八年级(下)数学期末综合练习_

合集下载

2022-2023学年人教版八年级下册数学期末综合检测卷(无答案)

2022-2023学年人教版八年级下册数学期末综合检测卷(无答案)

2022-2023学年人教版数学八年级下册期末综合检测卷(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.下列条件不能判定四边形是平行四边形的是( ) A .,B .,C .,D .,2.下列各数组是勾股数的是( )A .1、2、3B .6、8、10C .5、11、13D .2、1.5、2.53.如图所示,在中,对角线交于点O ,下列式子中一定成立的是( )A .B .C .D .4.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如图所示,下列结论正确的是:()A .爷爷比小强先出发20分钟B .小强爬山的速度是爷爷的2倍C .表示的是爷爷爬山的情况,表示的是小强爬山的情况D .山的高度是480米5.如图,中,,于点D ,,,则的长为()A .5B.C .D .26.为调查某班学生每天使用零花钱的情况,小丽随机调查了20名同学,结果如表:ABCD AB CD =AD BC =A C ∠=∠B D ∠=∠AB CD P AD BC=AB CD P B D∠=∠ABCD Y AC BD 、AC BD ⊥OA OC =AC BD =AO OD =1l 2l ABC V 90ACB ∠=︒CD AB ⊥3AC =4BC =CD 52125每天使用零花钱(单位:元) 10 15 20 25 30 人数13655则这20名同学每天使用的零花钱的众数是( ) A .10B .15C .20D .307.若直线y=+n 与y =mx ﹣1相交于点(1,﹣2),则()A .m =,n =﹣B .m =,n =﹣1C .m =﹣1,n =﹣D .m =﹣3,n =﹣8.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=70°,则∠EDC 的大小为( )A .10°B .15°C .20°D .30°9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连结EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .CE ⊥DEC .∠ADB=90°D .BE ⊥AB10.如图,正方形的边长为1,点E 是边AD 上一点,且,点F 是边上一个动点,连接EF ,以为边作菱形,且,连接,点P 为的中点,在点F 从点A 运动到点B 的过程中,点运动所走的路径长为( )A .B .1CD .11.如图,在中,,,平分,对角线相交于点O ,连接,下列结论中正确的有()①;②;③;④;⑤2x1252125232ABCD 14AE AD =AB EF EFGH 60EFG ∠=︒DG DG P 1214ABCD Y 120ABC ∠=︒2BC AB =DE ADC ∠AC BD 、OE 30ADB ∠=︒2AB OE =DE AB =OD CD =ABCD S AB BD=⋅YA .2个B .3个C .4个D .5个12.如图,在菱形中,,,点P 是菱形内部一点,且满足,则的最小值是( )A .B .C .6D .二、填空题(本大题共4小题,每小题2分,共8分)13.把中根号外的移入根号内得 . 14.如图,在菱形中,点P 在对角线上,,垂足为E ,,则点P 到的距离是 .15.如图,在△ABC 中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交BC 于点D ,连接AD .若cm ,cm ,则△ACD 的周长为 cm .16.如图,在中,,P 为边上一动点,于点E ,于F ,则的最小值为 .ABCD 6AB =120A ∠=︒16PCD ABCDS S =V 菱形PC PD +(a -(1)a -ABCD AC PE AB ⊥5PE =AD 90C ∠=︒12AB 5AB =3AC =ABC V 51213AB AC BC ===,,BC PE AB ⊥PF AC ⊥EF三、解答题(本答题共8小题,共56分)17.计算: (1(2)18.文明其精神,野蛮其体魄.体育课上张老师对全班学生进行了体能测试,从跑步、立定跳远、跳绳三个方面进行了量化考核.小字和小彬的各项成绩如下表(百分制):姓名跑步立定跳远跳绳小宇859590小彬958688若跑步、立定跳远、跳绳的成绩按 确定体能综合成绩,则小宇和小彬谁的体能综合成绩高?请通过计算说明理由.19.要把宣传牌,装订在教室的黑板上面(如图所示).一架梯子(米)靠在宣传牌,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌的B 处,而底端E 向外移到了1米到C 处(米).测量得米.求宣传牌的高度(结果用根号表示).20.如图,在四边形中,,求四边形的面积.()()11-+433::()AB 5AE =()AB A ()AB 1CE =4BM =()AB ABCD 3590AB AD BC CD B ====∠=o ,,ABCD21.如图,在平行四边形中,对角线,交于点,过点交于点,交于点.求证:.22.如图,在矩形ABCD 中, , ,菱形 的三个顶点 分别在矩形 的边 上, , ,求证:四边形为正方形.23.如图,在平面直角坐标系中,函数的图像分别交x 轴,y 轴于A ,B 两点,过点A 的直线交y 轴正半轴于点M ,且BM=2MO .在平面直角坐标系内存在点C ,使得以A ,B ,M ,C 为顶点的四边形是平行四边形,请你画出图形,确定点C的坐标.ABCD AC BD O EF O AD E BC F OE OF =6AD =8DC =EFGH ,,E G H ABCD ,,AB CD DA 2AH =2DG =EFGH xOy 26y x =-+24.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.。

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。

人教版八年级数学下期末综合练习

人教版八年级数学下期末综合练习

人教版八年级数学下期末综合练习班别 姓名 学号 成绩一、选择题(把答案填在问卷对应位置上)1. 在3a 、y x xy+、a 1、1+πp 、b a +23、3ab2c35 中分式的个数有( * )A 、2个B 、3个C 、4个D 、5个2.方程1112-=-x x x 的增根是( * ) A 、0=x B 、1-=x C 、1=x D 、1±=x 3. 把分式yx x+中的x,y 都扩大两倍,那么分式的值( * ) A、扩大两倍 B、不变 C、缩小 D、缩小两倍4.某乡的粮食总产量为a 吨,设该乡平均每人占有粮食为y 吨,人口数为x 人,y 与x 的函数关系的图象为( * )5.若点(-1,a )、(2,b )、(3,c )都在反比例函数xy 6=的图象上,则( * )A、a<b<c B、b<a<c C、c<b<a D、a<c<b6.分别以下列四组数为一个三角形的边:①3,4,5;②5,12,13;③8,15,17;④4,5,6.其中能构成直角三角形的有( * ) A 、4组 B 、3组 C 、2组 D 、1组7.某地统计部门公布最近五年国民消费指数增长率分别为8.5%,9.2%,9.9%,10.2%,9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据的( )比较小.(A )方差 (B )平均数 (C )众数 (D )中位数8.顺次连结菱形各边中点所得的图形是( )A 菱形B 矩形C 正方形D 平行四边形 9.如图,在Rt ΔABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE ⊥AB 交AC 于D ,如果AC=5cm ,则AD+DE=( )A 、3 cmB 、4 cmC 、 5 cmD 、 6 cm10. 如图:在梯形ABCD 中,AD ∥BC ,BC=2AD ,对角线AC 与BD 相交于点O ,把∆ABO 、∆BCO 、∆COD 、∆DOA 的面积分别记作1S 、2S 、3S 、4S ,则下列结论中,正确的是( )(A )124S S = (B )422S S = (C )31S S =(D )4231S S S S +=+二.填空题: (把各题答案填在问卷对应位置上)11.分式-3x-2中,当x * 时有意义,当x * 时分式的值为正。

浙教版八年级下册数学期末练习卷(含答案)

浙教版八年级下册数学期末练习卷(含答案)

浙教版八年级下册数学期末练习卷一、选择题(共10题;共30分)1.(3分)下列式子中,x可以取−1和2的是( )A.1x−2B.x−1C.x+2D.x2−2 2.(3分)既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)如图,在▱ABCD中,∠A+∠C=80°,则∠D=( )A.140°B.40°C.70°D.80°4.(3分)将一元二次方程x2-x-1=0配成(x+p)2=q的形式,则p的值是( )A.-1B.1C.12D.−125.(3分)牛顿曾说过:“反证法是数学家最精良的武器之一”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( )A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中没有一个内角小于60°D.三角形中每个内角都大于60°6.(3分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环).及方差s2(单位:环2)如下表所示,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁A.甲B.乙C.丙D.丁7.(3分)《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x尺,则可列方程为( )A.x2+102=(x+1)2B.x2+102=x2C.(x−4)2+10=x2D.x2+102=(x−4)28.(3分)已知点A(x₁,y₁),B(x₂,y₂)在反比例函数y =6的图象上,且:x1<0<x2,则下列结论x一定正确的是( )A.y₁+y₂<0B.y₁+y₂>0C.y₁<y₂D.y₁>y₂9.(3分)如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限x的图.象经过顶点A(m,m+3)和CD上的点E,且OB−CE=1,过点E的直线l交x轴于点F,交y轴于点G(0,−3),则OF的长为( )A.4.5B.5C.5.4D.610.(3分)如图,在正方形ABCD中,已知点P是线段AB上的一个动点(点P与点A不重合),作CQ⊥DP 交AD于点Q.现以PQ,CQ为邻边构造平行四边形PECQ,连接BE,则∠BEP+∠PQC的最小值为( )A.90°B.45°C.22.5°D.60°二、填空题(共6题;共18分)11.(3分)若二次根式x−4在实数范围内有意义,则x的取值范围是 .12.(3分)下面是某班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个3538424548人数35744则该班女同学每分钟仰卧起坐个数的中位数是 .13.(3分)若n边形的每一个外角都是40°,则n的值为 14.(3分)已知关于x的一元二次方程a x2+bx+c=0满足a−b+c=0,则方程必有一个根为 .15.(3分)如图,用4张全等的直角三角形纸片拼成的图案,若直角三角形纸片的较长直角边为4,拼成的中间小正方形面积为1,则四边形ABCD的面积为 .16.(3分)如图,A,C是正比例函数y=x的图象与反比例函数y=4的图象的交点,过点A作AD⊥xx轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD的周长为 .三、解答题(共8题;共72分)17.(8分)计算.(1)(4分)8+32−18(2)(4分)12+|3−2|+(12)−118.(8分)解方程:(1)(4分)x2+6x=−3;(2)(4分)x(x−7)=8(7−x)19.(6分)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)(2分)条形统计图中被墨汁污染的人数为 人.“8本”所在扇形的圆心角度数为 °;(2)(2分)求被抽查到的学生课外阅读量的平均数和中位数;(3)(2分)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.20.(6分)如图,△ABC的中线BE、CF相交于点G,已知点P,Q分别是BG,C的中点.(1)(3分)求证:四边形EFPQ是平行四边形;(2)(3分)若FG⊥BF,请判断FP与GE的数量关系,并说明理由.21.(8分)如图,一次函数y=-x+4的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B(b,1)两点,与x轴交于点C,与y轴交于点D.(1)(3分)求点B的坐标和反比例函数的表达式;(2)(2分)直接写出当x>0时,不等式-x+4-kx>0的解集;(3)(3分)若点P在y轴上,且△APB的面积为3,求点P的坐标.22.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)(3分)求证:△ABF≌△EDF;(2)(7分)如图,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(12分)根据以下素材,探索完成任务.如何改造硬纸板制作无盖纸盒?背景学校手工社团小组想把一张长50cm,宽40cm的矩形硬纸板,制作成一个高5cm,容积4680c m3的无盖长方体纸盒,且纸盒的长不小于32cm (纸板的厚度忽略不计).方案初始方案:将矩形硬纸板竖着裁剪xcm(阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.改进方案:将矩形硬纸板竖着裁剪xcm ,横着裁剪ycm (阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.问题解决任务1判断方案请通过计算判断初始方案是否可行?任务2改进方案改进方案中,当x =y 时,求x 的值.任务3探究方案当裁剪后能制作成符合要求的纸盒时,写出y关于x 的函数关系式.24.(14分) 阅读材料:已知a ,b 为非负实数,∵a +b−2ab =(a )2+(b )2−2a ⋅b =(a −b )2≥0,∴a +b ≥2ab ,当且仅当“a =b ”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知x >0,求代数式x +4x最小值.解:令a =x ,b =4x ,则由a +b ≥2ab ,得x +4x ≥2x ⋅4x =4.当且仅当x =4x,即x =2时,代数式取到最小值,最小值为4.根据以上材料解答下列问题:(1)(3分)已知x >0,则当x =  时,代数式x +3x到最小值,最小值为  ;(2)(3分)用篱笆围一个面积为100m 2的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)(5分)已知x >0,则自变量x 取何值时,代数式xx 2−2x +9取到最大值?最大值为多少?(4)(3分)若x 为任意实数,代数式xx 2+4x +5的值为m ,则m 范围为  .答案解析部分1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】x≥412.【答案】4213.【答案】914.【答案】x=-115.【答案】2516.【答案】45+417.【答案】(1)解:原式=22+32-32=22(2)解:原式=23+2-3+2=4+318.【答案】(1)x1=−3+6,x2=−3−6(2)x1=7,x2=−819.【答案】(1)4;108(2)被调查同学阅读量的平均数为8.7本,中位数为9本(3)m的最大值为320.【答案】(1)证明:∵BE、CF是△ABC的中线,∴EF 是△ABC 的中位线,∴EF ∥BC ,EF =12BC ,∵P 、Q 分别是BG 、CG 的中点,∴ PQ 是△BCG 的中位线,∴PQ ∥BC ,PQ =12BC ,∴EF ∥OQ ,EF =PQ ,∴四边形EFPQ 是平行四边形;(2)解:FP =GE ,理由如下:∵四边形EFPQ 是平行四边形,∴GP =GE ,∵FG ⊥BF ∴∠BFG =90°,又∵P 是BG 中点,∴FP =GP =12BG .∴FP =GE .21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=kx(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).22.【答案】(1)证明:∵四边形ABCD 是矩形∴∠A =∠C ,AB =CD又∵矩形ABCD 沿BD 折叠∴∠C =∠E ,CD =ED ∴∠A =∠E ,AB =DE在△ABF 和△EDF 中{∠A =∠E ∠AFB =∠EFD AB =DE∴△ABF≌△EDF (AAS )(2)解:①四边形BFDG 是菱形,理由如下:∵四边形ABCD 是矩形∴FD ∥BG又∵DG ∥BF ,FD ∥BG ∴四边形BFDG 是平行四边形又∵四边形BFDG 是平行四边形,DF =BF ∴四边形BFDG 是菱形②∵四边形ABCD 是矩形,AB =6,AD =8∴BD =AB 2+AD 2=62+82=10,OB =12BD =5设BF =DF =x ,则AF =AD−DF =8−x 在Rt △ABF 中,A B 2+A F 2=B F 2∴62+(8−x )2=x 2解得:x =254,即BF =254∴FO =BF 2−OB 2=(254)2−52=154∴FG =2FO =15223.【答案】解:任务1:根据题意得:(50−x−2×5)×(40−2×5)×5=4680,解得:x =8.8,此时长方体盒子的长为:50−8.8−2×5=31.2(cm)<32cm ∴初始方案是不可行;任务2:当x =y 时,根据题意得:(50−x−2×5)×(40−x−2×5)×5=4680, 解得:x 1=4或x 2=66,当x 1=4时,盒子的长为50−2×5−4=36>32,符合题意; 当x 2=66时,盒子的长为50−2×5−66=−26<32,不符合题意;∴x 的值为4;任务3:y =30−93640−x,24.【答案】(1)3;23(2)解:设这个矩形的长为x 米,篱笆周长为y 米,根据题意,用篱笆围一个面积为100m 2的矩形花园,则矩形的宽为100x米,∴y =2(x +100x )≥4x ⋅100x=40,当且仅当x =100x时,取等号,即当x =10时,函数有最小值,最小值为40,∴这个矩形花园的长、宽均为10米时,所用的篱笆最短,最短的篱笆的长度是40米(3)解:∵x >0,∴y =xx 2−2x +9=1x−2+9x =1x +9x −2,又∵x +9x ≥2x ⋅9x=6,当且仅当x =9x 时,即当x =3时,(x +9x)取最小值,最小值为6,∴此时y 有最大值,最大值为y =16−2=14,∴自变量x =3时,函数y =x x 2−2x +9取最大值,最大值为14.(4)−52−1≤m ≤52−1。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

人教版八年级数学下册期末综合素质评价附答案

人教版八年级数学下册期末综合素质评价附答案

人教版八年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.函数y=xx-2的自变量x的取值范围是()A.x≥0且x≠2B.x≥0 C.x≠2D.x>2 2.下列二次根式中,最简二次根式是()A. 2B.12C.15 D.a23.下面各组数中,是勾股数的是()A.9,16,25 B.0.3,0.4,0.5 C.1,3,2 D.7,24,254.在体操比赛评分时,要去掉一个最高分和一个最低分,这样做的目的是() A.使平均数不受极端值的影响B.使众数不受极端值的影响C.使中位数不受极端值的影响D.使方差不受极端值的影响5.【2022·仙桃】下列各式计算正确的是()A.2+3= 5 B.43-33=1C.2×3= 6D.12÷2= 66.如图,平行四边形ABCD中,对角线AC、BD交于点E,点F是CD的中点,若AD=10 cm,则EF的长为()A.3 cm B.4 cm C.5 cm D.6 cm(第6题)(第7题)(第8题)(第9题) 7.赵老师是一名健步走运动的爱好者,她用微信运动记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天健步走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3C.1.4,1.35 D.1.3,1.38.【教材P 43练习T 2变式】【2022·赤峰】如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .AD =CDC .四边形ABCD 的面积不变 D .AD =BC9.【直观想象】如图,一只蚂蚁绕着圆柱向上螺旋式爬行,假设蚂蚁绕圆柱外壁从点A 爬到点B ,圆周率π取近似值3,则蚂蚁爬行路线的最短路径长为( )A .6 2 cmB .6 5 cmC .213 cmD .10 cm10.【新考法题】【2022·安徽】甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是( )A .甲B .乙C .丙D .丁二、填空题(每题3分,共24分)11.计算:(-4)2=________.12.【2022·广州】在甲、乙两位射击运动员的10次考核成绩中,两人的考核成绩的平均数相同,方差分别为s 甲2=1.45,s 乙2=0.85,则考核成绩更为稳定的运动员是________(填“甲”“乙”中的一个).13.如图,直线y =x -3与直线y =mx (m ≠0)交于点P ,则关于x ,y 的二元一 次方程组⎩⎨⎧y =x -3,y =mx的解为__________.(第13题) (第15题) (第17题) (第18题)14.【立德树人】【2022·青岛】小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项得分分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为________分.15.【教材P 67复习题T 5改编】【2022·黔东南州】如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD .若AC =10,则四边形OCED 的周长是________.16.已知一次函数y =(k +3)x +k -2,y 随x 的增大而增大,且图象与y 轴交于负半轴,则k 的取值范围是__________.17.【2022·江西】沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为________.18.【教材P 109复习题T 14变式】已知A 地在B 地正南方向3 km 处,甲、乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s (km)与所行时间t (h)之间的函数关系图象如图中的OC 和FD 所示.当他们行走3 h 后,他们之间的距离为________km.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.计算:(1)()32+48()18-43;(2)(2-3)2 024·(2+3)2 023-2⎪⎪⎪⎪⎪⎪-32-(-2)0.20.已知a ,b ,c 满足|a -7|+b -5+(c -42)2=0.(1)求a,b,c的值;(2)判断以a,b,c为边能否构成三角形,若能构成三角形,此三角形是什么形状?21.【2022·厦门双十中学模拟】如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.【2022·达州】“防溺水”是校园安全教育工作的重点之一,某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C组中的数据是:92,92,94,94.根据以上信息,解答下列问题:(1)上述图表中a=________,b=________,m=________.(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可).(3)该校七、八年级共1 200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是多少.23.如图,在矩形ABCD中,点E,F分别在边CD,AB上,且DE=BF,∠ECA=∠FCA.(1)求证:四边形AFCE是菱形;(2)若AB=8,BC=4,求菱形AFCE的面积.24.【2022·衡阳】冰墩墩、雪容融分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国,小雅在某网店选中两种玩偶.决定从该网店进货并销售,第一次小雅用1 400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进价分别是多少;(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍,小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润?最大利润是多少元?25.已知四边形ABCD是正方形,点F在边AB,BC上运动,DE⊥DF,且DE =DF,M为EF的中点.(1)当点F在边AB上时(如图①).①求证:点E在直线BC上;②若BF=2,则MC的长为________.(2)当点F在BC上时(如图②),求BFCM的值.答案一、1.A 2.A 3.D 4.A 5.C 6.C 7.B8.D 9.A10.A 提示:∵经过30 min 甲比乙步行的路程多,经过50 min 丁比丙步行的路程多,∴甲的平均速度大于乙的平均速度,丁的平均速度大于丙的平均速度.∵步行3 km 时,甲比丁用的时间少,∴甲的平均速度大于丁的平均速度.∴走得最快的是甲.二、11.4 12.乙13.⎩⎨⎧x =1y =-214.8.3 15.2016.-3<k <2 17. 5点思路:根据图形可得长方形的长等于正方形的对角线长,为2;长方形的宽等于正方形对角线长的一半,为1,然后利用勾股定理即可解决问题.18.1.5三、19.解:(1)原式=(32+43)(32-43)=(32)2-(43)2=18-48=-30;(2)原式=[(2-3)(2+3)]2 023·(2-3)-3-1=2-3-3-1=1-2 3.20.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -42)2=0,∴|a -7|=0,b -5=0,(c -42)2=0,解得a =7,b =5,c =4 2.(2)∵a =7,b =5,c =42,∴a +b =7+5>4 2.∴以a ,b ,c 为边能构成三角形.∵a 2+b 2=(7)2+52=32=(42)2=c 2,∴此三角形是直角三角形.21.解:(1)把A (-2,-1),B (1,3)两点的坐标分别代入y =kx +b ,得⎩⎨⎧-2k +b =-1,k +b =3,解得⎩⎪⎨⎪⎧k =43,b =53.∴该一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53, ∴点D 的坐标为⎝ ⎛⎭⎪⎫0,53. ∴S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.22.解:(1)30;96;93(2)八年级学生掌握防溺水安全知识较好.理由:虽然七、八年级的平均分均为92,但八年级的众数高于七年级.(合理即可)(3)1 200×6+10×30%20=540(人). 答:估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人.23.(1)证明:∵四边形ABCD 是矩形,∴CD ∥AB ,CD =AB .∵DE =BF ,∴EC =AF .又∵EC ∥AF ,∴四边形AFCE 是平行四边形.∵CD ∥AB ,∴∠ECA =∠F AC .∵∠ECA =∠FCA ,∴∠F AC =∠FCA ,∴F A =FC . ∴平行四边形AFCE 是菱形.(2)解:设FB =x ,则AF =CF =8-x .在Rt △BCF 中,42+x 2=(8-x )2,解得x =3.∴菱形的边长AF =8-3=5.∴菱形AFCE 的面积为5×4=20.点要点:矩形与菱形的区别:1.矩形和菱形都是建立在平行四边形的基础上,矩形是附加一直角,而菱形是附加一组邻边相等;2.矩形的两条对角线把矩形分割成四个面积相等的等腰三角形,而菱形的两条对角线把菱形分割成四个全等的直角三角形;3.矩形的对称轴是两条过两组对边中点的直线,而菱形的对称轴是两条对角线所在的直线.24.解:(1)设冰墩墩玩偶的进价为x 元/个,雪容融玩偶的进价为y 元/个.根据题意,得⎩⎨⎧15x +5y =1 400,x +y =136,解得⎩⎨⎧x =72,y =64.答:冰墩墩玩偶的进价为72元/个,雪容融玩偶的进价为64元/个.(2)设冰墩墩玩偶购进a 个,则雪容融玩偶购进(40-a )个,利润为w 元. 根据题意,得w =28a +20(40-a )=8a +800.∵8>0,∴w 随a 的增大而增大.∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍, ∴a ≤1.5(40-a ),解得a ≤24.∴当a =24时,w 取得最大值,此时w =992,40-a =16.答:冰墩墩玩偶购进24个,雪容融玩偶购进16个时,才能获得最大利润,最大利润是992元.25.(1)①证明:如图①,连接CE .∵DE ⊥DF ,∴∠FDE=90°.∵四边形ABCD是正方形,∴∠ADC=∠DAF=∠DCB=90°,DA=DC.∴∠ADC-∠FDC=∠FDE-∠FDC,即∠ADF=∠CDE.又∵DF=DE,∴△DAF≌△DCE(SAS).∴∠DAF=∠DCE=90°.∴∠DCE+∠DCB=180°.∴点E在直线BC上.② 2(2)解:如图②,在DC上截取DN=FC,连接MN,DM,设EF,CD相交于点H.∵△FDE为等腰直角三角形,M为EF的中点,∴DM=12EF=FM,DM⊥EF.∴∠DMF=∠FCD=90°.∴∠CDM+∠DHM=∠MFC+∠CHF.又∵∠DHM=∠CHF,∴∠CDM=∠MFC.∴△DNM≌△FCM(SAS).∴MN=MC,∠DMN=∠FMC.∴∠DMN+∠FMN=∠FMC+∠FMN,即∠DMF=∠NMC=90°.∴△CNM是等腰直角三角形.∴CN=2CM.又∵DC=BC,DN=CF,∴CN=BF.∴BF=2CM,即BFCM= 2.。

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题含解析

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题含解析

2024届湖北省武汉市七一(华源)中学八年级数学第二学期期末综合测试试题 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( ) A .3 B .6 C .9 D .102.如图是一个直角三角形,它的未知边的长x 等于( )A .13B .13C .5D .53.已知一次函数y =kx +b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( ) A .y = x +2 B .y = ﹣x +2 C .y = x +2或y =﹣x +2 D .y = - x +2或y = x -2 4.如图, 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A .12OE DC =B .OA OC = C .BOE ODC ∠=∠D .BOE OBC ∠=∠5.下列各组数是勾股数的是( )A .2,3,4B .4,5,6C .3.6,4.8,6D .9,40,416.如图,ABC △中,,AB AC ABC =与FEC 关于点C 成中心对称,连接,AE BF ,当ACB =∠( )时,四边形ABFE 为矩形.A.30︒B.45︒C.60︒D.90︒7.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.103cm D.202cm8.将0.000008这个数用科学记数法表示为()A.8×10-6B.8×10-5C.0.8×10-5D.8×10-79.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10 B.2<BC<18 C.1<BC<8 D.1<BC<910.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长11.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A .15 个B .12 个C .8 个D .6 个 12.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A .8或10B .8C .10D .6或12二、填空题(每题4分,共24分)13.在平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,m )、(3,m +2),若线段AB 与x 轴有交点,则m 的取值范围是_____.14.如图,在平面直角坐标系中,过点()2,3P 分别作PC x ⊥轴于点C ,PD y ⊥轴于点D ,PC 、PD 分别交反比例函数()20=>y x x的图像于点A 、B ,则四边形BOAP 的面积为__________.15.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .16.如图,四边形ABCD 是菱形,点A ,B ,C ,D 的坐标分别是(m ,0),(0,n ),(1,0),(0,2),则mn=_____.17.如图,在□ABCD 中,AB=5,AD=6,将□ABCD 沿AE 翻折后,点B 恰好与点 C 重合,则折痕AE 的长为____.18.在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是_____.(写出一种情况即可)三、解答题(共78分)19.(8分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.(1)求直线AB的解析式;(2)求证:△PAO≌△MPN;(3)若PB=m(m>0),用含m的代数式表示点M的坐标;(4)求直线MB的解析式.20.(8分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.21.(8分)如图,直线2y kx =+与直线13y x =相交于点A (3,1),与x 轴交于点B . (1)求k 的值;(2)不等式123kx x +<的解集是________________.22.(10分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.23.(10分)如图为一个巨型广告牌支架的示意图,其中,,,,求广告牌支架的示意图的周长.24.(10分)某经销商从市场得知如下信息:A 品牌计算器B 品牌计算器 进价(元/台)700 100 售价(元/台) 900 160他计划一次性购进这两种品牌计算器共100台(其中A 品牌计算器不能超过50台),设该经销商购进A 品牌计算器x 台(x 为整数),这两种品牌计算器全部销售完后获得利润为y 元.(1)求y 与x 之间的函数关系式;(2)若要求A 品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?25.(12分)如图,在△ABC 中,点D 为边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论2611101514的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数: ()()11101110111011101110==--+ , ()()15141514151415141514+==--+, 15+1411+101514-1110-15-1411-108365.参考答案一、选择题(每题4分,共48分)1、D【解题分析】方程配方得到结果,即可作出判断.【题目详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k的值不可能是10,故选:D.【题目点拨】此题考查了解一元二次方程 配方法,熟练掌握完全平方公式是解本题的关键.2、B【解题分析】由勾股定理得:22+32=x2.【题目详解】由勾股定理得:22+32=x2.所以,x=故选:B【题目点拨】本题考核知识点:勾股定理. 解题关键点:熟记勾股定理.3、C【解题分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【题目详解】∵一次函数y=kx+b(k≠0)图象过点(0,1),∴b=1,令y=0,则x=-2k,∵函数图象与两坐标轴围成的三角形面积为1,∴12×1×|-2k|=1,即|2k|=1,解得:k=±1,则函数的解析式是y=x+1或y=-x+1.故选C.4、D【解题分析】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,AB=CD,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=12DC,OE∥DC,,∴∠BOE=∠ODC,∴选项A、B、C正确;∵OE≠BE,∴∠BOE≠∠OBC,∴选项D错误;故选:D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.5、D【解题分析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.6、C【解题分析】由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【题目详解】∵ABC与FEC关于点C成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵AB AC∴△BCA 为等边三角形,故60ACB ∠=︒选C【题目点拨】本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA 是等边三角形7、D【解题分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长;设圆锥的底面圆的半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r ;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.【题目详解】过O 作OE ⊥AB 于E ,如图所示.∵OA =OB =60cm ,∠AOB =120°,∴∠A =∠B =30°,∴OE =12OA =30cm , ∴弧CD 的长=1203180π⨯=20π, 设圆锥的底面圆的半径为r ,则2πr =20π,解得r =10, 302102202-=cm.故选D.【题目点拨】本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【题目详解】0.000008用科学计数法表示为8×10-6,故选A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、D【解题分析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.【题目详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,再根据三角形的三边关系,得:1<BC<9,故选D.【题目点拨】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.10、B【解题分析】本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【题目详解】A. 1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=11133,排除B. 1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C. 1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D. 1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B【题目点拨】本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.11、A【解题分析】根据红球的概率公式列出方程求解即可.【题目详解】解:根据题意设袋中共有球m个,则513 m所以m=1.故袋中有1个球.故选:A.【题目点拨】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12、C【解题分析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.二、填空题(每题4分,共24分)13、﹣2≤m≤1【解题分析】由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.【题目详解】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=1经过点A时,则m=1,当直线y=1经过点B时,m+2=1,则m=﹣2;∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.【题目点拨】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.14、1【解题分析】根据反比例函数系数k 的几何意义可得S △DBO =S △AOC =12|k |=1,再利用矩形OCPD 的面积减去△BDO 和△CAO 的面积即可.【题目详解】解:∵B 、A 两点在反比例函数()20=>y x x 的图象上, ∴S △DBO =S △AOC =12×2=1, ∵P (2,3),∴四边形DPCO 的面积为2×3=6,∴四边形BOAP 的面积为6﹣1﹣1=1,故答案为:1.【题目点拨】此题主要考查了反比例函数k 的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变. 15、1.【解题分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC ,再根据菱形的周长公式列式计算即可得解.【题目详解】∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长=4BC=4×6=1.故答案为1.【题目点拨】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.16、1 .【解题分析】分析:根据菱形的对角线互相垂直平分得出OA=OC ,OB=OD ,得出m 和n 的值,从而得出答案.详解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,∴m=-1,n=-1,∴mn=1.点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.17、1【解题分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【题目详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE4==.故答案为:1.【题目点拨】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.18、AC⊥BD(答案不唯一)【解题分析】依据菱形的判定定理进行判断即可.【题目详解】解:∵四边形ABCD为平行四边形,∴当AC⊥BD时,四边形ABCD为菱形.故答案为AC⊥BD(答案不唯一).【题目点拨】本题主要考查菱形的判定,平行四边形的性质,熟悉掌握菱形判定条件是关键.三、解答题(共78分)19、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.【解题分析】(3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;(3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.(4)设直线MB 的解析式为y =nx ﹣3,根据点M (m +3,﹣m ﹣4).然后求得直线MB 的解析式.【题目详解】(3)解:设直线AB :y =kx +b (k ≠2)代入A (3,2 ),B (2,﹣3 ),得202k b b +=⎧⎨=-⎩, 解得k 1b 2=⎧⎨=-⎩, ∴直线AB 的解析式为:y =x ﹣3.(3)证明:作MN ⊥y 轴于点N .∵△APM 为等腰直角三角形,PM =PA ,∴∠APM =92°.∴∠OPA +∠NPM =92°.∵∠NMP +∠NPM =92°,∴∠OPA =∠NMP .在△PAO 与△MPN 中90AOP PNM OPA NMPPA MP ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△PAO ≌△MPN (AAS ).(3)由(3)知,△PAO ≌△MPN ,则OP =NM ,OA =NP .∵PB =m (m >2),∴ON =3+m +3=4+m MN =OP =3+m .∵点M 在第四象限,∴点M 的坐标为(3+m ,﹣4﹣m ).(4)设直线MB 的解析式为y =nx ﹣3(n ≠2).∵点M (3+m ,﹣4﹣m ).在直线MB 上,∴﹣4﹣m =n (3+m )﹣3.整理,得(m +3)n =﹣m ﹣3.∵m >2,∴m+3≠2.解得n=﹣3.∴直线MB的解析式为y=﹣x﹣3.【题目点拨】本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.20、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解题分析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.21、 (1) 13k =-;(2) x >3. 【解题分析】 (1)根据直线y=kx+2与直线13y x =相交于点A (3,1),与x 轴交于点B 可以求得k 的值和点B 的坐标; (2)根据函数图象可以直接写出不等式kx+2<13x 的解集. 【题目详解】(1)321k +=,解得:13k =-(2)11233x x -+<,解得:x >3 【题目点拨】本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.22、12千米【解题分析】设小型清雪车每小时清扫路面的长度为x 千米,则大型清雪车每小时清扫路面的长度为(x +6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.【题目详解】设小型清雪车每小时清扫路面的长度为x 千米,则大型清雪车每小时清扫路面的长度为(x +6)千米,根据题意得: 90606x x=+ 解得:x =12,经检验,x =12是原方程的解,且符合题意.答:小型清雪车每小时清扫路面的长度为12千米.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、的周长为.【解题分析】直接利用勾股定理逆定理得出AD ⊥BC ,再利用勾股定理得出DC 的长,进而得出答案.【题目详解】解:在中, ∵,∴∴∴在中,∵,∴,∴∴∴的周长为.【题目点拨】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.24、 (1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【解题分析】(1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;(2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;(3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.【题目详解】(1)y=(900-700)x+(160-100)(100-x)=140x+1,答:y与x之间的函数关系式为:y=140x+1.(2)由题意得:48≤x≤50x为整数,因此x=48或x=49或x=50,故有三种进货方案,即:①A48台、B52台;②A49台、B51台;③A50台、B50台;(3)∵y=140x+1,k=140>0,∴y随x的增大而增大,∵又48≤x≤50的整数∴当x=50时,y最大=140×50+1=13000元答:选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【题目点拨】考查一次函数的图象和性质、一元一次不等式组的解法以及不等式组的整数解等知识,联系实际、方案实际经常用到不等式的整数解,根据整数解的个数,确定方案数.25、(1)见解析;(2)1()2BF AB AC =-,理由见解析 【解题分析】 (1)延长CE 交AB 于点G ,证明AEG ∆≅AEC ∆,得E 为中点,通过中位线证明DE //AB ,结合BF=DE ,证明BDEF 是平行四边形(2)通过BDEF 为平行四边形,证得BF=DE=12BG ,再根据AEG ∆≅AEC ∆,得AC=AG ,用AB-AG=BG ,可证1()2BF AB AC =- 【题目详解】(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG ∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ). 【题目点拨】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.26、方法见解析.【解题分析】【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.【题目详解】 22211=+=+, 22211=+=+∵1111+<+∴22<,0>,0> ,+【题目点拨】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.。

八年级下册数学期末试卷综合测试(Word版含答案)(1)

八年级下册数学期末试卷综合测试(Word版含答案)(1)

八年级下册数学期末试卷综合测试(Word 版含答案)(1)一、选择题1.如果二次根式2x -有意义,那么x 的取值范围是( )A .2x >B .2x ≥C .2x ≠D .2x ≤ 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.小君周一至周五的支出分别是(单位:元):7,10,14,7,12则这组数据的平均数是( )A .7B .10C .11D .11.55.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .2 6.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若∠1=129°,则∠2的度数为( )A .49°B .50°C .51°D .52°7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A.3 B.4 C.5 D.68.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个二、填空题9.使式子32xx-+有意义的x的取值范围是______.10.已知菱形的两条对角线长分别为4cm和6cm,则这个菱形的面积为______cm2.11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.如图,已知点A ,B ,C ,D 的坐标分别为()2,2-,()2,1-,()3,1,()3,2.线段AD 、AB 、BC 组成的图形为图形G ,点P 沿D A B C →→→移动,设点P 移动的距离为S ,直线l :y x b =-+过点P ,且在点P 移动过程中,直线l 随P 运动而运动,当l 过点C 时,S 的值为__________;若直线l 与图形G 有一个交点,直接写出b 的取值范围是__________.16.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.三、解答题17.计算:(1)2+818(212273-2324 18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=13米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.23.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.(1)点C的坐标是(,),直线BC的表达式是;(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;25.综合与实践:如图1,在正方形ABCD中,连接对角线AC,点O是AC的中点,点E 是线段OA上任意一点(不与点A,O重合),连接DE,BE.过点E作EF DE⊥交直线BC于点F.(1)试猜想线段DE与EF的数量关系,并说明理由;CE CD CF之间的数量关系,并说明理由;(2)试猜想线段,,(3)如图2,当E在线段CO上时(不与点C,O重合),EF交BC延长线于点F,保持CE CD CF之间的数量关系.其余条件不变,直接写出线段,,【参考答案】一、选择题1.B解析:B【分析】x-≥,据此解题.x-202【详解】x-≥,x-202∴≥,x2故选:B.本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A 、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B 、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C 、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D 、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D .【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B解析:B【解析】【分析】用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可.【详解】解:(7+10+14+7+12)÷5=50÷5=10(元),故选:B .【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.C解析:C【解析】【分析】根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∠A +∠B +∠C =180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.【详解】解:根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∵∠A +∠B +∠C =180°,∴∠DOE +∠HOG +∠EOF =180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C .【点睛】本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A.【点睛】本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.12【解析】【分析】根据菱形的面积计算公式计算即可;【详解】解:由已知得,菱形的面积等于两对角线乘积的一半即:4×6÷2=12cm 2.故答案为:12.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.11.A解析:4【解析】【详解】解:解如图所示:在Rt ∆ABC 中,BC=3,AC=5,由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB ﹣∠OAD求出即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.1或11 或【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S=1;②点P 位于点C 时,S=11;求出l 过临界点D 、E 、B 即求出直线与图形有一个交点时b 的取值范围.【详解解析:1或11 45b <≤或1b =-【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S =1;②点P 位于点C 时,S =11;求出l 过临界点D 、E 、B 即求出直线l 与图形G 有一个交点时b 的取值范围.【详解】解:∵点A 、B 、C 、D 的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD =BC =5,AB =1当直线l 过点C (3,1)时,1=-3+b ,即b =4∴直线的解析式为y =-x +4.∴42y x y =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩,即直线1与AD 的交点E 为(2,2) ∴DE =1.∴如图:当l 过点C 时,点P 位于点E 或点C①当l 过点C 时,点P 位于点E 时,S =DE =1;②当l 过点C 时,点P 位于点C 时,S =AD +AB +BC =5+1+5=11..∴当1过点C 时,S 的值为1或11;当直线l 过点D 时,b =5;当直线1过点C 时,b =4;当直线1过点B 时,将B (-2,1)代入y =-x +b 得1=2+b ,即b =-1∴当45b <≤或1b =-时,直线l 与图形G 有一个交点.故填1或11,45b <≤或1b =-.【点睛】本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键.16.4或【分析】当为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A 、F 、C 共线,即沿折叠,使点解析:4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∵B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或故答案为:4或【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)422)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)2+81828818162232=42232=42==+(212273-23241227224333=2-3+4=3=⨯【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,米答:水池里水的深度是4米.【点睛】本题考查解析:4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,1∴⨯=米1243答:水池里水的深度是4米.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.19.(1)见解析;(2)见解析;周长为4+2.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)解析:(1)见解析;(2)见解析;周长为.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1,将AB 绕点A 逆时针旋转90︒得AD ,将AB 绕点B 顺时针旋转90︒得BC ,连接DC ,正方形ABCD 即为所求.(2)如图2所示,2AF BE ==∴S ▱ABEF 236=⨯= 由题意可知:221310AB =+=平行四边形ABEF 即为所求.周长为2()2(210)410AB BE +=⨯=+【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积93=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解2233AC AF CF -=而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a+bi=2543i-=25(43)(43)(43)ii i+-+=10075169i++=4+3i,∴a=4,b=3,x,0)到点A(0,4),B(24,3)的最小距离,∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,∴A'B25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围.【详解】解:(1)由题意得:y1=50+3x,当0<x<30且x为整数时,y2=80,当x≥30时且x为整数时,y2=80+5(x-30)=5x-70;(2)当0<x<30且x为整数时,当50+3x=80时,解得x=10,即10<x<30时,y1>y2,0<x<10时,y1<y2,当x≥30且x为整数时,50+3x=5x-70时,解得x=60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点B的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:①当时,②当时,③当时分别讨论计算即可.【详解】解:如图1,过C作于E,过B作于F,四边形是平行四边形,,,,C的坐标分别为,,,,,;(2)设点P运动秒时,四边形是平行四边形,由题意得:,点D是的中点,,四边形是平行四边形,,即,,当秒时,四边形是平行四边形;(3)如图2,①当时,过作于E,则,,,又,C的坐标分别为,,∴,即有,当点P与点C重合时,,;②当时,过作于G,则,,;③当时,过作于F,则,,,;综上所述:当是等腰三角形时,点P的坐标为,,,,.【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.24.(1),;(2)或;(3)存在,或或【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx+b ,解二元一次方程组可求y =﹣x+4;(2)当D 点在E解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,19(,0)3或31(,0)3-或1(,0)3- 【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx +b ,解二元一次方程组可求y =﹣43x +4; (2)当D 点在E 上方时,过点D 作MN ⊥y 轴,过E 、F 分别作ME 、FN 垂直与x 轴,与MN 交于点M 、N ,由△EDF 是等腰直角三角形,可证得△MED ≌△NDF (AAS ),设D(0,y ),F (m ,﹣43m +4),E (﹣1,2),由ME =y ﹣2,MD =1,DN =y ﹣2,NF =1,得到m =y ﹣2,y =1+(﹣43m +4)=5﹣43m ,求出D (0,237);当点D 在点E 下方时,过点D 作PQ ⊥y 轴,过P 、Q 分别作PE 、FQ 垂直与x 轴,与PQ 交于点P 、Q ,同理可证△PED ≌△QDF (AAS ),设D (0,y ),F (m ,﹣43m +4),得到PE =2﹣y ,PD =1,DQ =2﹣y ,QF =1,所以m =2﹣y ,1=﹣43m +4﹣y ,求得D (0,﹣1); (3)连接OG ,由S △ABG =S △ABO ,可得OG ∥AB ,求出AB 的解析式为y =2x +4,所以OG 的解析式为y =2x ,可求出G (65 ,125),进而能求出AG 的解析式为y =34x +32,设M (t ,34t +32),N (n ,0),①当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34),求得N (﹣13,0);②当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0),求得N (﹣313,0);③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34),求得N (193,0). 【详解】解:(1)∵△ABC 面积为10, ∴12×AC ×OB =12×AC ×4=10,∴AC =5,∵A (﹣2,0),∴C(3,0),将点B与C代入y=kx+b,可得4 30bk b=⎧⎨+=⎩,∴434kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+4,故答案为(3,0),y=﹣43x+4;(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠MDE+∠NDF=∠MDE+∠MED=90°,∴∠NDF=∠MED,∴△MED≌△NDF(AAS),∴ME=DN,MD=FN,设D(0,y),F(m,﹣43m+4),∵E是AB的中点,∴E(﹣1,2),∴ME=y﹣2,MD=1,∴DN=y﹣2,NF=1,∴m=y﹣2,y=1+(﹣43m+4)=5﹣43m,∴m=97,∴D(0,237);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ 交于点P、Q,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠PDE+∠QDF=∠PDE+∠PED=90°,∴∠QDF=∠PED,∴△PED≌△QDF(AAS),∴PE=DQ,PD=FQ,设D(0,y),F(m,﹣43m+4)∵E是AB的中点,∴E(﹣1,2),∴PE=2﹣y,PD=1,∴DQ=2﹣y,QF=1,∴m=2﹣y,1=﹣43m+4﹣y,∴m=3,∴D(0,﹣1);综上所述:D点坐标为(0,﹣1)或(0,237);(3)连接OG,∵S△ABG=S△ABO,∴OG∥AB,设AB的解析式为y=kx+b,将点A(﹣2,0),B(0,4)代入,得420bk b=⎧⎨-+=⎩,解得24k b =⎧⎨=⎩, ∴y =2x +4,∴OG 的解析式为y =2x ,∴2x =﹣43x +4, ∴x =65, ∴G (65 ,125), 设AG 的解析式为y =k 1x +b 1,将点A 、G 代入可得11112061255k b k b -+=⎧⎪⎨+=⎪⎩, 解得113422k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴y =34x +32, ∵点M 为直线AG 上动点,点N 在x 轴上,则可设M (t ,34t +32),N (n ,0), 当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =﹣13, ∴N (﹣13,0); 当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0), ∴322n t +=,38t +114=0, ∴t =﹣223,n =﹣313, ∴N (﹣313,0); ③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =193, ∴N (193,0); 综上所述:以点B ,C ,M ,N 为顶点的四边形为平行四边形时,N 点坐标为19(,0)3或31(,0)3-或1(,0)3-. 【点睛】本题考查一次函数的综合应用,(2)中注意D 点的位置有两种情况,避免丢解,同时解题时要构造K 字型全等,将D 点、F 点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证;(2)过点E解析:(1)DE EF =,理由见解析;(2CD CF =+,理由见解析;(3)CD CF =-,理由见解析【分析】(1)先根据正方形的性质可证得BCE DCE ≌,由此可得CBE CDE ∠=∠,BE DE =,再根据同角的补角相等证得CDE EFB ∠=∠,等量代换可得CBE EFB ∠=∠,由此可得BE EF =,再等量代换即可得证;(2)过点E 作EG EC ⊥交CB 的延长线于点G ,先证明EG EC =,利用勾股定理可得CG ,再证明EGF ECB △≌△,由此可得GF CB CD ==,最后再等量代换即可得证;(3)仿照(1)和(2CD CF =-.【详解】解:(1)DE EF =,理由如下:∵四边形ABCD 是正方形,∴BC CD AD ==,90BCD ADC ∠=∠=︒, ∴180452ADC DAC DCA ︒-∠∠=∠==︒, ∴45BCE BCD DCA ∠=∠-∠=︒,∴BCE DCE ∠=∠,在BCE 与DCE 中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴()BCE DCE SAS ≌,∴CBE CDE ∠=∠,BE DE =,∵EF DE ⊥,∴90FED ∠=︒,∵360EFC BCD CDE FED ∠+∠+∠+∠=︒,∴180CDE EFC ∠+∠=︒,∵180EFC EFB ∠+∠=︒,∴CDE EFB ∠=∠,∴CBE EFB ∠=∠,∴BE EF =,∴DE EF =;(2)2CE CD CF =+,理由如下:如图,过点E 作EG EC ⊥交CB 的延长线于点G ,∴90CEG ∠=︒,由(1)知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒, ∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,在EGF △与ECB 中,EGF ECB EFG EBC EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =+=+, ∴2CE CD CF =+;(32CE CD CF =-,理由如下:如图,过点E 作EG EC ⊥交BC 于点G ,设CD 与EF 的交点为点P ,∴90CEG ∠=︒,由(1)可知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒,∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,∵EF DE ⊥,∴90FED ∠=︒,∴90CDE EPD ∠+∠=︒,∵18090DCF BCD ∠=︒-∠=︒,∴90CFE CPF ∠+∠=︒,又∵EPD CPF ∠=∠,∴CDE CFE ∠=∠,由(1)可知:CBE CDE ∠=∠,∴CBE CFE ∠=∠,在EGF △与ECB 中,EGF ECB EFG EBC EG EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =-=-, ∴2CE CD CF =-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.。

八年级数学下期末综合练习卷4

八年级数学下期末综合练习卷4

八年级(下)数学期末综合练习卷测试时间60分钟 测试分值100分 学生姓名 实际评分一、选择题(每小题3分,共30分)1、不等式2x -3≥0的解集是( )A.x ≥23 B.x >23 C.x <32 D.x ≤32 2、下列命题中,真命题是( )A. 互补两角若相等,则此两角都是直角B. 直线是平角C. 不相交的两条直线叫做平行线D. 和为180︒的两个角叫做邻补角3、已知:如图,AB ∥CD ,CE 平分∠ACD ,∠A =1100,则∠ECD 的度数等于A.110°B.70°C.55°D.35°4、某学生用一架不等臂天平称药品.第一次将左盘放入50克砝码,右盘放药品使天平平衡.第二次将右盘放入50克砝码,左盘放药品使天平平衡.则两次称得药品的质量和( )A.等于100克B.大于100克C.小于100克D.以上情况都有可能5、化简:329122++-m m 的结果是( ). A.962-+m m B.32-m C.32+m D.9922-+m m 6、在△ABC 中,I 是内心(三角形内角平分线的交点),∠BIC =130°,则∠A 的度数是( )A.40°B.50°C.65°D.80°7、如图,△ABC 中,DE ∥BC ,如果AD=1,DB=2,那么DE BC 的值为( )A.32 B.41 C.31 D.21(第3题图) (第7题图) (第8题图) 8、如图,在正方形网格上有五个三角形,其中与△ABC 相似(不包括△ABC 本身)有( )A .1个B .2个C .3个D .4个9、一组数据13,14,15,16,17的标准差是( )A.0B.10C.2D.210、把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )A.3B.4C.5D.6二、填空题(每小题3分,共24分)11、分解因式:2x 2-12x +18= .12、若a <b <0,则1,1-a ,1-b 这三个数按由小到大的顺序用“<”连接起来: .13、计算)1(1aa a a -÷-的结果是 .14、在R t △ABC 中,锐角A 的平分线与锐角B 的邻补角的平分线相交于点D ,则∠ADB =____________.15、北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客运列车的行车速度每小时比原来增加40千米,使得石家庄至北京的行车时间短了1小时。

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)一、单选题1.下列代数式:①1;②3B24;③56+;④7+8;⑤9r43.其中分式的个数是()A.1B.2C.3D.4 2.要使分式r1K2有意义,的取值范围是()A.≠−2B.≠2C.≠−1D.≥230,则x的值为()A.±3B.0C.−3D.34.把分式2r中的和均扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍5.下列各式从左到右的变形正确的是()A.K121 2r =2K r2B.0.2r r0.2=2r r2C.r1K=K1K D.r K=K r6.化简K−K的结果是()A.+B.−C.2−2D.1 7.解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是()A.−2+(2−1)=−1.5B.−2+1=1.5(2−1)C.−2+1=−1.5(2−1)D.−2+(2−1)=1.58.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.求前一小时的行驶速度.若设前一小时的行驶速度为Jkm/h,则可列方程为()A.180+4060=1+180−1.5B.180−4060=1+180−1.5 C.180+4060=180−1.5D.180−4060=180−1.5二、填空题9.请写出一个只含有字母的分式,且当=1时,此分式的值为0,这个分式可以是.10.在括号里填上适当的整式:(1)32B=;.(2)3B2−2;.(3)3B r=..11.将分式12−9和9−3进行通分时,最简公分母是12.化简:r1÷22−1=.13.已知+=3,则代数式K B÷.14=K5+r2,则=.15.已知关于的分式方程r2r1=−1的解是非正数,则的取值范围是.16.物业为了进一步优化小区环境,计划对小区内总长1500米步道旁的绿植进行修剪,原计划x小时完工,为减少对居民的影响,实际修剪时提高了效率,结果提前2小时完工,则实际比原计划每小时多修剪米.(结果化为最简形式)三、解答题17.计算:(1)(r3)22+33+÷2K1r118.解方程:(1)1K1=12−1(2)2−K3+413−.191÷1−−1K1,然后从±1,0,±12这五个数中选一个合适的数代入求值.20.已知关于的分式方程1K2+3=1+B2−,(1)若分式方程无解,求的值;(2)若分式方程的解为正数,求的取值范围.21.某中铁集团有甲乙两个施工队,该集团承担一条高速铁路的施工任务,甲工程队单独施工10个月后,为了加快进度,乙工程队也加人施工,这样又用了20个月完成了任务.已知乙工程队单独施工该项任务需要40个月才能完成.(1)求甲工程队单独施工完成该项任务需要多少个月?(2)如果两个施工队从一开始就合作完成此项施工任务,需要多少个月?22.福安葡萄享有“北有吐鲁番,南有闽福安”的美誉,某农场分别种植甲、乙两种葡萄,去年甲种葡萄总产量3万千克,乙种葡萄总产量2万千克,原计划甲、乙两种葡萄都按元/千克出售,实际因成熟时间不同,甲种葡萄8折出售,乙种葡萄加价3元出售,实际总收入与计划总收入相同.(1)求去年甲、乙两种葡萄的实际销售单价分别是多少元?(2)今年农场改进技术,两种葡萄品质提升、产量增加,农场准备在去年实际售价的基础上,单价都增加元(>0)后全部出售给某经销商,该经销商提供了以下两种收购方案:方案一:甲、乙两种葡萄都按产量万千克收购;方案二:甲、乙两种葡萄都按总价万元收购.通过计算甲、乙两种葡萄的总平均单价,说明农场选用哪种方案合算.参考答案1.解:①1是分式,符合题意;②3B 24不是分式,不符合题意;③56+是分式,符合题意;④7+8不是分式,不符合题意;⑤9r43不是分式,不符合题意;∴分式一共有2个,故选:B .2.解:∵分式r1K2有意义,∴−2≠0,即≠2,故选:B .30,∴|U −3=0+3≠0,解得=3,故选D .4.解:把分式2r 中的和均扩大3倍为36r3=33(2rp =2r ,所以分式的值不变,故选:A .5.解:A 、K 1212r ==2K r2,计算正确,故符合题意;B 、0.2r r0.2=2r1010r2≠2r r2,变形错误,故不符合题意;C 、r1K ≠K1K 变形错误,故不符合题意;D 、r K=−K −r原式变形错误,故不符合题意;故选:A .6.解:K −K =−−=1.故选:D.7.解:解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是−2+(2−1)=−1.5.故选:A.8.解:设前一小时的行驶速度为Dm/h,则一小时后的速度为1.5Dm/h,由题意得:180−4060=1+180−1.5,故选:B.9.解:由题意得,满足题意的分式可以为K1,故答案为;K1(答案不唯一).10.解:(1)32B=3δ52B⋅5=15B102;故答案为:102(2)3B2−2==3K2;故答案为:3;(3)3Br=r=故答案为:2+.11.解:∵2−9=+3−3,9−3=−3−3,∴最简公分母是−3+3−3,故答案为:−3+3−3.12.解:原式=r1=−1故答案为:K113.解:K B÷=−B2−2B=−B=1r,当+=3时,原式=13.故答案为:13.14.解:K5+r2=o+2)(−5)(+2)(−5)(+2)+o−5)=B+B+2−5(−5)(+2)=(rpr2K5(K5)(r2),∵5K4(K5)(r2)=K5+r2,∴5K4(K5)(r2)=(rpr2K5(K5)(r2),∴+=52−5=−4,解得=3=2.故答案为:215.解:去分母,得+2=−−1,解得:=−−3,∵≤0,∴−−3≤0,∴≥−3,∵≠−1,即−−3≠−1,∴≠−2,∴≥−3且≠−2,故答案为:≥−3且≠−2.16.解:由题意可得,实际比原计划每小时多修剪:1500K2−1500=30002−2(米),故答案为:30002−2.17.(1)解:原式=(r3)2r23=r3−3=r3−3=1(2)解:原式=+÷2K1r1=(+1+−2)÷2K1r1=(2−1)·r12K1=+1.18.(1)解:方程1K1=12−1两边同时乘以+1−1得+1=1,解得=0,检验:把=0代入+1−1=−1≠0.∴原方程的解为:=0;(2)解:方程2−K3+4=13−两边同时乘以−3,得2−+4−3=−1,解得:=3,检验:把=3代入−3得−3=0,∴=3是原分式方程的增根,原分式方程无解.19.解:原式=rr1r11−2−321−2−1K1=2+1+1÷12121−1−1=2+1+1112−1−1=1−1−2−1K1=由题意,得≠±1,±12,取=0,则原式=2.20.(1)解:去分母,得1+3−2=−1−B,移项、合并同类项,得+3=4,∵分式方程无解,∴①当方程有增根时,原方程无解,即=2,2+3=4,解得=−1;②当+3=0时,原方程无解,即=−3,综合①②,若分式方程无解,的值为−1或−3.(2))由(1)可得+3=4,∵原分式方程的解为正数,∴>0,−2≠0,∴+3>0,且2+3≠4,∴>−3且≠−1.21.(1)解:设甲工程队单独完成此项工程需要x天,根据题意得:10++×20=1,解得:=60,经检验,=60是所列方程的解,且符合题意.答:甲工程队单独完成此项工程需要60天;(2)1÷=1÷5120=24(天).答:如果两队一开始就合作完成此项工程,需要24天.22.(1)解:根据题意,得(3+2)=3×0.8+2(+3),解得=10,∴甲种葡萄的实际销售单价为10×0.8=8(元),乙种葡萄的实际销售单价为10+3=13(元).答:甲种葡萄的实际销售单价是8元,乙种葡萄的实际销售单价是13元.(2)解:由题意知,方案一的平均单价为(8+pr(13+p2=21+22.方案二的平均单价为2÷+=2(8+p(13+p21+2,∵21+22−2(8+p(13+p21+2=252(21+2p>0.∴农场选择方案一更合算.。

八年级数学(下)第二学期期末考试含答案

八年级数学(下)第二学期期末考试含答案

八年级数学(下)第二学期期末考试总分:120分 时量:120分钟一、选择题(本大题共12小题,共36分)1.下列各式运算结果是负数的是( )A.()2--B.02--C.22-D.()22- 2.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为( )A.31510⨯B.41.510⨯C.51.510⨯D.60.1510⨯3.下列运算中正确的是( )A.2323a a a =⋅B.()224ab ab =C.2222ab b a ÷=D.()222a b a b +=+4.如图,在三角形ABC 中,45A ∠=︒,三角形ABC 的高线BD ,CE 交于点O ,则BOC ∠的度数( )A.120︒B.125︒C.135︒D.145︒5.如图,AB//CD ,AF 交CD 于点E ,45A ∠=︒,则CEF ∠等于( )A.135︒B.120︒C.45︒D.35︒6.一个样本的方差是0,若中位数是a ,那么它的平均数是( )A.等于aB.不等于aC.大于aD.小于a7.下列命题是真命题的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.一组邻边相等的平行四边形是菱形C.对角线相等的四边形是矩形D.对角线垂直的四边形是菱形8.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.100131003x y x y +=⎧⎪⎨+=⎪⎩D.1003100x y x y +=⎧⎨+=⎩9.如图所示为抛物线()20y ax bx c a =++≠在坐标系中的位置,以下六个结论:①0a >;②0b >;③0c >;④240b ac ->;⑤0a b c ++<;⑥20a b +>.其中正确的个数是( )A.3B.4C.5D.610.已知圆锥的底面半径为3cm ,母线长为9cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.236cm πD.254cm π11.一次函数()0y ax c a =+≠与二次函数()20y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A. B.C.D.12.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP .①点E 在M 的内部;②CD 的长为332-;③若P 与C 重合,则15DPE ∠=︒;④在P 的运动过程中,若3AP =26PE =+;⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A.①②④B.②③④C.②③⑤D.③④⑤二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式()24a b ab +-的结果是________.14.若一元二次方程2220x x --=有两个实数根1x ,2x ,则1212x x x x +-的值是________.15.正六边形的外接圆的半径与内切圆的半径之比为________.16.如图,点A ,B ,C 都在O 上,若30C ∠=︒,则AOB ∠的度数是________度. 17.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是________.18.抛物线23y x x =--与直线y x b =+交于A 、B 两点,且26AB =,则b =________.三、解答题(本大题共8个小题)19.计算:(1)()10120209322-⎛⎫+--+- ⎪⎝⎭; (2)解一元二次方程2890x x +-=.20.先化简代数式:22321124a a a a -+⎛⎫-+ ⎪+-⎝⎭,再从2-,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查.随机调查了九年级部分学生每天完成作业所用的时间,并根据统计结果制成了条形统计图(时间取整数,图中从左至右依次为第1、2、3、4、5组)和扇形统计图,请结合图中信息回答下列问题:(1)本次调查的学生人数为________;(2)补全条形统计图;(3)根据图中提供的信息,可知下列结论正确的是________(只填所有正确的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知学生完成作业所用时间的众数在第二组内C.图中,90~120时间段对应的扇形圆心角为108(4)学生每天完成作业的时间不超过120分钟,视为课业负担适中,根据以上调查,估计该校九年级560名学生中,课业负担适中的学生有多少人?22.如图,平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连AF ,BF . (1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,O 是直角三角形ABC 的外接圆,直径4AC =,过C 点作O 的切线,与AB 延长线交于点D ,M 为CD 的中点,连接BM ,OM ,且BC 与OM 相交于点N .(1)求证:BM 与O 相切;(2)当60A ∠=︒时,求弦AB 和弧AB 所夹图形的面积;(3)在(2)的条件下,在O 的圆上取点F ,使15ABF ∠=︒,求点F 到直线AB 的距离.25.阅读下面材料:对于二次函数()20y ax bx c a =++>,当m x n ≤≤时,二次函数在何处取得最值?对此,我们可做如下探究:当0a >时,观察图①到图④:(1)由图①可知,当x n =时取最小值,当x m =时取最大值,点离对称轴越近,函数值越小;(2)由图②、图③可知,当2b x a=-时取最小值,点离对称轴越近,函数值越小; (3)由图④可知,当x m =时取最小值,当x n =时取最大值,点离对称轴越近,函数值越小.结论:1.当抛物线开口向上时,抛物线上的点,离对称轴越近,其对应的函数值越小;2.若对称轴在自变量的取值范围内,则二次函数在2b x a=-时取最小值; 3.若对称轴不在自变量的取值范围内,则二次函数在离对称轴最近的点处取得最小值.请结合以上结论,解决下列问题:(1)已知二次函数222y x x =--,当32x -≤≤时,此时函数的最大值和最小值; (2)已知二次函数数222y x x =--在1m x m ≤≤+的范围内有最小值2m ,求出m 的值;(3)二次函数222y x x =--,当m x n ≤≤时,()m y n m n ≤≤≠,求出此时的m ,n 的值.26.如图,抛物线218333y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.以AB 为直径作M .(1)求出M的坐标并证明点C在M上;(2)若P为抛物线上一动点,求出当CP与M相切时P的坐标;,若存在,求出D点坐标,若不存在,请说明(3)在抛物线上是否存在一点D,使得BC平分ABD理由.参考答案考试时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分)1-5:BBCCA 6-11:ABCBB 11-12:DB二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式(a +a )2−4aa 的结果是 (a-b)2 ;14.若一元二次方程0222=--x x 有两个实数根21,x x ,则2121x x x x -+的值是___4__;16. 如图,点 A ,B ,C 都在 ⊙O 上,若 ∠C =30∘,则 ∠AOB 的度数是 60 度. 17.将二次函数的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是 y=(x-1)2+2 ;18.抛物线32--=x x y 与直线b x y +=交于A 、B 两点,且AB =62,则b = -1 .三、解答题(本大题共8个小题)19.计算:(1)239)2020()21(01-+--+-; (2)解一元二次方程a 2+8a −9=0.解:原式=2-3 ----3分 1,921=-=x x -------3分 20.先化简代数式:412)231(22-+-÷+-a a a a ,再从−2,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.解:原式=12--a a ; -----3分 当a=0时,原式=2----3分21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查。

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word 版含答案)一、选择题1.要使二次根式3x -有意义,x 的值可以是( ) A .﹣1B .0C .2D .42.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A .4个B .3个C .2个D .1个3.四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是( ) A .若AO =OC ,则ABCD 是平行四边形 B .若AC =BD ,则ABCD 是平行四边形C .若AO =BO ,CO =DO ,则ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则ABCD 是平行四边形4.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作2S 甲、2S 乙,则下列结论正确的是( )A .22 S S <甲乙B .22S S >甲乙 C .22S S =甲乙 D .无法确定5.如图,点E 是边长为8的正方形ABCD 的对角线BD 上的动点,以AE 为边向左侧作正方形AEFG ,点P 为AD 的中点,连接PG ,在点E 运动过程中,线段PG 的最小值是( )A.2 B.2C.22D.426.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF=()A.3 B.4 C.5 D.68.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED=35;③当0≤x≤5时,y=225x;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=55522x+.其中正确的有()A.2个B.3个C.4个D.5个二、填空题9.2021x-x的取值范围是____________.10.已知菱形ABCD的边长为4,∠A=60°,则菱形ABCD的面积为_________.11.如图,在△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D.若 BD=10cm,BC=8cm,则点 D 到直线 AB 的距离= ________.12.如图,在矩形ABCD 中,AB =8,AD =6,将矩形沿EF 翻折,使点C 与点A 重合,点B 落在B ′处,折痕与DC ,AB 分别交于点E ,F ,则DE 的长为______.13.已知一次函数的图象经过(2,0),(0,4)-两点,则该一次函数解析式是______. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,已知直线1:1l y x =+与x 轴交于点,A 与直线21:22l y x =+交于点B ,点C 为x 轴上的一点,若ABC ∆为直角三角形,则点C 的坐标为__________.16.如图,矩形ABCD 中,AB =6,BC =8,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是_____.三、解答题17.(1)148312242÷+⨯- (2)(32126)2352--⨯+18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域. (1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.如图,每个小正方形的边长都是1.A 、B 、C 、D 均在网格的格点上.(1)求边BC 、BD 的长度.(2)∠BCD 是直角吗?请证明你的判断.(3)找到格点E ,画出四边形ABED ,使其面积与四边形ABCD 面积相等(一个即可,且E 与C 不重合).20.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB ,QP =QD . (1)求证:四边形ABCD 是矩形; (2)求证:CD =CP .21.743+743+7212+437+=,4312⨯=,即:22(4)(3)7+=,4312=2227437212(4)243(3)((43)23++=+⨯+=+=问题:(1)填空:423+=__________,526-=____________﹔(2)进一步研究发现:形如2m n ±的化简,只要我们找到两个正数a ,b (a b >),使a b m +=,ab n =,即22()()a b m +=,a b n ⨯=﹐那么便有:2m n ±=__________.(3)化简:415-(请写出化简过程)22.由于持续高温和连日无雨,某水库的蓄水量y (万立方米)与干旱时间t (天)之间的关系满足一次函数y kt b =+,(k ,b 为常数,且k ≠0),其图象如图所示.(1)由图象知k = ,其实际意义是 ;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸? 23.如图,四边形ABCD ,,动点P 从点B 出发,沿BC 方向以每秒的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 停止运动,设运动时间为t (秒).(1)当时,是否存在点P ,便四边形PQDC 是平行四边形,若存在,求出t 值;若不存在,请说明理由;(2)当t 为何值时,以C ,D ,Q ,P 为顶点的四边形面积等于;(3)当时,是否存在点P ,使是等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.24.直线1l :3y x =-交x 轴于A ,交y 轴于B .(1)求AB 的长;(2)如图1,直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线3l :12y x b =+经过点C ,点D 、T 分别在直线2l 、3l 上.若以A 、B 、D 、T 为顶点的四边形是平行四边形,求点D 的坐标;(3)如图2,平行y 轴的直线2x =交x 轴于点E ,将直线1l 向上平移5个单位长度后交x轴于M ,交y 轴于N ,交直线2x =于点P .点()2,F t t 在四边形ONPE 内部,直线PF 交OE于G ,直线OF 交PE 于H ,求()GE ME HE +的值.25.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).【参考答案】一、选择题 1.D 解析:D 【分析】二次根式的被开方数大于等于零,由此计算解答. 【详解】 解:∵30x -≥,x≥,∴3观察只有D选项符合,故选:D.【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【详解】解:①222+=,能构成直角三角形;345②222+≠,不能构成直角三角形;346③222+=,能构成直角三角形;51213④222+≠,不能构成直角三角形;51112∴其中直角三角形有2个;故选:C.【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c,那么+=这个三角形就是直角三角形.3.D解析:D【解析】【分析】根据平行四边形的判定条件进行逐一判断即可.【详解】解:∵AO=OC,BO=OD,∴四边形的对角线互相平分∴D能判定ABCD是平行四边形.若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误,若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误,若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误,故选D.【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.A解析:A【解析】【分析】根据甲、乙的进球的统计图可知,甲的成绩波动幅度比乙的波动幅度小,由此即可得到答案.【详解】解:有题意可知,甲的成绩波动幅度比乙的波动幅度小,∴22S S甲乙,故选A.【点睛】本题主要考查了方差的定义,解题的关键在于能够熟练掌握,波动越小,方差越小.5.C解析:C【分析】连接DG,可证△AGD≌△AEB,得到G点轨迹,利用点到直线的最短距离进行求解.【详解】解:连接DG,如图,,∵四边形ABCD、四边形AEFG均为正方形,∴∠DAB=∠GAE=90°,AB=AD,AG=AE,∵∠GAD+∠DAE=∠DAE+∠BAE,∴∠GAD=∠BAE,∵AB=AD,AG=AE,∴△AEB≌△AGD(S A S),∴∠PDG=∠ABE=45°,∴G点轨迹为线段DH,当PG⊥DH时,PG最短,在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4,设PG=x,则DG=x,由勾股定理得,x2+x2=42,解得x=2.故选:C.【点睛】本题主要考查正方形的性质,全等三角形的判定和性质,掌握连接DG,得到G点轨迹,是解题的关键.6.D解析:D 【解析】 【分析】连接BF ,根据菱形的性质得出△ADF ≌△ABF ,从而得到∠ABF =∠ADF ,然后结合垂直平分线的性质推出∠ABF =∠BAC ,即可得出结论. 【详解】解:如图,连接BF ,∵四边形ABCD 是菱形,∠BAD =80°, ∴AD =AB ,∠DAC =∠BAC=12∠BAD =40°, 在△ADF 和△ABF 中, AD AB DAF BAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABF (SAS ), ∴∠ABF =∠ADF ,∵AB 的垂直平分线交对角线AC 于点F ,E 为垂足, ∴AF =BF ,∴∠ABF =∠BAC =40°, ∴∠DAF =∠ADF =40°, ∴∠CFD =∠ADF +∠DAF =80°. 故选:D .【点睛】本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键.7.A解析:A 【解析】 【详解】∵直角三角形ABC 中,∠C =90°,AB =10,AC =8, ∴221086BC =-=.∵点E 、F 分别为AC 、AB 的中点,∴EF 是△ABC 的中位线, ∴116322EF BC ==⨯=. 故选A .8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确;故选B .【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵2021x -有意义,∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:83【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD 中,AB=AD=4,∠A=60°,过点D 作DE ⊥AB 于点E ,则3sin 6043DE AD =︒== ∴菱形ABCD 的面积为AB ∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.D解析:6cm【解析】【分析】过点D作DE⊥AB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解.【详解】如图,过点D作DE⊥AB于E,∵∠C=90°,BD=10cm,BC=8cm,∴226BD BC-cm,∵∠C=90°,BD是∠ABC的平分线,∴DE=CD=6cm,即点D到直线AB的距离是6cm.故答案为:6cm.【点睛】本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键.12.D解析:7 4【分析】设DE=x,则CE=8-x,根据折叠的性质知:CE=8-x.在直角△AED中,利用勾股定理列出关于x的方程并解答即可.【详解】解:如图,在矩形ABCD中,AB=DC=8,AD=6.设DE=x,则CE=8-x,根据折叠的性质知:AE=CE=8-x.在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8-x)2.解得x=74.即DE的长为74.故答案是:74.【点睛】本题主要考查了翻折变换(折叠问题),矩形的性质,解题时,借用了方程思想,求得了相关线段的长度.13.y=2x-4【分析】由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k≠0).然后将点的坐标代入解析式,故得2k+b=0,b=-4.进而推导出函数解析式为y=2x-4.【详解】解:设该一次函数的解析式为:y=kx+b(k≠0).由题意得:2004k bk b+=⎧⎨⋅+=-⎩,解得:24kb=⎧⎨=-⎩,∴该一次函数的解析式为y=2x-4.故答案为:y=2x-4.【点睛】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.(2,0)或(5,0)【分析】先求出A ,再求出,解得,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】与轴交解析:(2,0)或(5,0)【分析】先求出A ,再求出1122y x y x =+⎧⎪⎨=+⎪⎩,解得=23x y ⎧⎨=⎩,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】1:1l y x =+与x 轴交于点A ,∴y=0,x=-1,∴A(-1,0),直线1:1l y x =+与直线21:22l y x =+交于点B , 1122y x y x =+⎧⎪⎨=+⎪⎩, 解得=23x y ⎧⎨=⎩, ∴B (2,3),当点C 为直角顶点时,∴BC ⊥AC ,∴BC ∥y 轴,B 、C 横坐标相同,C (2,0),当点B为直角顶点时,∴BC⊥AB,1:1l y x=+,k=1,∴∠BAC=45°,∴△ABC为等腰直角三角形,∴AB=()222+1+3=32,AC=2AB=6,AO=1,CO=AC-AO=5,C(5,0),C点坐标为(2,0)或(5,0).故答案为:(2,0)或(5,0).【点睛】本题考查等腰直角三角形的性质,掌握直角三角形的顶点分两种情况讨论解决问题是关键.16.【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股4133【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股定理即可求出EF的长度.【详解】解:如图所示,连接CE,∵E 为AD 中点,∴AE =DE =4,由折叠可得,AE =GE ,∠EGF =∠A =90°,∴DE =GE ,又∵∠D =90°,∴∠EGC =∠D =90°,又∵CE =CE ,∴Rt △CDE ≌Rt △CGE (HL ),∴CD =CG =6,设AF =x ,则GF =x ,BF =6﹣x ,CF =6=x ,∵∠B =90°,∴Rt △BCF 中,BF 2+BC 2=CF 2,即(6﹣x )2+82=(x+6)2,解得x =83, ∴AF =83, ∵∠A =90°,∴Rt △AEF 中,EF 22AE AF +2284()3+4133 4133【点睛】 本题主要考查了矩形的性质以及折叠问题,解题时我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题17.(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式;解析:(1)4;(2)18-【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式=4=4=(2)原式=⨯624=--18=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键. 18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF为等腰三角形,∵2270km=-=,ED EC CD∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1),;(2)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC解析:(12922)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC2225+29,BD22+4244(2)结论:不是直角.理由:∵CD5BC29,BD=42∴BC2+CD2≠BD2,∴∠BCD≠90°.(3)如图,四边形ABED即为所求.【点睛】本题考查作图-应用与设计作图,勾股定理,勾股定理的逆定理,四边形的面积等知识,解题的关键是掌握勾股定理以及勾股定理的逆定理解决问题,属于中考常考题型.20.(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即解析:(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即可;(2)连接CQ,根据全等三角形的判定定理HL推出Rt△CDQ≌Rt△CPQ,根据全等三角形的性质推出即可.【详解】解:证明:(1)∵PQ⊥CP,∴∠QPC=90°,∴∠QPA+∠BPC=180°-90°=90°,∵∠QPA=∠PCB,∴∠BPC+∠PCB=90°,∴∠B=180°-(∠BPC+∠PCB)=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)连接CQ,∵四边形ABCD是矩形,∴∠D=90°,∵∠CPQ=90°,∴在Rt△CDQ和Rt△CPQ中,CQ CQ DQ PQ=⎧⎨=⎩, ∴Rt △CDQ ≌Rt △CPQ (HL ),∴CD =CP .【点睛】本题考查了三角形内角和定理,垂直的定义,矩形的判定和性质,全等三角形的性质和判定,能求出∠B =90°和Rt △CDQ ≌Rt △CPQ 是解此题的关键.21.(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果; (3)将写成,4解析:(112)a b >;(3【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(34写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(11;(2)a b ===>;(3. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b+⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)存在,t=3;(2)秒;(3)存在,t=3秒或t=秒【分析】(1)根据运动得出CP=15-3t ,DQ=12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为解析:(1)存在,t =3;(2)秒;(3)存在,t =3秒或t =秒【分析】(1)根据运动得出CP =15-3t ,DQ =12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为顶点的梯形面积等于30cm 2,可以分为两种情况,点P 、Q 分别沿A D 、BC 运动或点P 返回时,再利用梯形面积公式,即=30,因为Q 、P点的速度已知,A D、A B、BC的长度已知,用t可分别表示DQ、BC的长,解方程即可求得时间t;(3)使△PQD是等腰三角形,可分三种情况,即PQ=P D、PQ=Q D、QD=PD;可利用等腰三角形及直角梯形的性质,分别用t表达等腰三角形的两腰长,再利用两腰相等即可求得时间t.【详解】解:(1)∵四边形PQDC是平行四边形∴DQ=CP当0<t<5时,点P从B运动到C,∵DQ=AD-AQ=12-2t,CP=15-3t,∴12-2t=15-3t解得t=3,∴t=3时,四边形PQDC是平行四边形;(2)如图2,①当点P是从点B向点C运动,由(1)知,CP=15-3t,DQ=12-2t,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP==30,即12(15−3t+12−2t)×10=30,解得:t=,②当点P是从点C返回点B时,由运动知,DQ=12-2t,CP=3t-15,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP=12(DQ+CP)•AB=12(12−2t+3t−15)×10=30,解得:t=9(舍去),∴当t为秒时,以C、D、Q、P为顶点的四边形面积等于30cm2;(3)当PQ=PD时,如图3,作PH⊥AD于H,则HQ=HD,∵QH =HD =12DQ =12(12-2t )=6-t ,由AH =BP ,∴6-t +2t =3t解得:t =3秒;当PQ =DQ 时,QH =AH -AQ =BP -AQ =3t -2t =t ,DQ =12-2t ,∵DQ 2=PQ 2=t 2+102,∴(12-2t )2=102+t 2,整理得:3t 2-48t +44=0,解得:t =秒, ∵0<t <5,∴t =秒, 当DQ =PD 时,DH =AD -AH =AD -BP =12-3t ,∵DQ 2=PD 2=PH 2+HD 2=102+(12-3t )2∴(12-2t )2=102+(12-3t )2即5t 2-24t +100=0,∵△<0,∴方程无实根,综上可知,当t =3秒或t =秒时,△PQD 是等腰三角形. 【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、梯形的面积、等腰三角形的性质,解题的关键是分类思想与方珵思想的综合运用.24.(1);(2)点D 的坐标为或或;(3).【解析】【分析】(1)根据直线的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根解析:(1)32AB =2)点D 的坐标为(2,1)--或(4,1)-或(2,5)-;(3)()8GE ME HE +=.【解析】【分析】(1)根据直线1l 的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根据直线1l 和直线2l 关于y 轴对称求出直线2l 的解析式,再求出直线3l 的解析式,根据点D 在直线2l 上,可设点(,3)D m m --,然后分类讨论点D 是在线段BC 上,还是在线段BC 的延长线上,或者在线段CB 的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m 的式子表示点T 的坐标,再根据点T 在直线3l 上求出m 的值,即可求出点D 的坐标;(3)根据平移的性质求出直线MN 的解析式,再结合直线x =2求出点(2,0)E ,点(2,4)P 和点(2,0)M -,进而求出ME 的长度,然后再结合点()2,F t t 求出直线:(2)2PF y t x t =+-和直线:OF y tx =,进而求出点2,02t G t ⎛⎫ ⎪+⎝⎭和(2,2)H t ,即可得到GE 与HE 的长度,最后再代入计算()GE ME HE +即可.【详解】解:(1)∵直线1:3l y x =-交x 轴于A ,交y 轴于B ,∴0A y =,0B x =.∴03A x =-,03B y =-.∴3A x =,3B y =-.∴(3,0)A ,(0,3)B -.∴3OA =,3OB =.∵AO BO ⊥, ∴AB =(2)∵直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线1l 交x 轴与点(3,0)A , ∴点A 与点C 关于y 轴对称.∴(3,0)C -.∵点(0,3)B -在y 轴上,∴直线2l 经过点B .∴设直线23:l y kx =-.∵直线2l 经过点(3,0)C -,∴033k =--.解得:1k =-.∴直线23:l y x =--.∵直线31:2l y x b =+经过点(3,0)C -, ∴10(3)2b =⨯-+.解得:32b =. ∴直线31322:y x l =+. ∵点D 在直线23:l y x =--上,∴设点(,3)D m m --.①如下图所示,当点D 在线段BC 上时.∵四边形ABDT 是平行四边形,∴//,AT BD AT BD =.∴BD 经过平移之后到达AT .∴(3,)T m m +-.∵点T 在直线31322:y x l =+上, ∴13(3)22m m -=++,解得2m =-. ∴1(2,1)D --;②如下图所示,当点D 在线段BC 的延长线上时.∵四边形ABTD 是平行四边形,∴//,AD BT AD BT =.∴AD 经过平移之后到达BT .∴(3,6)T m m ---.∵点T 在直线31322:y x l =+上, ∴136(3)22m m --=-+,解得4m =-. ∴2(4,1)D -;③如下图所示,当点D 在线段CB 的延长线上时.∵四边形ADBT 是平行四边形,∴//,AT DB AT DB =.∴BD 经过平移之后到达TA .∴(3,)T m m -.∵点T 在直线31322:y x l =+上, ∴13(3)22m m =-+,解得2m =. ∴3(2,5)D -.综上所述,点D 的坐标为(2,1)--或(4,1)-或(2,5)-.(3)直线1l 向上平移5个单位长度得到的直线MN 解析式为352y x x =-+=+. ∵直线x =2与x 轴交于点E ,与直线MN 交于点P ,直线MN 交x 轴于点M ,∴(2,0)E ,2P x =,0M y =.∴22P y =+,02M x =+.∴4P y =,2M x =-.∴(2,4)P ,(2,0)M -.∴2(2)4E M ME x x =-=--=,设直线PF 的解析式为y px q =+,∵直线PF 经过点(2,4)P 与()2,F t t , ∴242,,p q t tp q =+⎧⎨=+⎩解得2,2p t q t =+⎧⎨=-⎩. ∴直线PF 的解析式为(2)2y t x t =+-.∵直线PF 与x 轴交于点G ,∴0G y =.∴0(2)2G t x t =+-. 解得:22G t x t =+. ∴2,02t G t ⎛⎫ ⎪+⎝⎭. ∴24222E G t GE x x t t =-=-=++. 设直线OF 的解析式为y =cx ,∵直线OF 经过点()2,F t t , ∴2t ct =.解得:c t =.∴直线OF 的解析式为y tx =.∵直线OF 与直线2x =交于点H .∴2H x =.∴22H H y tx t t ==⨯=.∴(2,2)H t .∴202H E HE y y t t =-=-=. ∴4()(42)82GE ME HE t t +=+=+. 【点睛】本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键. 25.(1)见解析;(2)120;(3)90;(4)72;(5).【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠C解析:(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n . 【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.。

八年级数学下册期末试卷综合测试卷(word含答案)

八年级数学下册期末试卷综合测试卷(word含答案)

八年级数学下册期末试卷综合测试卷(word 含答案)一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( ) A .a >0 B .a >1 C .a ≥﹣2 D .a >﹣1 2.以下列各组数为边长,不能构成直角三角形的是( )A .1,2,3B .5,12,13C .3,4,5D .1,2,53.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠ B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD =4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在Rt △ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.菱形的周长为12cm ,它的一个内角为60︒,则菱形的面积为______()2cm .11.在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则AB =______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,已知5OD =,6AD =,则该矩形的周长是______.13.设一次函数y =kx +3. 若当x =2时,y =-1,则k =___________ 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,CD 是直线3y x =上的一条动线段,且2CD =,点()23,1A ,连接AC 、AD ,则ACD ∆周长的最小值是_______.16.如图,在菱形 ABCD 中,对角线 AC , BD 交于点O ,过点 A 作 AH ⊥ BC 于点 H ,已知 BD=8,S 菱形ABCD =24,则 AH =_______.三、解答题17.计算:(1)0131|2|8(2020)()3π--+-+-+-;(2)11(124)(320.5)83---; (3)(212)(4818)-⨯+; (4)22()()a b a b ++-.18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺?19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a =13,求2221a a a a -+-的值.刘峰想了想,很快就算出来了,下面是他的解题过程:解:∵()()()2221211111a a a a a a a a a a a--+-===---, 又∵a =13,∴13a=, ∴原式=3.你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在平面直角坐标系xOy 中,直线l 1:y =x +6交x 轴于点A ,交y 轴于点B ,经过点B 的直线l 2:y =kx +b 交x 轴于点C ,且l 2与l 1关于y 轴对称. (1)求直线l 2的函数表达式;(2)点D ,E 分别是线段AB ,AC 上的点,将线段DE 绕点D 逆时针α度后得到线段DF . ①如图2,当点D 的坐标为(﹣2,m ),α=45°,且点F 恰好落在线段BC 上时,求线段AE 的长;②如图3,当点D 的坐标为(﹣1,n ),α=90°,且点E 恰好和原点O 重合时,在直线y =3﹣13上是否存在一点G ,使得∠DGF =∠DGO ?若存在,直接写出点G 的坐标;若不存在,请说明理由.24.如图1,矩形OABC 在平面直角坐标系中的位置如图所示,点A ,C 分别在x 轴,y 轴上,点B的坐标为()8,4,点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC 上运动,连接,OQ BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形.(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由.(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得PBD△是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.25.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.(1)如图1,若∠C=45°,BC=2,求AB的长;(2)求证:DE=BC;(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出(AFBF)2的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.A解析:A 【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】解:A 、由于222123+≠,不能作为直角三角形的三边长,符合题意;B 、由于22251213+=,能作为直角三角形的三边长,不符合题意;C 、由于222345+=,能作为直角三角形的三边长,不符合题意;D 、由于22212+=,能作为直角三角形的三边长,不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形”.3.D解析:D 【解析】 【分析】根据平行四边形的判定定理逐项判断即可. 【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D . 【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.A解析:A 【解析】 【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点, ∴EA =EB , ∴∠EAD =∠DBE , ∴∠CBE =∠DBE =∠EAD , ∴∠CBE +∠DBE +∠EAD =90°, ∴∠A =30°, 故选:A . 【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==, 112DE AB ==. 故选A . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.B解析:B 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩ 解得,t =1.8∴a =3.2+1.8=5(小时), 故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题 9.A解析:不是 【解析】 【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可. 【详解】 解:∵460a b -+-=,∴40a -=,60b -=, ∴4,6a b ==, 则22246528+=≠, ∴222a b c +≠,∴△ABC 不是直角三角形, 故答案为:不是. 【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.10.A 解析:932【解析】 【分析】由菱形的性质和已知条件得出3AB BC CD DA cm ====,AC BD ⊥由含30°角的直角三角形的性质得1322BO AB cm ==,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解. 【详解】 如图所示:、∵AB = BC = CD = DA ,130?2BAO BAD ∠=∠=,AC BD ⊥,12OA AC BO DO ==, ∵菱形的周长为12cm , ∴3AB BC CD DA cm ====, ∴1322BO AB cm ==,∴m OA == ∴2AC OA ==,23BD BO cm == ∴菱形ABCD 的面积212AC BD ⨯=.【点睛】本题考查了菱形的性质、含30° 角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.5【解析】 【分析】根据勾股定理222AB AC BC =+即可求得AB 的长度. 【详解】在直角ABC 中,90C ∠=︒, ∴根据勾股定理222AB AC BC =+, ∴5AB =, 故答案为:5. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.12.B解析:28 【分析】先求出BD ,再根据勾股定理求出AB ,即可求矩形的周长. 【详解】解:∵四边形ABCD 是矩形, ∴∠BAD=90°,OD =OB =5,即BD =10, ∴8AB =,矩形的周长为()28628⨯+=,故答案为:28.【点睛】本题考查了矩形的性质和勾股定理,解题关键是熟练运用勾股定理求出矩形的边长. 13.-2【分析】把x=2时,y=-1代入一次函数y =kx +3,解得k 的值即可.【详解】解:把x=2时,y=-1代入一次函数y =kx +3得-1=2k +3,解得k =-2.故答案为:-2.【点睛】本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.+2.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,解析:.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A作AB⊥CD,垂足为点B,当点B为CD的中点时,△ACD的周长最小,如图,延长BA交x轴与点E,过点A作AF⊥x轴,垂足为点F,设点M(3,3)是直线33y x=上一个点,则OM=223+(3)=23,∴∠MOF=30°,∴∠BEF=60°,∠EAF=30°,∵A(2+3,1),∴OF=2+3,AF=1,设AE=2n,则EF=n,根据勾股定理,得2241n n=+,∴EF=33,AE=233,∴OE=OF+EF=2+433,∴BE=12OE=1+233,∴BA=BE-AE=1+233-233=1,∵CB=BD,AB⊥CD,CD=2,∴AC=AD22BC BA+CB=BD=1,∴AC=AD22112+=∴△ACD的周长最小值为2.故答案为:22.【点睛】本题考查了正比例函数的解析式,勾股定理,直角三角形中30°角的性质,等腰三角形的判定和性质,两点间的距离公式,准确确定最小值的情形,并灵活运用勾股定理求解是解题的关键.16.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4, 解析:245【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4,∴S 菱形ABCD =12×AC×BD =24,∴AC =6,∴OC =12AC =3,∴BC5,∵S 菱形ABCD =BC×AH =24,∴AH =245, 故答案为:245. 【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.三、解答题17.(1);(2);(3);(4).【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根解析:(14;(23)18--4)22a b +.【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;(2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根据完全平方公式展开,再合并即可.【详解】解:(1)011|(2020)()3π--+-213=+-4=;(2)-4(32=-=-=(3)⨯(=⨯=624=--18=--(4)22+a b a b =++-22a b =+.【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.18.折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB=10-x ,BC=6,解析:折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB =10-x ,BC =6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.解得:x=3.2.答:折断处离地面的高度有3.2尺.【点睛】本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于解析:AB BC =,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,原因是:错误地运用了=这个公式,正确解法是:∵a==<1,∴a﹣1<0,∴====解析:答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,(0)(0)a aa a⎧⎨-<⎩这个公式,正确解法是:∵a1,∴a﹣1<0,∴=|1|(1)aa a--=1(1)aa a--=﹣1a,∴【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(1),;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于解析:(1)2500y x=甲,180014000y x=+乙;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于每月费用乘以租用月数,有装修费的再加上装修费即可.【详解】(1)根据题意,租用甲家房屋:2500y x =甲;租用乙家房屋:180014000y x =+乙;(2)①由题意,可知:2500180014000x x =+,解得:20x ,即当租用20个月时,两家租金相同.②由2500180014000x x >+,解得:20x >;即当租用时间超过20个月时,租乙家的房屋更合算.③由2500180014000x x <+,解得:20x <,即当租用时间少于20个月时,租甲家的房屋更合算.综上所述,当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算.【点睛】本题考查一次函数的具体应用,根据题意找出等量关系是解题关键.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①4+②1(2G ,3-或2(2,3G 或3(2G ,3 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得: 26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒, AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆,22(62)442HF AD ∴=-++=AE HD =, 又6OA OB OC ===,90AOB COB ∠=∠=︒, ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,24BH ∴=, 62AB =62442422AE HD AB BH AD ∴==+-=-+ ②将(1,)D n -代入6y x =+中,得:165n =-+=, (1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒, FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=, (4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠, 设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =2132x = 1213(2G ∴313); 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°, ∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a -,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴+-+-+--=+,解得:122a a ==,2(2,313)G ∴-;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =, 33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+,联立方程组213333y x y ⎧=-+⎪⎨⎪=⎩,解得:23x y ⎧=⎪⎨⎪=⎩3(2G ∴,3; 综上所述,符合条件的G的坐标为1(2G,3或2(2,3G或3(2G,3.【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1)证明见解析;(2)存在,;(3)存在,或.【解析】【分析】(1)说明出后,再利用矩形的性质得到,即可完成求证;(2)先设,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等 解析:(1)证明见解析;(2)存在,210y x =-+;(3)存在,()4,2D 或()0,10D .【解析】【分析】(1)说明出BQ OP =后,再利用矩形的性质得到//BQ OP ,即可完成求证;(2)先设=BQ OP x =,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等建立关于x 的方程,解方程后,则各点坐标得以确定,然后利用待定系数法即可求出直线PQ 的解析式;(3)先设出D 点坐标,再分别表示出2BP 、2PD 、2BD ,利用勾股定理的逆定理分类讨论求解即可.【详解】解:(1)证:∵点P ,Q 同时以相同的速度分别从点O ,B 出发,∴BQ OP =,又∵矩形OABC ,∴//BQ OP ,∴四边形OPBQ 是平行四边形.(2)存在;理由:∵矩形OABC 且点B 的坐标为()8,4,∴8OA CB ==,4OC AB ==;设=BQ OP x =∴8AP x =-,∴()2222284BP AP AB x =+=-+, 当四边形OPBQ 是菱形时,则=BP OP ,∴()22284x x =-+, 解得:=5x ,∴8=3CQ BC BQ x =-=-,∴()5,0P ,()3,4Q ,设直线PQ 的解析式为:y kx b =+;∴5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线PQ 的解析式为:210y x =-+;(3)由(2)知=5BP OP =,设(),210D m m -+,∴()()22225210550125PD m m m m =-+-+=-+, ()()2222=82104540100BD m m m m -+-+-=-+, 当222=BD BP PD +时,2225401005550125m m m m -+=+-+,解得:5m =,此时2100m -+=,∴()5,0D ,此时D 点与P 点重合,不合题意,故舍去;当222=BP BD PD +时,2225540100550125m m m m =-++-+,解得:14m =,25m =(舍去),此时,2102m -+=,∴()4,2D ;当222=PD BD BP +时,2225501255401005m m m m -+=-++,解得:0m =,此时,21010m -+=,∴()0,10D ;综上可得:()4,2D 或()0,10D .【点睛】本题综合考查了矩形的性质、待定系数法求一次函数解析式、平行四边形的判定定理、菱形的判定定理、勾股定理及其逆定理等内容,同时涉及到了解一元二次方程等知识,本题综合性较强,要求学生具备一定的综合分析能力和计算能力,本题蕴含了分类讨论和数形结合的思想方法等.25.(1);(2)证明见解析;(3)【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解.(2)过点E 作EF ⊥AB 于F ,过点解析:(1)62+;(2)证明见解析;(3)43-【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解. (2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,先证明△GAD ≌△FAE ,再证明三角形ADE 时等边三角形,即可得到答案;(3)过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,可证明∠BDN =∠DBN =45°,∠FDN =30°,以及EF =BF ,设FN =m ,根据勾股定理,用含m 的式子分别表示出2AF 和2BF ,即可得出结果.【详解】解:(1)如图,过点D 作DF ⊥AB 于F ,∴∠AFD =∠BFD =90°∵四边形ABCD 是平行四边形,∠C =45°,BC =2∴∠A =∠C =45°,AD =BC =2∴AF =DF ,∵∠DBA =30°,∴BD =2DF ,在直角三角形AFD 中,222AF DF AD +=,∴224AF =,∴2AF DF ==,∴222BD DF ==,在直角三角形DFB 中,226BF BD DF =-=,∴62AB AF BF =+=+;(2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,∵AE =BE ,∴12A FB A BF ==, ∵∠G =90°,∠DBA =30°,∴12AG AB =,∠DAB =60° ∴AG AF =,∵∠DAE =60°,∴∠GAD =∠FAE =60°-∠DAF ,∵∠G =∠AFE =90°,∴△GAD ≌△FAE (ASA ),∴AD =AE ,∴三角形ADE 时等边三角形,∴AD =DE ,∴DE =BC ;(3)如图,过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,则∠APE =∠APF =∠DNF =∠DNB =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠ABF =∠C =15°,∠DFB =∠ADF =60°,∴∠DBN =∠ABF +∠ABD =45°,∠FDN =30°,∴∠BDN =∠DBN =45°,∴∠EBD =∠EDB =∠FDN +∠BDN =75°,∴∠FEB =180°-75°-75°=30°,∴∠FBE =∠DFB -∠FEB =60°-30°=30°=∠FEB ,∴EF =BF ,设FN =m ,DF =2m , ∴223BN DN DF FN m ==-=, ∴3EF BF m m ==+,33AE DE m m ==, ∴1332m m PE PD DE +=== ∴3332m m m m PF m +-== ∵2AE DE PE ==,∴22223AP AE PE PE =-=, ∴(22222231043AF AP PF PE PF m =+=+=+, ∵()(222343BF m m m ==+, ∴()()22222104343423m AF AF BF BF m +⎛⎫=== ⎪⎝⎭+【点睛】本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。

人教版八年级(下)数学期末综合考试卷(五)

人教版八年级(下)数学期末综合考试卷(五)

人教版八年级(下)数学期末综合质量检测试卷一、选择题(共10小题,下面每小题只有一选项是正确的,请将正确选项涂在答题卡上)1.函数y =中,自变量x 的取值范围是【】A.x 3>- B.x 3≥- C.x 3≠- D.x 3≤-2.已知点(k ,b )为第四象限内的点,则一次函数y =kx +b 的图象大致是()A. B.C. D.3.若点P 在一次函数4y x =-+的图像上,则点P 一定不在()A.第一象限B.第二象限C.第三象限D.第四象限4.一组数据11、12、15、12、11,下列说法正确的是()A .中位数是15B.众数是12C.中位数是11、12D.众数是11、125.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S 甲2=0.52.S 乙2=0.62,S 丙2=0.50,S 丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.一元一次方程0ax b +=的解是3x =,函数y ax b =-的图象与x 轴的交点坐标为()A.(3,0)B.(3,0)- C.(,0)a D.(,0)b -7.在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是()A.9、8B.9、7C.8、7D.8、88.如图,直线y x m =-+与3y x =+的交点的横坐标为2-,则关于x 的不等式3x m x -+>+的取值范围()A.2x >-B.2x <-C.32x -<<- D.31x -<<-9.某次数学测试中,八年级一班平均分为80分,八年级二班的平均分为82分,下列说法错误的是()A.两个班的平均分为81分B.两个班的平均分不可能高于82分C.若一班的人数比二班多,则两个班的平均分低于81分D.若两个班的人数相同,则两个班的平均分为81分10.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有()A.2个B.3个C.4个D.5个二、填空题(共5小题)11.函数y=kx 的图象经过点P(3,-1),则k 的值为______________.12.如果点()113,P y ,()222,P y 在一次函数21y x =-的图象上,则1y _________2y (填“>”“<”或“=”).13.已知一次函数y =ax +b (a ,b 是常数,a ≠0)中,x 与y 的部分对应值如下表,那么关于x 的方程ax +b =0的解是___________.x -101234y642-2-414.某地教育局拟招聘一批数学教师,现有一名应聘者笔试成绩88分、面试成绩90分,综合成绩按照笔试占70%、面试占30%进行计算,该应聘者的综合成绩为_____分.15.在平面直角坐标系,(2,0)A -,(0,3)B ,点M 在直线12y x =上,M 在第一象限,且6M AB S =△,则点M 的坐标为____.三、解答题(本题共计9小题)16.已知一次函数2y x b =+,当3x =时,10y =,求这个一次函数的解析式.17.已知数据2,4,3,x ,7,8,10的众数为3则这组数据的中位数是多少.18.已知y﹣2与x成正比例,当x=2时,y=6.(1)求y与x之间的函数解析式.(2)在所给直角坐标系中画出函数图象.(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.19.已知一次函数y=(3-k)x-2k+18,(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2).20.已知:一次函数y=(2a+4)x+(3﹣b),根据给定条件,确定a、b的值.(1)y随x的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y轴的交点在x轴上方.21.某商店为减少A商品的积压,采取降价销售的策略,A商品原价为520元,随着不同幅度的降价,日销量(单位:件)发生相应的变化(如表):降价(元)102030405060日销量(件)155160165170175180(1)从表中可以看出每降价10元,日销量增加多少件?(2)估计降价之前的日销量为多少件?(3)由表格求出日销量y(件)与降价x(元)之间的函数解析式.(4)如果售价为440元时,日销量为多少件?22.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(1)该地区出租车的起步价是________元;x )之间的函数关系式________.(2)求超出3千米,收费y(元)与行驶路程x(km)(323.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(-3,0),与y轴交点为B,且与正比例函数43y x的图象的交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.24.如图,直线y=kx﹣2与x轴,y轴分别交于B,C两点,其中OB=1.(1)求k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣2上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)在(2)的条件下,探索:①当点A运动到什么位置时,△AOB的面积是1;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.参考答案1-5.BBCDD 6-10.AABAC 11.13-12.>13.x =214.88.615.33,2⎛⎫ ⎪⎝⎭16.解: 在一次函数2y x b =+中,当3x =时,10y =,610b ∴+=,解得:4b =,∴一次函数的解析式为24y x =+.17.解:∵这组数据2,4,3,x ,7,8,10的众数为3,∴x =3,从小到大排列此数据为:2,3,3,4,7,7,10,处于中间位置的数是4,∴这组数据的中位数是4.18.解:(1)∵y-2与x 成正比例,∴设y-2=kx (k ≠0),∵当x=2时,y=6,∴6-2=2k ,解得k=2,∴y-2=2x ,函数关系式为:y=2x+2;(2)当x=0时,y=2,当y=0时,2x+2=0,解得x=-1,所以,函数图象经过点(0,2),(-1,0),同理,该函数图象还经过点(1,4),(-2,-2),(-3,-4).函数图象如图:(3)由图象得:当-2≤y ≤2时,自变量x 的取值范围是:-2≤x ≤0.19.解:(1)∵图象经过原点,∴点(0,0)在函数图象上,代入解析式得:0=-2k+18,解得:k=9.又∵y=(3-k )x-2k+18是一次函数,∴3-k≠0,∴k≠3.故k=9符合.(2)∵图象经过点(0,-2),∴点(0,-2)满足函数解析式,代入得:-2=-2k+18,解得:k=10.20.解:(1)∵y 随x 的增大而增大∴2a+4>0∴a >﹣2(2)∵图象经过第二、三、四象限∴2a+4<0,3﹣b <0∴a <﹣2,b >3(3)∵图象与y 轴的交点在x 轴上方∴3﹣b >0∴b <321.解:(1)从表中可以看出每降价10元,日销量增加5件.(2)从表格中可得,原日销量为155-5=150(件);(3)y=150+0.5x ;(4)售价为440元时,y=150+0.5×(520-440)=190(件).答:从表中可以看出每降价10元,日销量增加5件;从表格中可得,原日销量为155-5=150件;函数解析式y=150+0.5x ;如果售价为440元时,日销量为190件.22.解:(1)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;(2)依题意设y 与x 的函数关系为y kx b =+,3x = 时,8y =;8x =时,18y =;38818k b k b +=⎧∴⎨+=⎩,解得:22k b =⎧⎨=⎩;∴所以所求函数关系式为:22(3)y x x =+>.23.解:(1)∵点C (m ,4)在正比例函数43y x =的图象上,∴44=3m ,3m =,即点C 坐标为(3,4)∵一次函数y kx b =+经过A (-3,0)、点C (3,4),∴03{43k b k b=-+=+解得:2{32k b ==,∴一次函数的表达式为223y x =+;(2)设点P(0,n),∵△BPC的面积为6,∴136 2BP⨯⨯=,解得:BP=4,对于223y x=+,当x=0时,y=2,∴点B(0,2),∴点P的坐标为(0,6)或(0,-2).24.解:(1)∵OB=1,∴B(1,0),∵点B在直线y=kx﹣2上,∴k﹣2=0,∴k=2(2)由(1)知,k=2,∴直线BC解析式为y=2x﹣2,∵点A(x,y)是第一象限内的直线y=2x﹣2上的一个动点,∴y=2x﹣2(x>1),∴S=S△AOB=12×OB×|y A|=12×1×|2x﹣2|=x﹣1,(3)①如图,由(2)知,S=x﹣1,∵△AOB的面积是1;∴x=2,∴A(2,2),∴OA=,②设点P(m,0),∵A(2,2),∴OP=|m|,AP①当OA=OP时,∴=|m|,∴m=,∴P1(﹣,0),P2(,0),②当OA=AP时,∴,∴m=0或m=4,∴P3(4,0),③当OP=AP时,∴|m|=m=2,∴P4(2,0),即:满足条件的所有P点的坐标为P1(﹣,0),P2(,0),P3(4,0),P4(2,0).。

八年级数学下册 期末综合测试(1、2、3) 新人教版

八年级数学下册 期末综合测试(1、2、3) 新人教版

湖南省凤凰县第一民族中学2012-2013学年八年级数学下册 综合测试(1、2、3) 新人教版一、填空题(本题共8个小题,每小题3分,共24分,请把答案填在题中的横线上.)1、函数y =的自变量x 的取值范围为 . 2、下列给出的一串数:2,5,10,17,26,?,50.仔细观察后回答:缺少的数?是 . 3、2008年北京奥运会开幕式8月8日在被喻为“鸟巢”(如图1)的国家体育场举行.国家体育场建筑面积为25.8万㎡,这个数用科学记数法表示为 ㎡.图14、如图2,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为_________________________.5、 一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元.6、如图3,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .ACB7、在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则n = . 8、东东和爸爸到广场散步,爸爸的身高是176cm ,东东的身高是156cm ,在同一时刻爸爸的影长是88cm ,那么东东的影长是 cm.二、选择题(本大题共有8个小题,每小题3分,满分24分.)9、要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本 10、在实数23-,0,π ) A .1个B .2个C .3个D .4个11、如图4,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( ) A .35B .75C .70D .80 图4 12、若不等式组530x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≤B .53m <C .53m >D .53m ≥13、如图5,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( )A.5:3B.3:5C.4:3D.3:414、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、21图515、如图6,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )A. 0B. -1C. 1D. 216、如图7-1,小明从半径为5cm 的圆形纸片中剪下 40%圆周的一个扇形,然后利用剪下的扇形制作成一个 圆锥形玩具纸帽(接缝处不重叠)如图7-2,那么这 个圆锥的高为( )A.3cmB.4cmC.21cmD.62cm三、解答题(本大题共9个小题,满分72分.) 17、(本题满分5分)计算:20)21(8)21(3--+-+-18、(本题满分5分)先化简,再求值:a a a -+-21422,其中21=a .19、(本题满分6分)A、B两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料? 20、(本题满分6分)如图8,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.40%5=R图7-1 图7-260%图821、(本小题满分6分)在一个不透明的布袋中有4个完全相同的乒乓球,把它们分别标号为1,2,3,4,随机地摸出一个乒乓球然后放回,再随机地摸出一个乒乓球.求下列事件的概率: (1)两次摸出的乒乓球的标号相同;(2)两次摸出的乒乓球的标号的和等于5. 22、(本小题满分6分)如图9,B C E ,,是同一直线上的三个点,四边形ABCD 与四边形CEFG 都是正方形.连接BG DE ,.(1)观察猜想BG 与DE 之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.23.(本题满分8分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(4分)(2)当22120x x -=时,求m 的值.(6分)(提示:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠两根,则有12bx x a+=-,12c x x a=) 24、(本题满分10分)如图10,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙于(1)求证:AT 平分BAC ∠;(5分)(2)若2AD =,TC =O 的半径.(5分)25、(本题满分20分)如图11,在Rt△ABC 中,AB =AC ,P 是边AB (含端点)上的动点.过P 作BC 的垂线PR ,R为垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E ,F 恰好分别在边BC ,AC 上. (1)△ABC 与△SBR 是否相似,说明理由; (2)请你探索线段TS 与PA 的长度之间的关系;(3)设边AB =1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.图10 图11 T P S R E A BC F初中数学综合测试(二)(时量:120分钟,满分:120分)一、填空题(本题共8个小题,每小题3分,共24分,请把答案填在题中的横线上.)1、分解因式:22mb ma -= .2、如图1,直线a 、b 被直线 所截,如果a ∥b ,∠1=120°,那么∠2= 度.3、图2是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 .4、某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图3所示).根据图3中的信息,可知在试验田中, 种甜玉米的产量比较稳定. 5、方程04142=----xxx 的解是 6、如图4,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米.7、如图5,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm. 8、如图6,根据下面的运算程序,若输入1x =y = .12图1 ab实验田序号产量(吨)图3 图2 红红 红 白 白 蓝 AD 图5 图4A二、选择题(本大题共有8个小题,每小题3分,满分24分) 9、计算2(2)2--的结果是( )A .6-B .2C .2-D .610、不等式042≥-x 的解集在数轴上表示正确的是( )A B C D11、数据2,1,0,3,4的平均数是( )A 、0B 、1C 、2D 、312、如图7,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( )A 、30° B、45° C、60° D、90°13、如图8,是由4个大小相同的正方体搭成的几何体,其主视图是( )14、函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 15、下列各点中,在函数xy 2=图象上的点是A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)16、已知二次函数2y ax bx c =++(0a ≠)的图象如图9所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->有( )A .1个B .2个C .3个D .4个图62-220正面图8图7三、解答题(本大题共9个小题,满分72分)17、(本题满分5分)计算:201()2sin 3032--+︒+-18、(本题满分5分)化简2111x x x x⎛⎫-÷ ⎪--⎝⎭,并选择你最喜欢的数代入求值.19、(本题满分6分)作图题:如图10,先将ΔABC 向下平移4个单位得到111A B C ∆,再以直线l 为对称轴将111A B C ∆作轴反射得到222A B C ∆,请在所给的方格纸中依次作出111A B C ∆和222A B C ∆.lC BA图1020、(本题满分6分) 如图11,已知反比例函数y =xm的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式; (2)求点B 的坐标.图11 21、(本题满分6分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率. 22、(本题满分6分)如图12,⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E 为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ;(3)若EF =2,FO =1,求KE 的长.图12 P ED K H G CAB F O23.(本题满分8分)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点.从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)(2) 设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;(3) 经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案. 24、(本题满分10分)如图(1),在平面直角坐标系中,点A 的坐标为 (1,-2),点B 的坐标为(3,-1),二次函数2y x=-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.yx图(1) yox图(2)l 1 l 225、(本题满分20分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2) 求正方形边长及顶点C的坐标;(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.(第24题图①) 图②初中数学综合测试(三)一、填空题(本题8小题,每小题3分,共24分)1、3的相反数是_________,-2的绝对值是___________.2、据中新社报道:2010年我国粮食产量将达到540 000 000 000千克,这个粮食产量用科学记数法可表示为______________________千克.3、如图,已知a ∥b ,∠1=40︒,则∠2=_________︒.4、一n 边形的内角和等于1080︒,那么这个正n 边形的边数n =_________.5、为发展农业经济,致富奔小康,养鸡专业户王大伯2004年养了2000只鸡. 上市前,他随机抽取了10根据统计知识,估计王大伯这批鸡的总重量约为_____________千克.6、如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm.7、有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是___________cm.8、两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm , 把它们叠放在一起组成一个新的长方体,在这些长方体中,表面积最大是__________cm 2.二、选择题(本题8小题,每小题3分,共24分)9、如图,a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论正确的是 ( )A.ab <0B. a -b >0C. abc <0D. c (a -b )<010 )A C 11、下列各式中,与分式x y x--的值相等的是( )A .x x y+ B .x x y-- C .x x y-+ D .x x y-12、已知一次函数y =kx +b的图像如图所示,则当x <0时,y 的取值范围是( )A. y>0 B. y <0 C. -2<y <0 D. y <-213、下面的平面图形中,是正方体的平面展开图的是( )A B CD (第7题) B A C(第9题)(第6题)14、下列图形中,既是轴对称,又是中心对称图形的是()15、下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对栽人航天器“神州五号”零部件的检查,采用抽样调查的方式16、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.14 B.15C.16D.320三、解答题(本题9小题,共72分)17、(本题5分)计算:(-2)3+12(20040cos60 .18、(本题5分)解不等式: 12(x-2)<3-x.19、(本题6分)解方程组:{4,2 5.x y x y -=+=20、(本题6分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC . 现先把ΔABC 分别向右、向上平移8个单位和3个单位得到ΔA 1B 1C 1;再以点O 为旋转中心把ΔA 1B 1C 1按顺时针方向旋转90º得到ΔA 2B 2C 2. 请在所给的方格形纸中作出ΔA 1B 1C 1和 ΔA 2B 2C 2.21、(本题6分)如图,给出四个等式:①AE =AD ;②AB =A C ;③OB =OC ;④∠B =∠C . 现选取其中的三个,以两个作为已知条件,另一个作为结论.(1)请你写出一个正确的命题,并加以证明; (2)请你至少写出三个这样的正确命题.A BC D EO22、(本题满分6分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销量y (件)之 间的关系如下表:若日销量(件)是销售价(元)的一次函数.(1)求出日销量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定位多少元?此时每日的销售利润是多少?23(本题满分8分))作为点的坐标,尝试在下面所给的坐标系中画出y 关于x 的函数图像;②根据所填表中数据呈现的规律,猜想出用表示y 的二次函数关系式:___________; (3)当水面宽度为36m 时,一艘吃水深度(船底部到水面的距离)为1.8m 的货船能 否在这个河段安全通过?为什么?24、(本题满分10分)如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A B C ,,作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.(1)在图中画出点M N ,,并写出点M N ,的坐标: ;(2)求经过第2008次跳动之后,棋子落点与点P 的距离.25、(本题20分)如图,在平面直角坐标系中,直线l 的解析式为y,关于x 的一元二次方程 2x 2-2(m +2)x +2m +5=0(m >0)有两个相等的实数根.(1)试求出m 的值,并求出经过点A (0,-m )和点D (m ,0)的直线解析式; (2)在线段AD 上顺次取两B 、C ,使AB =CD-1,试判断ΔOBC 的形状;(3)设直线l 与直线AD 交于点P ,图中是否存在与ΔOAB 相似的三角形?如果存在,请直接写出来;如果不存在,请说明理由.。

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学期末综合练习
2011.6.21
(满分:150分;考试时间:120分钟)命题人:李恒福 乔荣华
一、选择题(每题3分,共24分)
1.在式子a 1
,π xy 2,23
34a b c
,x + 65,7x +8y ,9x+y
10 ,x x 2
 中,分式的个数是( )
A 、5
B 、4
C 、3
D 、2
2.若,m n 表示两条直线,α表示平面,则下列命题中,正确命题的个数为
①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫
⇒⊥⎬⊥⎭
A.1个
B.2个
C.3个
D.4个 3.已知点P (x ,y )在函数x x
y -+=
2
1的图象上,那么点P 应在平面直角坐标系中的
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
4. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是
3和4及x ,那么x 的值
A.只有1个
B.可以有2个
C.有2个以上,但有限
D.有无数个 5.如图,△ABC 与△AFG 是两个全等的等腰直角三角形,∠BAC =∠F =90°,BC 分别与AF 、
AG 相交于点D 、E .则图中不全等的相似三角形有
A .0对
B .1对
C .2对
D .3对
第5题
第6题 第7题
6.如图,直线24y x =-+与x 轴,y 轴分别相交于A B ,两点, C 为O B 上一点,且12∠=∠,
则ABC S =△ ( ) A .1 B .2 C .3 D .4
7.如图,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )
A.4.5米 B.6米 C .7.2米 D.8米
8.甲从鱼摊上买了3条鱼,平均每条a 元,又从另一个鱼摊上买了2条鱼,平均每
条b 元,后来他又以每条(a+b )/2元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )
A.a>b
B. a<b
C.a=b
D. 与a 、b 的大小无关
二、 填空题(每题3分,共30分)
9.若函数y=2
5
(2)k k x --是反比例函数,则k=___.
10.函数
123
x - 的自变量x 的取值范围为___________.
11.关于x 的方程
11
a x =+的解是负数,则a 的取值范围是 .
12.如图,△ABC 中,AB=AC ,D 为AC 边上的一点,要使△ABC ∽△BCD ,
还需要添加一个条件,这个条件可以是_________________________(只需填写一个你认为适当的条件即可).
13.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式
①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A =∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是
14.如图,在平面直角坐标系xo y 中,过双曲线的一支上的一点P 作PA ⊥x 轴, 垂足
为点A ,连接PO . 若△PAO 的面积是4,则函数关系式为
第14题 第15题 第16题
15.如图□ABCD 中,E 为AD 的中点.已知△DEF 的面积为4,则△DCF 的面积为_________ 16.如图,在△ABD 中,∠ADB =90°,C 是BD 上一点,若E 、F 分别是AC 、AB 的中点,△DEF 的面积为3.5,则△ABC 的面积为 .
17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕
为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .
第17题 第18题
18.如图,四边形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2均为正方形.点A 1,A 2,A 3和点C 1,C 2,C 3分别在直线y kx b =+(k>0)和x 轴上, 点B 3的坐标是(4
19,
4
9),则k+b= .
三、解答题:(共96分)
19. 解不等式组:()
253(2)(1)
122
3x x x x
+≤+⎧⎪
-⎨<⎪
⎩(6分)
20解方程:
x
x x
-2
+2=
1
2+x x (6分)
21.
3y +=,求:2
2
2
2
2
xy x
x y
y x
+
--的值(6分)
22.已知y -1与x 成正比例,且x =2-时,y=4(9分) (1)求出y 与x 之间的函数关系式;
(2)设点(a ,2-)在这个函数的图像上,求a 的值; (3)如果自变量x 的取值范围是05x ≤≤,求y 的取值范围.
23、三角形中位线定理,是我们非常熟悉的定理.(9分)
①请你在下面的横线上,完整地叙述出这个定理: . ②根据这个定理画出图形,写出已知和求证,并对该定理给出证明.
24. 甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行速度和骑自行车的速度。

(6分)
25.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。

小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢。

你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。

(9分)
26.已知方程组⎩
⎨⎧--=++=-71
3a y x a y x 的解中,x 为非正数,y 为负数。

(1)求a 的取值范围。

(2)化简a a -+--32004;
(3)m 是最大的整数,n 是最小的整数,试求n m n m -+)(的值。

(4)当a 为何整数时,不等式122+>+a x ax 的解集为1<x ?(12分)
27、(本题10分) 已知:如图,四边形ABCD 是菱形,∠A=60°,直线EF 经过点C ,分别
交AB 、AD 的延长线于E 、F 两点,连接ED 、FB 相交于点H . (1) 如果菱形的边长是3,DF=2,求BE 的长;
(2) 除△AEF 外,△BEC 与图中哪一个三角形相似,找出来并证明; (3) 请说明BD²=DH ﹒DE 的理由.(12分)
28、心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化
而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分).(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?
(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由. (12分)。

相关文档
最新文档