中考必考数学知识点归纳

合集下载

中考数学必考知识点大全

中考数学必考知识点大全

中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。

2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。

3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。

4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。

5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。

6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。

7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。

8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。

9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。

10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。

11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。

12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。

13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。

14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。

15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。

中考数学必考知识点

中考数学必考知识点

中考数学必考知识点
1.整数和有理数:了解整数和有理数的概念及其性质,包括整数的正
负性、大小比较以及有理数的表示和运算法则。

2.分数与小数:掌握分数与小数的相互转换方法,包括分数的化简、
通分与约分,小数的读写与四则运算。

3.百分数与比例:理解百分数与比例的概念,掌握百分数的计算与应用,比例与比例关系的应用。

4.二次根式与简单的三角函数:了解二次根式的定义与性质,包括二
次根式的相互转换和计算,以及简单的三角函数的定义和运算。

5.一次函数与图像:掌握一次函数的概念,理解线性关系,掌握一次
函数的图像、性质和应用。

6.坐标系与图形:了解平面直角坐标系的概念及其性质,认识常见图
形的坐标特征,包括点、线、线段、角以及相关的距离和面积计算。

7.相似与全等:理解相似和全等的概念,掌握相似和全等的判定条件,以及相似比和全等的运用。

8.平面几何与立体几何:熟练掌握平面图形的性质和计算,包括三角形、四边形、圆等的周长、面积和相关性质,以及立体图形的性质和计算,包括长方体、正方体、圆柱体、圆锥体等的体积和表面积计算。

9.统计与概率:了解统计与概率的基本概念,掌握统计的方法和技巧,包括数据的整理和分析,概率的计算和应用。

10.代数式与方程:掌握代数式的基本运算法则,理解并掌握方程的
概念、解法及应用,包括一元一次方程、简单一元二次方程的解法。

这些是中考数学必考的基本知识点,学生在备考中应该重点掌握这些知识,加强对概念的理解,熟练掌握运算方法,能够应用灵活,灵活运用解题思路和方法解决各类数学问题。

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

中考数学重要知识点归纳

中考数学重要知识点归纳

中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。

当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。

中考数学常考知识点整理

中考数学常考知识点整理

中考数学常考知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!中考数学常考知识点整理中考数学常考知识点整理大全为避免中考忘记知识,熟背考点。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

中考数学必考知识点归纳

中考数学必考知识点归纳

中考数学必考知识点归纳一、数与代数。

1. 有理数。

- 有理数的概念:整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与有理数一一对应。

- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。

若a与b互为相反数,则a + b=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a≥0) -a(a<0)。

- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

2. 实数。

- 无理数:无限不循环小数叫做无理数,如√(2)、π等。

- 实数的概念:有理数和无理数统称为实数。

实数与数轴上的点一一对应。

- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。

3. 代数式。

- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。

初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如=x,=│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

中考数学必考知识点及总结

中考数学必考知识点及总结

中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。

2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。

3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。

4.二元一次方程:通过解方程组方法以及用递推法。

5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。

6.整式运算:包括多项式的加减乘除、综合运算等。

7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。

8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。

9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。

10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。

11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。

12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。

13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。

二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。

2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。

3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。

4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。

5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。

6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。

7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。

8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。

9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。

10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。

数学中考复习必背知识点

数学中考复习必背知识点

数学中考复习必背知识点数学中考复习必背知识点1实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。

实数和数轴上的点是一一对应的。

2、相反数-----只有符号不同的两个数叫做互为相反数。

(1)几何意义:在数轴上,表示相反的两个点位于原点的两侧,且到原点的距离相等,关于原点对称;(2)实数a的相反数为-a;(3)a和b互为相反数则,a+b=0;(4)相反数是它本身的数是0。

3、倒数----乘积是1的两个数互为倒数。

(1)实数a的倒数是1/a,其中a≠0;(2)a和b互为倒数则,a__b=1;(3)倒数是它本身的数有-1和1。

4、绝对值----一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

绝对值的性质:即,(1)、a0时,|a|=±a;(2)|a|=|b|,则a=b或a+b=0;(2)|a|=|b|,则a=b或a+b=0;(3)任意实数的绝对值具有非负性,即|a|≥0;(4)含有绝对值代数式的化简、运算,首先考虑代数式的性质,即正负性,再根据绝对值的性质去掉绝对值符号进行化简、运算。

5、实数的分类:有理数和无理数。

常见无理数种类:(1)具有特殊意义的常数,例如:π、π-1、π+4、9π等;(2)特殊结构类型,例如:0.101001000100001.(每两个1之间0的个数依次增加1)等无限不循环小数;(3)根号类型,例如:、等不能开的尽方的二次根式;当然具有根号,但是能开方就是有理数;2二次根式1、一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。

当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。

2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

3、化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

中考数学必背知识点及公式

中考数学必背知识点及公式

中考数学必背知识点及公式
1. 一次函数的标准式:y = kx + b;斜率 k 的计算公式:k =
(y2 - y1) ÷ (x2 - x1)
2. 二元一次方程组:ax + by = c;dx + ey = f;解法有消元法和代入法。

3. 垂直、平行线的判定方法:(1)两条直线斜率乘积等于-1,则它们垂直;(2)两条直线斜率相等,则它们平行。

4. 三角形内角和公式:三角形内角和等于 180 度。

5. 相似三角形边长、角度的关系:(1)相似三角形的对应边
长成比例;(2)相似三角形的对应内角相等。

6. 直角三角形中的三角函数公式:正弦函数:sinθ = 对边 ÷斜边;余弦函数:cosθ = 邻边 ÷斜边;正切函数:tanθ = 对边 ÷
邻边。

7. 平面坐标系中两点间的距离公式:√[(x2 - x1)² + (y2 - y1)²]
8. 平行四边形的面积公式:S = 底 ×高。

9. 三角形的面积公式:S = 底 ×高 ÷ 2。

10. 圆的周长公式:C = 2πr 或C = πd (其中 r 为圆的半径,d
为圆的直径)。

11. 圆的面积公式:S = πr²。

12. 锐角三角形中任意两边的关系:两边之和大于第三边。

13. 任意三角形中角度与对边的关系:(1)任意两边之间的夹角小于对应的角的大小;(2)任意两角之间的棱长比大于角对应的正弦值。

初中数学中考重点知识点

初中数学中考重点知识点

初中数学中考重点知识点一、数与代数1.整数和有理数的四则运算:加法、减法、乘法、除法的计算方法。

2.正数、负数、零的判断和比较。

3.分数的四则运算:分数的加法、减法、乘法、除法的计算方法。

4.一元一次方程式的解法:通过解方程来求解问题。

5.百分数和百分数的应用:比较大小、转化为小数和分数等。

6.比例与比例直线:比例关系的表示和应用。

7.直角坐标系:了解直角坐标系的基本概念、表示方法和应用。

二、几何1.长方形、平行四边形、菱形、正方形、梯形、圆的性质与计算。

2.三角形的性质:直角三角形、等腰三角形、等边三角形的性质。

3.相似与全等三角形:认识相似三角形和认识全等三角形。

4.平行线与平行四边形:平行线的性质和应用。

5.立体的概念:立体的种类、面、棱、顶点等概念。

6.体积的计算:认识体积的概念,计算长方体和正方体的体积。

三、概率与统计1.常用的统计指标:极差、平均数、中位数、众数等的计算。

2.随机事件与样本空间:认识随机事件和样本空间的概念。

3.随机事件的概率:认识事件发生的概率和计算概率的方法。

4.简单的统计调查:能够进行简单的调查并统计结果。

四、解决实际问题数学作为一门实用的学科,要求能够将数学知识应用到实际问题中。

中考中可能会出现一些与实际生活相关的问题,考察学生对数学知识的灵活运用能力。

以上是初中数学中考的重点知识点,在备考时学生需要理清每个知识点的概念和运算方法,并多做相关的练习题和模拟试题,以提高解题能力和应变能力。

同时,还需要掌握解决实际问题的方法和能力,将数学知识与实际生活相结合,培养解决实际问题的思维能力。

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。

2.有理数的概念及性质:有理数的定义、分数与小数的关系等。

3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。

4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。

二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。

2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。

3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。

4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。

三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。

2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。

3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。

4.尺规作图:已知条件作图、已知作图求解等。

四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。

2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。

3.统计相关性与预测:根据数据的相关性进行预测与判断。

五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。

2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。

六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。

2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。

3.函数的运算:函数的加减乘除、函数的复合等运算法则。

4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。

七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。

2.比例的运算:比例的加减乘除、比例的复合等运算法则。

中考数学必考知识点

中考数学必考知识点

中考数学必考知识点一、有理数1.相反数、倒数与绝对值(1)相反数①有理数a 的相反数为-a ;②a 与b 互为相反数⇔a+b=0.(2)倒数①有理数a 的倒数是a1,其中a ≠0;②a 和b 互为倒数⇔ab=1. (3)绝对值一个正数的绝对值等于它本身,0的绝对值是0,负数的绝对值是它的相反数.即()()()⎪⎩⎪⎨⎧-==0000πφa a a a a a2. 有理数的运算律二、一元一次方程一元一次方程及其解法(1)一元一次方程只含有一个未知数,并且未知数的次数是1,系数不等于0的整式方程,叫做一元一次方程ax+b=0(a ≠0)是一元一次方程的标准形式.(2)接一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.三、三角形1.三角形的三边关系:三角形两边的和大于第三边,两边的差小于第三边.2.三角形的内角和定理和外角和定理3.多边形的内角和及其外角和(1)n 边形的内角和等于(n-2)*1800 .(2)多边形的外角和等于3600.四、一次函数1. 正比例函数的图象与性质(1)正比例函数y=kx (k 为常数,k ≠0)的图象是经过原点(0,0)的一条直线,我们称之为直线y=kx.(2)当k>0时,直线y=kx 经过一、三象限,y 随x 的增大而增大;当k <0时,直线y=kx 经过二、四象限,y 随x 的增大而减小.2.一次函数的图象与性质(1)一次函数y=kx+b(k为常数,k≠0)的图象是经过一点(0,b)的一条直线,我们称之为直线y=kx+b.(2)当k>0,b>0时,直线y=kx+b经过一、二、三象限,y随x的增大而增大;当k>0,b<0时,直线y=kx+b经过一、三、四象限,y随x的增大而增大.(3)当k<0,b>0时,直线y=kx经过一、二、四象限,y随x的增大而减小;当k<0,b<0时,直线y=kx经过二、三、四象限,y随x的增大而减小.五、整式的乘法与因式分解。

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。

在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。

中考数学必考知识点 中考数学知识点整理

中考数学必考知识点 中考数学知识点整理

中考数学必考知识点中考数学知识点整理知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°= 。

2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

中考数学所有知识点

中考数学所有知识点

中考数学所有知识点一、代数与函数1. 实数- 实数的性质与分类- 实数的运算法则2. 代数式与方程式- 代数式的加减乘除运算- 一元一次方程与一元一次不等式- 二元一次方程组的解法- 一元二次方程的解法- 绝对值不等式3. 函数- 函数与自变量的关系- 函数的图像、定义域与值域- 线性函数- 平方函数- 反比例函数- 根据函数和实际问题求解二、图形和空间几何1. 图形的性质- 点、线、线段、角的性质与分类- 平行线与垂直线的判定- 三角形的性质与分类- 四边形的性质与分类2. 平面图形- 直角坐标系与平面直角坐标- 各种平面图形的性质和特点- 三角形的面积计算- 相似三角形与三角形的比例关系3. 空间几何- 空间几何中的点、线、面等基本概念- 空间几何中的距离计算- 空间几何中的立体图形的性质和计算- 空间几何中的投影计算三、数据和概率统计1. 数据的处理- 数据的收集、整理和呈现- 数据的中心趋势与离散程度- 数据的分组与频率分布- 数据的统计图表绘制2. 概率与统计- 随机事件与概率的概念- 事件的排列与组合- 事件的概率计算- 实际问题中的统计与概率计算四、函数与图像的应用1. 函数的最值与极值- 函数的最大值与最小值- 函数图像的顶点与最值的关系2. 函数与图像的画法- 函数的图像和特点- 函数与实际问题的关系3. 函数的增减性与导数- 函数增减性的判定与应用- 函数导数的概念与计算- 函数与导数的应用五、几何证明题1. 平面几何证明- 几何命题的证明- 平行线的性质与证明- 三角形的性质与证明- 四边形的性质与证明2. 空间几何证明- 空间几何命题的证明- 空间几何图形的投影证明- 空间几何图形的平行关系的证明- 空间几何图形的垂直关系的证明综上所述,中考数学涵盖了代数与函数、图形和空间几何、数据和概率统计、函数与图像的应用以及几何证明题等各个知识点。

掌握了这些知识点,就能够在中考中熟练运用数学的方法进行解题,取得良好的成绩。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。

在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。

中考必考数学知识点归纳

中考必考数学知识点归纳

中考必考数学知识点归纳
中考数学考试是一次全面检测学生数学水平的考试,主要包括数与式、代数式、平面图形、数列与函数、数据统计与概率等方面的知识点。

下面
将对这些知识点进行详细的归纳。

一、数与式
1.整数与有理数知识点:
整数的概念、整数的大小比较、整数的加、减、乘、除的规则、带分数、小数的定义和转化。

2.算式与代数式知识点:
算式的概念、算式的运算、加减法、乘除法的性质、代数式的概念和
展开运算。

3.方程与不等式知识点:
二、平面图形
1.几何知识点:
点、线、面的基本概念、线段、射线、角的基本概念、平行线与垂直
线的判定、相交线的性质、三角形的定义与性质、平行四边形的性质、正
方形、长方形、菱形、等边三角形等的性质。

2.圆的知识点:
圆与圆心角、圆上的弧、切线与切点。

3.面积与体积的知识点:
平行四边形、长方形、三角形、圆的面积计算、正方体、长方体的表面积与体积计算。

三、数列与函数
1.数列的知识点:
等差数列和等比数列的概念与性质、求等差数列和等比数列的通项和部分和。

2.函数的知识点:
四、数据统计与概率
1.统计与概率的知识点:
统计图的读取与绘制、平均数、中位数、众数的概念、概率的概念与计算。

以上就是中考数学知识点的主要内容。

在备考过程中,学生应重点掌握这些知识点的定义、性质和运用方法。

此外,还应注重培养自己的解题能力和思维能力,通过大量的练习和做题能够熟练运用这些知识点解决实际问题。

希望大家在中考中都能取得好成绩!。

中考数学必考知识点归纳

中考数学必考知识点归纳

中考数学必考知识点归纳初中数学知识点归纳1.只有一条直线通过同一平面上的两点。

2、两点之间线段最短。

3、过一点有且只有一条直线和已知直线垂直。

4.连接直线外一点与直线上各点的垂直线段最短。

5、经过直线外一点,有且只有一条直线与这条直线平行。

6.如果两条直线平行于第三条直线,那么这两条直线平行。

7、同位角相等,两直线平行。

8、内错角相等,两直线平行。

9、同旁内角互补,两直线平行。

10、三角形的任意两边和大于第三边。

中考重点知识点11、边角边定理(SAS):有两边和他们的夹角对应相等的三角形是全等三角形。

12、角边角定理(ASA):有两角和他们的夹边相等的三角形是全等三角形。

13、(AAS)有两角和其中一角的对边相等的三角形是全等三角形。

14、边边边定理(SSS):三边对应相等的三角形是全等的。

15.一个角的平分线上的点和这个角的两边之间的距离相等。

16、等腰三角形的两个底角相等。

17、等腰三角形的顶角角平分线平分且垂直底线。

18、等腰三角形的角平分线与底边上的中线与高相同。

19.三个角相等的三角形是等边三角形。

20、有一个角是60°的三角形是等边三角形。

初中数学重点考点21、直角三角形中,如果一个角是30°,那他所对应的边是斜边的一半。

22.线段中垂线上的点到线段两端的距离相等。

23、直角三角形的两直角边的平方和等于斜边的平方和。

24、平行四边形的对边与对角相同。

25、对角线互相平分的四边形是平行四边形。

26.对边平行的四边形是平行四边形。

27、对角线垂直的四边形是菱形。

28.正方形的四个角是直角,四条边相等。

29.等腰梯形的两条对角线相同。

30.在同一个底边上有两个等角的梯形是等腰梯形。

以上就是初三网小编为大家总结的中考数学必考知识点归纳,仅供参考,希望对大家有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学知识点总结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数, ,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+;2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab = ;4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序: 先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章 代数式考点一、整式的有关概念 (3分)1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式: 只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m nm +=∙ ),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解 (11分)1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-, 222)(2b a b ab a +=++, 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++ 3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

考点四、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bc ad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n b a b a n n n = ;c b a c b c a ±=± bdbc ad d c b a ±=± 考点五、二次根式 (初中数学基础,分值很大)1、二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质(1))0()(2≥=a a a ;(2))0,0(≥≥∙=b a b a ab (3))0,0(≥≥=b a ba b a )0(≥a a(4)==a a 2)0(<-a a5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

第三章 方程(组)考点一、一元一次方程的概念 (6分)1、方程:含有未知数的等式叫做方程。

2、方程的解:能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

考点二、一元二次方程 (6分)1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点三、一元二次方程的解法 (10分)1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

相关文档
最新文档