎬ33(1):88-95. [42]DvornikovYꎬSlukovskayaMꎬYaroslavtsevAꎬetal.High ̄res ̄olutionmappingofsoilpollutionbyCuandNiatapolarindus ̄trialbarrenareausingproximalandremotesensing[J].LandDegradation&Developmentꎬ2022ꎬ33(10):1731-1744. [43]钟亮ꎬ钱家炜ꎬ储学远ꎬ等.利用高光谱遥感技术监测小麦土壤重金属污染[J].农业工程学报ꎬ2023ꎬ39(5):265-270.[44]徐彬彬ꎬ戴昌达.南疆土壤光谱反射特性与有机质含量的相关分析[J].科学通报ꎬ1980(6):282-284.[45]WeiLFꎬYuanZRꎬWangZXꎬetal.Hyperspectralinversion961㊀第3期㊀㊀㊀㊀㊀㊀鄂高阳ꎬ等:遥感技术在农业资源与土壤环境综合监测上的应用。

不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响

不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响

㊀山东农业科学㊀2023ꎬ55(10):86~94ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.10.012收稿日期:2023-01-12基金项目:国家重点研发计划项目 环渤海盐碱地耕地质量与产能提升技术模式及应用 子课题(2021YFD190090308)ꎻ山东省现代农业产业技术体系棉花岗位创新团队项目(SDAIT-03-06)作者简介:王敬宽(1997 )ꎬ男ꎬ山东郓城人ꎬ硕士研究生ꎬ主要从事农业资源与环境方面研究ꎮE-mail:wjk18253088030@163.com通信作者:柳新伟(1976 )ꎬ男ꎬ山东潍坊人ꎬ博士ꎬ副教授ꎬ主要从事农业生态学研究ꎮE-mail:sdxw@163.com不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响王敬宽1ꎬ吕鹏超2ꎬ张楷悦1ꎬ高枫舒1ꎬ张强3ꎬ柳新伟1(1.青岛农业大学资源与环境学院ꎬ山东青岛㊀266109ꎻ2.威海市农业农村事务服务中心ꎬ山东威海㊀264200ꎻ3.乳山市农业农村事务服务中心ꎬ山东乳山㊀264500)㊀㊀摘要:为探究不同土地利用方式对盐碱地土壤团聚体组成㊁稳定性及团聚体中碳氮含量变化的影响ꎬ本研究选取黄河三角洲农业高新技术产业示范区4种土地利用方式(荒地㊁草地㊁园地㊁耕地)为研究对象ꎬ通过湿筛法将土壤进行粒级分组ꎬ对0~20㊁20~40cm土层的水稳性团聚体的组成㊁稳定性及土壤有机碳(SOC)㊁全氮(TN)含量进行测定与分析ꎮ结果表明:4种土地利用方式土壤团聚体含量均以0.25~2mm和0.053~0.25mm粒级为主ꎬ>2mm粒级为最低ꎻ其中ꎬ耕地<0.25mm粒级团聚体含量最高ꎬ其次是园地ꎬ草地与荒地含量最低ꎮ各土层中草地和荒地土壤团聚体MWD㊁GMD和R0.25值较大ꎬ耕地最小ꎬ园地和草地D值较小ꎬ耕地D值最大ꎮ各土层及各粒级土壤团聚体SOC㊁TN含量的变化基本一致ꎬ均随土层加深而降低ꎬ表现为园地>草地>耕地>荒地(SOC)和草地>园地>耕地>荒地(TN)ꎬ且土壤团聚体SOC㊁TN含量随粒级减小而降低ꎮ4种土地利用方式下不同土层中均以0.25~2mm和0.053~0.25mm粒级团聚体SOC㊁TN贡献率最高ꎬ分别为59.50%~78.00%(SOC)和59.34%~75.34%(TN)ꎬ这与该粒级土壤团聚体含量所占比例高有关ꎮ本研究结果可为黄河三角洲盐碱地区土地利用的合理规划与可持续发展提供参考ꎮ关键词:盐碱地ꎻ土地利用方式ꎻ土壤团聚体ꎻ土壤碳氮中图分类号:S152㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)10-0086-09EffectsofDifferentLandUsePatternsonSoilAggregatesandCarbonandNitrogenContentsinSalineandAlkaliLandWangJingkuan1ꎬLyuPengchao2ꎬZhangKaiyue1ꎬGaoFengshu1ꎬZhangQiang3ꎬLiuXinwei1(1.CollegeofResourcesandEnvironmentꎬQingdaoAgriculturalUniversityꎬQingdao266109ꎬChinaꎻ2.WeihaiServiceCenterforAgricultureandRuralAffairsꎬWeihai264200ꎬChinaꎻ3.RushanServiceCenterforAgricultureandRuralAffairsꎬRushan264500ꎬChina)Abstract㊀Inordertoexploretheinfluenceofdifferentlandusepatternsonthecompositionandstabilityofsoilaggregatesandthechangeofcarbonandnitrogencontentsinaggregatesinsalineandalkalilandꎬfourlandusepatterns(wastelandꎬgrasslandꎬgardenlandandcultivatedland)intheAgriculturalHigh ̄TechIn ̄dustryDemonstrationZoneofYellowRiverDeltawereselectedastheresearchobjects.Thesoilsamplesweredividedintodifferentparticlesizegroupsbywetscreeningmethodꎬandthecompositionꎬstabilityandsoilor ̄ganiccarbon(SOC)andtotalnitrogen(TN)contentsofwaterstableaggregatesin0~20 ̄cmand20~40 ̄cmlayersweremeasuredandanalyzed.Theresultsshowedthattheparticlesizeofsoilaggregatesofthefourlandusepatternsweremainly0.25~2.00 ̄mmand0.053~0.25 ̄mmꎬandthecontentof>2 ̄mmsoilaggregateswasthelowest.Thecontentofsoilaggregateswithparticlesize<0.25 ̄mmincultivatedlandwasthehighestꎬfol ̄lowedbythatingardenlandꎬandthatingrasslandandwastelandwasthelowest.Ineachsoillayerꎬthemeanweightdiameter(MWD)ꎬgeometrymeandiameter(GMD)andR0.25valueofsoilaggregatesingrasslandandwastelandwerelargerꎬwhilethoseincultivatedlandwerethesmallestꎻthefractaldimension(D)valueofgardenlandandgrasslandweresmallerꎬwhilethatofcultivatedlandwasthelargest.ThecontentchangeofSOCandTNineachparticlesizesoilaggregateandeachsoillayerwerebasicallythesameꎬwhichdecreasedwiththedepthincreaseofsoillayerꎬandshowedasgardenland>grassland>cultivatedland>wasteland(SOC)andgrassland>gardenland>cultivatedland>wasteland(TN)ꎬrespectively.ThecontentofSOCandTNinsoilaggregatesdecreasedwiththedecreaseofparticlesize.ThecontributionratesofSOCandTNof0.25~2.00 ̄mmand0.053~0.25 ̄mmaggregateswerethehighestas59.50%~78.00%(SOC)and59.34%~75.34%(TN)respectivelyindifferentsoillayersofthefourlandusepatternsꎬwhichmightberelatedtothehighproportionofsoilaggregateswiththeseparticlesizes.TheseresultscouldprovidereferencesforrationalplanningandsustainabledevelopmentoflanduseinthesalineandalkaliareasoftheYellowRiverDelta.Keywords㊀SalineandalkalilandꎻLandusepatternꎻSoilaggregatesꎻSoilcarbonandnitrogen㊀㊀土壤团聚体是土壤结构的基本单位ꎬ也是土壤的重要组成部分ꎬ其组成和稳定性与土壤碳氮含量㊁土地利用方式㊁土壤生物活性㊁土壤侵蚀和植被覆盖等因素密切相关ꎬ其数量和质量可反映土壤养分供储能力ꎬ是评价土壤质量的重要指标之一[1-3]ꎮ稳定的团聚体和良好的土壤结构有利于提高土地生产力ꎬ改善土壤透气㊁透水性ꎬ增强土壤的抗侵蚀能力ꎬ促进土壤结构稳定[4]ꎮ为了分析和评价土壤团聚体的稳定性和结构特征ꎬ一般采用平均质量直径(meanweightdiameterꎬMWD)㊁几何平均直径(geometrymeandiameterꎬGMD)和分形维数(fractaldimensionꎬD)来表征[5]ꎮ已有研究表明[3-4]ꎬMWD和GMD值越大ꎬ表示团聚度越高ꎬ土壤稳定性越强ꎻD值越小ꎬ土壤水稳性团聚体含量越高ꎬ土壤结构愈加松散ꎬ通透性更好ꎮ研究表明ꎬ土壤表层中的有机碳(soilorganiccarbonꎬSOC)约90%储存在团聚体中[6]ꎮ稳定的团聚体对存储于其中的有机碳氮提供物理保护作用ꎬ通过调节其内外氧气和水分的流通情况来降低微生物对有机碳氮的矿化分解ꎬ进而提高土壤有机碳氮的固持ꎻ相应地有机碳氮作为重要的胶结物质可促进团聚体的形成ꎬ对团聚体的稳定性具有显著影响[7-8]ꎮ不同土地利用方式可以通过改变田间管理方式和植被覆盖类型来影响土壤地表凋落物含量㊁微生物丰度等土壤环境使土壤养分发生改变ꎬ进而导致土壤肥力和结构稳定性发生变化[9-10]ꎮ土地利用方式的变化对土壤碳氮含量㊁水稳性团聚体㊁渗透性等土壤动态质量指标的变异性起主导作用[11]ꎬ因而合理的土地利用方式可促进土壤团聚体的形成和提高团聚体结合有机碳氮的能力ꎬ进而增强土壤的碳㊁氮汇功能ꎬ为缓解全球气候变化发挥关键作用[3]ꎮ近年来ꎬ国内外有关土地利用方式对土壤团聚体稳定性及SOC含量影响的研究较多ꎮ罗晓虹等[12]通过对比6种土地利用方式发现ꎬ竹林和荒草地各土层中的土壤团聚体稳定性较好ꎬ且竹林土壤各土层中各粒径团聚体的有机碳含量最高ꎻTang等[13]研究南方亚热带地区不同土地利用类型发现ꎬ油松和马尾松林地土壤团聚体稳定性及SOC㊁全氮(totalnitrogenꎬTN)含量最高ꎻ李鉴霖等[1]对比发现果园地比农耕地土壤团聚体稳定性及SOC含量高ꎮ山东省盐碱地主要分布在黄河三角洲地区ꎬ该类土壤盐分含量高㊁养分低㊁土壤结构差ꎬ严重制约了黄河三角洲地区的农业生产[14]ꎮ因此ꎬ通过不同土地利用方式合理开发利用黄河三角洲盐碱地ꎬ对坚守耕地红线㊁促进农业经济发展具有重要意义ꎮ目前ꎬ针对黄河三角洲盐碱地区不同土地利用方式对土壤性质影响的研究主要集中在养分变化㊁水盐运动和碳库储存等方面[15-16]ꎬ而对盐碱地在不同土地利用方式下的土壤团聚体组成㊁稳定性及团聚体碳氮含量㊁贡献率的研究较少ꎮ本试验以黄河三角洲农业高新技术产业示范78㊀第10期㊀㊀㊀㊀王敬宽ꎬ等:不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响区荒地㊁草地㊁园地和耕地4种土地利用方式为研究对象ꎬ探讨不同土地利用方式对盐碱地土壤团聚体在0~20㊁20~40cm土层中的分布㊁稳定性及团聚体SOC㊁TN含量的影响ꎬ以期为黄河三角洲盐碱土壤结构改善和土地利用方式合理规划提供科学依据ꎮ1㊀材料与方法1.1㊀研究区与采样点概况研究区位于山东省东营市黄河三角洲农业高新技术产业示范区(118ʎ38ᶄEꎬ37ʎ18ᶄN)ꎬ处于黄河三角洲的核心区域ꎮ该地区属暖温带大陆性季风气候ꎬ多年日平均气温12.8ħꎬ年均降水量555.9mmꎬ降水季节分布不均ꎬ多集中在夏季ꎬ易造成旱涝灾害ꎬ无霜期年均206dꎮ采样点土壤类型以滨海盐渍土为主ꎬ土壤基本理化性质为有机质含量14.58g/kg㊁全氮1.12g/kg㊁碱解氮45.97mg/kg㊁有效磷4.25mg/kg㊁速效钾164.93mg/kgꎬpH值8.75㊁盐分1.28g/kgꎮ本研究设置荒地㊁草地㊁园地和耕地4种不同土地利用方式(表1)ꎮ其中荒地为撂荒3年ꎻ草地为3年生苜蓿地ꎬ一年刈割3次ꎻ园地种植苹果ꎬ至采样时为3年ꎻ耕地种植模式为3年的小麦-玉米轮作ꎮ㊀㊀表1㊀土壤采样点基本信息土地利用方式经纬度土壤主要扰动方式主要植被荒地118ʎ39ᶄ07ᵡEꎬ37ʎ18ᶄ18ᵡN无无草地118ʎ39ᶄ09ᵡEꎬ37ʎ18ᶄ20ᵡN刈割苜蓿园地118ʎ39ᶄ01ᵡEꎬ37ʎ18ᶄ16ᵡN翻耕㊁除草苹果树耕地118ʎ39ᶄ04ᵡEꎬ37ʎ18ᶄ17ᵡN翻耕㊁灌溉小麦-玉米轮作1.2㊀样品采集与处理于2021年4月采用五点取样法在每个划定的区域分别采集0~20㊁20~40cm两个土层的土壤样品ꎬ装入硬质塑料盒(避免运输过程中挤压和扰动ꎬ以免破坏团聚体)ꎮ带回实验室后将土样剔除石块㊁植物根系等杂物ꎬ沿其自然裂隙掰成直径约1cm土块混合后于通风干燥处自然风干ꎬ用于土壤团聚体测定ꎮ1.3㊀测定方法土壤水稳性团聚体的测定按照Cambardel ̄la[17]的方法进行ꎮ将100g混合土样均匀放置于2㊁0.25㊁0.053mm的套筛上ꎬ调整套筛水面高度ꎬ保证水没过筛底部ꎬ且振动时不没过其顶部ꎬ使土样充分湿润后启动土壤团聚体分析仪(TTF-100型)ꎬ以上下振幅4cm㊁30次/min的频率振动20minꎮ用清水将各粒级水稳性团聚体冲入烧杯中ꎬ60ħ烘干至恒重(约12h)ꎬ计算各粒级水稳性团聚体质量ꎮ全土和各级团聚体磨碎过0.25mm筛后采用常规农化分析方法测定有机碳(SOC)㊁全氮(TN)含量[18]ꎮ1.4㊀数据处理与分析土壤团聚体平均质量直径(MWD)和几何平均直径(GMD)分别采用公式(1)(2)计算ꎻ>0.25mm稳定性团聚体的含量(R0.25)采用公式(3)计算ꎻ分维形数(D)采用公式(4)两边取以10为底的对数得公式(5)求出ꎻ团聚体有机碳㊁全氮贡献率(CR)采用公式(6)计算[3]ꎮMWD=ðni=1(RiWi)ðni=1Wi㊀ꎻ(1)GMD=expðni=1WilnRiðni=1Wiéëêêêùûúúú㊀ꎻ(2)R0.25=Mr>0.25MTˑ100%㊀ꎻ(3)M(r<Ri)MT=RiRmaxæèçöø÷3-D()㊀ꎻ(4)lgMr<Ri()MTéëêêùûúú=3-D()lgRiRmaxæèçöø÷㊀ꎻ(5)CR=CiˑWiCTˑ100%㊀ꎮ(6)式中ꎬRi为各粒级水稳性团聚体平均直径(mm)ꎻWi为各粒级水稳性团聚体质量百分比(%)ꎻMr>0.25为粒径>0.25mm水稳性团聚体质量(g)ꎻMT为水稳性团聚体总质量(g)ꎻM(r<Ri)为粒径小于Ri的团聚体质量ꎻRmax为团聚体最大粒径ꎻCi为各粒级团聚体的有机碳(全氮)含量ꎻCT为土壤总有机碳(全氮)含量ꎮ本研究所列结果为3次重复测定值的平均值ꎬ试验数据采用MicrosoftExcel2019整理ꎬSPSS22.0软件进行统计分析ꎬ用LSD法进行差异显著88㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀性检验(P<0.05)ꎬOrigin2018软件绘图ꎮ2㊀结果与分析2.1㊀不同土地利用方式下各土层土壤团聚体组成由图1可知ꎬ不同土地利用方式下0~20㊁20~40cm土层中水稳性团聚体含量随粒级的减小呈现先增加后降低趋势ꎬ中间团聚体含量所占比例较多ꎬ>2mm及<0.053mm团聚体含量较少ꎮ0~20cm土层中ꎬ>2mm团聚体含量ꎬ不同土地利用方式之间均存在显著差异ꎬ表现为草地最高ꎬ耕地最低ꎻ0.25~2mm团聚体含量ꎬ园地㊁荒地和草地均显著高于耕地ꎬ分别高出60.93%㊁55.51%和46.48%ꎻ0.053~0.25mm团聚体含量ꎬ耕地显著高于园地㊁草地和荒地ꎬ分别高出26.75%㊁31.80%和47.99%ꎻ<0.053mm团聚体含量高低排序为耕地>荒地>园地>草地ꎬ且耕地和荒地显著高于园地和草地ꎮ20~40cm土层中ꎬ>2mm团聚体含量ꎬ不同土地利用方式之间均存在显著差异ꎬ表现为草地最高ꎬ园地最低ꎻ0.25~2mm团聚体含量ꎬ不同土地利用方式之间均存在显著差异ꎬ表现为荒地最高ꎬ耕地最低ꎻ0.053~0.25mm团聚体含量高低排序为园地>耕地>草地>荒地ꎬ且园地和耕地显著高于草地和荒地ꎻ<0.053mm团聚体含量ꎬ耕地㊁草地和荒地均显著高于园地ꎬ分别高出92.79%㊁57.32%和55.44%ꎮ综上结果表明ꎬ不同土地利用方式下不同土层各粒级水稳性团聚体含量均有差异ꎮ注:同粒级柱上不同小写字母表示不同土地利用方式之间差异显著(P<0.05)ꎬ下同ꎮ图1㊀不同土地利用方式下不同土层土壤水稳性团聚体组成2.2㊀不同土地利用方式下各土层土壤团聚体稳定性分析由表2看出ꎬ0~20cm土层中团聚体MWD排序为草地>荒地>园地>耕地ꎬ不同土地利用方式之间均存在显著差异ꎻ20~40cm土层中团聚体MWD排序与0~20cm土层一致ꎬ均以草地最大ꎬ耕地最小ꎮ0~20cm土层中团聚体GMD值在0.21~0.37mm之间ꎬ草地㊁园地和荒地均显著高于耕地ꎻ20~40cm土层中团聚体GMD值在0.23~0.36mm之间ꎬ荒地和草地显著高于园地和耕地ꎮ0~20cm土层中团聚体R0.25的大小顺序为草地>荒地>园地>耕地ꎬ与耕地相比ꎬ草地㊁荒地和园地分别显著高出64.39%㊁59.10%和57.25%ꎻ20~40cm土层中团聚体R0.25的大小顺序为荒地>草地>园地>耕地ꎬ与耕地相比ꎬ荒地㊁草地和园地分别显著高出72.64%㊁60.84%和32.50%ꎮ0~20cm土层中团聚体D值大小顺序为耕地>荒地>草地㊁园地ꎬ园地和草地显著低于荒地和耕地ꎻ20~40cm土层中团聚体D值大小顺序为耕地>草地>荒㊀㊀表2㊀不同土地利用方式下各土层土壤团聚体稳定性指标土层深度/cm土地利用方式MWD/mmGMD/mmR0.25/%D值0~20荒地0.69ʃ0.02b0.33ʃ0.02b49.24ʃ1.41ab2.64ʃ0.01a草地0.74ʃ0.02a0.37ʃ0.02a50.88ʃ1.53a2.58ʃ0.02b园地0.66ʃ0.01c0.34ʃ0.01b48.67ʃ0.51b2.58ʃ0.02b耕地0.47ʃ0.01d0.21ʃ0.01c30.95ʃ0.61c2.67ʃ0.01a20~40荒地0.70ʃ0.01b0.36ʃ0.01a51.05ʃ0.62a2.57ʃ0.01b草地0.75ʃ0.01a0.36ʃ0.01a47.56ʃ0.44b2.59ʃ0.02a园地0.57ʃ0.01c0.31ʃ0.01b39.18ʃ0.66c2.42ʃ0.01c耕地0.51ʃ0.02d0.23ʃ0.01c29.57ʃ1.15d2.61ʃ0.01a㊀㊀注:同土层同列数据后不同小写字母表示不同土地利用方式之间差异显著(P<0.05)ꎬ下同ꎮ98㊀第10期㊀㊀㊀㊀王敬宽ꎬ等:不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响地>园地ꎬ园地显著低于荒地㊁草地和耕地ꎮ对不同土地利用方式下水稳性团聚体MWD㊁GWD㊁R0.25和D值的分析表明ꎬ耕地的土壤稳定性最差ꎬ这与人为扰动影响密切有关ꎮ2.3㊀不同土地利用方式下各土层SOC㊁TN含量由图2可以看出ꎬSOC和TN含量均随土层加深而降低ꎮ0~20cm土层中ꎬSOC含量以园地土壤最高ꎬ其次为草地和耕地ꎬ荒地最低ꎬ三者较荒地分别显著提高26.36%㊁12.58%和10.68%ꎻ20~40cm土层中ꎬSOC含量变化与0~20cm土层一致ꎬ与荒地相比ꎬ园地㊁草地和耕地分别显著提高34.69%㊁14.65%和8.43%ꎮ0~20cm土层中ꎬTN含量以草地土壤最高ꎬ其次为园地和耕地ꎬ荒地最低ꎬ三者较荒地分别显著提高11.73%㊁8.21%和4.40%ꎻ20~40cm土层中TN含量变化与0~20cm土层一致ꎬ与荒地相比ꎬ草地㊁园地和耕地分别提高17.48%㊁12.94%和8.39%ꎮ其中ꎬ两个土层园地SOC含量较耕地有显著差异ꎬ草地TN含量较耕地也有显著差异ꎮ综上表明ꎬ园地(种植苹果)对盐碱地土壤SOC积累有显著的促进作用ꎬ草地(种植苜蓿)对盐碱地土壤TN积累促进作用显著ꎮ同一土层柱上不同小写字母表示不同土地利用方式之间差异显著(P<0.05)ꎮ图2㊀不同土地利用方式下土壤有机碳(A)㊁全氮(B)含量2.4㊀不同土地利用方式下各土层土壤团聚体SOC㊁TN分布及贡献率2.4.1㊀土壤团聚体SOC、TN含量㊀不同土地利用方式下不同土层各粒级团聚体SOC(图3)和TN含量(图4)存在显著差异ꎮ整体而言ꎬ团聚体SOC含量表现为园地>草地>耕地>荒地ꎬTN含量表现为草地>园地>耕地>荒地ꎻ随土层加深ꎬ各粒级团聚体SOC和TN含量相对减少ꎻ随粒级减小ꎬ团聚体SOC和TN含量总体呈下降趋势ꎬ说明大团聚体可以促进土壤碳氮积累ꎮ由图3A可知ꎬ0~20cm土层中ꎬ园地土壤中各粒级团聚体SOC含量均显著高于其他3种土地利用方式ꎬ分别高出6.75%~26.09%(>2mm)㊁13.32%~31.53%(0.25~2mm)㊁15.54%~22.68%(0.053~0.25mm)和15.13%~21.85%(<0.053mm)ꎮ由图3B可知ꎬ20~40cm土层中ꎬ园地土壤中各粒级团聚体SOC含量也均显著高于其他3种土地利用方式ꎬ分别高出23.17%~50.71%(>2mm)㊁9.89%~34.96%(0.25~2mm)㊁28.85%~42.70%(0.053~0.25mm)和20.26%~40.49%(<0.053mm)ꎮ由图4A可知ꎬ0~20cm土层中ꎬ草地土壤中各粒级团聚体TN含量均高于其他3种土地利用方式ꎬ分别高出2.53%~12.66%(>2mm)㊁2.07%~8.83%(0.25~2mm)㊁4.36%~15.92%(0.053~0.25mm)和3.50%~7.25%(<0.053mm)ꎮ由图4B可知ꎬ20~40cm土层中ꎬ草地土壤中各粒级团聚体TN含量均显著高于其他3种土地利用方式ꎬ分别高出23.17%~50.71%(>2mm)㊁9.89%~34.96%(0.25~2mm)㊁28.85%~42.70%(0.053~0.25mm)和20.26%~40.49%(<0.053mm)ꎮ综上结果表明ꎬ园地土壤团聚体对SOC有较好的固持作用ꎬ而草地土壤团聚体对TN有较好的固持作用ꎮ09㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀图3㊀不同土地利用方式下不同土层土壤团聚体有机碳含量图4㊀不同土地利用方式下不同土层土壤团聚体全氮含量2.4.2㊀土壤团聚体SOC、TN贡献率㊀由表3和表4可知ꎬ不同土地利用方式下不同土层各粒级团聚体SOC和TN贡献率有所差异ꎮ0~20cm土层中ꎬ园地㊁草地和荒地均以0.25~2mm团聚体SOC和TN贡献率最高ꎬ而耕地以0.053~0.25mm团聚体SOC和TN贡献率最高ꎮ20~40cm土层中ꎬ荒地和草地以0.25~2mm团聚体SOC贡献率最高ꎬ而园地和耕地以0.053~0.25mm团聚体㊀㊀表3㊀不同土地利用方式下不同粒级团聚体有机碳贡献率土层深度/cm土地利用方式不同粒级团聚体有机碳贡献率/%>2mm0.25~2mm0.053~0.25mm<0.053mm0~20荒地9.04ʃ0.34b39.29ʃ2.51ab24.77ʃ1.21c20.07ʃ1.16b草地13.80ʃ0.66a36.59ʃ0.73b26.12ʃ0.78bc14.55ʃ1.37c园地7.00ʃ0.79c42.31ʃ2.61a28.11ʃ2.55b16.10ʃ1.43c耕地5.33ʃ0.44d26.49ʃ0.61c35.17ʃ0.92a23.45ʃ0.64a20~40荒地7.63ʃ0.60c41.76ʃ1.79a26.69ʃ0.81d14.81ʃ0.88b草地19.53ʃ0.95a30.61ʃ0.94b28.54ʃ0.84c15.26ʃ0.62b园地5.99ʃ0.16d32.59ʃ1.51b45.40ʃ0.82a9.93ʃ0.33c耕地10.47ʃ0.40b18.14ʃ0.10c41.36ʃ0.75b19.70ʃ0.95aSOC贡献率最高ꎻ荒地以0.25~2mm团聚体TN贡献率最高ꎬ而耕地㊁园地和草地均以0.053~0.25mm团聚体TN贡献率最高ꎮ综上结果表明ꎬ各土层中>2mm团聚体SOC和TN含量最高ꎬ而在0~20cm土层中>2mm团聚体SOC和TN贡献率反而最低ꎬ这可能是由于该粒级团聚体所占比例低所导致的ꎮ与耕地相比ꎬ草地㊁园地和荒地均降低了0~20㊁20~40cm土层中<0.25mm团聚㊀㊀表4㊀不同土地利用方式下不同粒级团聚体全氮贡献率土层深度/cm土地利用方式不同粒级团聚体全氮贡献率/%>2mm0.25~2mm0.053~0.25mm<0.053mm0~20荒地8.34ʃ0.48b37.56ʃ1.56a23.02ʃ1.04c19.08ʃ0.66b草地12.22ʃ0.43a34.52ʃ1.17b26.84ʃ0.93b14.46ʃ1.21c园地6.55ʃ0.45c36.92ʃ0.36a27.51ʃ1.31b15.22ʃ0.84c耕地4.65ʃ0.36d24.66ʃ0.16c36.20ʃ1.51a22.53ʃ0.40a20~40荒地7.06ʃ0.80c39.79ʃ1.14a27.11ʃ0.80c16.04ʃ1.02b草地17.16ʃ0.43a28.24ʃ1.55c31.10ʃ1.27b16.97ʃ0.47b园地4.94ʃ0.24d31.46ʃ0.78b43.88ʃ0.94a10.38ʃ0.41c耕地10.21ʃ0.61b18.35ʃ0.89d45.09ʃ1.78a21.08ʃ0.17a19㊀第10期㊀㊀㊀㊀王敬宽ꎬ等:不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响体SOC和TN贡献率ꎬ说明草地和园地可以促进微团聚体及粉粒黏粒团聚体向大团聚体转化ꎬ而荒地可能由于受人为活动影响较小有利于大团聚体的形成ꎮ3㊀讨论3.1㊀不同土地利用方式对各土层土壤团聚体组成及稳定性的影响人为活动通过土地利用㊁耕作方式变化及不同农业管理措施等深刻影响着土壤团聚体的组成㊁稳定性及粒级变化[19]ꎮ土壤团聚体的组成及含量是土壤物理性质的敏感性指标ꎬ不同粒级团聚体对土壤孔隙度㊁养分供应和固持等具有不同作用ꎬ因此团聚体大小分布状况对土壤质量有显著影响[20]ꎮ本研究表明ꎬ在0~20cm土层中ꎬ园地㊁荒地和草地土壤0.25~2mm团聚体含量最高ꎬ耕地土壤0.053~0.25mm团聚体含量最高ꎻ而20~40cm土层中ꎬ荒地土壤0.25~2mm团聚体含量最高ꎬ园地㊁耕地和草地土壤0.053~0.25mm团聚体含量最高ꎮ产生该现象的原因是荒地土壤受到的人为扰动少ꎬ地表荒草每年几乎全部死亡凋落进入土壤ꎬ其植物残体及深层根茎有利于土壤有机物积累[21]ꎬ使土壤颗粒间胶结作用增强[12]ꎬ进而增加了各土层>0.25mm团聚体含量ꎻ而对于耕地㊁园地和草地来说ꎬ土壤易受到较为剧烈的人为扰动ꎬ耕地㊁园地翻耕和草地刈割都会导致土壤大团聚体破碎化ꎬ由于园地㊁草地地表凋落物和覆盖物较多ꎬ土壤抗侵蚀能力较强ꎬ有利于增加表层土壤>0.25mm团聚体含量ꎬ而耕地各土层大团聚体含量均为最低ꎬ这与姜敏等[22]的研究结果相似ꎮ不同土地利用方式对不同土层团聚体稳定性具有不同影响ꎮ本研究中ꎬ各土层中水稳性团聚体的MWD和GMD均以草地最大ꎬ耕地最小ꎬ说明草地土壤稳定性最强ꎬ耕地土壤稳定性最差ꎮ稳定性团聚体的含量(R0.25)被认为是土壤中最好的结构体ꎬ可以用来衡量土壤结构的优劣ꎬ其含量越高ꎬ表明土壤抗蚀能力越好[7]ꎮ各土层R0.25均以耕地最低ꎬ说明耕地土壤抗侵蚀能力最差ꎮ通过对比各土层中水稳性团聚体的D值同样可以发现耕地土壤结构易遭到破坏ꎬ稳定性较差ꎮ研究发现ꎬ在表征土壤团聚体稳定性指标之间存在着相互不吻合的现象ꎬ尤其是在20~40cm土层中ꎬ这可能与盐碱土壤本身结构差㊁地下水位高㊁高盐导致的土壤黏重等因素有关[23]ꎬ同时加上剧烈的人为扰动ꎬ二者综合作用ꎬ就使得盐碱地土壤团聚体的稳定性更为复杂ꎮ整体而言ꎬ在盐碱条件下草地表现出更好的土壤结构和团聚体稳定性ꎬ这是由于苜蓿可以产生大量的须状不定根ꎬ随着老根死亡和不断被分解ꎬ产生大量有机物质促进土壤团聚体形成[20]ꎬ且土壤全年覆盖度极高ꎬ说明苜蓿对盐碱地土壤团聚体改良起重要作用ꎮ3.2㊀不同土地利用方式对各土层SOC㊁TN和团聚体SOC㊁TN的影响土壤碳㊁氮含量与土壤肥力和有机物料输入输出紧密相关ꎬ是陆地土壤碳库和氮库的重要组成部分ꎬ同时土壤性质㊁土地利用方式㊁农业管理㊁地覆植被等均会影响SOC㊁TN的含量及分布[24]ꎮ尤其土地利用方式的不同对土壤碳㊁氮含量影响很大ꎬ特别是在生态比较脆弱的黄河三角洲地区ꎮ本研究中ꎬ不同土地利用方式下SOC㊁TN含量随土层加深均呈逐渐降低趋势ꎮ究其原因主要是由于表层土壤优先获得植物凋落物㊁根系分泌物㊁外源添加物等有机物料的输入ꎬ并逐步传导至深层土壤ꎬ因此表现为表层SOC和TN含量高于深层土壤[24]ꎬ这与乔鑫鑫等[25]的研究结果相似ꎮ不同土地利用方式下ꎬ各土层SOC含量表现为园地>草地>耕地>荒地ꎬTN含量表现为草地>园地>耕地>荒地ꎬ说明盐碱土壤在人为开发利用后ꎬ通过其植物凋落物㊁根系分泌物和外源肥料等形式提供的碳源和氮源被植物吸收或者分解外ꎬ有更多的碳㊁氮在土壤中积累[26]ꎮ园地和草地的SOC㊁TN含量均高于耕地ꎬ这是因为园地和草地有较多植物凋落物和根系分泌物ꎬ且苜蓿属于豆科植物ꎬ与根瘤菌结合具有生物固氮作用ꎬ而耕地中生长的作物大部分被收获ꎬ只有少量植物体残留在土壤中ꎬ且耕作会加快土壤碳㊁氮元素的分解转化㊁淋溶和迁移[23]ꎮ总的来说ꎬ园地和草地均能有效提高盐碱地土壤碳㊁氮含量ꎬ具有良好的生产潜能ꎬ而耕地则需増施有机物料以提高土壤碳㊁氮含量ꎬ维持土壤碳氮库平衡ꎮ土壤团聚体碳㊁氮含量影响着团聚体的形成ꎬ团聚体的组成与稳定性又深刻影响着团聚体碳㊁氮的利用㊁固持与矿化[27]ꎮ本研究结果表明ꎬ对29㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀于团聚体SOC㊁TN含量ꎬ不同土地利用方式下随土层深度的变化与各土层SOC和TN含量的变化一致ꎬ各土层>0.25mm粒级的大团聚体均高于<0.25mm粒级的微团聚体ꎬ这与胥佳忆等[3]的研究结果一致ꎬ说明土壤团聚体SOC㊁TN含量与土层深度和团聚体粒级均密切相关ꎮ研究发现ꎬ土壤团聚体SOC与TN含量变化趋于一致ꎬ原因可能是土壤碳㊁氮变化通常相辅相成ꎬ各粒级团聚体内氮元素含量随碳元素含量的变化而变化[28]ꎮ从各粒级团聚体SOC㊁TN贡献率可知ꎬ不同土地利用方式下各土层均表现为0.25~2mm和0.053~0.25mm粒级贡献率较高ꎬ分别为59.50%~78.00%和59.34%~75.34%ꎬ主要原因是这两个粒级团聚体所占比例较高ꎮ总的来看ꎬ草地土壤>0.25mm粒级的大团聚体SOC㊁TN贡献率最高ꎬ而耕地土壤<0.25mm粒级的微团聚体SOC㊁TN贡献率最高ꎬ究其原因是耕地受人为翻耕影响导致土壤中大团聚体破碎形成微团聚体ꎬ而草地根系纵横且覆盖度高ꎬ能够较好地保护土壤中大团聚体不被破坏[23]ꎬ从而提高土壤大团聚体中SOC㊁TN的贡献率ꎮ综上所述ꎬ本研究中不同土地利用方式对黄河三角洲盐碱地土壤团聚体组成㊁稳定性及SOC㊁TN含量及其内在机理均产生了一定影响ꎮ不同土地利用方式因人为扰动㊁农田管理和地表植被不同而异ꎬ土壤外源碳㊁氮的输入量明显不同ꎬ进而引起土壤团聚体和碳氮含量的差异ꎮ另外ꎬ土壤微生物是形成土壤团聚体最活跃的生物因素[29]ꎬ因此进一步研究不同土地利用方式下盐碱地土壤团聚体稳定性及碳氮含量差异ꎬ还需监测土壤微生物的响应和变化过程ꎬ同时盐碱地土壤pH值和盐分含量等指标的变化对团聚体的影响也需进一步探究ꎬ进而更全面揭示不同土地利用方式下黄河三角洲盐碱地土壤团聚体结构特征㊁碳氮含量及影响机制ꎮ4㊀结论本研究以黄河三角洲农业高新技术产业示范区为研究区域ꎬ分析了4种不同土地利用方式对盐碱地土壤团聚体分布㊁稳定性及相关碳氮含量的影响ꎮ主要研究结论如下:(1)不同土地利用方式下ꎬ各土层水稳性团聚体组分的百分含量随粒级的减小呈先增加后降低的趋势ꎬ均以0.25~2mm和0.053~0.25mm粒级为主ꎬ>2mm粒级团聚体占比最低ꎬ且不同粒级均以草地土壤占比最高ꎮ(2)不同土地利用方式下ꎬ各土层水稳性团聚体MWD㊁GMD和R0.25均以草地和荒地较大㊁耕地最小ꎬD值均以园地和草地较小㊁耕地最大ꎮ总体来看ꎬ草地更有利于维持或提高土壤团聚体稳定性ꎬ耕地由于受人为干扰导致土壤团聚体稳定性差ꎬ进而造成土壤结构退化ꎮ(3)不同土地利用方式下ꎬ各土层SOC含量排序为园地>草地>耕地>荒地ꎬTN含量排序为草地>园地>耕地>荒地ꎬ均随土层加深而降低ꎻ各粒级土壤团聚体SOC㊁TN含量与各土层SOC和TN含量排序一致ꎬ且均随粒级减小而降低ꎮ各土层0.25~2mm和0.053~0.25mm粒级团聚体对土壤碳㊁氮贡献率高达59.50%~78.00%和59.34%~75.34%ꎬ以园地土壤贡献率最高ꎮ综合来说ꎬ草地和园地更有利于黄河三角洲盐碱地土壤团聚体稳定性提高和碳氮养分固持ꎮ参㊀考㊀文㊀献:[1]㊀李鉴霖ꎬ江长胜ꎬ郝庆菊.土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J].环境科学ꎬ2014ꎬ35(12):4695-4704.[2]㊀Blanco ̄CanquiHꎬLalR.Mechanismsofcarbonsequestrationinsoilaggregates[J].CriticalReviewsinPlantSciencesꎬ2004ꎬ23(6):481-504.[3]㊀胥佳忆ꎬ李先德ꎬ刘吉龙ꎬ等.农业土地利用转变对土壤团聚体组成及碳㊁氮含量的影响[J].环境科学学报ꎬ2022ꎬ42(8):438-448.[4]㊀刘帅ꎬ赵西宁ꎬ李钊ꎬ等.不同改良剂对旱地苹果园壤土团聚体和水分的影响[J].水土保持学报ꎬ2021ꎬ35(2):193-199.[5]㊀祁迎春ꎬ王益权ꎬ刘军ꎬ等.不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J].农业工程学报ꎬ2011ꎬ27(1):340-347.[6]㊀JastrowJD.Soilaggregateformationandtheaccrualofparticu ̄lateandmineral ̄associatedorganicmatter[J].SoilBiologyandBiochemistryꎬ1996ꎬ28(4/5):665-676.[7]㊀张玉铭ꎬ胡春胜ꎬ陈素英ꎬ等.耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响[J].中国生态农业学报:中英文ꎬ2021ꎬ29(9):1558-1570.[8]㊀黑杰ꎬ李先德ꎬ刘吉龙ꎬ等.轮作模式对农田土壤团聚体及碳氮含量的影响[J].中国水土保持科学:中英文ꎬ2022ꎬ20(3):126-134.39㊀第10期㊀㊀㊀㊀王敬宽ꎬ等:不同土地利用方式对盐碱地土壤团聚体及碳氮含量的影响。

基于13C_同位素标记法探究连作对丹参生长及光合碳分配的影响

基于13C_同位素标记法探究连作对丹参生长及光合碳分配的影响

㊀山东农业科学㊀2024ꎬ56(2):95~103ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.02.013收稿日期:2023-03-28基金项目:国家自然科学基金面上项目(82173917)ꎻ国家现代农业产业技术体系项目(CARS-21)ꎻ中央本级重大增减支项目(2060302)ꎻ山东省重点研发计划项目(2021ZDSYS12)ꎻ齐鲁工业大学(山东省科学院)科教产融合创新试点工程项目(2022PX093)作者简介:孟缘(1998 )ꎬ女ꎬ山东德州人ꎬ硕士研究生ꎬ主要从事中药资源与质量控制研究ꎮE-mail:mengyuan626mm@163.com通信作者:刘伟(1981 )ꎬ男ꎬ山东潍坊人ꎬ博士ꎬ研究员ꎬ从事中药资源与质量控制研究ꎮE-mail:liuwei0074@163.com基于13C同位素标记法探究连作对丹参生长及光合碳分配的影响孟缘1ꎬ2ꎬ付心雨1ꎬ2ꎬ鞠吉东1ꎬ2ꎬ周冰谦2ꎬ卢恒2ꎬ王晓2ꎬ郭兰萍3ꎬ刘伟2(1.山东中医药大学药学院ꎬ山东济南㊀250355ꎻ2.齐鲁工业大学(山东省科学院)/山东省分析测试中心ꎬ山东济南㊀250014ꎻ3.中国中医科学院中药资源中心ꎬ北京㊀100700)㊀㊀摘要:以1年龄盆栽丹参为研究对象ꎬ设置13C脉冲标记处理与12C正常处理ꎬ应用13C脉冲标记法研究连作与非连作丹参光合碳分配规律ꎬ比较植株标记40d后的形态学与理化指标差异ꎬ分析丹参地上部㊁根部以及根际土壤碳的13C丰度㊁碳同位素比率㊁13C原子百分比以及单位干重样品的13C总量ꎬ以明确连作对丹参生长与光合作用的影响机理ꎮ结果表明ꎬ连作条件下ꎬ丹参各部分生物量与叶绿素含量明显下降ꎬ抗氧化酶活性升高ꎻ有效成分中的丹参酮Ⅰ㊁丹参酮ⅡA㊁二氢丹参酮Ⅰ以及迷迭香酸含量均降低ꎻ连作显著影响13C-光合碳分配比例ꎬ非连作丹参地上部㊁根部以及根际土壤中13C-光合碳比率分别为27.14%㊁72.80%和0.06%ꎬ连作丹参为59.38%㊁40.59%和0.03%ꎮ综上ꎬ连作后ꎬ丹参生长发育与次生代谢受到明显影响ꎻ光合产物向地下部的转移能力降低ꎬ导致连作丹参根部生长发育受到明显抑制ꎻ丹参光合作用的强弱是反映丹参生长状况的重要指标ꎮ关键词:13C脉冲标记法ꎻ光合碳ꎻ丹参ꎻ生长代谢ꎻ连作障碍中图分类号:S567.5+3㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)02-0095-09EffectsofContinuousCroppingonGrowthandPhotosyntheticCarbonDistributionofSalviamiltiorrhizaBasedon13CIsotopeLabelingMengYuan1ꎬ2ꎬFuXinyu1ꎬ2ꎬJuJidong1ꎬ2ꎬZhouBingqian2ꎬLuHeng2ꎬWangXiao2ꎬGuoLanping3ꎬLiuWei2(1.CollegeofParmacyꎬShandongUniversityofTraditionalChineseMedicineꎬJinan250355ꎬChinaꎻ2.QiluUniversityofTechnology(ShandongAcademyofSciences)/ShandongAnalysisandTestingCenterꎬJinan250014ꎬChinaꎻ3.ChineseMedicineResourceCenterꎬChineseAcademyofTraditionalChineseMedicineꎬBeijing100700ꎬChina)Abstract㊀Theexperimentwasconductedbyusing1 ̄year ̄oldpottedSalviamiltiorrhizaasresearchob ̄jectꎬandsettingthe13Cpulselabelingtreatmentand12Cnormaltreatment.The13Cpulselabelingmethodwasusedtostudythephotosyntheticcarbondistributionpatternsofcontinuousandnon ̄continuouscroppingS.miltiorrhiza.Themorphologicalandphysiologicaldifferencesoftheplantsafter30daysoflabelingwererecor ̄ded.TheabovegroundꎬrootandrhizospheresoilofS.miltiorrhizawerecollectedꎬandtheir13CabundanceꎬCisotoperatioꎬ13Catomicpercentageandtotal13Ccontentperunitdryweightsamplewerecomparedandana ̄lyzedtoclarifytheeffectsofcontinuouscroppingongrowthandphotosynthesisofS.miltiorrhiza.TheresultsshowedthatundercontinuouscroppingconditionsꎬthebiomassandchlorophyllcontentofvariouspartsofS.miltiorrhiza㊀significantlydecreasedꎬandtheactivityofantioxidantenzymesincreased.Thecontentoftanshi ̄noneIꎬtanshinoneIIAꎬdihydrotanshinoneIandrosmarinicacidintheactiveingredientsdecreased.Thedis ̄tributionratioofphotosyntheticcarbonindifferentpartsofS.miltiorrhizawasintheorderofroot>abovegroundpart>rhizospheresoil.Continuouscroppingsignificantlyaffectedtheallocationproportionof13Cphotosyntheticcarbon.Theproportionsof13Cphotosyntheticcarbonintheabovegroundpartꎬrootandrhizo ̄spheresoilofnon ̄continuouscroppingS.miltiorrhizawere27.14%ꎬ72.80%and0.06%respectivelyꎬwhilethoseofcontinuouscroppingS.miltiorrhizawere59.38%ꎬ40.59%and0.03%ꎬrespectively.InsummaryꎬcontinuouscroppingsignificantlyaffectedthegrowthandsecondarymetabolismofS.miltiorrhiza.Thephoto ̄syntheticcarbontransferredintotherootsdecreasedwiththeextensionoftimeincontinuouscroppingS.milti ̄orrhizaꎬwhichlimitedthegrowthanddevelopmentoftheroots.Thestrengthofphotosynthesiswasanimpor ̄tantindicatorreflectingthegrowthstatusofS.miltiorrhiza.Keywords㊀13CpulselabelingmethodꎻPhotosyntheticcarbonꎻSalviamiltiorrhizaꎻGrowthmetabolismꎻContinuouscroppingobstacle㊀㊀植物生长过程中ꎬ大气中的CO2在植物光合作用下由气孔向叶内扩散ꎬ一部分以有机物的形式被固定于植物体内ꎬ传输至各个组织用于植物的正常生长发育ꎬ另一部分以呼吸作用产物㊁根际沉积㊁根系分泌物等形式输入到外界环境中[1-2]ꎮ光合碳在植物体内的转化速率和分配比例与植物的生长状态息息相关ꎬ目前一般认为植物在发育初期与生长旺盛期碳转化效率较高ꎬ此时植物根系活力强ꎬ碳转移速率也相应较高[3-4]ꎮ此外ꎬ植物体内光合碳的分配比例也受温度㊁光照强度及土壤理化性质等生长环境因子的综合影响ꎮ当生长条件不利于植物生长时ꎬ光合碳会优先分配到根部ꎻ当生长环境中的营养充足时ꎬ光合碳则在地上部分的分配比例较大[5]ꎮ因此ꎬ量化光合碳在植物体内的分配比例与存留情况ꎬ可直接判断植物的生长状态与光合作用强弱ꎮ丹参(SalviamiltiorrhizaBge.)为唇形科鼠尾草属多年生直立草本植物ꎬ其干燥根茎为我国传统大宗药材[6]ꎬ在«神农本草经»«本草纲目»等古籍中均有记载ꎮ药用丹参制品多用于预防和治疗心脑血管疾病[7]ꎮ丹参的临床需求量随我国老龄人口数量的增加不断上升ꎬ目前主要依赖人工栽培满足市场需求ꎮ由于市场对中药材道地性的追求ꎬ目前丹参重茬种植现象普遍ꎮ丹参的根部性状与其大部分活性成分含量呈正相关ꎬ是决定丹参药材质量与药材分级的重要依据[8]ꎮ而丹参连作后植株矮小ꎬ根部变色萎缩ꎬ严重影响丹参药材的产量与质量ꎮ因此ꎬ重茬种植引发的连作障碍已成为制约丹参产业发展的常见问题ꎮ本课题组前期研究发现ꎬ丹参连作2年后根部鲜重与干重下降80%左右ꎬ根粗减少20%~33%ꎬ主要有效成分丹参酮ⅡA与丹酚酸B的平均降幅分别为19.35%与64.40%[9]ꎻ张辰露等[10]的研究也发现在丹参连作2~4年的种植区ꎬ丹参幼苗存活率低于40%ꎬ且连作4年后减产达85.6%ꎮ因此ꎬ连作障碍的形成机制及其消减技术成为目前丹参产业亟待研究和解决的问题ꎮ稳定性同位素13C脉冲标记技术可有效示踪碳在植物体内的流转信息ꎬ是目前研究植物光合碳分配规律的常用方法之一[11]ꎮ该方法在国内外多用于研究玉米㊁水稻㊁大豆㊁小麦等常见粮食和经济作物的光合碳分配情况[12-17]ꎮ基于以上成果ꎬ本研究选择稳定性同位素13C脉冲标记技术ꎬ以1年生盆栽丹参为试验对象ꎬ探究连作与非连作条件下丹参在13C-CO2脉冲标记30d后的光合碳分配情况ꎬ同时分析连作与非连作丹参的形态学与生理学差异ꎬ以期为连作对丹参生长的影响研究提供理论依据ꎮ1㊀材料与方法1.1㊀试验材料丹参种子来自山东莱芜紫光生态园有限公司中药材种植基地ꎬ由山东中医药大学李佳教授鉴定为唇形科鼠尾草属植物丹参Salviamiltiorrhiza69㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀Bge.ꎮ供试丹参连作与非连作土壤均采自山东莱芜紫光生态园有限公司中药材种植基地ꎬ质地为砂壤土ꎬ基本理化性质为:pH值7.9ꎬ电导率1.1mS/cmꎬ有机质含量0.61%㊁全氮0.06%㊁镁11.03g/kg㊁铁49.86g/kg㊁钙14.89g/kg㊁有效磷0.03g/kg㊁速效钾0.28g/kgꎮ标记用13C-CO2纯度为99atom%ꎬ购于武汉纽瑞德特种气体有限公司ꎮ1.2㊀试验方法1.2.1㊀试验设计㊀试验于山东省分析测试中心的光照培养室进行ꎮ其平均温度(23ʃ1)ħꎬ空气相对湿度70%ꎬ光照时间为8ʒ00 18ʒ00ꎬ采用盆栽土培的试验方式ꎮ丹参生长周期为2021年12月育苗ꎬ2022年4月移栽至花盆中ꎬ2022年10月选择长势良好㊁大小相似的丹参植株进行后续试验ꎮ本试验共设5个处理:CK组(13C-CO2标记ꎬ无丹参种植的非连作土壤)㊁A组(13C-CO2标记ꎬ丹参移栽至非连作土壤)㊁B组(13C-CO2标记ꎬ丹参移栽至连作土壤)㊁C组(12C-CO2标记ꎬ丹参移栽至非连作土壤)㊁D组(12C-CO2标记ꎬ丹参移栽至连作土壤)ꎮ其中ꎬA组与C组为非连作丹参组(F组)ꎬB组与D组为连作丹参组(L组)ꎮ在13C与12C环境中标记同化40d后破坏取样ꎬ测定各项指标ꎮ试验时间为2022年11 12月ꎮ1.2.2㊀盆栽试验㊀选择颗粒饱满㊁大小相近的丹参种子ꎬ清洗干净后浸泡并于4ħ冰箱中密封保存备用ꎮ将培育用土与基质均匀铺在24穴育苗盘中ꎬ每穴放置3~5粒前处理好的丹参种子ꎬ轻撒一层薄土ꎬ放于光照培养室中等待萌芽ꎮ待长至12~16叶且抵抗力较强时ꎬ选择大小相似的丹参幼苗移到较大陶瓷花盆中继续培养ꎮ1.2.3㊀稳定性同位素13C脉冲标记㊀取丹参种植田中的连作土与非连作土ꎬ选择大小相同㊁长势良好的盆栽丹参进行换土处理ꎬ在阴暗处过渡5~7dꎬ然后于光照培养室内继续培养ꎮ标记试验在特制的玻璃同化箱(80cmˑ80cmˑ100cm)中进行ꎬ箱中配有光谱灯㊁温度计㊁风扇与CO2浓度检测仪ꎮ标记参照参考文献[18-19]中的方法进行ꎮ将CK组㊁A组㊁B组放进同化箱后密封ꎬ检查密闭性ꎬ每天光照10h(8ʒ00 18ʒ00)ꎬ昼夜温度分别为(23ʃ1)ħ和(20ʃ1)ħꎬ相对湿度为50%ꎮ标记前用3.5mol/LNaOH溶液吸收箱内CO2至浓度为400mg/L后ꎬ用软管通过预留孔注入13C-CO2气体ꎬ每次充气至CO2浓度在750~950mg/L范围内ꎬ待浓度降至450mg/L以下时再次充气ꎮ30d后打开同化箱与根箱ꎬ让试验组丹参继续同化培养10d后ꎬ破坏性取样用于后续指标检测ꎮ1.3㊀测定项目及方法1.3.1㊀丹参生物量㊀将各组丹参从花盆中取出ꎬ刷去叶子与根部的表面浮土ꎬ清理干净后分别测定地上部分与地下部分生物量ꎬ记录好数据后放于烘箱中85ħ烘15~30minꎬ温度调至70ħ后烘干至恒重ꎬ记录干重并计算折干率ꎮ1.3.2㊀丹参形态学指标㊀记录各组丹参的完整叶片数㊁枯叶数以及总叶片数ꎻ用直尺测量每个叶片的最大叶长与最大叶宽ꎬ计算叶长/叶宽与叶面积ꎻ用直尺测量丹参主根从芦头到根尖之间的长度与横向直径ꎬ记为最长根长与主根直径ꎻ同时记录直径在0.2cm以上的根数ꎬ记为分根数ꎮ1.3.3㊀13C同位素指标㊀用 抖根法 采集A㊁B㊁C㊁D组丹参的根际土壤ꎬ烘干ꎮ将丹参地上部㊁根部以及根际土壤干样过80目筛ꎬ分别取1g送至深圳市华科精信检测科技有限公司进行13C丰度(δ13C)㊁碳同位素比率(13C/12C)㊁碳原子百分比与单位干重样品的13C总量检测ꎮ12C-CO2生长环境下的对照组丹参存在13C自然丰度ꎬ13C丰度用δ13C值表示ꎬ标准物选择美国卡罗莱纳州白垩系PeeDee组美洲拟箭石化石(PDB)ꎮ其计算公式如下:δ13Cɢ()=13C样品/12C样品-13CPDB/12CPDB13CPDB/12CPDBˑ1000ꎮ式中ꎬ13C样品/12C样品为物质中稳定碳同位素相对量的比值ꎬ13CPDB/12CPDB为固定值0.0112372[20]ꎮ1.3.4㊀丹参生理指标㊀分光光度法测定丹参叶片叶绿素含量ꎻ采用蒽酮比色法测定丹参叶片与根部的可溶性糖㊁葡萄糖以及果糖含量ꎻ间苯二酚法测定丹参蔗糖含量ꎻ采用分光光度法测定丹参超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量ꎬ微量法检测过氧化物酶(POD)活性ꎮ1.3.5㊀丹参有效成分含量㊀对照品溶液配制:精密称取丹参酮Ⅰ0.0039g㊁丹参酮ⅡA0.0037g㊁隐丹参酮0.0034g㊁二氢丹参酮Ⅰ0.0034gꎬ分别溶解于甲醇后定容于25mL容量瓶中ꎬ依次吸79㊀第2期㊀㊀㊀孟缘ꎬ等:基于13C同位素标记法探究连作对丹参生长及光合碳分配的影响取1㊁3㊁3㊁3mL于10mL试管中配成脂溶性混标ꎻ精密称取丹酚酸B0.0030g㊁迷迭香酸0.0042g㊁丹参素0.0041gꎬ溶解于甲醇后分别定容于10mL容量瓶中ꎮ供试品溶液的配制与色谱条件的选择参考本课题组前期检测丹参有效成分的方法[21]ꎬ并进行线性关系考察ꎮ1.4㊀数据处理与分析用MicrosoftExcel处理数据ꎬ用SPSS26.0软件进行差异显著性分析㊁Pearson相关性分析以及主成分分析ꎬ用Origin软件制图ꎮ2㊀结果与分析2.1㊀连作对丹参13C-光合碳分配比例的影响根据13C同位素丰度检测结果(表1㊁图1)ꎬ丹参标记同化后13C-光合碳的分配比率表现为根部>地上部>根际土壤ꎬ真正到达根际土壤的光合产物占比极小ꎮ连作丹参根部的13C丰度较非连作丹参增加8.98%ꎬ地上部增加1倍以上ꎬ但根际土壤中的13C丰度却降低18.60%ꎮ分析原因可能为本次13C标记同化时间在40d以上ꎬ非连作丹参的生长活动旺盛ꎬ光合碳转移速率较快ꎬ13C-光合碳自上而下转移ꎬ大部分存留于根部ꎬ一部分向根际土壤中释放ꎮ地上部的13C-光合碳逐渐被12C-光合碳取代ꎬ因此非连作丹参体内固定的13C-光合碳仅为连作丹参的74.84%ꎬ且根部含量较高ꎮ连作丹参地上部与根部的13C-光合碳分配量差异明显小于非连作ꎬ正是因为连作条件下丹参中13C-光合碳转化效率较低的缘故ꎮ连作丹参(B组)地上部㊁根部的13C/12C值分别较非连作丹参(A组)增加80.94%与8.28%ꎬ但根际土壤中却降低0.15%ꎮB组地上部㊁根部的13C含量分别较A组增加75.05%㊁2.99%ꎬ根际土壤中含量则减少4.77%ꎮ这均说明连作丹参的13C-光合碳大部分滞留于地上部ꎬ根际土壤中分配的量较少ꎬ而非连作丹参的光合碳转化效率则较高ꎻ非连作丹参叶片中的光合碳被自然环境中的12C-CO2逐步取代ꎬ所以地上部的13C含量明显降低ꎬ根部与根际土壤中的含量则较高ꎮ㊀㊀表1㊀标记试验13C同位素丰度检测及13C-光合碳分配部位组别δ13C/ɢ13C/12C值13CAT/%13C/(mg/g)地上部A组4138.3630ʃ7.67610.0577ʃ0.00105.4589ʃ0.003921.1325ʃ0.0169B组8294.1130ʃ10.47110.1044ʃ0.00039.4563ʃ0.002536.9926ʃ0.0012自然丰度-27.0933ʃ1.40270.0109ʃ0.00011.0815ʃ0.00044.0228ʃ0.0002根部A组11149.6700ʃ7.99190.1365ʃ0.000212.0122ʃ0.000947.4996ʃ0.0082B组12151.2400ʃ9.64240.1478ʃ0.000212.8755ʃ0.001748.9207ʃ0.0011自然丰度-22.1833ʃ0.76570.0111ʃ0.00021.0869ʃ0.00104.4352ʃ0.0020根际土壤A组-13.2900ʃ0.74570.0111ʃ0.00011.0966ʃ0.00110.4029ʃ0.0026B组-14.9200ʃ1.62000.0111ʃ0.00011.0948ʃ0.00220.3837ʃ0.0003CK组-2.1667ʃ0.07410.0112ʃ0.00011.1089ʃ0.00090.3402ʃ0.0003自然丰度-22.0533ʃ0.73080.0110ʃ0.00011.0870ʃ0.01560.4640ʃ0.0135㊀㊀注:δ13C 13C丰度ꎬ13C/12C 碳同位素比率ꎬ13CAT 碳原子百分比ꎬ13C 单位干重样品的13C含量ꎻ各部位自然丰度样品均来自12C-CO2对照组混合取样ꎻCK组为无丹参种植且未遮蔽状态下的空白土壤取样ꎮ图1㊀连作与非连作丹参各部位13C-光合碳含量比率2.2㊀连作对丹参生物量积累的影响由表2可知ꎬL组丹参地上㊁地下部的鲜㊁干重都明显低于F组ꎮB组地上㊁地下部的鲜㊁干重较A组分别降低28.1%㊁15.2%㊁51.2%㊁32.6%ꎬD组较C组分别降低27.1%㊁30.2%㊁25.3%和25.2%ꎮB组丹参的折干率高于A组ꎬ差异不显著ꎬD组丹参的折干率低于C组ꎬ差异也不显著ꎮ在通入13C-CO2后ꎬ13C试验组的丹参生物量积累89㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀高于12C试验组ꎬ这可能是因为CO2短时间内快速升高刺激丹参生长的缘故ꎮ以上结果表明连作不利于丹参地上部与地下部的生物量积累ꎬ重茬种植明显影响丹参总体产量ꎮ㊀㊀表2㊀连作与非连作丹参的单株生物量积累差异组别地上部鲜重/g地上部干重/g地下部鲜重/g地下部干重/g折干率/%F组A组8.11ʃ3.18a1.32ʃ0.16a8.91ʃ3.39a1.87ʃ1.35a19.75ʃ6.87aC组4.76ʃ1.17ab0.86ʃ0.16bc4.78ʃ1.79ab1.27ʃ0.48a26.75ʃ4.32aL组B组5.83ʃ1.16ab1.12ʃ0.21ab4.35ʃ2.47ab1.26ʃ0.72a29.25ʃ3.63aD组3.47ʃ0.90b0.60ʃ0.07c3.57ʃ1.25b0.95ʃ0.50a24.75ʃ5.85a㊀㊀注:同列数据后不同小写字母表示组别间差异显著(P<0.05)ꎬ下同ꎮ2.3㊀连作对丹参形态学指标的影响2.3.1㊀连作与非连作丹参地上部形态学指标差异㊀连作丹参植株较矮小ꎬ叶片发黄萎蔫ꎮ由表3可知ꎬL组丹参的枯叶数高于F组ꎬ叶片数㊁总叶片数和叶面积均低于F组ꎬ叶长与叶宽的比值相差不大ꎮ连作丹参叶片数少㊁叶面积小ꎬ不利于丹参进行光合作用ꎬ直接影响丹参的光合产物积累ꎮ㊀㊀表3㊀连作与非连作丹参的地上部形态学指标差异组别叶片数枯叶数总叶片数叶面积/cm2叶长/叶宽F组A组67.5ʃ15.34a12.0ʃ6.78ab79.5ʃ8.56a422.74ʃ73.81a1.00~2.08C组31.0ʃ3.67bc7.5ʃ3.20b38.5ʃ1.66b217.60ʃ37.94b1.33~1.93L组B组48.5ʃ10.23ab20.5ʃ5.17a69.0ʃ5.39a326.68ʃ16.30a1.29~2.40D组26.0ʃ7.87c12.5ʃ4.15ab38.5ʃ4.50b183.76ʃ47.86b1.22~1.772.3.2㊀连作与非连作丹参地下部形态学指标差异㊀丹参根部的形态与活力直接影响其对营养物质的吸收能力ꎬ养分吸收能力差不仅不利于丹参的正常生长发育ꎬ对光合产物的运输也会产生消极影响ꎮ由表4可以看出ꎬF组丹参的地下部明显比L组发达ꎮF组主根较粗ꎬ根长且分根较多ꎬL组的各项数据均小于F组ꎬ其中最长根长的差距最大ꎮ㊀㊀表4㊀㊀㊀连作与非连作丹参的地下部形态学指标差异组别最长根长/cm主根直径/cm分根数/条F组A组31.00ʃ7.71a0.70ʃ0.16a8.00ʃ1.87aC组16.00ʃ2.45a0.63ʃ0.13a5.75ʃ0.43bL组B组20.50ʃ1.66a0.63ʃ0.13a4.75ʃ1.09abD组14.75ʃ2.59b0.50ʃ0.07a4.25ʃ1.09b㊀㊀2.4㊀连作对丹参理化性状的影响2.4.1㊀连作与非连作丹参叶绿素含量及抗氧化酶活性差异㊀叶绿素含量的降低会影响丹参的光合作用ꎬ降低光合产物的积累量ꎬ不利于光合碳在丹参体内的固定ꎬ从而影响丹参的正常生长发育ꎮ由图2可以看出ꎬ连作丹参的叶绿素a㊁叶绿素b㊁叶绿素a+b及类胡萝卜素含量与非连作丹参相比分别降低42.4%㊁41.5%㊁42.1%和37.0%ꎮ图2㊀连作与非连作丹参叶片叶绿素含量差异作为植物体内的抗氧化能力指标ꎬSOD可催化超氧阴离子自由基ꎬPOD可降低毒性ꎬMDA含量可以直观反映植株受胁迫损伤的程度ꎮ由图3可以看出ꎬ连作丹参叶片的SOD㊁POD活性与MDA含量都有不同程度的增加ꎬ且MDA含量增幅较大ꎬSOD㊁POD活性分别升高162.2%㊁26.3%ꎬMDA含量增加284.2%ꎮ表明丹参连作后细胞受到胁迫与氧化损伤ꎬ体内的抗氧化酶系统积极应答ꎬ以对抗连作带来的伤害ꎮ2.4.2㊀连作与非连作丹参糖类成分含量差异㊀由图4可以看出ꎬ连作丹参叶片和根中可溶性糖㊁99㊀第2期㊀㊀㊀孟缘ꎬ等:基于13C同位素标记法探究连作对丹参生长及光合碳分配的影响蔗糖㊁葡萄糖与果糖的含量均低于非连作丹参ꎬ其中与F组相比L组叶片各糖类成分分别减少65.4%㊁58.6%㊁35.4%和44.6%ꎬ根部可溶性糖㊁蔗糖㊁果糖含量分别减少59.9%㊁26.3%㊁31.8%ꎮ光合作用的主要产物为碳水化合物ꎬ该结果表明连作丹参的光合能力明显低于非连作丹参ꎮ图3㊀连作与非连作丹参抗氧化能力指标差异2.5㊀丹参有效成分含量分析由图5可知ꎬ与非连作丹参相比ꎬ连作丹参水溶性有效成分中的丹酚酸B含量升高28.8%ꎬ迷迭香酸含量减少51.4%ꎮ由图6可知ꎬ连作条件下丹参的脂溶性有效成分除隐丹参酮含量增加50.0%外ꎬ丹参酮Ⅰ㊁丹参酮ⅡA㊁二氢丹参酮Ⅰ含量都有所下降ꎬ质量分数分别降低55.4%㊁4.4%㊁100%ꎬ其中二氢丹参酮Ⅰ含量急剧下降ꎬ在连作丹参根部难以检测到ꎮ总而言之ꎬ连作后丹参的有效成分含量降低明显ꎬ质量整体下降ꎮ图4㊀连作与非连作丹参叶片与根中糖分含量差异图5㊀连作与非连作丹参水溶性有效成分含量差异L组二氢丹参酮Ⅰ含量极低ꎬ未达到检测最低值ꎮ图6㊀连作与非连作丹参脂溶性有效成分含量差异2.6㊀丹参各项生长指标间的Pearson相关性分析以丹参地上部13C含量(a)㊁根部13C含量(b)㊁根际土壤13C含量(c)㊁地上部鲜重(d)㊁地下部鲜重(e)㊁总叶片数(f)㊁最长根长(g)㊁主根直径(h)㊁叶绿素a+b含量(i)㊁SOD活性(j)㊁POD活性(k)㊁MDA含量(l)㊁脂溶性有效成分含量(m)和水溶性有效成分含量(n)为相关性分析因子ꎬ进行丹参光合碳分配比例㊁形态指标与理化001㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀指标的Pearson相关性分析ꎬ相关系数见表5ꎮ表明ꎬ丹参地上部13C含量和根部13C含量与丹参水溶性有效成分含量㊁SOD活性以及MDA含量极显著正相关(P<0.01)ꎬ与总叶片数(P<0.05)㊁最长根长(P<0.05)㊁叶绿素a+b含量(P<0.01)以及丹参脂溶性有效成分含量(P<0.01)呈显著或极显著负相关ꎻ叶绿素a+b含量与其他指标的相关性较强ꎮ表明ꎬ丹参有效成分含量受多种因素的综合影响ꎬ包括总叶片数㊁叶绿素含量以及SOD活性等ꎮ㊀㊀表5㊀丹参光合碳分配比例㊁形态指标与理化指标的Pearson相关性(n=14)因子abcdefghijklmna1.000b1.000∗∗1.000c-0.200-0.2091.000d-0.490-0.5020.1481.000e-0.729-0.7320.0600.6981.000f-0.830∗-0.835∗-0.1210.7340.7981.000g-0.837∗-0.841∗0.5190.7010.7670.6501.000h-0.374-0.372-0.3720.3090.813∗0.5500.2751.000i-1.000∗∗-1.000∗∗0.1930.4820.7320.829∗0.832∗0.3841.000j0.964∗∗0.962∗∗-0.366-0.351-0.671-0.663-0.858∗-0.306-0.965∗∗1.000k0.3660.374-0.264-0.461-0.820∗-0.459-0.502-0.760-0.3720.3751.000l0995∗∗0.994∗∗-0.217-0.411-0.663-0.783-0.807-0.312-0.995∗∗0.973∗∗0.3021.000m-0.999∗∗-0.999∗∗0.1870.5100.7350.853∗0.828∗0.3820.999∗∗-0.952∗∗-0.377-0.991∗∗1.000n0.945∗∗0.947∗∗-0.156-0.675-0.685-0.859∗-0.858∗-0.253-0.940∗∗0.864∗0.2350.926∗∗-0.947∗∗1.000㊀㊀注:∗㊁∗∗分别表示在0.05㊁0.01水平上显著相关ꎮ2.7㊀丹参各项生长指标的主成分分析丹参各项生长指标之间存在较强相关关系ꎬ通过对以上指标进行主成分分析可以筛选出主成分因子ꎬ从而对丹参的生长状况进行综合评价ꎬ结果见表6ꎮ地上部13C含量㊁根部13C含量㊁根际土壤13C含量三者的特征根值均>1.0ꎬ方差百分比之和超过90%ꎬ累积方差贡献率达92.754%ꎬ因此ꎬ前三个主成分已足够描述丹参的生长状况ꎮ地上部13C含量㊁根部13C含量和根际土壤13C含量所表现出来的植物固碳能力与光合作用强弱可直接反映丹参的生长发育状况ꎮ㊀㊀表6㊀丹参主要生长指标的主成分分析成分初始特征值总计方差百分比/%累积贡献率/%提取载荷平方和总计方差百分比/%累积贡献率/%地上部13C含量9.70569.32469.3249.70569.32469.324根部13C含量1.95413.96083.2841.95413.96083.284根际土壤13C含量1.3269.47092.7541.3269.47092.754地上部鲜重0.8486.05598.809地下部鲜重0.1671.19099.9993㊀讨论与结论稳定性同位素13C标记技术使定量研究光合碳的动态变化与存留状态成为现实ꎬ有效揭示了碳元素在植物体内与植物-土壤-微生物之间的周转循环[22]ꎬ目前被广泛应用于研究陆生与水生植物的光合碳分配规律㊁土壤有机碳循环以及鉴定土壤微生物的群落结构和功能等方面[23]ꎮ孔玉华等[24]利用13C脉冲标记法发现侧柏光合碳分配规律为地上部>地下部>根际土壤ꎬ大部分13C-光合碳被用于侧柏自身的生长ꎬ根际土壤中只存留了极少部分的13C-光合碳ꎻ蔡章林等[1]发现13C在枫香和山乌桕幼苗体内首先富集于叶片ꎬ后慢慢向根部转移ꎮ以上研究结果与本研究对丹参光101㊀第2期㊀㊀㊀孟缘ꎬ等:基于13C同位素标记法探究连作对丹参生长及光合碳分配的影响合碳分配情况的结论大致相似ꎬ光合碳在植物-土壤系统中基本以植物叶ң茎ң根再到根际土壤的路径向下转移ꎬ大部分存留于植物体内ꎬ根际土壤中13C-光合碳含量较少ꎮ生长环境的变化可能改变植物代谢与生理适应情况ꎬ从而引发植物光合碳分配比例与碳同位素比值的变化[25]ꎮ刘萍等[26]利用13C脉冲标记法发现施氮量为100mg/kg时ꎬ水稻的生长势显著高于其他施氮量ꎬ且提高了光合碳在根际土壤的分配比例ꎮ光合碳通过根系凋亡与根系分泌物的释放进入根际土壤ꎬ连接起植物㊁土壤及土壤微生物ꎬ因此植物的光合作用是生物与地球环境碳循环的首要驱动因子[27-28]ꎮ孔玉华等[24]也发现种植密度影响13C-光合碳在植物地上部与根部的分配比例ꎬ地上部的光合碳分配量随种植密度的增大而增加ꎬ根部的光合碳分配量则随之减少ꎮ本研究中ꎬ连作条件下丹参的总生物积累量与生长发育情况都与非连作丹参有明显差异ꎮ其中ꎬ连作丹参水溶性有效成分中的丹酚酸B含量升高28.8%ꎬ但迷迭香酸含量降低51.4%ꎬ且连作条件下丹参的脂溶性有效成分总量明显降低ꎻ在13C标记试验中ꎬ连作丹参地上部的光合碳含量明显高于非连作丹参ꎬ而根部光合碳含量相差不大ꎬ表明连作条件下光合碳传递至根部的量较少ꎬ说明连作丹参受连作土壤的负面影响ꎬ光合碳转移速率明显低于非连作丹参ꎮ综上ꎬ连作对丹参的生长发育与药效均有明显的负面影响ꎮ丹参光合作用的强弱是反映丹参生长状况的重要指标ꎮ则连作引发的丹参形态不佳及生理状态受损在影响其光合产物积累的同时ꎬ还减缓了光合产物的运输速率ꎬ从而降低光合产物在根部的分配比例ꎬ造成连作丹参质量受损㊁产量下降ꎻ连作条件下丹参光合作用产生的初生代谢产物合成受限ꎬ进而影响丹参次生代谢产物的积累ꎬ最终影响其药效ꎮ因此推测连作对丹参光合作用的影响是连作丹参药效降低的原因之一ꎮ参㊀考㊀文㊀献:[1]㊀蔡章林ꎬ赵厚本ꎬ蔡继醇ꎬ等.用13C标记法研究光合碳在枫香和山乌桕幼苗体内的留存及分配动态[J].应用与环境生物学报ꎬ2023ꎬ29(2):408-413.[2]㊀王艳红ꎬ于镇华ꎬ李彦生ꎬ等.植物-土壤-微生物间碳流对大气CO2浓度升高的响应[J].土壤与作物ꎬ2018ꎬ7(1):22-30.[3]㊀解丽娜.水盐因子对滨海盐沼土壤微生物及植物-土壤碳分配的影响[D].上海:华东师范大学ꎬ2022. [4]㊀RemusRꎬHüveKꎬPörschmannJꎬetal.Determiningthetime ̄pointwhen14Ctraceraccuratelyreflectphotosynthateuseintheplant ̄soilsystem[J].PlantandSoilꎬ2016ꎬ408(1/2):457-474.[5]㊀LuoYꎬXiaoMLꎬYuanHZꎬetal.Ricerhizodepositionpro ̄motesthebuild ̄upoforganiccarboninsoilviafungalnecro ̄mass[J].SoilBiologyandBiochemistryꎬ2021ꎬ160:108345. [6]㊀国家药典委员会.中国药典:一部[M].北京:中国医药科技出版社ꎬ2020:77.[7]㊀杨萍ꎬ李杰ꎬ周风华ꎬ等.丹参酮ⅡA对过氧化氢损伤心肌细胞的保护作用及机制研究[J].时珍国医国药ꎬ2010ꎬ21(l):3-5.[8]㊀尉广飞ꎬ李佳ꎬ刘谦ꎬ等.丹参根部颜色及其与活性成分含量的相关性研究[J].山东农业科学ꎬ2015ꎬ47(8):59-62. [9]㊀刘伟ꎬ张琳ꎬ章云云ꎬ等.不同连作年限对白花丹参生长及其活性成分含量的影响[J].中国中药杂志ꎬ2013ꎬ38(24):4252-4256.[10]张辰露ꎬ孙群ꎬ叶青.连作对丹参生长的障碍效应[J].西北植物学报ꎬ2005ꎬ25(5):1029-1034.[11]SunZAꎬWuSXꎬZhangYWꎬetal.Effectsofnitrogenferti ̄lizationonpot ̄grownwheatphotosynthatepartitioningwithinin ̄tensivelyfarmedsoildeterminedby13Cpulse ̄labeling[J].JournalofPlantNutritionandSoilScienceꎬ2019ꎬ182(6):896-907.[12]于雅茜ꎬ裴久渤ꎬ刘维ꎬ等.13C富集玉米根㊁茎㊁叶添加对长期不施肥和施肥处理棕壤土壤呼吸的影响及其激发效应[J].土壤学报ꎬ2023ꎬ60(4):1077-1087.[13]张芳超ꎬ卢伟伟ꎬ查全智.标记停留时间对水稻及其生物质炭的13C和15N丰度的影响[J/OL].土壤学报ꎬ2020-08-01.https://kns.cnki.net/kcms/detail/32.1119.P.20220729.1819.006.html.[14]于雅茜.13C标记玉米根茎叶添加对不同肥力棕壤呼吸与激发效应的影响[D].沈阳:沈阳农业大学ꎬ2022. [15]聂三安.14C连续标记下水稻同化碳向土壤有机碳库传输的定量研究[D].长沙:湖南农业大学ꎬ2011.[16]连腾祥ꎬ王光华ꎬ于镇华ꎬ等.植物光合碳在根际土壤中的微生物转化与SIP技术[J].土壤与作物ꎬ2013ꎬ2(2):77-83.[17]江继顺ꎬ石玉ꎬ于振文ꎬ等.不同产量水平麦田小麦光合特性和13C同化物分配的差异[J].山东农业科学ꎬ2023ꎬ55(1):63-68.[18]肖和艾ꎬ吴金水ꎬ李玲ꎬ等.采用14C同位素标记植物的装置201㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀与方法[J].核农学报ꎬ2007ꎬ21(6):630-632ꎬ629. [19]姚云静.连作条件下导病抑病型植烟土壤根际微生物群落研究[D].贵阳:贵州大学ꎬ2021.[20]LuYHꎬWatanabeAꎬKimuraM.Inputanddistributionofphotosynthesizedcarboninafloodedricesoil[J].GlobalBio ̄geochemicalCyclesꎬ2002ꎬ16(4):321-328.[21]周冰谦ꎬ吕海花ꎬ杨帆ꎬ等.变温干制对白花丹参有效成分的二次提升研究[J].中国中药杂志ꎬ2017ꎬ42(10):1883-1893.[22]沈其荣ꎬ殷士学ꎬ杨超光ꎬ等.13C标记技术在土壤和植物营养研究中的应用[J].植物营养与肥料学报ꎬ2000ꎬ6(1):98-105.[23]李彪ꎬ何俭翔.稳定碳同位素技术在土壤有机碳循环中的研究进展与展望[J].农业与技术ꎬ2022ꎬ42(20):65-70.[24]孔玉华ꎬ朱庆征ꎬ曲安然ꎬ等.基于13C脉冲标记法探究种植密度对侧柏幼苗生长及光合碳分配的影响[J].甘肃农业大学学报ꎬ2022ꎬ57(1):131-138.[25]ZachosJCꎬDickensGRꎬZeebeRE.AnearlyCenozoicper ̄spectiveongreenhousewarmingandcarbon ̄cycledynamics[J].Natureꎬ2008ꎬ451(7176):279-283.[26]刘萍ꎬ江春玉ꎬ李忠佩.13C脉冲标记定量研究施氮量对光合碳在水稻-土壤系统中分布的影响[J].土壤学报ꎬ2015ꎬ52(3):567-575.[27]GregoryPJꎬAtwellBJ.Thefateofcarboninpulse ̄labelledcropsofbarleyandwheat[J].PlantandSoilꎬ1991ꎬ136(2):205-213.[28]金剑ꎬ王光华ꎬ刘晓冰ꎬ等.作物生育期内光合碳在地下部的分配及转化[J].生态学杂志ꎬ2008ꎬ27(8):1393-1399.301㊀第2期㊀㊀㊀孟缘ꎬ等:基于13C同位素标记法探究连作对丹参生长及光合碳分配的影响。

固相萃取–气相色谱质谱法同时测定海洋沉积物中16种除草剂

固相萃取–气相色谱质谱法同时测定海洋沉积物中16种除草剂

&&除草剂是农业生产中广泛使用的一种农药# 自 首例化学合成除草剂 !"N =G问 世 以 来"有 机 除 草 剂 种类不断增加"中国农药市场也先后有近百种除草剂 产品"其中主要以三嗪类$酰胺类$磺酰脲类和苯氧羧 酸类为主%#( # 除草剂的大规模使用"可对渔业水质$ 沉积物和生物体造成不利影响"甚至引发生态安全和 食品安全问题# 有研究表明水体和土壤中的丁草胺$ 乙草胺和苄嘧磺隆的残留可对水产养殖环境和生态 环境造成破坏 %! ='( )三氮苯类除草剂阿特 拉 津 可 在 环 境水体和土壤中长期残留"对贝类神经毒性指示物乙 酰胆碱酯酶等有一定影响%N( "并可显 著 降 低 大 叶 藻 幼苗的总叶绿素含量%%( )二硝基苯胺 类 除 草 剂 二 甲 戊乐灵 %$ =H( 可对大 马 哈 鱼 抗 氧 化 体 系 和 免 疫 系 统 造 成破坏#
!"#$ 年 % 月
中国渔业质量与标准
830!"#$
第 $ 卷&第 ' 期
()*+,-,.*-),/01234*503+6 753+63/6-
9:4;固相萃取 9气相色谱质谱法同时测定海洋沉积物中 !B 种除草剂
徐英江# 韩典峰# 黄会# 乔丹! 董晓晓# 张华威# 刘慧慧# 张秀珍#
#A山东省海洋资源与环境研究院山东省海洋生态修复重点实验室山东 烟台 !$N""$ !A上海海洋大学食品学院上海 !"#'"$
摘要!建立了同时测定海洋沉积物中 #$ 种除草剂的固相萃取 =气相色谱质谱检测方法# 样品经乙酸乙酯 =二氯甲烷 &'k!)?@?' 混合溶液提取"浓缩"甲醇复溶"加入纯水稀释"过 TVF固相萃 取 柱 富 集$净 化"洗 脱 液 氮 吹 浓 缩"乙 酸 乙 酯 定容上机"用气相色谱质谱仪& E(?87' 选择离子监测模式定性定量分析"外标法定量# 方 法 中 二 甲 戊 乐 灵$草 净 津 检 出限为 #A% M?[M"其余 #N 种除草剂检出限均为 "AC M?[M)二 甲 戊 乐 灵$草 净 津 线 性 范 围 为 NA" O!""A" M?V"其 余 #N 种除草剂线性范围均为 !A" O#""A" M?V)方法加标回收率为 HNA!Q O>HA'Q"相 对 标 准 偏 差 为 %AC'Q O##A$Q# 该方法灵敏准确"适用于海洋沉积物中 #$ 种除 草 剂 的 定 性 定 量 检 测"对 加 强渔 业 生态 环 境保 护提供 技术支持# % 中 国渔业质量与标准"!"#$"$&'' !'N =N"( 关键词!除草剂)沉积物)固相萃取)气相色谱 =质谱法& E(?87' 中图分类号!7>N&&&文献标识码!B&&&文章编号!!">% =#C''&!"#$'"' =""'N ="H

渔业统计年鉴2020

渔业统计年鉴2020

渔业统计年鉴2020(原创实用版)目录一、我国渔业发展概况二、渔业统计年鉴 2020 的主要内容三、2020 年我国渔业发展的特点和亮点四、面临的挑战及未来发展方向正文一、我国渔业发展概况渔业作为我国传统产业之一,历史悠久,发展至今已成为我国农业的重要组成部分。

近年来,在国家政策的支持和引导下,我国渔业取得了长足的发展,不仅在产量上稳居世界首位,同时在养殖技术、渔业资源保护等方面也取得了显著的成果。

二、渔业统计年鉴 2020 的主要内容《渔业统计年鉴 2020》是由农业农村部渔业渔政管理局主编,中国农业出版社有限公司出版的一部全面反映我国渔业发展情况的大型统计资料汇编。

该书主要内容包括:渔业生产总体情况、养殖渔业、海洋捕捞、渔业资源与环境保护、渔业经济与贸易等五个方面。

三、2020 年我国渔业发展的特点和亮点1.养殖渔业发展迅速,产量持续增长。

2020 年,我国养殖渔业总产量为 5079.2 万吨,同比增长 1.7%。

其中,淡水养殖产量为 2805.8 万吨,同比增长2.5%;海水养殖产量为 2273.4 万吨,同比增长 0.6%。

2.海洋捕捞产量稳中有降。

2020 年,我国海洋捕捞产量为 1037.4 万吨,同比下降 1.7%。

这是近年来我国海洋捕捞产量首次出现下降,但总体上仍保持在较高水平。

3.渔业资源与环境保护力度加大。

2020 年,我国共投入渔业资源保护经费 41.5 亿元,同比增长 10.6%。

在严格执行休渔期制度的同时,加大海洋生物资源保护力度,实施严格的渔业资源调控措施。

4.渔业经济与贸易逐步恢复。

2020 年,我国渔业经济总产值为 13902 亿元,同比增长 1.0%。

渔业出口贸易总额为 233.6 亿美元,同比增长1.4%。

四、面临的挑战及未来发展方向尽管我国渔业发展取得了显著成果,但仍面临一些挑战,如渔业资源衰退、生态环境恶化、国际贸易摩擦等。

因此,未来我国渔业发展应以绿色发展为导向,推进渔业结构调整,加大渔业资源环境保护力度,提高渔业科技创新能力,提升渔业质量效益和竞争力。

不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响

不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响

㊀山东农业科学㊀2023ꎬ55(8):56~64ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.08.008收稿日期:2022-10-20基金项目:国家自然科学基金项目(32001929)ꎻ山东省自然科学基金项目(ZR2020MC125)作者简介:赵晓彤(2000 )ꎬ女ꎬ山东东营人ꎬ硕士研究生ꎬ研究方向为园林植物种质资源创新与应用ꎮE-mail:2581146949@qq.com通信作者:王桂清(1968 )ꎬ女ꎬ河北泊头人ꎬ博士ꎬ教授ꎬ主要从事植物保护教学与科研工作ꎮE-mail:wangguiqing@lcu.edu.cn不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响赵晓彤ꎬ王桂清(聊城大学农学与农业工程学院ꎬ山东聊城㊀252000)㊀㊀摘要:采用十字交叉法和血球计数法分析不同培养基㊁温度㊁光照㊁酸碱度㊁碳源和氮源等对长枝木霉SMF2和哈茨木霉T39菌丝生长和孢子形成的影响ꎬ明确两种木霉生长繁殖的最佳条件ꎬ指导其人工扩繁和工厂化生产ꎮ结果表明ꎬSMF2和T39在含碳源和有机氮的PDA㊁CDA培养基中ꎬ常温㊁黑暗㊁非强酸强碱培养条件下其菌丝生长良好ꎬ光照㊁果糖㊁牛肉膏培养条件更有利于二者孢子形成ꎻ温度㊁酸碱度和培养基是影响SMF2和T39孢子形成的主要因素ꎬ35ħ㊁pH值为7㊁PDA培养基最利于SMF2产孢ꎬ30ħ㊁pH值为6㊁CDA培养基最利于T39产孢ꎻ相同条件下ꎬSMF2的菌丝生长略快ꎬ而T39的产孢能力更强ꎻ单糖和有机氮更有利于促进SMF2和T39产孢ꎮ关键词:培养条件ꎻ长枝木霉SMF2ꎻ哈茨木霉T39ꎻ菌丝生长ꎻ孢子形成中图分类号:S476.1㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)08-0056-09EffectsofDifferentCultureConditionsonGrowthandSporulationofTrichodermaLongibrachiatumSMF2andTrichodermaHarzianumT39ZhaoXiaotongꎬWangGuiqing(AgriculturalScienceandEngineeringSchoolꎬLiaochengUniversityꎬLiaocheng252000ꎬChina)Abstract㊀TheeffectsofdifferentmediaꎬtemperatureꎬlightꎬpHꎬcarbonsourcesandnitrogensourcesonthehyphagrowthandsporeformationofTrichodermalongibrachiatumSMF2andTrichodermaharzianumT39wereanalyzedbycrossmethodandbloodcellcountingmethod.Itwasaimedtoclarifytheoptimalcondi ̄tionsforthegrowthandreproductionofthetwoTrichodermaspeciesꎬandtoguidetheirartificialpropagationandfactoryproduction.TheresultsshowedthatSMF2andT39hadbetterhyphagrowthunderroomtempera ̄tureꎬdarkꎬnon ̄strongacidandalkalicultureconditionsinPDAandCDAmediacontainingcarbonsourceandorganicnitrogenꎬandthecultureconditionsoflightꎬfructoseandbeefpasteweremoreconducivetothesporeformation.TemperatureꎬpHandmediumwerethemainfactorsaffectingtheformationofSMF2andT39sporesꎻ35ħꎬpH=7andPDAmediumwerethemostconducivetoSMF2sporeproductionꎬand30ħꎬpH=6andCDAmediumwerethemostconducivetoT39sporeproduction.UnderthesameconditionsꎬthehyphagrowthrateofSMF2wasslightlyfasterꎬandthesporeproductioncapacityofT39wasstronger.Mono ̄saccharidesandorganicnitrogenweremoreconducivetoSMF2andT39sporulation.Keywords㊀CultureconditionsꎻTrichodermalongibrachiatumSMF2ꎻTrichodermaharzianumT39ꎻHy ̄phagrowthꎻSporulation㊀㊀生防真菌在防治作物病害(尤其是土传病害)方面发挥着巨大作用ꎬ其中研究最多和应用最广的为木霉菌(Trichodermaspp.)[1]ꎮ木霉菌广泛分布于不同生态环境中ꎬ以丰富的次生代谢物和强大的竞争能力及重寄生特性实现其生物防治作用ꎬ在土壤修复㊁促进植物生长和控制病害方面发挥着重要作用[2]ꎬ可作为高效㊁经济㊁环保的原材料应用于工业和农业生产[3]ꎮ因其具有生长分布的广泛性㊁种类株系的适应性㊁拮抗真菌的广谱性㊁活性物质的多样性㊁作用机制的复杂性和对环境的友好性等特点而成为最有应用前途的生防因子[4-6]ꎮ最为常见的木霉菌有哈茨木霉(Trichodermaharzianum)㊁棘孢木霉(Trichodermaasperellum)㊁长枝木霉(Trichodermalongibrachiatum)和绿色木霉(Trichodermaviride)等ꎮ哈茨木霉是目前农业生物防治中最具商业化价值的木霉菌ꎬ应用广泛ꎻ长枝木霉是较为常见的拮抗类木霉ꎬ在植病生防中越来越受到重视ꎮ哈茨木霉T22㊁T39作为生防产品已登记注册ꎬ不仅可以诱导寄主防御基因表达产生抗病性而防治植物病害ꎬ还可以促进作物生长进而提高生物量[7-9]ꎮ长枝木霉SMF2主要通过产生抗菌肽康宁霉素(trichokoninsꎬTKs)而对植物病害产生抑制作用ꎬ同时对苦瓜㊁白三叶草等植物具有明显的促生作用[1ꎬ10]ꎮ木霉菌种类不同㊁菌株不同ꎬ其生态适应性也不同ꎮ绿色木霉TR-8㊁哈茨木霉TH-1均可在PDA培养基上正常生长ꎻ光照可促进孢子产生ꎬ但二者最适生长温度㊁pH值等略有不同ꎻ微量元素Mn对TR-8菌丝生长有一定的促进作用[11-12]ꎮ生物学特性是研究真菌繁殖条件㊁发生规律㊁生态调控等方面的理论基础ꎬ对生防菌的科学利用具有指导作用[13]ꎮ本试验通过研究不同培养条件下长枝木霉SMF2和哈茨木霉T39的生物学特性ꎬ明确其生长繁殖条件ꎬ为其人工扩繁和工厂化生产奠定理论基础ꎮ1㊀材料与方法1.1㊀供试材料供试菌种为长枝木霉(T.longibrachiatum)SMF2和哈茨木霉(T.harzianum)T39ꎬ由聊城大学植物病理实验室提供ꎮ将供试菌种在(25ʃ1)ħ㊁LʒD(光照ʒ黑暗)=12hʒ12h的恒温光照培养箱内采用PDA培养基培养3d后ꎬ用打孔器取直径0.7cm的菌饼备用ꎮ1.2㊀试验设计1.2.1㊀培养基㊀供试培养基为马铃薯葡萄糖琼脂培养基(PDA:去皮马铃薯200g㊁葡萄糖20g㊁琼脂20g㊁蒸馏水1L)㊁察氏培养基(CDA:葡萄糖20g㊁KH2PO40.5g㊁K2HPO40.6g㊁MgSO4 7H2O0.5g㊁NaCl0.1g㊁天门冬酰胺5g㊁CaCl20.1g㊁琼脂20g㊁蒸馏水1L)㊁燕麦培养基(OMA:燕麦片40g㊁琼脂20g㊁蒸馏水1L)㊁基础固体培养基(BCM:蛋白胨10g㊁牛肉浸膏3g㊁K2HPO41g㊁NaCl5g㊁琼脂20g㊁蒸馏水1L)㊁麦芽糖琼脂培养基(MEA:麦芽糖20g㊁琼脂20g㊁蒸馏水1L)[15]共5种ꎮ1.2.2㊀温度㊀以PDA培养基为营养源ꎬ温度范围5~40ħ之间ꎬ设置5㊁10㊁15㊁20㊁25㊁30㊁35㊁40ħ共8个处理ꎮ1.2.3㊀光照㊀以PDA培养基为营养源ꎬ设置全光照㊁光暗交替(LʒD=12hʒ12h)㊁全黑暗3个处理ꎮ1.2.4㊀pH值㊀以PDA培养基为营养源ꎬ使用1.0mol/LHCl溶液和1.0mol/LNaOH溶液调节PDA培养基的pH值ꎬ设pH值为3㊁4㊁5㊁6㊁7㊁8㊁9㊁10㊁11㊁12共10个处理ꎮ1.2.5㊀碳源㊀以CDA培养基作为基础培养基ꎬ用供试碳源等量替换其中的葡萄糖(标准碳)ꎬ制成不同碳源培养基ꎮ供试碳源选用蔗糖㊁麦芽糖㊁乳糖㊁果糖㊁海藻糖㊁阿拉伯糖㊁可溶性淀粉㊁微晶纤维素共8种ꎬ并以无碳处理作为空白对照ꎮ1.2.6㊀氮源㊀以CDA培养基作为基础培养基ꎬ用供试氮源等量替换其中的天门冬酰胺(标准氮)ꎬ制成不同氮源培养基ꎮ供试氮源选用硫酸铵㊁氯化铵㊁硝酸钠㊁牛肉膏㊁酵母浸膏㊁蛋白胨㊁甘氨酸共7种ꎬ并以无氮处理作为空白对照ꎮ1.3㊀测定项目及方法将高压湿热灭菌后的培养基制成平板(直径9cm)ꎬ于培养皿内接种木霉菌饼ꎬ1皿1饼ꎬ重复3次ꎮ研究不同培养基㊁温度㊁光照㊁pH值㊁碳源和氮源对SMF2㊁T39菌丝生长和产孢量的影响ꎮ不同处理分别于(25ʃ1)ħ㊁LʒD=12hʒ12h的恒温光照培养箱培养48h后ꎬ采用十字交叉法测量菌落直径ꎬ72h后用相机拍照记录培养性状ꎬ采用血球计数法计算产孢量[14-15]ꎮ75㊀第8期㊀㊀㊀㊀㊀赵晓彤ꎬ等:不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响1.4㊀数据处理与分析利用MicrosoftExcel2020处理数据ꎬ用AdobePhotoshop2020软件处理照片ꎬ用DPS19.05中的Duncan s法进行多组样本间的差异显著性分析ꎮ2㊀结果与分析2.1㊀不同培养基对两种木霉菌丝生长和产孢能力的影响图1显示ꎬSMF2㊁T39在5种供试培养基中均可生长ꎬ菌丝生长呈辐射状ꎬ色素颜色为黄绿色ꎬ培养基不同菌丝色素颜色深浅不同ꎮ其中ꎬ二者在MEA培养基上生长均不理想ꎬ菌丝稀薄ꎬ不产生色素ꎬ产孢量小ꎮ不同培养基条件下两种木霉菌丝生长速度和产孢量存在差异ꎮ由图2可知ꎬ二者在PDA培养基上生长状况最好ꎬ菌落大㊁菌丝生长旺盛ꎬ产孢量大ꎮSMF2菌落直径达7.69cmꎬ是T39的1.25倍(表1)ꎬ产孢量为2.64ˑ1010个/皿ꎻT39菌落直径为6.16cmꎬ产孢量为3.86ˑ1010个/皿ꎮ在CDA㊁OMA㊁BCM培养基上ꎬ二者生长状况较好ꎬT39的产孢量是SMF2的1.27~6.55倍(表1)ꎬ且T39在CDA上的产孢量高达4.58ˑ1010个/皿ꎮ上行图为SMF2ꎬ下行图为T39ꎬ下同ꎻ从左至右依次为PDA㊁CDA㊁OMA㊁BCM㊁MEAꎮ图1㊀不同培养基条件下两种木霉培养结果比较图2㊀不同培养基对两种木霉菌丝生长和产孢量的影响㊀㊀表1㊀不同培养基下SMF2与T39生物量的倍数比较指标PDACDAOMABCMMEA菌落直径1.251.050.971.090.84产孢量1.466.551.272.010.88㊀㊀注:表中菌落直径的倍数为SMF2/T39ꎬ产孢量的倍数为T39/SMF2ꎬ下同ꎮ㊀㊀综合菌丝生长速度㊁产孢量和培养性状ꎬPDA为SMF2菌株生长发育的最佳培养基ꎬCDA为T39的最佳培养基ꎮT39菌株的产孢能力明显大于SMF2ꎮ2.2㊀不同温度对两种木霉菌丝生长和产孢能力的影响由图3可知ꎬ两种木霉在25~35ħ范围内菌丝生长旺盛ꎬ呈辐射状ꎬ菌落致密ꎬ在整个培养基上密布成堆ꎮ当培养温度ɤ20ħ或高达40ħ时ꎬ两种木霉生长状况均较差ꎬ菌丝稀薄ꎬ产孢量少ꎮ由图4可知ꎬ供试温度范围内ꎬ随着温度升高ꎬ两种木霉的菌落直径和产孢量均呈现先升高后降低的变化ꎮSMF2的菌落直径和产孢量拐点均出现在35ħꎬ菌落直径最大达8.75cmꎬ是T39的1.29倍(表2)ꎬ产孢量最高达61.06ˑ10885㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀个/皿ꎻ而T39的菌落直径拐点出现在25ħꎬ最大达8.35cmꎬ产孢量拐点出现在30ħꎬ最高达206.46ˑ108个/皿ꎮ5~30ħ范围内ꎬ同一温度下ꎬT39的产孢能力强于SMF2ꎬ前者的产孢量是后者的1.11~23.83倍(表2)ꎻ而35~40ħ时ꎬT39的产孢能力低于SMF2ꎬ后者的产孢量是前者的1.06~1.96倍ꎮ从左至右依次为5㊁10㊁15㊁20㊁25㊁30㊁35㊁40ħꎮ图3㊀不同温度条件下两种木霉培养结果比较㊀㊀表明两种木霉在最适培养温度上有差异ꎬSMF2的菌丝生长和产孢最适温度均为35ħꎬT39的菌丝生长最适温度为25~30ħꎬ产孢最适温度为30ħꎮ相同温度下T39产孢量整体较高ꎮ图4㊀不同温度条件下两种木霉菌丝生长和产孢量比较㊀㊀表2㊀不同温度条件下SMF2与T39生物量的倍数比较指标5ħ10ħ15ħ20ħ25ħ30ħ35ħ40ħ菌落直径0.901.492.241.210.930.981.290.94产孢量1.171.114.003.7023.8313.620.510.952.3㊀不同光照对两种木霉菌丝生长和产孢能力的影响图5显示ꎬSMF2㊁T39在3种不同光照条件下均能正常生长ꎬ菌落致密ꎬ菌丝呈辐射状ꎬ生长旺盛ꎮ二者在全光照条件下产孢最多ꎬ光暗交替条件下次之ꎬ全黑暗条件下最少ꎮ由图6可知ꎬ不同光照条件下ꎬSMF2㊁T39的菌落直径范围分别为6.31~8.13㊁5.75~6.67cmꎬ且菌落直径均在全黑暗条件下达到最大ꎬ全光照条件下次之ꎬ光暗交替条件下最小ꎮSMF2菌丝生长较快ꎬ是T39的1.05~1.22倍(表3)ꎮ从左到右依次为全光照㊁光暗交替㊁全黑暗ꎮ图5㊀不同光照条件下两种木霉培养结果比较T39㊁SMF2产孢量均在全光照条件下达到最大ꎬ分别为33.83ˑ108㊁9.50ˑ108个/皿ꎻ不同光照条件下ꎬT39的产孢量为SMF2的2.45~4.14倍(表3)ꎮ表明光照条件能够有效增加二者的产孢量ꎬ且同一光照条件下ꎬT39产孢量明显高于SMF2ꎮ图6㊀不同光照条件下两种木霉菌丝生长和产孢量比较95㊀第8期㊀㊀㊀㊀㊀赵晓彤ꎬ等:不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响㊀㊀表3㊀不同光照条件下SMF2与T39生物量的倍数比较指标全光照光暗交替全黑暗菌落直径1.051.101.22产孢量3.562.454.142.4㊀不同pH值对两种木霉菌丝生长和产孢能力的影响图7显示ꎬ两种木霉在pH值为4~11条件下均可生长ꎬ菌落相对致密ꎬ菌丝生长比较旺盛ꎬ孢子均匀密布整个培养基ꎻ但极强的酸㊁碱环境即pH值为3㊁12条件下ꎬ二者生长状况较差ꎬpH值为12条件下菌丝生长缓慢ꎬ菌落较小ꎬ产孢量较少ꎻpH值为3条件下由于酸性过大ꎬ培养基无法凝固ꎬ两种菌生长缓慢ꎬ产孢极少ꎮ从左到右依次为pH=3㊁4㊁5㊁6㊁7㊁8㊁9㊁10㊁11㊁12ꎮ图7㊀不同pH值条件下两种木霉培养结果比较㊀㊀由图8可知ꎬpH值为4~11条件下ꎬSMF2㊁T39的菌丝生长和产孢量存在明显差异ꎮSMF2的菌落直径范围为6.51~8.45cmꎬpH值为9时菌落直径最大ꎻT39的菌落直径范围为4.95~7.48cmꎬpH值为4时菌落直径最大ꎬ且随pH值增大整体呈减小趋势ꎮpH值为4~5时ꎬT39的菌丝生长比较快ꎬ其菌落直径是SMF2的1.07~1.15倍ꎻpH值为6~11时ꎬSMF2的菌丝生长比较快ꎬ其菌落直径是T39的1.17~1.59倍(表4)ꎮpH值为4~11条件下ꎬSMF2的产孢量为(0.46~2.91)ˑ1010个/皿ꎬpH值为7时孢子量最多ꎻT39的产孢量为(1.48~5.22)ˑ1010个/皿ꎬpH值为6时孢子量最多ꎮ相同pH值下T39的产孢量是SMF2的1.25~4.20倍(表4)ꎮ表明中性偏碱环境有利于SMF2的生长和繁殖ꎬ其菌丝生长和产孢的最适pH值分别为9和7ꎻ偏酸条件则更有利于T39的生长发育ꎬ其菌丝生长和产孢的最适pH值分别为4和6ꎮ图8㊀不同pH值条件下两种木霉菌丝生长和产孢量比较㊀㊀表4㊀不同pH值条件下SMF2与T39生物量的倍数比较指标3456789101112菌落直径1.290.870.931.241.171.211.591.231.541.34产孢量4.893.684.203.131.251.321.761.931.431.172.5㊀不同碳源对两种木霉菌丝生长和产孢能力的影响图9显示ꎬ两种木霉在无碳培养基上可产孢ꎬ从左到右依次为无碳㊁果糖㊁阿拉伯糖㊁海藻糖㊁麦芽糖㊁蔗糖㊁乳糖㊁可溶性淀粉㊁微晶纤维素ꎮ图9㊀不同碳源条件下两种木霉培养结果比较06㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀但产孢量较少㊁生长较差ꎬ菌落直径相对较小ꎬ菌丝稀疏ꎻ在其他碳源培养基上菌丝生长均较旺盛ꎬ产孢量大ꎬ呈辐射状ꎬ分生孢子密布于菌落上ꎮ不同碳源处理下两种木霉的生长发育状况较无碳对照均明显提高ꎬ表明其对碳源的要求不严格ꎬ但对单糖(果糖㊁阿拉伯糖)的利用效果优于双糖(海藻糖㊁麦芽糖㊁蔗糖㊁乳糖)和多糖(可溶性淀粉㊁微晶纤维素)ꎮ微晶纤维素由于自身溶解性较差ꎬ以其为碳源时ꎬ菌丝生长和产孢能力不理想ꎬ但其生长发育状况仍优于无碳对照ꎮ由图10可知ꎬ无碳条件下ꎬSMF2和T39菌落直径均低于5cmꎬ产孢量不超过1.00ˑ1010个/皿ꎮ不同碳源处理下ꎬSMF2的菌落直径为5.16~7.71cmꎬ产孢量为(0.95~1.62)ˑ1010个/皿ꎬ分别是无碳培养基的1.06~1.59㊁2.71~4.63倍ꎻT39的菌落直径为4.20~5.62cmꎬ产孢量为(1.56~2.50)ˑ1010个/皿ꎬ与无碳培养基相比ꎬ前者产孢量是后者的1.68~2.69倍ꎬ菌落直径的倍数关系在1.01~1.36之间ꎬ差异较小ꎮ阿拉伯糖为SMF2和T39菌丝生长的最适碳源ꎬ果糖为二者产孢的最佳碳源ꎮ由表5可知ꎬ不同碳源条件下ꎬSMF2的菌丝生长较快ꎬ菌落直径是T39的1.23~1.47倍ꎻT39的产孢能力明显大于SMF2ꎬ前者是后者的1.10~1.64倍ꎮ图10㊀不同碳源条件下两种木霉菌丝生长和产孢量比较㊀㊀表5㊀不同碳源条件下SMF2与T39生物量的倍数比较指标无碳果糖阿拉伯糖海藻糖麦芽糖蔗糖乳糖可溶性淀粉微晶纤维素菌落直径1.171.471.371.441.411.331.331.351.23产孢量2.651.541.421.521.551.461.101.551.642.6㊀不同氮源对两种木霉菌丝生长和产孢能力的影响图11显示ꎬ无氮条件下ꎬ两种木霉的孢子肉眼几乎不可见ꎮ相比较无氮对照ꎬ两种木霉在以蛋白胨㊁酵母浸膏㊁牛肉膏㊁甘氨酸为氮源的培养基上生长良好ꎬ菌丝致密ꎬ产孢量较多ꎻ而在其他氮源培养基中ꎬ菌丝稀薄ꎬ产孢量少ꎬ生长㊁产孢均不理想ꎮ从左到右依次为无氮㊁蛋白胨㊁牛肉膏㊁酵母浸膏㊁甘氨酸㊁硝酸钠㊁硫酸铵㊁氯化铵ꎮ图11㊀不同氮源条件下两种木霉培养结果比较㊀㊀由图12可知ꎬ不同氮源条件下两种木霉的菌丝生长差异明显ꎮ在以有机氮(蛋白胨㊁牛肉膏㊁酵母浸膏)㊁氨基酸态氮(甘氨酸)为氮源的培养基上生长速率均快于铵态氮(硫酸铵㊁氯化铵)和硝态氮(硝酸钠)ꎮ在有机氮㊁氨基酸态氮为氮源的培养基上菌落直径为4.28~7.69cmꎬ在其他氮源培养基上的菌落直径仅为0.92~1.87cmꎮ其中ꎬSMF2在有机氮㊁氮基酸态氮㊁硝态氮为氮源的培养基上菌落直径大于T39ꎬ前者是后者的1.03~1.39倍(表6)ꎮ16㊀第8期㊀㊀㊀㊀㊀赵晓彤ꎬ等:不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响无氮条件下ꎬSMF2和T39的菌落直径分别为3.72㊁4.72cmꎬ产孢量为9.17ˑ108㊁73.75ˑ108个/皿ꎮ不同有机氮源条件下ꎬSMF2产孢量达到(304.38~528.33)ˑ108个/皿ꎬT39产孢量达到(91.88~159.38)ˑ108个/皿ꎬSMF2的产孢量是T39的2.94~5.69倍ꎻ而以硝态氮和铵态氮为氮源时ꎬT39的产孢能力增强ꎬ其产孢量是SMF2的2.73~4.68倍(表6)ꎮ㊀㊀表6㊀不同氮源条件下SMF2与T39生物量的倍数比较指标无氮蛋白胨牛肉膏酵母浸膏甘氨酸硝酸钠硫酸铵氯化铵菌落直径0.791.391.051.031.061.160.860.81产孢量8.050.180.300.340.434.683.062.73㊀㊀添加有机氮源培养基的SMF2和T39菌落直径㊁产孢量分别是无氮源添加的1.11~2.07㊁1.25~57.64倍ꎮ且两种木霉的菌落直径和产孢量均在有机氮源培养基中达到最大值ꎬ其菌落直径和产孢量的最佳氮源分别为酵母浸膏和牛肉膏ꎬ表明二者对有机氮源的利用情况优于其他氮源ꎮ图12㊀不同氮源条件下两种木霉菌丝生长和产孢量比较3㊀讨论培养基㊁温度㊁光照㊁酸碱度㊁碳源和氮源均对木霉菌的菌丝生长和孢子形成有不同影响ꎮ3.1㊀不同培养基对两种菌培养的影响培养基是微生物学研究和微生物发酵工业的基础ꎬ其营养组成直接影响微生物生长发育ꎮ目前培养木霉菌常用的培养基有PDA㊁CDA㊁MEA㊁PSA㊁糖浆培养基㊁玉米粉葡萄糖培养基㊁小麦汁培养基和玉米培养基[16]等ꎮ马铃薯是PDA的重要组分ꎬ含有丰富的B族维生素㊁纤维素㊁微量元素㊁氨基酸㊁蛋白质㊁脂肪和优质淀粉等营养元素ꎬ为微生物生长提供充裕碳源㊁氮源㊁维生素和无机盐ꎻ葡萄糖是活细胞的能量来源和新陈代谢的中间产物ꎬ能够提供优质碳源ꎮCDA中葡萄糖和天门冬酰胺为重要的碳源㊁氮源ꎬ含量较高的氯化钠具有抑制细菌和减缓毛霉生长的作用ꎬ其他成分则提供必需离子ꎻOMA中的燕麦含有丰富的蛋白质㊁脂肪㊁淀粉㊁微量元素和膳食纤维ꎬ是氮源㊁碳源和微量元素等的重要来源ꎻBCM中的牛肉膏和蛋白胨为碳源㊁氮源㊁磷酸盐和维生素的主要来源ꎬ氯化钠则提供无机盐ꎮ有研究表明ꎬ长枝木霉T05在PDA㊁MEA㊁CDA㊁BCM上都能生长ꎬ且菌丝在PDA上生长最快[17]ꎻ哈茨木霉TH-1分别在PDA㊁MEA㊁CDA㊁BCM上培养均能产孢ꎬ其中PDA为最适培养基[12]ꎮ本试验中PDA㊁CDA㊁OMA㊁BCM四种培养基因营养成分丰富ꎬ成为SMF2和T39菌丝生长及孢子繁殖的适宜培养基ꎬ以PDA和CDA最佳ꎬ而MEA培养基成分单一ꎬ除凝固剂琼脂外ꎬ仅含有麦芽糖ꎬ故两种木霉在其上生长发育不理想ꎮ这与前人研究结果大体一致ꎬ进一步证明木霉菌株对营养环境的广泛适应性ꎮ3.2㊀不同温度对两种菌培养的影响木霉菌是一种嗜温真菌ꎬ棘孢木霉PZ6在15~37ħ均能生长ꎬ25~37ħ菌丝生长较好ꎬ以30ħ菌丝生长最快[16]ꎻ长枝木霉HQ1㊁非洲哈茨木霉BB12菌株适宜培养温度为28~33ħ[18]ꎮ本试验中T39㊁SMF2在25~35ħ范围内生长发育良好ꎻ在高温(40ħ)或低温(20ħ及以下)环境条件下ꎬ由于没有达到木霉菌生长发育的起点温度或有效积温积累不足ꎬ或者环境温度过高导致菌体内蛋白质㊁核酸等重要组成物质遭受不可逆的破坏ꎬ致使其生长较差ꎮ3.3㊀不同光照对两种菌培养的影响光为木霉菌菌丝生长和孢子形成提供能量ꎮ光照对哈茨木霉TH-1菌丝生长影响不大但明显影响菌株产孢量ꎬ光照时间越长产孢量越大[12]ꎻ全黑暗条件有利于长枝木霉GAASL3-1-0.8菌丝的营养生长ꎬ而光暗交替条件则对产孢有利[19]ꎬ即光照可以促进分生孢子产生ꎮ本试验中26㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀T39㊁SMF2在全光照㊁光暗交替㊁全黑暗3种条件下均可正常生长ꎬ全黑暗条件对菌丝生长更为有利ꎬ而全光照条件对产孢更有利ꎮ这与前人的研究结果相吻合ꎬ且相同光照条件下ꎬ长枝木霉SMF2菌丝生长较快ꎬ而哈茨木霉T39产孢量更大ꎮ3.4㊀不同pH值对两种菌培养的影响pH值不仅通过影响真菌体内的酶活性而影响酶促反应效率ꎬ而且还通过影响膜结构稳定性和细胞质膜的通透性而影响其对营养物质的吸收ꎮ有研究表明ꎬ棘孢木霉PZ6最适生长和产孢的pH值为5~9[16]ꎻ哈茨木霉Th-81㊁短密木霉(T.brevicompactum)Tb-50和长枝木霉T1-70在pH值为2~7时均能生长ꎬ最适生长的pH值为4[20]ꎮ本试验中ꎬT39㊁SMF2对酸碱度的适应性较强㊁范围较广ꎬ在pH值为4~11条件下均生长较好ꎬ且中性至弱碱性(pH值7~9)为SMF2培养的最佳酸碱条件ꎬ其菌丝生长㊁产孢最适pH值分别为9和7ꎻT39培养的最佳酸碱条件为弱酸和偏酸(pH值4~6)ꎬ其菌丝生长㊁产孢最适pH值分别为4和6ꎮ3.5㊀不同碳源对两种菌培养的影响碳源物质是真菌生长的碳素来源ꎮ木霉菌对单糖㊁双糖㊁多糖㊁嘌呤㊁嘧啶和氨基酸等的利用效果均较好[21]ꎮ不同木霉菌其最适碳源有所差异ꎬ长枝木霉GAASL3-1-0.8以葡萄糖㊁麦芽糖㊁果糖和乳糖为碳源时ꎬ菌丝生长和产孢较好ꎬ葡萄糖为最适碳源[19]ꎻ木糖㊁果糖和蔗糖有利于哈茨木霉T21的菌丝生长和产孢ꎬ木糖为最适碳源[22]ꎮ本试验中ꎬSMF2和T39在无碳源添加的培养基中虽能生长ꎬ但其菌丝质量和产孢量均不理想ꎮ碳源的加入提供了必要的营养物质ꎬ提升其生长发育质量ꎮ微晶纤维素主要成分为以β-1ꎬ4-葡萄糖苷键结合的直链式多糖类物质ꎬ由于自身不易溶解致使碳源的促生作用较差ꎮ单糖(果糖㊁阿拉伯糖)补充热能的效果比双糖㊁多糖更快ꎬ故以果糖和阿拉伯糖为碳源时SMF2和T39的生长发育最优ꎬ且SMF2的菌丝生长优于T39ꎬ但T39的产孢能力更强ꎬ这可为二者混合使用以防治病害提供理论基础ꎮ3.6㊀不同氮源对两种菌培养的影响氮源是真菌生长的重要氮素来源ꎬ主要用于合成蛋白质等含氮物质ꎬ有助于产孢ꎮ有机氮源像蛋白胨㊁牛肉膏和酵母浸膏等成分复杂㊁营养丰富ꎬ微生物在其培养基中常表现出生长旺盛㊁菌体增长迅速等特点ꎮ有研究表明ꎬ蛋白胨和酵母膏分别为长枝木霉T05和GAASL3-1-0.8营养生长和产孢的最适氮源[17ꎬ19]ꎬ哈茨木霉T21在以牛肉膏为氮源的培养基中菌丝生长和产孢最优[22]ꎮ氨基酸态氮(甘氨酸)存在于土壤蛋白质和多肽类化合物中ꎬ降解后只释放出相应的氨基酸为微生物生长发育提供单一营养ꎻ硝态氮和铵态氮为无机氮源(硫酸铵㊁氯化铵㊁硝酸钠)ꎬ易被菌体直接利用ꎬ促进菌体生长ꎬ但与有机氮源相比ꎬ因其成分简单㊁缺乏营养物质㊁利用效率低致使木霉菌菌丝稀薄㊁产孢量较少ꎮ因此ꎬ相比于氨基酸态氮㊁硝态氮和铵态氮ꎬSMF2和T39在以有机氮(蛋白胨㊁牛肉膏㊁酵母浸膏)为氮源的培养基中生长发育更优ꎬ有机氮源为SMF2和T39生长发育的适宜氮源ꎬ这与前人的研究结果一致ꎮ且SMF2和T39对氮源的要求相较于碳源而言更严格ꎮ4㊀结论本研究结果表明ꎬSMF2和T39具有广泛的适应性ꎬ对环境条件要求不严格ꎬ在常温㊁黑暗㊁非强酸强碱㊁含有碳源和有机氮源的条件下ꎬ二者的菌丝生长和孢子形成状况均较为优良ꎮ光照㊁果糖㊁牛肉膏更有利于二者孢子形成ꎻPDA和CDA最适宜产孢ꎻ且二者对氮源的要求相较于碳源而言更严格ꎬ两种木霉在无碳条件下可产孢ꎬ但产孢量较少ꎬ而在无氮条件下孢子肉眼几乎不可见ꎮSMF2和T39在添加碳源培养基中的菌落直径㊁产孢量是无碳源添加的1.01~1.59㊁1.68~4.63倍ꎬ而在添加有机氮源培养基中的菌落直径㊁产孢量是无氮源添加的1.11~2.07㊁1.25~57.64倍ꎮ相同条件下ꎬSMF2菌丝生长较快ꎬ而哈茨木霉T39产孢能力更高ꎮ35ħ㊁pH值为7时最利于SMF2产孢ꎬ而30ħ㊁pH值为6时最利于T39产孢ꎮ人工扩繁时ꎬ可通过调节环境温度和培养基酸碱度调控SMF2㊁T39的产孢情况ꎻ有机氮和单糖更有利于SMF2和T39菌丝生长和孢子形成ꎮ36㊀第8期㊀㊀㊀㊀㊀赵晓彤ꎬ等:不同培养条件对长枝木霉SMF2和哈茨木霉T39生长与产孢的影响参㊀考㊀文㊀献:[1]㊀王永阳ꎬ杜佳ꎬ高克祥.苦瓜枯萎病生防木霉的筛选鉴定及其定殖的qPCR检测[J].山东农业科学ꎬ2018ꎬ50(8):110-115.[2]㊀RanimolGꎬThulasiVꎬShijiGꎬetal.ProductionoflaccasefromTrichodermaharzianumanditsapplicationindyedeco ̄lourisation[J].BiocatalysisandAgriculturalBiotechnologyꎬ2018ꎬ16:400-404.[3]㊀BorisovaASꎬEneyskayaEVꎬJanaSꎬetal.CorrelationofstructureꎬfunctionandproteindynamicsinGH7cellobiohydro ̄lasesfromTrichodermaatrovirideꎬT.reeseiandT.harzianum[J].BiotechnologyforBiofuelsꎬ2018ꎬ11(1):5. [4]㊀邓薇ꎬ张祖衔ꎬ曹宇航ꎬ等.绿色木霉缓解干旱胁迫对玉米幼苗根系生长的影响[J].山东农业科学ꎬ2022ꎬ54(2):40-45. [5]㊀BagewadiZKꎬMullaSIꎬNinnekarHZ.ResponsesurfacemethodologybasedoptimizationofkeratinaseproductionfromTrichodermaharzianumisolateHZN12usingchickenfeatherwasteanditsapplicationindehairingofhide[J].JournalofEnvironmentalChemicalEngineeringꎬ2018ꎬ6(4):4828-4839.[6]㊀deOliveiraGSꎬAdrianiPPꎬRibeiroJAꎬetal.Themolecu ̄larstructureofanepoxidehydrolasefromTrichodermareeseiincomplexwithureaoramide ̄basedinhibitors[J].InternationalJournalofBiologicalMacromoleculesꎬ2019ꎬ129:653-658. [7]㊀李玲ꎬ刘宝军ꎬ杨凯ꎬ等.木霉菌对小麦白粉病的田间防效研究[J].山东农业科学ꎬ2021ꎬ53(7):96-100. [8]㊀PerazzolliMꎬMorettoMꎬFontanaPꎬetal.Downymildewre ̄sistanceinducedbyTrichodermaharzianumT39insusceptiblegrapevinespartiallymimicstranscriptionalchangesofresistantgenotypes[J].BMCGenomicsꎬ2012ꎬ13(1):660. [9]㊀HarelYMꎬMehariZHꎬRav ̄DavidDꎬetal.Systemicresist ̄ancetograymoldinducedintomatobybenzothiadiazoleandTrichodermaharzianumT39[J].Phytopathologyꎬ2014ꎬ104(2):150-157.[10]商娜.长枝木霉菌对白三叶草病害的防治机理及其对植物生长影响的研究[D].聊城:聊城大学ꎬ2021.[11]纪明山ꎬ李博强ꎬ许远ꎬ等.绿色木霉TR-8菌株的生物学特性研究[J].沈阳农业大学学报ꎬ2004ꎬ35(3):195-199. [12]李梅云ꎬ谭丽华ꎬ方敦煌ꎬ等.哈茨木霉的培养及其对烟草疫霉生长的抑制研究[J].微生物学通报ꎬ2006ꎬ33(6):79-83. [13]王桂清ꎬ曾路ꎬ马迪ꎬ等.我国近10年植物致病真菌生物学特性研究综述[J].江苏农业科学ꎬ2018ꎬ46(19):1-5. [14]HewedyOAꎬAbdel ̄LateifKSꎬBakrRA.GeneticdiversityandbiocontrolefficacyofindigenousTrichodermaisolatesa ̄gainstFusariumwiltofpepper[J].JournalofBasicMicrobiolo ̄gyꎬ2020ꎬ60(2):126-135.[15]马迪.国槐溃疡病致病真菌的生物学特性和致病酶活性的研究[D].聊城:聊城大学ꎬ2018.[16]覃柳燕ꎬ周维ꎬ李朝生ꎬ等.拮抗镰刀菌香蕉枯萎病木霉菌株PZ6分离鉴定及生物学特性研究[J].中国南方果树ꎬ2017ꎬ46(1):66-70.[17]池玉杰ꎬ伊洪伟ꎬ刘雷.生防长枝木霉菌株T05生物学特性[J].东北林业大学学报ꎬ2016ꎬ4(1):107-109.[18]李立平ꎬ段德芳.木霉生物学特性及拮抗作用研究进展[J].植物医生ꎬ2006ꎬ19(4):4-6.[19]郭成ꎬ张小杰ꎬ徐生军ꎬ等.长枝木霉菌株GAASL3-1-0.8对玉米形态学指标影响及其生物学特性[J].玉米科学ꎬ2018ꎬ26(3):153-159.[20]马君瑞.3株木霉菌株的分离鉴定及其生防作用研究[D].武汉:华中农业大学ꎬ2016.[21]NagarajuAꎬSudishaJꎬMurthySMꎬetal.SeedprimingwithTrichodemaharzianumisolatesenhancesplantgrowthandin ̄ducesresistanceagainstPlasmoparahalstediiꎬanincitantofsunflowerdownymildewdisease[J].AustralasianPlantPathol ̄ogyꎬ2012ꎬ41(6):609-620.[22]梁松ꎬ魏甜甜ꎬ张静蕾ꎬ等.辣椒枯萎病生防木霉菌T21的分离鉴定及其生物学特性研究[J].天津农业科学ꎬ2022ꎬ28(5):59-66.46㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀。

山东省科学技术奖励目录.doc

山东省科学技术奖励目录.doc

山东省科学技术奖励目录(2005年度)山东省科学技术最高奖(1项)张福绥男,汉族,1927年12月出生于山东昌邑县,中国科学院海洋研究所研究员,中国科学院研究生院终生教授,中国工程院院士。

自20世纪60年代开始至今,长期从事海洋生物学和贝类增养殖学研究,在深入开展贝类分类区系、贝类生物学基础研究及长期科研实践的基础上,丰富并完善了贝类繁殖生物学理论,发展了中国海软体动物地理学和生态学理论,揭示了黄渤海区贻贝的生物学规律与繁殖机理,发展了我国双壳贝类引种理论,建立了贝类遗传育种学、贝类养殖生态学和贝类养殖工程学的研究队伍,系统地提出并建立了贝类人工育苗和养殖工程化技术,是我国贝类增养殖学研究的学术带头人和贝类增养殖产业化的主要奠基人。

先后公开发表129篇论文、论著,经SCI检索,被引证23次;经SCTY检索,被引证41次;经CSCD检索,被引证123次;经VIP检索,被引证45次。

曾获省级以上重要科技奖励14项,其中包括1978年全国科学大会奖、1989年中国科学院科技进步一等奖、1990年国家科技进步一等奖、1994年“王丹萍”科学奖金提名奖、1996年陈嘉庚农业科学奖、2000年省科技进步一等奖和2001年第三世界科学院农业科学奖。

申请专利13项,获得授权6项。

先后获得山东省优秀科技工作者与富民兴鲁劳动奖章,山东省劳动模范,国务院特殊津贴,山东省优秀科技拔尖人才。

山东省自然科学奖一等奖(1项)1、中国丛枝菌根研究主要完成人:刘润进(莱阳农学院)李敏(莱阳农学院)郭绍霞(莱阳农学院)王发园(莱阳农学院)张英(中国科学院微生物研究所)山东省自然科学奖二等奖(4项)1.基于非线性模型的创新概念设计系统主要完成人:刘希玉(山东师范大学)刘弘(山东师范大学)段会川(山东师范大学)张化祥(山东师范大学)秦茂玲(山东师范大学)2.量子散射动力学理论及应用主要完成人:马万勇(山东轻工业学院)康从民(山东轻工业学院)周建华(山东轻工业学院)3.莱州湾地区新生代地质地貌与环境研究主要完成人:韩美(山东师范大学)张祖陆(山东师范大学)赵明华(山东师范大学)李道高(山东师范大学)徐跃通(山东师范大学)4.小麦品质性状基因的分离与淀粉品质性状的遗传改良主要完成人:张宪省(山东农业大学)李加瑞(山东农业大学)赵翔宇(山东农业大学)董玉秀(山东农业大学)王芳(山东农业大学)山东省自然科学奖三等奖(12项)1.癌症姑息治疗理论研究主要完成人:宋广德(山东省医学科学院)左文述(山东省肿瘤医院)于金明(山东省肿瘤医院)方晋平(山东省肿瘤医院)王传省(淄博市第一人民医院)2.自由曲线曲面设计问题主要完成人:张彩明(山东经济学院)汪嘉业(山东经济学院)杨兴强(山东大学)韩慧健(山东经济学院)纪秀花(山东经济学院)3.神经及体液因素对胆道运动调节主要完成人:刘传勇(山东大学)刘京璋(山东大学)周建华(山东大学)王瀚如(山东大学)李自英(山东大学)4.被动吸烟和过量饮酒对胚胎致畸作用的研究主要完成人:于向民(青岛大学医学院)李玲(青岛大学医学院)闫凤霞(青岛大学医学院)潘晓亮(青岛大学医学院)王东(滨州医学院)5.神经节与心肌联合培养中神经元的神经生物学行为研究主要完成人:李振中(山东大学)刘花香(山东大学)黄飞(山东大学)邢毅(山东大学)张玉宝(山东大学)6.广义Hamilton实现理论及其在电力系统控制中的应用主要完成人:王玉振(山东大学)张承慧(山东大学)席在荣(中国科学院数学与系统科学研究院)程代展(中国科学院数学与系统科学研究院) 7.点燃模型在抗癫痫药物研究中的应用主要完成人:岳旺(青岛大学医学院)王蕾(青岛大学医学院)刘占涛(青岛大学医学院)张芳(青岛大学医学院)臧东莲(青岛大学医学院)8.随机表面对连续与超快激光散射的前沿问题研究主要完成人:程传福(山东师范大学)樊锡君(山东师范大学)孟庆田(山东师范大学)田淑芬(山东师范大学)滕树云(山东师范大学)9.动物发育理论研究主要完成人:李云龙(山东师范大学)刘春巧(美国马里兰州NIH病理学实验室)孙青原(中国科学院动物研究所)吕连升(山东师范大学)张刚(山东师范大学)10.钛酸盐类铁电薄膜的研究主要完成人:王卓(山东大学)杨长红(山东大学)王民(山东大学)秦连杰(烟台大学)11.三硼酸铋晶体的生长和非线性光学性能研究主要完成人:滕冰(青岛大学)王继扬(山东大学)董胜明(山东大学)王正平(山东大学)12.新型纳米发光材料的制备、表征及发光机理的研究主要完成人:吕孟凯(山东大学)杨萍(济南大学)顾锋(山东大学)王淑芬(山东大学)宋春风(北京化工大学)山东省技术发明奖一等奖(1项)1.千克级重组人血管内皮抑制素YH-16的制备技术主要完成人:罗永章(烟台麦得津生物工程股份有限公司)雷清新(烟台麦得津生物工程股份有限公司)张卓兵(烟台麦得津生物工程股份有限公司)周兵(烟台麦得津生物工程股份有限公司)常国栋(烟台麦得津生物工程股份有限公司)陈倩洁(烟台麦得津生物工程股份有限公司)山东省技术发明奖二等奖(2项)1.环流式旋风分离系列专利技术研究主要完成人:李建隆(青岛科技大学)王伟文(青岛科技大学)王立新(青岛科技大学)姜晖琼(青岛科技大学)范军领(青岛科技大学)陈光辉(青岛科技大学)2.车辆用钕铁硼永磁发电装置可控整流稳压技术与系列产品开发主要完成人:张学义(山东理工大学)史立伟(山东理工大学)邹黎(山东理工大学)高明玲(山东理工大学)巴连良(山东理工大学)李爱军(山东理工大学)山东省技术发明奖三等奖(9项)1.高白度优质小麦新品种山农优麦3号的选育与应用主要完成人:田纪春(山东农业大学)于延水(肥城市良种场)王延训(山东农业大学)张永祥(山东农业大学)陈建省(山东农业大学)潘耀民(济南民天面粉有限责任公司)2.特色甘薯新品种选育及深加工新方法主要完成人:王志良(青岛市农业技术推广站)李松坚(青岛市农业技术推广站)王军强(青岛市农业技术推广站)李润生(青岛市农业技术推广站)曲善珊(青岛市农业技术推广站)孔高原(青岛市农业技术推广站)3.深海抗风浪网箱的研制主要完成人:林德芳(中国水产科学研究院黄海水产研究所) 关长涛(中国水产科学研究院黄海水产研究所)董国海(大连理工大学)黄文强(中国水产科学研究院黄海水产研究所)黄滨(中国水产科学研究院黄海水产研究所)张启胜(山东寻山水产集团有限公司)4.立卧位腰椎牵引床的研制及应用主要完成人:李学惠(莱芜市人民医院)刘英才(莱芜市人民医院)陈艳(莱芜市人民医院)梁燕(莱芜市人民医院)李慧(莱芜市人民医院)5.低温烧结复相耐磨陶瓷的研究主要完成人:任允鹏(山东硅苑新材料科技股份有限公司) 王磊(山东硅苑新材料科技股份有限公司)李洁(山东硅苑新材料科技股份有限公司)刘凯民(山东硅苑新材料科技股份有限公司)石汝军(山东硅苑新材料科技股份有限公司)尚庆刚(山东硅苑新材料科技股份有限公司) 6.配方产品智能评估、分析方法及工程化研究主要完成人:丁香乾(中国海洋大学)杨宁(中国海洋大学)井润环(中国海洋大学)石硕(中国海洋大学)贺英(中国海洋大学)宫会丽(中国海洋大学)7.液体驱动消防炮(枪)方向控制器主要完成人:王斌(潍坊市公安消防支队警训科)8.铁基高温耐磨堆焊合金体系的研究主要完成人:于风福(威海三盾焊接材料工程有限公司)朱红(威海三盾焊接材料工程有限公司)周文利(威海三盾焊接材料工程有限公司)袁昕(威海三盾焊接材料工程有限公司)魏云祥(威海三盾焊接材料工程有限公司)汤永林(威海三盾焊接材料工程有限公司)9.活塞往复式煤矿瓦斯发电机组主要完成人:陈宜亮(胜利油田胜利动力机械有限公司)马晓钟(胜利油田胜利动力机械有限公司)秦廷勇(胜利油田胜利动力机械有限公司)张国昌(胜利油田胜利动力机械有限公司)柏芹水(胜利油田胜利动力机械有限公司)朱忠江(胜利油田胜利动力机械有限公司)山东省科技进步奖一等奖(21项)1.新型高效螺杆制冷压缩机完成单位:烟台冰轮股份有限公司西安交通大学2.无公害优质苹果生产综合技术试验示范完成单位:山东省果茶技术指导站3.凯特杏选育研究与产业化开发完成单位:山东省果树研究所4.多灌溉水源联网调度类型区农业高效用水模式及产业化示范完成单位:山东省水利科学研究院中国灌溉排水发展中心威海市环翠区人民政府5.低洼盐碱地池塘规模化养殖技术研究与示范完成单位:山东省淡水水产研究所中国海洋大学中国科学院南京地理与湖泊研究所中国科学院武汉水生生物研究所6.系列新型生物芯片的研制完成单位:山东省医药生物技术研究中心7.粘附分子在糖尿病慢性病并发症中的改变及药物干预完成单位:山东省立医院8.白内障手术的应用基础和临床系列研究完成单位:山东省眼科研究所9.盐酸布替萘芬及制剂的研究与开发完成单位:山东省生物药物研究院山东福瑞达生物化工有限公司山东正大福瑞达制药有限公司10.制造业网络协同制造工程与实时智能质量保障体系架构研究及应用完成单位:海尔集团技术研发中心11.通信用多路激光光源完成单位:山东理工大学哈尔滨工业大学山东博特光电技术有限公司12.全棉液氨+潮交联+NANO三防整理面料完成单位:鲁泰纺织股份有限公司13.山东省公安信息网安全监控管理平台完成单位:山东省公安厅中文北京北信源自动化技术有限公司14.重要海水养殖生物病害发生和抗病力的研究完成单位:中国科学院海洋研究所中国海洋大学中国水产科学院黄海水产研究所国家海洋局第一海洋研究所15.微机电力故障录波监测装置完成单位:山东大学山东山大电力技术有限公司16.三维数字城市基础空间信息获取处理技术体系及应用完成单位:威海市规划局中国测绘科学研究院17.国道205线滨州黄河公路大桥工程综合技术研究完成单位:山东省交通厅公路局滨州市公路管理局东南大学哈尔滨工业大学山东大学交通部公路科学研究所山东省路桥集团有限公司中交公路规划设计院山东省公路工程总公司18.优良玉米自交系“478”的选育与应用完成单位:莱州市农业科学院19.自振空化射流钻头研究完成单位:中国石油大学(华东)中国石油大学(北京)20.油田化学品产业化开发及应用示范完成单位:中国石油大学(华东)山东大学天津化工研究设计院东营市科技局东营市华龙化工厂东营市东石石油科技发展有限责任公司万达集团股份有限公司山东胜通集团山东东辰实业集团有限公司21.煤层火灾隐患识别及控制新技术研究完成单位:兖矿集团有限公司西安科技大学山东省科技进步奖二等奖(124项)1.燃气-蒸汽联合循环发电技术的研究与应用完成单位:济南钢铁集团总公司2.出口蔬菜、肉禽产品病虫及农药残留控制技术研究完成单位:(一)济南出入境检验检疫局山东省植物保护总站山东出入境检验检疫局(二)山东出入境检验检疫局济南出入境检验检疫局烟台出入境检验检疫局青岛出入境检验检疫局潍坊出入境检验检疫局诸城外贸畜禽公司3.东亚飞蝗大发生原因及治理新技术研究完成单位:山东省植物保护总站济宁市植物保护站滨州市植物保护站菏泽市植物保护站东营市植物保护站4.小麦品质生理和山东品质区划及优质高产栽培理论与技术完成单位:山东农业大学5.高产抗盐冬小麦新品种(系)选育、栽培技术及抗盐机理的研究完成单位:山东师范大学德州市农业科学研究所6.日光温室蔬菜与嫁接黄瓜高产生理及调控技术研究完成单位:山东农业大学7.潍白系列大白菜新品种选育与推广完成单位:山东省潍坊市农业科学院8.波尔山羊引进扩繁及杂交改良配套技术研究完成单位:山东农业大学山东省畜牧兽医总站9.毛白杨新无性系营养繁殖技术研究完成单位:山东农业大学10.胶新铁路绿色通道建设模式与生物防护技术的研究完成单位:山东省绿化委员会办公室11.转抗盐基因的中天杨新品种选育研究完成单位:山东农业大学12.门楼水库汛限水位研究完成单位:山东大学山东省防汛抗旱指挥部办公室门楼水库管理局13.滨州市四环五海工程建设研究完成单位:滨州市水利局滨州市水利勘测设计研究院14.灌区灌溉用水实时调配决策、信息化及管理模式研究完成单位:山东省小清河管理局山东省水利厅武汉大学莒南县水利水产局15.全封闭、循环水、健康养虾新模式的研究完成单位:山东省海水养殖研究所16.食品级木聚糖酶系列产品的研究开发完成单位:山东省食品发酵工业研究设计院山东省中协食品添加剂研究开发中心济南京鲁生物技术研究开发中心17.秸秆种菇新技术集成及产业化示范工程完成单位:烟台师范学院山东省农业科学院土壤肥料研究所18.高铁与帕金森病关系的分子生物学及电化学研究完成单位:青岛大学医学院19.左心房结构、功能和血流动力学的基础与临床研究完成单位:山东大学齐鲁医院20.脂膜微囊对鼠脑损伤区趋向性的实验研究完成单位:山东大学齐鲁医院21.人类卵母细胞体外成熟与多囊卵巢综合征临床与基础系列研究完成单位:山东省立医院山东大学22.恶性肿瘤基因治疗系列探讨完成单位:山东大学齐鲁医院23.再生障碍性贫血有关免疫发病机制及治疗研究完成单位:潍坊市人民医院24.MSCT心肌灌注结合冠脉造影诊断冠心病的实验和临床研究完成单位:山东省医学影像学研究所25.儿童白血病Bcl-2基因表达、细胞凋亡和T细胞受体基因重排与临床研究完成单位:青岛大学医学院附属医院26.山东省麻疹专门监测系统的建立、评价及其应用研究完成单位:山东省疾病预防控制中心27.流式细胞术对血细胞细胞生物学行为的研究完成单位:山东大学齐鲁医院28.成功救治Ⅲ度烧伤面积≥90%合并吸入性损伤病人的临床研究完成单位:山东省立医院29.天疱疮的实验与临床研究完成单位:山东省皮肤病性病防治研究所30.冠心病冠脉侧支循环的研究完成单位:山东省立医院31.运动肿瘤精确放射治疗的研究完成单位:山东省肿瘤防治研究院32.肺癌纵隔淋巴结转移规律及其廓清的临床系列研究完成单位:山东省立医院33.软骨生长因子的提取及对关节软骨缺损修复作用实验研究完成单位:青岛大学医学院附属医院34.小探头超声指导下的胃底静脉曲张栓塞术的临床研究完成单位:烟台毓璜顶医院35.经前期综合征病证动物模型标准化及其应用完成单位:山东中医药大学山东中医药大学附属医院济南动物园管理处青岛海川创新生物天然药物研究中心江苏扬子江药业集团山海关制药厂36.柔肝抑纤饮防治肝纤维化作用机制的研究完成单位:山东中医药大学附属医院37.快律宁对室性心律失常(阴虚火旺证)的疗效评价完成单位:山东中医药大学附属医院38.侧前方减压植骨双凤尾钢板固定治疗胸腰椎爆裂骨折的基础与临床应用研究完成单位:山东省文登骨伤研究所39.中药及其复方药物动力学方法学研究完成单位:山东省中医药研究院40.注射用加替沙星及葛根素完成单位:(一)山东罗欣药业股份有限公司(二)山东瑞阳制药有限公司山东大学药学院41.降糖新药盐酸吡格列酮胶囊的研究完成单位:山东省医药工业研究所山东淄博新达制药有限公司42.脉络舒通颗粒完成单位:山东鲁南厚普制药有限公司43.先天性输精管缺如不育诊治的研究完成单位:山东省计划生育科学技术研究所44.直流变频控制技术研究及其在海信变频冰箱产品中的应用完成单位:海信集团有限公司45.机票纸的研制开发完成单位:济南银星纸业有限公司山东轻工业学院46.双孢蘑菇自发气调冷藏保鲜技术及其产业化研究完成单位:山东理工大学47.铬-铝-钛多金属鞣剂的研究完成单位:山东轻工业学院济南裕兴化工总厂48.车载智能速度监测器完成单位:山东省五金研究所武汉华中科技大学49.画中画技术在V6000/V9000手机上的应用完成单位:青岛海尔通信有限公司50.海信高清平板显示技术及应用完成单位:海信集团有限公司51.基于WebServices的财务管理信息系统研究完成单位:山东经济学院52.新型工业现场网络分布式测控及数据网络一体化系统完成单位:山东大学济南莱恩达网络仪表科技有限公司德州三和电器有限公司53.支持进化计算的多agent协同设计系统完成单位:山东师范大学54.基于完全文档驱动模型的分布式工作流平台完成单位:济南卓信智能科技有限公司山东大学55.物料配送监控及其管理调度系统完成单位:(一)山东博硕电子有限公司山东大学(二)山东师范大学56.纳税评估及综合治税管理信息系统完成单位:泰安市地方税务局泰安同力软件有限公司57.数据仓库与数据挖掘关键技术及远程信息直报系统完成单位:(一)山东地纬计算机软件有限公司山东大学(二)青岛大学青岛海尔青大软件有限公司58.软件度量模型的研究及其实现完成单位:山东省计算中心59.发电设备优化及城市供水变频驱动控制系统完成单位:山东大学山东山大智苑科技发展中心济南聚友科技发展有限公司60.高支纯棉混纺素色双层及小提花系列面料完成单位:山东德棉股份有限公司61.环境友好系列免烫阻燃及卫生整理纺织品开发完成单位:青岛大学62.皮马棉高支高密双喷双织缎纹布完成单位:山东泰丰纺织股份有限公司63.耐压高频的高剥离耐水解超纤鞋材基布完成单位:山东同大海岛新材料有限公司64.公安边防信息自动化处理与指挥系统完成单位:山东省公安边防总队65.利用膜法自海带浸泡液中提取甘露醇的工艺完成单位:青岛明月海藻集团有限公司66.二嗪磷(地亚农)生产新工艺完成单位:山东省农药研究所67.水性UV固化油墨专用树脂的制备及应用完成单位:山东轻工业学院青岛科技大学山东聊城齐鲁特种涂料有限责任公司68.新型树脂材料及其金属复合结构模具快速成型技术的研究开发完成单位:青岛科技大学青岛新材料科技工业园发展有限公司69.高性能铝塑复合热熔胶完成单位:中国兵器工业集团第五三研究所山东红旗机电有限公司70.500t/a3,5,6-三氯吡啶醇钠生产技术完成单位:山东华阳科技股份有限公司71.碳纤维增强橡胶复合材料及其应用研究完成单位:山东大学72.供热系统动力学研究及远程网络监控系统研制完成单位:山东大学济南开发区热力公司山东龙口华龙热力工程有限公司73.便携式管道焊缝超声自动扫描检测系统完成单位:山东电力研究院北京航空制造工程研究所74.超高压中间再热循环流化床锅炉运行优化技术研究及应用完成单位:山东电力高等专科学校山东电力研究院清华大学华电淄博热电有限公司山东中实易通集团股份有限公司75.山东半岛城市群发展战略研究完成单位:山东省城市化办公室北京大学国家发改委国土开发与地区经济研究所76.牛角芯棒热推弯管新工艺及工艺参数计算机辅助设计系统完成单位:山东建筑工程学院郑州轻工业学院中油吉林化建工程股份有限公司上海分公司77.钢结构住宅与单层厂房建筑体系研究完成单位:山东建筑工程学院山东省华宇钢结构有限公司78.混凝土强度检测技术与地铁开挖技术研究完成单位:(一)山东省建筑科学研究院(二)中铁十四局集团有限公司79.公路超限运输自动检测设备(振弦式动态汽车超限检测系统) 完成单位:山东省交通厅公路局泰安科大洛赛尔传感技术有限公司山东交润交通科技有限公司80.山东交通现代化评判方法及指标体系的研究完成单位:山东省交通科学研究所山东省交通厅81.铁路数字信号电缆完成单位:济南瑞通铁路电务有限责任公司82.750M3高炉顶燃式热风炉及煤气净化全干法除尘技术完成单位:莱芜钢铁集团有限公司山东省冶金设计院83.高强度热镀铝锌合金镀层钢丝及耐蚀钢芯铝基合金绞线的研制与开发完成单位:山东大学84.高产优质高效蚕业综合技术研究与开发完成单位:山东农业大学山东泰安丝绸有限公司山东莒县华禺页丝绸有限责任公司85.清洁利用含砷碳金资源新工艺研究与应用完成单位:山东国大黄金股份有限公司南化集团研究院北京矿冶研究总院86.莱钢工业废水“零排放”的研究与应用完成单位:莱芜钢铁集团有限公司87.富磷富碳中间合金结晶器铜板完成单位:(一)只楚民营科技园股份有限公司鲁宝有色合金厂(二)山东大学88.尖晶石基惰性阳极的研究与应用完成单位:山东理工大学渤海石油管道涂敷工程公司山东省冶金科学研究院89.济钢生产全过程节水工艺开发完成单位:济南钢铁集团总公司90.国家队山东省运动员备战2004年奥运会科研攻关与科技服务的综合研究完成单位:山东省体育科研中心91.山东省文化艺术科技发展与应用研究完成单位:山东省文化厅山东省科学院情报研究所山东省社科院历史研究所92.东南地区强地震短期前兆特征及预测方法研究完成单位:山东省地震预报研究中心上海市地震局93.山东省多普勒天气雷达建设与应用研究完成单位:山东省气象科学研究所94.铝合金的净化阻燃耐磨性能研究及开发完成单位:山东大学济南大学济宁任城区矿山机械厂。

基于CFD的渔船船体阻力性能预估方法

基于CFD的渔船船体阻力性能预估方法

山东科学SHANDONGSCIENCE第33卷第3期2020年6月出版Vol.33No.3Jun.2020DOI:10.3976/j.issn.1002 ̄4026.2020.03.005ʌ海洋科技与装备ɔ收稿日期:2020 ̄10 ̄25基金项目:山东省重大科技创新工程(2018CXGC0104)ꎻ山东省科学院院地产学研协同创新基金(2018CXY ̄32ꎬ2018CXY ̄37)作者简介:于慧彬(1980 )ꎬ男ꎬ高级工程师ꎬ研究方向为海洋工程ꎮE ̄mail:binbinyu@163.com∗通信作者ꎬ于东(1990 )ꎬ男ꎬ硕士ꎬ工程师ꎬ研究方向为船舶水动力性能研究ꎮE ̄mail:yudong0206@126.com基于CFD的渔船船体阻力性能预估方法于慧彬1ꎬ张琦1ꎬ李小峰1ꎬ刘铁生1ꎬ于东2∗ꎬ桂洪斌2(1.齐鲁工业大学(山东省科学院)山东省科学院海洋仪器仪表研究所ꎬ山东青岛266000ꎻ2.哈尔滨工业大学(威海)海洋工程学院ꎬ山东威海264209)摘要:为了预估渔船实船阻力ꎬ以一艘11.75m渔船为研究对象ꎬ基于CFD方法给出了一套完整的由船模阻力数值仿真到实船阻力换算的方法ꎮ结果表明:该方法可以有效地预估渔船船体阻力ꎬ减少设计成本ꎻ结合船舶在水中的垂向水动力ꎬ对阻力曲线中的峰值点和谷值点成因进行了分析ꎬ阐释了船舶阻力随航速的增加先增大后减小的原因ꎮ关键词:CFDꎻSTAR ̄CCM+ꎻ阻力ꎻ垂向水动力ꎻ峰值点ꎻ谷值点中图分类号:U661.43㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2020)03 ̄0035 ̄05开放科学(资源服务)标识码(OSID):Pre ̄estimateofthefull ̄scalefishingshipresistancebasedontheCFDmethodYUHui ̄bin1ꎬZHANGQi1ꎬLIXiao ̄feng1ꎬLIUTie ̄sheng1ꎬYUDong2∗ꎬGUIHong ̄bin2(1.InstituteofOceanographicInstrumentationꎬQiluUniversityofTechnology(ShandongAcademyofSciences)ꎬQingdao266000ꎬChinaꎻ2.SchoolofOceanEngineeringꎬHarbinInstituteofTechnologyꎬWeihai264209ꎬChina)AbstractʒTopre ̄estimatethefull ̄scalefishingshipresistanceꎬthispapertakesa11.75mfishingshipastheresearchobjectꎬandacompletesetofmethodsisdevelopedtoconvertthenumericalsimulationresultoftheshipmodeltoafull ̄scaleshipbasedontheCFDmethod.Theresultsdenotethatthismethodcaneffectivelyestimatethehullresistanceofthefishingshipsandreducethedesigncost.Basedontheverticalhydrodynamicoftheshipꎬthereasonsforthepeakpointandvalleypointonthecurveoftheresistanceareanalyzedexplainingthemannerinwhichtheresistanceincreasesinitiallyandsubsequentlydecreaseswithincreasingspeedoftheship.KeywordsʒCFDꎻSTAR ̄CCM+ꎻresistanceꎻverticalhydrodynamicꎻpeakpointꎻvalleypoint㊀㊀渔船与其他类型的船舶相比ꎬ其主尺度及载重吨位较小ꎬ建造技术水平较低[1]ꎮ由于建造费用较同等吨位的其他船舶低许多ꎬ阻力预估试验成本较高ꎬ渔船在设计时通常没有多余的资金来支持船模阻力试验ꎮ而渔船的阻力情况又与其快速性以及续航力息息相关ꎬ且近年来ꎬ人们对于渔船设计建造的要求越来越高ꎬ对其阻力估算的准确性要求也日益提高ꎮ随着信息技术的发展ꎬ计算流体动力学(computationalfluid山㊀东㊀科㊀学2020年dynamicsꎬCFD)仿真模拟技术逐步应用到渔船设计领域ꎬ可有效提高设计人员对渔船的研发能力[2 ̄5]ꎮ研究人员在渔船阻力预估上开展了较多研究ꎬ李纳等[6]基于CFD技术分析了拖网渔船的阻力特性ꎬ李晓文等[7]运用商用CFD软件计算了滑行艇阻力并数值模拟了滑行艇的直航运动ꎮ但是ꎬ目前运用CFD对渔船船体阻力性能进行预估的相关文献并不多见ꎮ本文通过对一艘11.75m的玻璃钢材质渔船采用CFD软件STAR ̄CCM+进行数值模拟ꎬ详细阐述了渔船的阻力预估方法ꎬ并分析了该船的阻力性能ꎮ1㊀模型建立及计算域网格划分以一艘总长为13.90m的沿海渔船作为参考模型ꎬ其设计水线长为11.75mꎬ型宽为3.34mꎬ设计吃水为0.572mꎬ方形系数为0.539ꎬ排水量约为12.5tꎬ设计航速为15knꎮ将该模型利用弗劳德数Fr相等的原则进行缩尺ꎬ缩尺比为4.72ꎬ最终缩尺后的船模设计水线长约为2.49mꎬ排水量约为115.8kgꎮ采用ANSYSICEM软件对缩尺后的船体进行建模ꎬ并选取长方体计算域ꎬ其边界分别为:首部边界距船舯约1.5倍船长ꎬ尾部边界距船舯约3.5倍船长ꎬ两侧边界距船舶的中纵剖面各1倍船长ꎬ底部边界距水线面约1倍船长ꎬ顶部边界距水线面约0.3倍船长ꎮ该计算域既能够使得其边界距船体有足够大的距离以避免固体壁面对于计算域边界的干扰ꎬ还能使得船体尾部流场得到充分的发展ꎬ以更好地模拟船体周围的流场ꎬ同时还可以使得船体计算域足够简化ꎬ以避免网格过多影响计算效率[7]ꎮ船体建模后的数值模型及计算域模型分别见图1及图2ꎮ图1㊀船体的数值模型Fig.1㊀Thenumericalmodeloftheship图2㊀计算域模型Fig.2㊀Thecomputationaldomainmodel采用四面体八叉树结构对计算域进行网格划分ꎬ在网格划分时ꎬ对船体首部曲率较大处进行网格加密ꎬ以便更好地拟合船体首部的形状ꎬ同时对船体周围计算域垂向方向的网格进行了加密ꎬ以便在计算时更好地模拟并捕捉自由液面ꎮ最终将计算域离散为137.5万非结构化网格ꎮ船体及计算域的网格划分情况分别见图3及图4ꎮ图3㊀船体网格划分Fig.3㊀Meshingofthehull图4㊀计算域网格划分Fig.4㊀Meshingofthecomputationaldomain2㊀实船阻力的计算方法与结果分析2.1㊀船模阻力数值模拟采用CFD软件STAR ̄CCM+对船模阻力进行数值模拟ꎬ湍流模型选用SSTk ̄ω模型ꎬ采取计算域随船模一起运动的方式ꎮ计算域的边界条件设定为:船首方向边界及上下左右四周边界采用 速度入口 条件ꎬ船尾方向边界采用 压力出口 条件ꎬ船体模型边界采用 壁面 条件ꎮ自由液面采用VOF(volumeoffluid)两相流方法进行捕捉ꎬ对流项采用一阶迎风格式差分ꎬ计算时间步长为0.01sꎮ63第3期于慧彬ꎬ等:基于CFD的渔船船体阻力性能预估方法综合考虑该船的船体较小㊁航速较高等因素ꎬ对船模在实船航速Vs为3ꎬ5ꎬ7ꎬ10ꎬ12ꎬ15ꎬ16ꎬ17ꎬ20kn时进行数值模拟ꎬ模拟时ꎬ船模的航速依据弗劳德数(Fr)相等的原则进行换算得出ꎮ船模的航速值Vm分别为0.717ꎬ1.195ꎬ1.673ꎬ2.390ꎬ2.868ꎬ3.585ꎬ3.824ꎬ4.063ꎬ4.780m/sꎮ通过数值模拟得到的船模阻力值见表1ꎮ表1㊀船模阻力值50.2194881.19498315.1573070.3072831.67297633.83830100.4389752.38996674.36560120.5267702.86795997.02440150.6584633.584949120.93000160.7023603.823945122.94000170.7462584.062942123.39000200.8779504.779932188.62200注:Rm为船模阻力ꎮ2.2㊀实船阻力换算方法研究船模航速在确定时是根据弗劳德数相等的原则换算得出的ꎬ该原则主要考虑了缩尺比对于兴波阻力的影响ꎬ而忽略了其对于粘性阻力的影响[8]ꎬ船舶粘性阻力中最主要的构成部分是摩擦阻力(约占85%~90%)[9]ꎬ因此在对实船阻力进行换算时应分别对摩擦阻力与剩余阻力进行计算ꎮ根据船模阻力换算实船阻力的方法流程如下ꎮ根据表1中的船模阻力值计算船模的总阻力系数Ct:Ct=Rt0.5ρv2Sꎬ(1)式中ꎬRt为船体总阻力ꎬρ为密度ꎬv为航速ꎬS为浸水表面积ꎮ根据1957ITTC公式计算船模与实船的摩擦阻力系数Cf:Cf=0.075(lgRe-2)2ꎮ(2)根据弗劳德阻力分类方法ꎬ船舶在静水中运动时所受到的阻力可分为摩擦阻力与剩余阻力ꎬ因此船舶的总阻力系数等于其摩擦阻力系数与剩余阻力系数之和ꎬ即:Ct=Cr+Cfꎬ(3)式中ꎬCr为船舶在静水中运动时的剩余阻力ꎮ由于对缩尺后的船模模拟工况进行确定时ꎬ无法满足弗劳德数Fr和雷诺数Re同时相等ꎬ而Fr主要影响船舶的剩余阻力ꎬRe主要影响船舶的摩擦阻力ꎬ对缩尺后的船模模拟工况进行确定时ꎬ采用了Fr相等的原则ꎬ因此船模的剩余阻力系数Crm与实船的剩余阻力系数Crs是相等的ꎬ即:Crs=Crm=Ctm-Cfmꎬ(4)式中ꎬCtm为船模总阻力系数ꎬCfm为船模摩擦阻力系数ꎮ由于Re不同ꎬ船模与实船的摩擦阻力系数是不同的ꎬ需分别进行计算以确定实船的总阻力系数Cts:Cts=Crs+Cfsꎬ(5)式中ꎬCfs为实船摩擦阻力系数ꎮ根据公式(1)~(5)及表1中的数据可求得实船的阻力值ꎬ见表2ꎮ根据表2中的数据可绘制实船的阻力曲线ꎬ见图5ꎮ73山㊀东㊀科㊀学2020年表2㊀实船的阻力值515.157300.0142030.0037850.0104180.0025170.0129361373.7330733.838300.0161780.0035480.0126300.0023880.0150183125.84301074.365600.0174210.0033210.0141010.0022610.0163626950.20301297.024400.0157840.0032130.0125720.0022000.0147729035.828015120.930000.0125910.0030870.0095030.0021290.01163211118.060016122.940000.0112500.0030530.0081980.0021090.01030711207.890017123.390000.0100020.0030200.0069820.0020900.00907211137.310020188.622000.0110470.0029370.0081100.0020420.01015217250.2500㊀㊀注:Rs为实船阻力ꎮ图5㊀13.9m渔船的阻力曲线Fig.5㊀Resistancecurveofthe13.9mfishingship由表2可知ꎬ该渔船在其设计航速为15kn时的阻力值约为11118Nꎮ从图5中可以看出ꎬ船舶航速低于15kn时ꎬ船舶的阻力值随着航速的增加而增大ꎻ船舶航速高于17kn时ꎬ船舶的阻力值亦是随着航速的增加而增大ꎻ但是当船舶的航速在15~17kn时ꎬ船舶的阻力值随着航速的增加先增大后减小而后继续增大ꎬ这使得阻力曲线在该区间内产生了一个阻力峰值点和一个阻力谷值点ꎬ其峰值点处的航速约为15.5knꎬ谷值点处的航速约为16.5knꎮ对该船模型在不同航速时的垂向水动力(如图6所示)进行分析ꎬ可以看出ꎬ当船舶在水中高速航行时ꎬ船舶的垂向水动力小于船舶的重力ꎬ这说明船舶在高速航行时产生了出水的现象ꎬ且随着航速的增加船体的出水幅度增大ꎬ而船体出水会使得船舶的湿表面积和水线面长度减小ꎬ这会直接导致船舶在同等航速时粘性阻力和兴波阻力的减小ꎮ当航速由低速到高速逐渐增大时ꎬ船舶由于出水幅度较小ꎬ阻力增大速率较快ꎻ而当船舶在高速阶段时ꎬ由于船舶出水幅度较大ꎬ使得由于船舶出水而产生的阻力减小量增大ꎬ因此这一阶段船舶的总阻力增加速率减缓ꎻ而船舶航速在15.5~16.5kn时ꎬ船舶由于出水产生的阻力减小量大于由于航速增加而产生的阻力增大量ꎬ因此这一阶段船舶的总阻力随着航速的增加而减小ꎮ由于船舶本身具有一定的重量ꎬ因此当船舶的航速达到了一定的值时随着航速的增加ꎬ船舶的出水幅度随之减小ꎬ使得由于船体出水产生的阻力减小值小于83第3期于慧彬ꎬ等:基于CFD的渔船船体阻力性能预估方法由于航速增大产生的阻力增大值时ꎬ船舶的总阻力将继续呈增大的趋势ꎮ图6㊀船模的垂向水动力随时间变化的曲线Fig.6㊀Verticalhydrodynamiccurveofthemodel3㊀结论(1)船舶在设计航速15kn时的实船总阻力值约为11118Nꎮ(2)随着船舶航速的增加ꎬ船舶的总阻力值先增大后减小ꎬ并且在15.5kn处形成阻力峰值点ꎬ在16 5kn处形成阻力谷值点ꎮ(3)随着船舶航速的增加ꎬ产生了出水的现象ꎬ导致了船舶在一定的航速区间内随着航速的增加ꎬ总阻力增速减缓ꎬ甚至在15.5~16.5kn这一区间内船舶总阻力产生减小的现象ꎮ参考文献:[1]张晓君ꎬ杨校刚ꎬ王向前.基于CFD的拖网渔船阻力计算及试验验证[J].浙江海洋学院学报(自然科学版)ꎬ2009ꎬ28(1):1 ̄4.[2]TAHARAYꎬTOHYAMASꎬKATSUIT.CFD ̄basedmulti ̄objectiveoptimizationmethodforshipdesign[J].InternationalJournalforNumericalMethodsinFluidsꎬ2006ꎬ52(5):499 ̄527.DOI:10.1002/fld.1178.[3]陈骞ꎬ查晶晶ꎬ刘刚.基于CFD的船舶总阻力数值模拟[J].船海工程ꎬ2019ꎬ48(2):170 ̄173.DOI:10.3963/j.issn.1671 ̄7953.2019.02.044.[4]黄德波ꎬ张雨新ꎬ邓锐ꎬ等.单体与三体高速船舶粘性流场数值模拟[J].哈尔滨工程大学学报ꎬ2010ꎬ31(6):683 ̄688.DOI:10.3969/j.issn.1006 ̄7043.2010.06.001.[5]邵文勃ꎬ马山ꎬ段文洋ꎬ等.基于CFD技术的滑行艇静水阻力计算[J].船舶工程ꎬ2019ꎬ41(9):41 ̄45ꎬ137.DOI:10.13788/j.cnki.cbgc.2019.09.09.[6]李纳ꎬ梁建生.33.2m远洋双甲板拖网渔船阻力特性分析[J].渔业现代化ꎬ2018ꎬ45(6):74 ̄80.DOI:10.3969/j.issn.1007 ̄9580.2018.06.012.[7]李晓文ꎬ林壮ꎬ郭志群ꎬ等.基于Star ̄CCM+的滑行艇水动力性能模拟计算[J].中南大学学报(自然科学版)ꎬ2013ꎬ44(增刊2):133 ̄137.[8]胡俊明.基于RANS法虚拟试验水池的船舶快速性预报研究[D].大连:大连理工大学ꎬ2018.[9]盛振邦ꎬ刘应中.船舶原理(上)[M].上海:上海交通大学出版社ꎬ2003.93山东科学SHANDONGSCIENCE第33卷第3期2020年6月出版Vol.33No.3Jun.2020DOI:10.3976/j.issn.1002 ̄4026.2020.03.006ʌ海洋科技与装备ɔ收稿日期:2019 ̄12 ̄20基金项目:山东省重点研发计划(2019JZZY010819ꎬ2019GGX104042ꎬ2019GSF110009)作者简介:郝宗睿(1983 )ꎬ男ꎬ副教授ꎬ硕士生导师ꎬ研究方向为流体机械装备设计及研发ꎮE ̄mail:haozr001@sina.com基于PLC和伺服电机的主动冲箱式造波系统的控制及实现郝宗睿ꎬ李超ꎬ张浩ꎬ华志励ꎬ任万龙(齐鲁工业大学(山东省科学院)山东省科学院海洋仪器仪表研究所ꎬ山东青岛266100)摘要:为了研究在10mˑ0.5m的玻璃水槽内的主动冲箱造波技术ꎬ设计了基于PLC运动控制器㊁伺服电机和驱动器㊁工控机以及浪高采集仪的造波系统ꎮ该系统根据水动力学参数在PLC运动控制程序中实现主动造波算法ꎻ采用交流伺服驱动器并搭配相应尺寸的电机ꎬ完成楔形板的上下造波运动ꎻ通过工控机上的人机界面对造波机系统的整体状态进行控制ꎮ为了提高控制精度ꎬ该系统在伺服驱动器内部闭环控制的基础上ꎬ还增加了基于PID算法的波高和频率闭环控制ꎮ实际应用表明ꎬ该造波系统可通过对波形的实时反馈ꎬ保证控制的准确性和稳定性ꎬ达到了主动造波的目的ꎮ关键词:造波机ꎻPLC运动控制器ꎻ伺服电机ꎻPID算法中图分类号:TP23㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2020)03 ̄0040 ̄05开放科学(资源服务)标识码(OSID):ControlandrealizationofanactivestrikingboxwavemakerbasedonPLCandservomotorHAOZong ̄ruiꎬLIChaoꎬZHANGHaoꎬHUAZhi ̄liꎬRENWan ̄long(InstituteofOceanographicInstrumentationꎬQiluUniversityofTechnology(ShandongAcademyofSciences)ꎬQingdao266100ꎬChina)AbstractʒInordertostudythewavemakingtechnologyofactivestrikingboxinawideglasswatertank(10mˑ0.5m)ꎬthispaperdesignedawavemakingsystembasedonaPLCmotioncontrollerꎬservomotoranddriverꎬindustrialcomputerandwaveheightacquisitioninstrument.ThesystemimplementsanactivewavemakingalgorithminthePLCmotioncontrolprogramaccordingtothehydrodynamicparameters.ItnotonlyusestheACservodriverandthemotorofthesamesizetocompletethewavemakingundulationsofthewedgeplateꎬbutalsocontrolstheoverallstateofthewavemakingmachinesystemthroughtheman ̄machineinterfaceontheindustrialcomputer.Toimprovethecontrolaccuracyꎬtheclosed ̄loopcontrolofwaveheightandfrequencybasedonaPIDalgorithmisaddedtotheexternalclosed ̄loopcontroloftheservodriver.Apracticalapplicationshowsthatthesystemcanensuretheaccuracyandstabilityofcontrolbyreal ̄timefeedback。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档