微积分公式表

合集下载

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

大学数学微积分基本公式

大学数学微积分基本公式
b
空间解析几何和向量代数:
空间2点的距离:d = M 1 M 2 = ( x2 − x1 ) 2 + ( y 2 − y1 ) 2 + ( z 2 − z1 ) 2 向量在轴上的投影: Pr ju AB = AB ⋅ cos ϕ ,ϕ是 AB与u轴的夹角。 � � � � Pr ju (a1 + a 2 ) = Pr ja1 + Pr ja 2 � � � � a ⋅ b = a ⋅ b cosθ = a x bx + a y by + a z bz , 是一个数量, 两向量之间的夹角: cosθ =
n k ( n−k ) ( k ) (uv) ( n ) = ∑ C n u v k =0
= u ( n ) v + nu ( n−1) v′ +
n(n − 1) ( n− 2) n(n − 1)⋯(n − k + 1) ( n− k ) ( k ) u v′′ + ⋯ + u v + ⋯ + uv ( n ) 2! k!
dx 1 x ∫ a 2 + x 2 = a arctg a +C dx 1 x−a ∫ x 2 − a 2 = 2a ln x + a + C dx 1 a+x ∫ a 2 − x 2 = 2a ln a − x + C dx x ∫ a 2 − x 2 = arcsin a + C
π 2 π 2
1− x2 1 (arccos x)′ = − 1− x2 1 (arctgx)′ = 1+ x2 1 (arcctgx)′ = − 1+ x2
∫ tgxdx = − ln cos x + C ∫ ctgxdx = ln sin x + C ∫ sec xdx = ln sec x + tgx + C ∫ csc xdx = ln csc x − ctgx + C

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全1.导数的基本定义和性质:- 导数的定义:设函数y=f(x),在点x_0处可导,则函数在该点的导数定义为f'(x_0)=lim_(h→0)[f(x_0+h)-f(x_0)]/h。

-常用导数公式:-常数函数的导数:(k)'=0,其中k为常数。

- 幂函数的导数:(x^n)'=nx^(n-1),其中n为常数。

-指数函数的导数:(e^x)'=e^x。

- 对数函数的导数:(lnx)'=1/x。

-导数的运算法则:-和差法则:(f±g)'=f'+g'。

-常量倍法则:(k·f)'=k·f',其中k为常数。

-乘法法则:(f·g)'=f'·g+g'·f。

-商法则:(f/g)'=(f'·g-g'·f)/g^2,其中g(x)≠0。

2.积分的基本定义和性质:- 不定积分的定义:设函数y=f(x),则f(x)的不定积分记作∫f(x)dx。

- 增量法:∫f(x)dx=F(x)+C,其中F(x)是f(x)的一个原函数,C为常数,称为积分常数。

-常用积分公式:- 幂函数的积分:∫x^n dx=(x^(n+1))/(n+1)+C,其中n≠-1-三角函数的积分:- ∫sinx dx=-cosx+C。

- ∫cosx dx=sinx+C。

- ∫tanx dx=-ln,cosx,+C。

- 指数函数的积分:∫e^x dx=e^x+C。

- 对数函数的积分:∫1/x dx=ln,x,+C。

- 反函数的积分:若F'(x)=f(x),则∫f(x)dx=F(x)+C。

- 定积分的定义:设函数y=f(x),在区间[a,b]上有定义,则f(x)在[a,b]上的定积分记作∫(a,b)f(x)dx。

-定积分的性质:- 定积分的线性性质:∫(a,b)[f(x)+g(x)]dx=∫(a,b)f(x)dx+∫(a,b)g(x)dx。

微积分公式大全

微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。

1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。

1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。

微积分的公式

微积分的公式

微积分的公式引言微积分是数学中的一个重要分支,研究函数的变化规律和求解与变化相关的问题。

在微积分的学习中,有一些经典的公式是我们必须掌握和熟练运用的。

本文将介绍微积分中常见的几个重要公式,并通过例子进行说明。

导数的定义和运算法则定义函数f(x)在点x=a处的导数定义为:f'(a) = lim┬(Δx→0)⁡(f(a+Δx)−f(a))/Δx导数的运算法则•常数法则d/dx (c) = 0其中c为常数。

•幂法则d/dx(x^n) = n * x^(n-1)其中n为自然数。

•乘法法则d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)常用微积分公式极限公式•极限的四则运算法则lim┬(x→a)⁡(f(x)±g(x)) = lim┬(x→a)⁡f(x) ± lim┬(x→a)⁡g(x)lim┬(x→a)⁡(f(x)g(x)) = lim┬(x→a)⁡f(x) * lim┬(x→a)⁡g(x)•无穷小与无穷大的关系lim┬(x→∞)⁡(f(x)) = ∞,当且仅当lim┬(x→∞)⁡(1/f (x)) = 0lim┬(x→∞)⁡(f(x)) = a,当且仅当lim┬(x→∞)⁡(1/f(x)) = 1/a求和公式•等差数列求和公式∑┬(k=1)⁡(n)⁡k = n(n+1)/2积分公式•基本积分公式∫⁡(f(x) + g(x))dx = ∫⁡(f(x))dx + ∫⁡(g(x))dx ∫⁡(k * f(x))dx = k * ∫⁡(f(x))dx其中k为常数。

•微元法∫⁡(f(x))dx = F(x) + C其中F(x)为函数f(x)的一个原函数,C为常数。

应用示例示例1:求函数的导数已知函数f(x) = 2x^2 + 3x - 1,求f'(x)。

解: 根据幂法则,对于函数f(x) = 2x^2 + 3x - 1,我们可以先对每一项求导,再相加得到f'(x)。

高数微积分公式大全

高数微积分公式大全

x)

1 x
d
= ∫xf (ln x)d (ln x)
u = ln x
∫ f (ex )⋅exd = x ∫ f (ex )d (ex ) ∫ f (ax )⋅ axd = x ln1a ∫ f (ax )d (ax ) ∫ f (sin x) ⋅cos xd = ∫ xf (sin x)d (sin x)
十、分部积分法公式
∫ ⑴形如 xneaxdx ,令 u = xn , dv = eaxdx
∫ 形如 xn sin xdx 令 u = xn , dv = sin xdx
∫ 形如 xn cos xdx 令 u = xn , dv = cos xdx
∫ ⑵形如 xn arctan xdx ,令 u = arctan x , dv = xndx
∫ sec xdx= ln sec x + tan x + c
∫ csc xdx= ln csc x − cot x + c
∫ a= 2 +1 x2 dx
1 arctan x + c
a
a
∫= x2 −1 a2 dx
1 ln x − a + c 2a x + a
∫ 1= dx arcsin x + c
+= + an + + bm
b0 0

n=m
n<m n>m
(系数不为 0 的情况)
十三、下列常用等价无穷小关系( x → 0 )
sin x x
tan x x
ln (1+ x) x
ex −1 x
十四、三角函数公式 1.两角和公式
arcsin x x ax −1 x ln a

微积分公式大全

微积分公式大全
n
k nk (4) x v( k ) x u x v x cn u
n k 0
n
四、基本初等函数的 n 阶导数公式 (1) x

n
n
n!
n
(2) e

ax b

n
a n eax b
(3) a
2
⑻ csc x csc x cot x ⑽ a
e
x
x
a
x
x
ln a
1 1 x2
⑾ ln x
1 x
⑿ log a

x
1 x ln a 1 1 x2
⒀ arcsin x
⒁ arccos x
x
(9) lim e 0
x x
(10) lim e
x x
x 1 (11) lim
x x 0
(12) lim
a0 x n a1 x n 1 x b x m b x m 1 0 1
a0 b 0 an 0 bm
sin a sin b 2cos
ab a b sin 2 2 ab a b cos a cos b 2sin sin 2 2
tan a tan b
5.积化和差公式
sin a b cos a cos b
cos a cos b cos a s ib n 1 2 1 cos a b cos a b 2 n b s ia
三、高阶导数的运算法则
n n (1 ) u x v x u x v x

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。

在微积分中,有许多重要的公式在各个方面被广泛应用。

下面给出了微积分的一些重要公式。

1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。

微积分公式大全

微积分公式大全

微积分公式cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α - sin β = 2 cos ?(α+β) sin ?(α-β)cos α + cos β = 2 cos ?(α+β) cos ?(α-β)cos α - cos β = -2 sin ?(α+β) sin ?(α-β)tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ?n (n +1)∑=ni i12=61n (n +1)(2n +1) ∑=ni i13= [?n (n +1)]2Γ(x) =⎰∞tx-1e -td t = 2⎰∞t2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ? sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi ΘθthetaΠπpiΩω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞= 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。

微积分公式大全.doc

微积分公式大全.doc

导数公式:(tan x) sec 2x (cot x) csc 2 x(sec x) sec x tan x (csc x)csc x cot x ( a x ) a x ln a( x x )x x (ln x 1)1(log a x)x ln a(arcsin x )1 1 x 2(arccos x )11 x 2(arctan x)1 21 x(arc cot x )11 x 2(thx )1ch2tanxdx ln cosx C cot xdx ln sin x Csecxdx ln secx tan x C cscxdx ln cscx cot x Cdx2cos 2 xsec xdxtan xCdxcsc 2 xdxcot x Csin 2 xsecx tan xdx secxCcsc x cot xdx csc x Cdx 22a xx 2a 2dx 22a xa 2 x 21 arctan x C a a1 ln x a C 2a x a 1 a xC 2a lnx aarcsinxCaa x dxa x Cln ashxdx chx C chxdx shx Cdx ln( xx 2 a 2 ) Cx 2 a 22sin n xdx 2cos n xdx n 1I nIn 2nx 2a 2dxx x 2 a 2a 2 x2a 2) C2ln( x2x2a 2dx x x 2a2a 2 ln x x 2 a 2C2 2 a 2x 2 dx x a 2 x 2a 2 x C2arcsin a2基本积分表:三角函数的有理式积分:sin x2u , cos x1 u2 , u tg x, dx 2du1 u2 1 u 221 u 2一些初等函数:双曲正弦: shx e x e x2双曲余弦: chx e x e x2双曲正切: thx shx e x e chx e x earshx ln( x x 2)1archx ln( x x2 1) arthx 1 ln 1 x2 1 x两个重要极限:lim sin x 1xx 0lim (11) x e 2.718281828459045...x xxx三角函数公式:sin sin2sin cos2 2 sin sin 2 cos sin2 2 cos cos 2 cos cos2 2 cos cos2sin sin2 2 sin cos 1 sin( ) sin( )2cos sin 1 sin( ) sin( )2cos cos 1 cos( ) cos( )2sin sin1) cos( )cos(2·和差化积公式:·积化和差公式:sin( ) sin cos cos sincos( ) cos cos msin sintan( )tan tan 1mtan tancot( ) cot cot m1cot cot2 tanx1 tan2 xsin x 2 , cosx 21 tan2 x 1 tan2 x2 2cos2 x11 , sin2 x tan2 xtan2 x 1 tan2 xtan2 x sec2 x 1, cot2 x csc2 x 1| sin x | | x | | tan x |·和差角公式:·万能公式、正切代换、其他公式:·倍角公式:sin 2 2sin cos4sin3 cos2 2cos2 1 1 2sin 2 cos2 sin2 sin3 3sincot2 cot2 1 cos3 4cos3 3cos 2cottan33tan tan3 2 tan 1 3tan2tan21 tan2·半角公式:sin 1 cos cos 1 cos2 22 2tan 1 cos 1 cos sin cot 1 cos 1 cos sin1 cos sin 1 cos 1 cos sin 1 cos2 2a b c2R·正弦定理: sin A sin B sin C ·余弦定理: c2 a2 b2 2ab cosCarcsin x arccos x arctan x arccot x·反三角函数性质:2 2高阶导数公式——莱布尼兹(Leibniz )公式:n(uv) ( n ) C n k u (n k ) v(k)k 0u( n)v nu ( n 1) v n( n 1) u( n 2)v n(n 1) ( n k 1) u(n k )v(k ) uv (n)2! k!中值定理与导数应用:拉格朗日中值定理:f (b) 柯西中值定理:f (b) f (a) f ( )(b a) f (a) f ( )F (a) F ( )当 F( x) x时,柯西中值定理就是拉格朗日中值定理。

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

1、乘法公式(1)(a+b )²=a 2+2ab+b 2(2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n maa =anm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n nba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式:(1)b a ba =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aNN a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln-= (7)M n M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc = (8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a- (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v /(2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f a bba⎰⎰-= (4)⎰⎰⎰+=bac abcdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理: (1)()()x f dt t f xa='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

微积分公式大全

微积分公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整word版)常用微积分公式大全

(完整word版)常用微积分公式大全

常用微积分公式基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式.因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式. 解:(为任意常数)例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。

微积分公式大全

微积分公式大全

微积分公式⼤全导数公式:基本积分表:三⾓函数的有理式积分:2222212sin cos 1121u u x dux x u tg dx u u u -====+++, , , 22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+'=222(arcsin )(arccos )1(arctan )11(arc cot )11()x x x x x x thx ch '='='=+'=-+'=2222sec tan cos csc cot sin sec tan sec csc cot csc ln ln(xxdx xdx x C x dx xdx x Cx x xdx x C x xdx x Ca shxdx chx C chxdx shx C x C==+==-+?=+?=-+=+=+=+=+222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x Cdx xC a x a a dx x aC x a a x a dx a xC a x a a x xC a=-+=+=++=-+=++-=+-++=+--=+++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ⼀些初等函数:两个重要极限:三⾓函数公式:·和差化积公式: ·积化和差公式:·和差⾓公式: ·万能公式、正切代换、其他公式:·倍⾓公式:[][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x 3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααα=-=--=-222222sin 22sin cos cos 22cos 112sin cos sin cot 1cot 22cot 2tan tan 21tan αααααααααααααα==-=-=--==-2222222222222tan1tan 22sin cos 1tan 1tan 221tan cos sin 1tan 1tan tan sec 1cot csc 1|sin ||||tan |x xx x x xx x x x xx x x x x x x -==++==++=-=-<<,,, sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=±=±m m m·半⾓公式:sin cos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα+-·正弦定理:R C cB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三⾓函数性质:arcsin arccos arctan arccot 22x x x xππ=-=-⾼阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应⽤:拉格朗⽇中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档