复数单元测试题百度文库
英语单复数测试题及答案
英语单复数测试题及答案一、选择题(每题2分,共20分)1. There are _______ in the box.A. a bookB. two booksC. many books2. I have _______ to tell you.A. newsB. a newsC. some news3. _______ is a kind of fruit.A. BananaB. BananasB. A banana4. The _______ are playing football.A. manB. menC. mans5. There is _______ on the table.A. a cup of teaB. cups of teaC. some cups of tea6. She has _______.A. two brotherB. two brothersC. two brother's7. _______ are my favorite fruit.A. AppleB. ApplesC. An apple8. How many _______ do you have?A. tomatoB. tomatoesC. tomatos9. _______ is going to the party.A. The SmithsB. SmithC. The Smith10. _______ is difficult to learn.A. ChineseB. The ChineseC. A Chinese二、填空题(每题1分,共10分)11. There are _______ (许多) apples on the table.12. _______ (一张) paper is enough for the test.13. I have _______ (一些) pens in my bag.14. _______ (一只) dog is barking at the door.15. _______ (一些) students are playing basketball.16. _______ (两杯) coffee is too much for me.17. _______ (三只) cats are sleeping on the sofa.18. _______ (五本) books are on the shelf.19. _______ (四辆) cars are parked outside.20. _______ (六条) fish are swimming in the tank.三、改错题(每题1分,共10分)21. I have a lot of informations to share with you.22. The news is very exciting.23. There are two mices in the kitchen.24. She has a lot of moneys.25. The child has two tooths.26. There are many peoples in the park.27. The deers are running in the forest.28. The man and the woman are my friends.29. There are two childs in the classroom.30. A foots are hurting.四、翻译题(每题2分,共20分)31. 桌子上有两本书。
必修第二册第二单元《复数》测试题(含答案解析)
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 5.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 7.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 8.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i - 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2- 11.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A 1BC .3D .212.设i 为虚数单位,a R ∈,“复数2202021a i z i =--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设复数z 满足341z i --=,则z 的最大值是_______.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.化简:2020201921i z i i ⎛⎫=+= ⎪ ⎪+⎝⎭________.16.在复平面内,复数(3)2a a z i =-+表示的点在直线y x =上,则z =_______. 17.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.18.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 19.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知1z i =+,i 为虚数单位.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求实数a ,b 的值.23.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.24.已知复数z 满足z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 25.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ; (2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.4.A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 5.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.8.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.B解析:B设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.11.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+,z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.6【解析】分析:先找到复数z 对应的点的轨迹再求的最大值详解:设复数则所以复数对应的点的轨迹为(34)为圆心半径为1的圆所以的最大值是故答案为6点睛:(1)本题主要考查复数中的轨迹问题意在考查学生对这 解析:6【解析】分析:先找到复数z 对应的点的轨迹,再求z 的最大值.详解:设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=, 所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为6点睛:(1)本题主要考查复数中的轨迹问题,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)z a bi r ++=表示以点(a,b)为圆心r 为半径的圆,不要死记硬背,直接化成直角坐标,就一目了然. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 15.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等解析:1i --【分析】利用i 的幂的性质化简即可得答案.【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --.故答案为:1i --.【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等. 16.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果.【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-.故答案为:66i -【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题. 17.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.18.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题19.【分析】由题意可得a <0由|z|=2可得a 的方程解出即得【详解】∵z=a+i 在复平面内对应的点位于第二象限∴a <0由|z|=2得=2解得a=﹣1或1(舍去)∴z=﹣1+i 故答案为﹣1+i 【点睛】该题解析:【分析】由题意可得a <0,由|z|=2,可得a 的方程,解出即得.【详解】∵i 在复平面内对应的点位于第二象限,∴a <0,由|z|=2,解得a=﹣1或1(舍去),∴z=﹣.故答案为﹣【点睛】该题考查复数的模、复数代数形式的表示及其几何意义,属基础题.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复解析:2-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈11,2y ≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--, (1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)ω;(2)12a b =-⎧⎨=⎩【分析】(1)求出1z i =+的共轭复数,代入234z z ω=+-化简,再求ω; (2)根据2211z az b i z z ++=--+,得到()()21a b a i i +++=+,列方程组即可求解. 【详解】(1)已知1z i =+,1z i ∴=-,()()213141i i i ω=++--=--∴,ω∴=(2)()()22211a b a z az b i z z i i+++++==--+, ()()21a b a i i ∴+++=+,121a b a +=⎧∴⎨+=⎩,解得12a b =-⎧⎨=⎩. 【点睛】此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解. 23.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题24.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。
复数单元测验试卷
1word 格式支持编辑,如有帮助欢迎下载支持。
复数单元测验试卷班级 姓名 座号 成绩 一、选择题:(每小题4分,共48分) 1.设z∈C ,则方程|z-i|-|z+i|=2所表示的图形是 ( ) A 双曲线 B 线段 C 一条射线 D 两条射线2.设z1、z2∈C ,则02221=+z z 是“z1、z2对应向量互相垂直”的( )A 充分条件B 必要条件C 充要条件D 既不充分也不必要条件3.若argz=θ,则arg(-3z 2)的值是 ( ) A 2θ B 2π-θ C 2θ或2θ-2π D 2π-2θ4.使ni )3(-的值为实数的n的最小正整数的值是 ( )A 0B 2C 3D 6 5.复数4)3(i +的辐角主值是 ( )A 60°B 120°C 240°D 300° 6.复数z满足方程1=+-z z z ,则z对应的点的轨迹是 ( )A 直线B 圆C 两点D 不存在 7.复数72sin72cos ππi z +=,则621z z z +⋅⋅⋅+++的值是 ( ) A 0 B 1 C -1 D 以上都不对 8.若全集为复数集C ,A 、B 分别是实数集、纯虚数集,则以下为空集是( ) A B A B B A C B A D B A 9.若复数z的实部是-23,且其辐角主值是65π,则z= ( ) A.-23-2i B.-23+2i C.-23+43i D.-23-43i10.已知1=z ,则i z 31+-的最大值和最小值分别是 ( ) A 3,1 B 2,1 C 3,2 D 4,211.已知复数z的模为2,则arg (z -4i)的取值范围是 ( )A ⎥⎦⎤⎢⎣⎡65,6ππ B ⎥⎦⎤⎢⎣⎡611,67ππ C ⎥⎦⎤⎢⎣⎡32,3ππ D ⎥⎦⎤⎢⎣⎡35,34ππ 12.复数z1、z2在复平面内对应的点分别是A 、B ,已知2121z z z z -=+,线段AB 的中点对应的复数是4-3i,则2221z z += ( )A 10B 25C 100D 200 二、填空题:(每小题4分,共24分)1.复数z=(2+i)m2-3(1+i)m-2(1-i)(m为实数),则当时,是实数;当 时,是纯虚数;当 时,z对应的点在第四象限。
人教A版高一数学必修第二册第七章《复数》单元练习题卷含答案解析 (39)
高一数学必修第二册第七章《复数》单元练习题卷9(共22题)一、选择题(共10题)1.设z=−3+2i,则在复平面内z对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知a,b∈R,复数a+bi=2i1+i,则a+b=( )A.2B.1C.0D.−23.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+4i,则z1z2=( )A.−25B.25C.7−24i D.−7−24i4.已知复数z=x+yi(x,y∈R)满足∣z−2∣=√3,则yx最大值为( )A.12B.√33C.√32D.√35.复数z=1−i(i为虚数单位)的三角形式为( )A.z=√2(sin45∘−icos45∘)B.z=√2(cos45∘−isin45∘)C.z=√2[cos(−45∘)−isin(−45∘)]D.z=√2[cos(−45∘)+isin(−45∘)]6.已知x∈R,当复数z=√2x+(x−3)i的模最小时,z的虚部为( )A.√2B.2C.−2D.−2i7.设复数z=a+2i(a∈R)的共轭复数为z,且z+z=2,则复数∣z∣2−ai在复平面内对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限8.已知复数z满足(1+√3i)z=i,则z=( )A.√32−i2B.√32+i2C.√34−i4D.√34+i49. 当 z =√2时,z 100+z 50+1 的值是 ( )A . 1B . −1C . iD . −i10. 若 1+√2i 是关于 x 的实系数方程 x 2+bx +c =0 有一个复数根,则 ( ) A . b =2,c =3 B . b =2,c =−1 C . b =−2,c =−1D . b =−2,c =3二、填空题(共6题)11. 已知复数 z =(2a +i )(1−bi ) 的实部为 2,其中 a ,b 为正实数,则 4a+(12)1−b的最小值为 .12. 已知 i 是虚数单位,若复数 z 满足 (z −i )(1−i )=2,则 ∣z ∣= .13. 若 z =1+√3i,则 1+z +z 2+⋯+z 2000的值为 .14. 如果一个复数与它的模的和为 5+√3i ,那么这个复数是 .15. 设复数 2019z−25z−2019=3+4i 满足(i 是虚数单位),则 ∣z ∣= .16. 在复平面内,复数 z 对应的点的坐标是 (2,1),则复数 z = .三、解答题(共6题)17. 已知复数 z 1=a +3i ,z 2=2−ai (a ∈R ,i 是虛数单位).(1) 若 z 1−z 2 在复平面内对应的点落在第一象限,求实数 a 的取值范围; (2) 若虚数 z 1 是实系数一元二次方程 x 2−6x +m =0 的根,求实数 m 的值.18. 已知两个复数集合 A ={z∣ ∣ z −2∣ ≤2},B ={z∣ z =iz 12+b,z 1∈A,b ∈R}.(1) 若 A ∩B =∅,求 b 的取值范围; (2) 若 A ∩B =B ,求 b 的取值范围.19. 计算:(1)(1+2i )2+3(1−i )2+i;(2) 1−i(1+i)2+1+i(1−i)2;(3) 1−√3i(√3+i)2.20.已知复数z1=1+2i,z2=−2+i,z3=−1−2i,它们在复平面内的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.21.复数z1=a+5+(10−a2)i,z2=1−2a+(2a−5)i,其中a∈R.(1) 若a=−2,求z1的模;(2) 若z1+z1是实数,求实数a的值.22.m为何实数时,复数z=(2+i)m2−3(i+1)m−2(1−i)是:(1) 实数;(2) 虚数;(3) 纯虚数.答案一、选择题(共10题) 1. 【答案】C【解析】由 z =−3+2i ,得 z =−3−2i ,则 z 在复平面内对应的点 (−3,−2) 位于第三象限.故选C .【知识点】复数的几何意义2. 【答案】A【解析】由题意得 a +bi =2i (1−i )2=1+i ,所以 a =b =1,a +b =2. 【知识点】复数的乘除运算3. 【答案】A【知识点】复数的几何意义、复数的乘除运算4. 【答案】D【解析】因为 ∣z −2∣=√3,故 ∣(x −2)+yi ∣=√3,即 (x −2)2+y 2=3. 又 yx 的几何意义为 (x,y ) 到 (0,0) 的斜率.故当过原点的直线与 (x −2)2+y 2=3 切于第一象限时 yx 取得最大值. 此时设切线的倾斜角为 θ 则 sinθ=√32,易得 θ=π3.故 yx 的最大值为 tan π3=√3. 故选:D .【知识点】复数的几何意义5. 【答案】D【解析】依题意得 r =√12+(−1)2=√2,复数 z =1−i 对应的点在第四象限,且 cosθ=√22,因此 argz =315∘,结合选项知D 正确. 【知识点】复数的三角形式、复数的乘除运算6. 【答案】C【解析】依题意可得,∣z ∣=√(√2x)2+(x −3)2=√3x 2−6x +9=√3[(x −1)2+2],当 x =1 时,∣z ∣ 取得最小值,此时 z =√2−2i ,所以 z 的虚部为 −2. 【知识点】复数的几何意义7. 【答案】A【解析】 z +z =2a =2⇒a =1,∣z∣2−ai=∣1+2i∣2−i=√5(2+i )5= 2√55+√55i , 所以对应点位于第一象限.【知识点】复数的乘除运算、共轭复数、复数的几何意义8. 【答案】D【解析】因为 (1+√3i)z =i , 所以 z =1+√3i=√3i)(1+√3i)(1−√3i)=√3+i4. 【知识点】复数的乘除运算9. 【答案】D【知识点】复数的乘除运算10. 【答案】D【解析】由题意 1+√2i 是关于 x 的实系数方程 x 2+bx +c =0, 所以 1+2√2i −2+b +√2bi +c =0,即 −1+b +c +(2√2+√2b)i =0, 所以 {−1+b +c =0,2√2+√2b =0,解得 b =−2,c =3. 故选:D .【知识点】复数的乘除运算二、填空题(共6题)11. 【答案】 2√2【解析】复数 z =(2a +i )(1−bi )=2a +b +(1−2ab )i 的实部为 2,其中 a ,b 为正实数,所以 2a +b =2, 所以 b =2−2a. 则 4a+(12)1−b=4a +21−2a =4a +24a ≥2√4a ×24a =2√2,当且仅当 a =14,b =32时取等号.【知识点】复数的乘除运算12. 【答案】 √5【解析】设 z =a +bi ,(a +bi −i )(1−i )=a +bi −i −ai +b −1=a +b −1+(b −a −1)i =2,所以 {a +b −1=2,b −a −1=0, 解得,{a =1,b =2,所以 ∣z ∣=∣1+2i ∣=√5.【知识点】复数的乘除运算13. 【答案】 0【知识点】复数的乘除运算14. 【答案】115+√3i【解析】设这个复数为 x +yi (x,y ∈R ), 则 x +yi +√x 2+y 2=5+√3i , 所以 {x +√x 2+y 2=5,y =√3,所以 {x =115,y =√3,所以 x +yi =115+√3i .【知识点】复数的加减运算、复数的几何意义15. 【答案】 5【解析】设 z =a +bi (a,b ∈R ), 因为2019z−25z−2019=3+4i ,所以 ∣∣2019z−25z−2019∣∣=∣3+4i ∣,即 5√(a −2019)2+b 2=√(2019a −25)2+(2019b )2,25×(a 2−4038a +20192+b 2)=20192a 2−50×2019a +625+20192b 2, 25(a 2+b 2)+25×20192=20192(a 2+b 2)+625,√a 2+b 2=√25×20192−62520192−25=5,即 ∣z ∣=5, 故答案为 5.【知识点】复数的乘除运算16. 【答案】 2−i【知识点】共轭复数、复数的几何意义三、解答题(共6题) 17. 【答案】(1) 由题意得,z 1−z 2=a −2+(3−a )i , 因为 z 1−z 2 在复平面内对应的点落在第一象限, 所以 {a −2>0,3−a >0,解得 a ∈(2,3).(2) 由 z 12−6z 1+m =0 得 (a +3i )2−6(a +3i )+m =0,即 a 2−6a +m −9+(6a −18)i =0, 所以 {a 2−6a +m −9=0,6a −18=0,解得 {a =3,m =18.【知识点】实系数一元二次方程(沪教版)、复数的几何意义18. 【答案】(1) 若 A ∩B =∅,则两圆圆心 d =√(b −2)2+1>2+1,即 b >2+2√2 或 b <2−2√2.(2) 若 A ∩B =B ,则两圆圆心 d =√(b −2)2+1≤1,即 b =2. 【知识点】复数的乘除运算、复数的几何意义19. 【答案】(1)(1+2i )2+3(1−i )2+i=−3+4i+3−3i 2+i=i 2+i =i (2−i )5=15+25i.(2)1−i (1+i )2+1+i(1−i )2=1−i 2i +1+i−2i =1+i −2+−1+i 2=−1.(3)1−√3i (√3+i)2=(√3+i)(−i )(√3+i)2=√3+i=(−i )(√3−i)4=−14−√34i.【知识点】复数的乘除运算20. 【答案】设复数 z 1,z 2,z 3 在复平面内所对应的点分别为 A ,B ,C ,正方形的第四个顶点 D对应的复数为 x +yi (x,y ∈R ),如图.则 AD ⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(x,y )−(1,2)=(x −1,y −2). BC⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =(−1,−2)−(−2,1)=(1,−3). 因为 AD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ , 所以 {x −1=1,y −2=−3, 解得 {x =2,y =−1,故点 D 对应的复数为 2−i . 【知识点】复数的加减运算21. 【答案】(1) 由 a =−2,得 z 1=3+6i , 则 ∣z 1∣=√32+62=√45=3√5, 所以 z 1 的模为 3√5.(2) z 1+z 2=a +5+(10−a 2)i +1−2a +(2a −5)i =(6−a )+[(10−a 2)+(2a −5)]i=(6−a )+(−a 2+2a +5)i. 因为 z 1+z 2 是实数,所以 −a 2+2a +5=0,解得 a =1±√6. 【知识点】复数的加减运算22. 【答案】(1) 因为z =(2+i )m 2−3(i +1)m −2(1−i )=2m 2+m 2i −3mi −3m −2+2i =(2m 2−3m −2)+(m 2−3m +2)i,所以(1)由 m 2−3m +2=0,得 m =1,或 m =2, 即 m =1 或 2 时,z 为实数,(2) 由 m 2−3m +2≠0,得 m ≠1,且 m ≠2, 即 m ≠1,且 m ≠2 时,z 为虚数.(3) 由 {2m 2−3m −2=0,m 2−3m +2≠0,得 m =−12,即m=−1时,z为纯虚数.2【知识点】复数的加减运算。
复数的单元测试
数系的扩充和复数的概念单元测试姓名 座号 班级一、 选择题1. 下列说法正确的个数是( )①实数是复数; ②虚数是复数; ③实数集和虚数集的交集不是空集; ④实数集和虚数集的并集等于复数集; ⑤虚轴上的点表示的数都是虚数; ⑥实轴上的点表示的数都是实数;A 、3B 、4C 、5D 、62. 复数z满足方程1=+-z z z ,则z对应的点的轨迹是 ( )A 、直线B 、圆C 、两点D 、以上都不对3. 对于复数bi a +,下列结论正确的是( )A 、⇔=0a bi a +为纯虚数;B 、⇔=0b bi a +为实数;C 、i b a )1(-+=3+2i ⇔3=a ,3-=bD 、-1的平方等于i4. 下列说法正确的是( )A 、如果两个复数的实部的差和虚部的差都于0,那么这两个复数相等;B 、在复平面内复数bi a +对应的点为),(a bC 、如果复数yi x +是实数,则0=x ,0=y ;D 、复数i +3大于i +25. 2i i +在复平面内表示的点在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6. 设全集I={复数},R={实数},M={纯虚数},则( )A 、I R M =B 、I R MC I = C 、R R M C I =D 、Φ=R C M I7. 以23-i 的虚部为实部,以i i 232+的实部为虚部的复数是( )A 、i 33-B 、i +3C 、i 22+-D 、i 22+8. 若(m 2-3m-4)+(m 2-5m-6)i 是纯虚数,则实数m 的值为 ( )A 、-1B 、4C 、-1或4D 、不存在9. 在复平面内,与复数z=-1-i 的共轭复数对应的点位于 ( )A 、第一象限B 、第二角限C 、第三象限D 、第四象限10. i 21i 2)i 1()i 31(63++-+++-的值是( ) i D i C B A 201、 、、 、 11. 若i 23+是关于x 的方程)R q ,p (0q px x 22∈=++的一个根,则q 的值为( )A 、26B 、13C 、 6 D、512. 221(1)(4),.z m m m m i m R =++++-∈23 2.z i =-则1m =是12z z =的( )条件A 、充分不必要B 、 必要不充分C 、 充要D 、既不充分又不必要二、填空题13. 若x 是实数,y 是纯虚数且满足y i x =+-212,则=x ,=y 。
复数练习题(有答案) 百度文库
【详解】
,所以 ,
故选:B
3.D
【分析】
由复数乘法运算求得,根据共轭复数定义可求得结果.
【详解】
,.
故选:.
解析:D
【分析】
由复数乘法运算求得 ,根据共轭复数定义可求得结果.
【详解】
, .
故选: .
4.B
【分析】
根据复数的几何意义,求两个复数,再计算复数的模.
∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,
∴.
故选:C.
解析:C
【分析】
根据复数的几何意义得 .
【详解】
∵ 它在复平面内对应的点位于虚轴的正半轴上,∴ ,又 ,∴ ,
∴ .
故选:C.
2.B
【分析】
由已知等式,利用复数的运算法则化简复数,即可求其模.
【详解】
,所以,
故选:B
解析:B
【分析】
28.设 , , 为虚数单位,则以下结论正确的是( )
A. 对应的点在第一象限B. 一定不为纯虚数
C. 一定不为实数D. 对应的点在实轴的下方
29.已知复数 ,下列结论正确的是( )
A.“ ”是“ 为纯虚数”的充分不必要条件
B.“ ”是“ 为纯虚数”的必要不充分条件
C.“ ”
故选:B.
解析:B
【分析】
根据复数的几何意义,求两个复数,再计算复数的模.
【详解】
由图象可知 , ,则 ,
故 .
故选:B.
5.B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a的值,最后代入模的公式求模.
【详解】
由
第七章 复数(单元测试)试卷及答案
第七章复数单元测试一、单选题(共8小题)1.已知a∈R,若复数z=a2+2a+ai是纯虚数,则a=()A.0B.2C.−1D.−22.已知复数z=1+3i,i为虚数单位,则|z|=()1−iA.√2B.√5C.√10D.2√53.若复数z=(1+ai)⋅(1−i)的模等于2,其中i为虚数单位,则实数a的值为()A.−1B.0C.1D.±14.设复数z=i,则复数z的共轭复数z̅在复平面内对应的点位于()1+iA.第一象限B.第二象限C.第三象限D.第四象限5.已知z=1+i,则z(z+1)=()A.3+i B.3−i C.1+i D.1−i6.已知复数z=(3−4i)(2−i),则z的虚部为()A.2B.11C.−11D.−11i7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.58.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限10.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D.复数√2z=1+i,则z2=i=i,则下列结论正确的是()11.已知复数z满足z+1zA .复数z 的共轭复数为−12+12iB .z 的虚部为12C .在复平面内z 对应的点在第二象限D .|z |=√2212.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 14.已知i 为虚数单位,则i 2020+i 2021=___________.15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____.四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值.⃑⃑⃑⃑⃑ 对应的复数为1+2i,20.已知复平面内平行四边形ABCD,A点对应的复数为2+i,向量BA⃑⃑⃑⃑⃑ 对应的复数为3−i,求:向量BC(1)点D对应的复数;(2)平行四边形ABCD的面积.−isinθ,其中i为虚数单位,θ∈R.求|z1⋅z2|的21.已知复数z1=3cosθ+isinθ,z2=√24值域.22.已知复数z=3x−(x2−x)i(x∈R)的实部与虚部的差为f(x).(1)若f(x)=8,且x>0,求复数iz的虚部;(2)当f(x)取得最小值时,求复数z的实部.1+2i第七章 复数单元测试一、单选题(共8小题)1.已知a ∈R ,若复数z =a 2+2a +ai 是纯虚数,则a =( ) A .0 B .2 C .−1 D .−2【答案】D【分析】结合复数的概念得到{a 2+2a =0a ≠0,解之即可求出结果.【详解】∵z =a 2+2a +ai 是纯虚数,∴{a 2+2a =0,a ≠0,解得a =−2. 故选:D.2.已知复数z =1+3i 1−i,i 为虚数单位,则|z |=( ) A .√2 B .√5C .√10D .2√5【答案】B【分析】利用复数除法运算进行化简,再求得|z |. 【详解】z =(1+3i )(1+i )(1−i )(1+i )=−2+4i 2=−1+2i ,∴|z |=√(−1)2+22=√5. 故选:B3.若复数z =(1+ai)⋅(1−i)的模等于2,其中i 为虚数单位,则实数a 的值为( ) A .−1 B .0 C .1 D .±1【答案】D【分析】先根据复数的乘法法则得z =(1+a)+(a −1)i ,再根据模的公式列方程求解即可. 【详解】∵z =(1+ai)⋅(1−i)=1−i +ai −ai 2=(1+a)+(a −1)i 则|z|=√(1+a)2+(a −1)2=√2a 2+2=2,解得:a =±1. 故选:D. 4.设复数z =i1+i ,则复数z 的共轭复数z̅在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】先求出z ,再求出z ̅,直接得复数z ̅在复平面内对应的点. 【详解】z =i 1+i=i (1-i )(1+i )(1-i )=12+12i ,则z =12−12i ,∴z ̅在复平面内对应的点为(12,−12),位于第四象限;故选:D.5.已知z =1+i ,则z (z +1)=( ) A .3+i B .3−iC .1+iD .1−i【答案】B【分析】根据复数的四则运算法则计算即可.【详解】z ̅(z +1)=(1−i)(1+i +1)=(1−i)(2+i)=3−i ,故选:B. 6.已知复数z =(3−4i)(2−i),则z 的虚部为( )A.2B.11C.−11D.−11i【答案】C【分析】利用复数乘法求出z,即可确定其虚部.【详解】∵z=(3−4i)(2−i)=2−11i,∴z的虚部−11,故选:C7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.5【答案】A【分析】依据复数的运算法则直接求解即可;【详解】z2−4z=z(z−4)=(2−i)⋅(−2−i)=i2−4=−5,故选:A8.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i【答案】B【分析】根据对应的点的特征直接求出即可.【详解】∵z1=1+2i对应的点为(1,2),z1,z2所对应的点关于虚轴对称,∴z2对应的点为(−1,2),∴z2=−1+2i. 故选:B.二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限【答案】BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】∵复数z=1+i,∴其虚部为1,即A错误;|z|=√12+12=√2,故B正确;复数z的共轭复数z=1−i,故C正确;复数z在复平面内对应的点为(1,1),显然位于第一象限,故D正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.11.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D .复数√2z =1+i ,则z 2=i 【答案】BCD【分析】对A,根据纯虚数的定义,可知a =0,b ≠0,故A 错.根据共轭复数,虚部的定义,可判断B,C.运用复数的四则运算,可判断D. 【详解】复数z =a +bi 为纯虚数的充要条件是a =0,b ≠0,故A 错. 复数z =1−3i 的共轭复数为z =1+3i ,复数z =1−3i 的虚部为−3,故B,C 对. 复数√2z =1+i ,则z =√2,z 2=(√2)2=2i 2=i ,故D 对.故选:BCD 11.已知复数z 满足z+1z=i ,则下列结论正确的是( )A .复数z 的共轭复数为−12+12i B .z 的虚部为12 C .在复平面内z 对应的点在第二象限 D .|z |=√22【答案】AD【分析】先由已知求出复数z ,然后再逐个分析判断即可 【详解】由z+1z=i ,得z +1=zi ,∴z =−11−i =−(1+i)(1−i)(1+i)=−12−12i , ∴复数z 的共轭复数为−12+12i ,复数z 的虚部为−12,复数z 在复平面内对应的点在第三象限,|z |=√(−12)2+(−12)2=√22,∴AD 正确,BC 错误,故选:AD 12.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0 【答案】ABC【分析】结合选项逐个验证,向量的模长运算一般利用平方处理,复数问题一般借助复数的运算来进行.【详解】∵a ⃑⃑⋅a ⃑⃑=|a ⃑⃑|2=1,∴A 正确;设z =a +bi ,则z =a −bi ,∵|z |=1,∴a 2+b 2=1, ∴z ⋅z =(a +bi )(a −bi )=a 2+b 2=1,∴B 正确;∵|a ⃑⃑+b ⃑⃑|=|a ⃑⃑−b ⃑⃑|,∴a ⃑⃑2+2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2=a ⃑⃑2−2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2,即a ⃑⃑⋅b ⃑⃑=0,∴C 正确; ∵|1+i |=|1−i |,然而1⋅i =i ≠0,∴D 不正确. 故选:ABC.三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 【答案】1+2i【分析】根据复数的四则运算进行整理化简即可. 【详解】解:∵z ⋅(1−2i )=|3+4i |=5 ∴z =51−2i=5(1+2i )(1−2i )⋅(1+2i )=1+2i ,故答案为:1+2i.14.已知i 为虚数单位,则i 2020+i 2021=___________. 【答案】1+i【分析】根据i n 的周期性求得正确结论. 【详解】i 2020+i 2021=i 4×505+i 4×505+1=1+i . 故答案为:1+i15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 【答案】-6-8i【分析】由复数的几何意义得出向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ 的坐标,再由向量的运算得出AB ⃑⃑⃑⃑⃑ 的坐标,进而得出其复数.【详解】∵复数4+3i 与-2-5i 分别表示向量OA⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,∴OA ⃑⃑⃑⃑⃑ =(4,3),OB ⃑⃑⃑⃑⃑ =(−2,−5) 又AB ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ −OA ⃑⃑⃑⃑⃑ =(−2,−5)−(4,3)=(−6,−8),∴向量AB ⃑⃑⃑⃑⃑ 表示的复数是-6-8i . 故答案为:-6-8i16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____. 【答案】92【分析】将x =1+2i 代入方程,根据复数的乘法运算法则,得到(−3−m +2n )+(4−2m )i =0,再由复数相等的充要条件得到方程组,解得即可;【详解】解:将x =1+2i 代入方程x2-mx +2n =0,有(1+2i)2-m(1+2i)+2n =0,即1+4i −4−m −2mi +2n =0,即(−3−m +2n )+(4−2m )i =0, 由复数相等的充要条件,得{−3−m +2n =04−2m =0解得{n =52m =2 ,故m +n =2+52=92. 故答案为:92 四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.【答案】(1)1−i ;(2)0;(3)15+25i 【分析】根据复数四则运算法则计算即可. 【详解】(1)原式=5−3i+2+4i 3+4i=7+i3+4i =(7+i )(3−4i )(3+4i )(3−4i )=25−25i 25=1−i .(2)原式=(1+i )6+(1−i )6(1−i )(1+i )=[(1+i )2]3+[(1−i )2]32=(2i )3+(−2i )32=−8i+8i2=0.(3)(1+2i)2+3(1−i)2+i=−3+4i+3−3i2+i=i 2+i=i(2−i)5=15+25i18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部. 【答案】(1)m =±3;(2)8【分析】(1)由题意得m 2−9=0,求解即可;(2)先由题意求得z =16i ,再根据复数的除法法则化简复数z 1+i,由此可求得答案.(1)解:若z 为实数,则m 2−9=0,解得m =±3. (2)解:由题意得{m 2−2m −15=0,m 2−9≠0,解得m =5,∴z =16i ,故z 1+i=16i 1+i=16i (1−i )(1+i )(1−i )=8+8i ,∴z1+i的虚部为8.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值. 【答案】(1)m =−2;(2)4或100【分析】(1)根据复数z >0,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. 【详解】(1)∵z >0,∴z ∈R ,∴m 2+m −2=0,∴m =−2或m =1. ①当m =−2时,z =5>0,符合题意; ②当m =1时,z =−4<0,舍去. 综上可知:m =−2.(2)∵z 是纯虚数,∴{m 2−2m −3=0m 2+m −2≠0,∴m =−1或m =3,∴z =−2i ,或z =10i ,∴z ⋅z ̅=−2i ×2i =4或z ⋅z ̅=10i ×(−10i)=100, ∴z ⋅z ̅=4或100.20.已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,向量BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,求: (1)点D 对应的复数; (2)平行四边形ABCD 的面积. 【答案】(1)5;(2)7【分析】(1)根据复数与向量间的关系运算得BD ⃑⃑⃑⃑⃑ =(4,1),OB ⃑⃑⃑⃑⃑ =(1,−1),则OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(5,0),从而得到其对应的复数; (2)cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=5√2,则sinB =5√2,利用平行四边形面积公式即可得到答案.【详解】(1)∵向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,∴向量BA ⃑⃑⃑⃑⃑ =(1,2), BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,∴向量BC ⃑⃑⃑⃑⃑ =(3,−1), BD ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ =(1,2)+(3,−1)=(4,1), OB⃑⃑⃑⃑⃑ =OA ⃑⃑⃑⃑⃑ −BA ⃑⃑⃑⃑⃑ =(2,1)−(1,2)=(1,−1), ∴OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(1,−1)+(4,1)=(5,0), ∴点D 对应的复数为5 .(2)∵BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =|BA ⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |cosB ,∴cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=√5×√10=5√2, ∵B ∈[0,π],∴sinB =5√2,∴S =|BA⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |sinB =√5×√10×5√2=7.故平行四边形ABCD 面积为7.21.已知复数z 1=3cosθ+isinθ,z 2=√24−isinθ,其中i 为虚数单位,θ∈R .求|z 1⋅z 2|的值域. 【答案】[3√24,5√24] 【分析】由复数模的定义,结合三角函数值域的求法即可求解.【详解】|z 1⋅z 2|=|(3cosθ+isinθ)⋅(√24−isinθ)|=|(3cosθ+isinθ)||(√24−isinθ)| =√(1+8cos 2θ)(18+sin 2θ)=√18+sin 2θ+cos 2θ+8sin 2θcos 2θ=√98+2sin 22θ. ∵sin 22θ∈[0,1],∴ √98+2sin 22θ∈[3√24,5√24],即|z 1⋅z 2|∈[3√24,5√24]. 22.已知复数z =3x −(x 2−x )i(x ∈R)的实部与虚部的差为f(x). (1)若f(x)=8,且x >0,求复数iz 的虚部; (2)当f(x)取得最小值时,求复数z 1+2i的实部.【答案】(1)6;(2)−75【分析】(1)由复数的实部、虚部的运算,可得f(x)=x 2+2x ,再结合题意可得x =2,再确定iz 在复平面内对应的点的坐标即可;(2)先求出函数取最小值时x 对应的值,再结合复数的除法运算即可得解.【详解】(1)由题意可得f(x)=3x +(x 2−x )=x 2+2x , ∵f(x)=8,∴x 2+2x =8, 又x >0,∴x =2,即z =6−2i , 则iz =i(6−2i)=2+6i , ∴复数iz 的虚部为6.(2)∵f(x)=x 2+2x =(x +1)2−1,∴当x =−1时,f(x)取得最小值, 此时,z =−3−2i ,则z 1+2i=−3+2i 1+2i=−(3+2i)(1−2i)5=−75+45i ,∴z1+2i 的实部为−75.。
数学复数单元测试题及答案
数学复数单元测试题及答案一、选择题(每题2分,共10分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. √7D. √292. 复数 \( z = 2 - i \) 的共轭复数是:A. 2 + iB. -2 + iC. -2 - iD. 2 - i3. 如果 \( z = a + bi \) 且 \( \bar{z} = a - bi \),那么复数\( z \) 的实部是:A. aB. bC. a + bD. a - b4. 复数 \( z = 1 + i \) 的辐角主值是:A. 0B. π/4C. π/2D. π5. 以下哪个表达式是正确的:A. \( (1+i)^2 = 1 - 1i \)B. \( (1+i)^2 = 2i \)C. \( (1+i)^2 = 0 \)D. \( (1+i)^2 = 2 \)二、填空题(每空3分,共15分)6. 复数 \( z = -3 + 4i \) 的模是 ______ 。
7. 如果复数 \( z \) 的模为 5,且 \( \text{Im}(z) = 4 \),那么\( \text{Re}(z) \) 是 ______ 。
8. 复数 \( z = 5 - 12i \) 的辐角主值是 ______ 弧度。
9. 复数 \( z = 3 + 4i \) 与 \( w = 2 - i \) 的和是 ______ 。
10. 复数 \( z = 2 + 3i \) 除以 \( w = 1 - i \) 的结果是______ 。
三、简答题(每题5分,共20分)11. 请解释什么是复数的模,并给出计算公式。
12. 什么是复数的辐角主值?它有哪些性质?13. 如何将复数 \( z = a + bi \) 转换为极坐标形式 \( r(\cos \theta + i\sin \theta) \)?14. 复数的共轭有哪些应用?四、计算题(每题10分,共20分)15. 计算复数 \( z_1 = 2 + 3i \) 和 \( z_2 = 1 - 4i \) 的乘积\( z_1 \cdot z_2 \)。
《复数》全章习题
《复数》全章习题 学习目标 1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算,并认识复数加减法的几何意义.知识点一 复数的四则运算若两个复数z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ).(1)加法:z 1+z 2=(a 1+a 2)+(b 1+b 2)i ;(2)减法:z 1-z 2=(a 1-a 2)+(b 1-b 2)i ;(3)乘法:z 1·z 2=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ;(4)除法:z 1z 2=a 1a 2+b 1b 2a 22+b 22+a 2b 1-a 1b 2a 22+b 22i(z 2≠0); (5)实数四则运算的交换律、结合律、分配律都适合于复数的情况;(6)特殊复数的运算:i n (n 为正整数)的周期性运算;(1±i)2=±2i ;若ω=-12±32i ,则ω3=1,1+ω+ω2=0. 知识点二 共轭复数与复数的模(1)若z =a +b i ,则z =a -b i ,z +z 为实数,z -z 为纯虚数(b ≠0).(2)复数z =a +b i 的模,|z |=a 2+b 2,且z ·z =|z |2=a 2+b 2.知识点三 复数加、减法的几何意义(1)复数加法的几何意义若复数z 1、z 2对应的向量OZ 1→、OZ 2→不共线,则复数z 1+z 2是以OZ 1→、OZ 2→为两邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→、OZ 2→的终点,并指向Z 1的向量所对应的复数.类型一 复数的四则运算例1 (1)计算:-23+i 1+23i +⎝ ⎛⎭⎪⎫21+i 2 012+(4-8i )2-(-4+8i )211-7i; (2)已知z =1+i ,求z 2-3z +6z +1的模. 解 (1)原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21+i 2 1 006+(4-8i )2-(4-8i )211-7i=i +(-i)1 006+0=-1+i.(2)z 2-3z +6z +1=(1+i )2-3(1+i )+62+i =3-i 2+i=1-i , ∴z 2-3z +6z +1的模为 2. 反思与感悟 (1)复数的除法运算是复数运算中的难点,如果遇到(a +b i)÷(c +d i)的形式,首先应该写成分式的形式,然后再分母实数化.(2)虚数单位i 的周期性:①i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n =1(n ∈N *);②i n +i n +1+i n +2+i n +3=0(n ∈N *). 跟踪训练1 计算:1i (2+2i)5+(11+i )4+(1+i 1-i)7. 解 1i (2+2i)5+(11+i )4+(1+i 1-i)7 =-i·(2)5·[(1+i)2]2·(1+i)+[1(1+i )2]2+i 7 =162(-1+i)-14-i =-(162+14)+(162-1)i. 类型二 复数的几何意义例2 设复数z 满足|z |=1,求|z -(3+4i)|的最值.解 由复数的几何意义,知|z |=1表示复数z 在复平面内对应的点在以原点为圆心,1为半径的圆上,因而|z -(3+4i)|的几何意义是求此圆上的点到点C (3,4)的距离的最大值与最小值. 如图,易知|z -(3+4i)|max =|AC |=|OC |+1=32+42+1=6,|z -(3+4i)|min =|BC |=|OC |-1=4.反思与感悟 复数和复平面内的点,以原点为起点的向量一一对应;复数加减法符合向量运算的平行四边形法则和三角形法则:|z 1-z 2|表示复数z 1,z 2对应的两点Z 1,Z 2之间的距离. 跟踪训练2 已知点集D ={z ||z +1+3i|=1,z ∈C },试求|z |的最小值和最大值. 解 点集D 的图象为以点C (-1, -3)为圆心,1为半径的圆,圆上任一点P 对应的复数为z ,则|OP →|=|z |.由图知,当OP 过圆心C (-1,-3)时,与圆交于点A 、B ,则|z |的最小值|OA |=|OC |-1=(-1)2+(-3)2-1=2-1=1,即|z |min =1;|z |的最大值|OB |=|OC |+1=2+1=3,即|z |max =3.类型三 复数相等 例3 已知复数z 满足z +z ·z =1-2i 4,求复数z . 解 设z =x +y i(x ,y ∈R ),∵z +z ·z =1-2i 4, ∴x +y i +x 2+y 2=1-2i 4, 即⎩⎨⎧ x +x 2+y 2=14,y =-12,解得⎩⎪⎨⎪⎧ x =0,y =-12或⎩⎪⎨⎪⎧x =-1,y =-12.∴z =-12i 或z =-1-12i.反思与感悟 两个复数相等是解决复数问题的重要工具.“复数相等”可以得到两个实数等式,为应用方程提供了条件,常用于确定系数,解复数方程等问题.跟踪训练3 设复数z 满足z 2=3+4i(i 是虚数单位),则|z |=________.答案 5 解析 设z =a +b i ,∴z 2=(a 2-b 2)+2ab i.又∵z 2=3+4i ,∴a 2-b 2=3,2ab =4,解得a 2=4,b 2=1,∴|z |=a 2+b 2= 5.1.复数z =2+a i 1+i(a ∈R )在复平面内对应的点在虚轴上,则a 等于( ) A .2B .-1C .1D .-2答案 D解析 z =2+a i 1+i =(2+a i )(1-i )(1+i )(1-i )=(2+a )+(a -2)i 2在复平面内对应的点(2+a 2,a -22)在虚轴上,所以2+a =0,即a =-2. 2.已知复数z =1+2i 1-i,则1+z +z 2+…+z 2 014为( ) A .1+iB .1-iC .iD .1答案 C3.△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的( )A .内心B .垂心C .重心D .外心 答案 D 解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.4.若|z -1|=2,则|z -3i -1|的最小值为________.答案 1解析 因为|z -1|=2,所以复数z 在复平面内对应的点在以(1,0)为圆心,2为半径的圆上.|z -3i -1|表示复数z 在复平面内对应的点到点(1,3)的距离,因此,距离的最小值1.5.设复数z 和它的共轭复数z 满足4z +2z =33+i ,求复数z .解 设z =a +b i(a ,b ∈R ).因为4z +2z =33+i , 所以2z +(2z +2z )=33+i.2z +2z =2(a +b i)+2(a -b i)=4a ,整体代入上式,得2z +4a =33+i.所以z =33-4a 2+i 2. 根据复数相等的充要条件,得⎩⎨⎧ a =33-4a 2,b =12,解得⎩⎨⎧ a =32,b =12,所以z =32+i 2.1.复数的四则运算按照运算法则和运算律进行运算,其中除法运算的关键是将分母实数化.2.复数的几何意义是数形结合思想在复数中的一大体现.3.利用两个复数相等可以解决求参数值(或取值范围)和复数方程等问题. 课时作业 一、选择题1.复数z 对应的点在第二象限,它的模为3,实部是-5,则z 是( )A .-5+2iB .-5-2i C.5+2iD.5-2i答案 B解析 设复数z 的虚部为b ,则z =-5+b i ,b >0,∵3=5+b 2,∴b =2,∴z =-5+2i ,则z 的共轭复数是-5-2i ,故选B.2.复数1-2+i +11-2i的虚部是( ) A.15i B.15 C .-15i D .-15答案 B解析 1-2+i +11-2i=-2-i 5+1+2i 5=-15+15i.故选B. 3.若z =1+2i ,则4i z z -1等于( ) A .1B .-1C .iD .-i 答案 C解析 z =1+2i ,则4i z z -1=4i (1+2i )(1-2i )-1=4i 5-1=i. 4.若复数z =cosπ12+isin π12(i 是虚数单位),复数z 2的实部,虚部分别为a ,b ,则下列结论正确的是( )A .ab <0B .a 2+b 2≠1 C.a b = 3 D.b a = 3 答案 C解析 ∵z =cosπ12+isin π12, ∴z 2=(cos π12+isin π12)2 =cos 2π12-sin 2π12+2cos π12sin π12i =cos π6+isin π6=32+12i , 则a =32,b =12,则a b=3,故选C. 5.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则向量Z 1Z 2—→对应的复数是( )A .-10+8iB .10-8iC .-8+10iD .8+(-10i)答案 A解析 向量OZ 1→对应的复数是5-4i ,可得Z 1(5,-4);向量OZ 2→对应的复数是-5+4i ,可得Z 2(-5,4);向量Z 1Z 2—→对应的点是(-10,8),即向量Z 1Z 2—→对应的复数是-10+8i.故选A.6.已知复数z 的模为2,则|z -i|的最大值为( )A .1B .2 C. 5 D .3 答案 D 解析 ∵|z |=2,则复数z 对应的轨迹是以圆心为原点,半径为2的圆,而|z -i|表示的是圆上一点到点(0,1)的距离,∴其最大值为圆上的点(0,-2)到点(0,1)的距离,最大的距离为3.二、填空题7.i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________.答案 1解析 因为(1+i)z =2,所以z =21+i =1-i ,所以其实部为1. 8.如果z 1=-2-3i ,z 2=3-2i (2+i )2,则z 1z 2=________. 答案 4-3i解析 ∵z 1=-2-3i ,z 2=3-2i (2+i )2, ∴z 1z 2=(-2-3i )(2+i )23-2i =-i (3-2i )(2+i )23-2i=-i(2+i)2=-(3+4i)i =4-3i.9.若复数1+i 1-i+b (b ∈R )所对应的点在直线x +y =1上,则b 的值为________. 答案 0解析 复数1+i 1-i +b =(1+i )2(1-i )(1+i )+b =2i 2+b =b +i. ∵所对应的点(b,1)在直线x +y =1上,∴b +1=1,解得b =0.10.如图,在复平面内,点A 对应的复数为z 1,若z 2z 1=i(i 为虚数单位),则z 2=________.答案 -2-i解析 由图可知,z 1=-1+2i ,∴由z 2z 1=i ,得z 2=z 1i =(-1+2i)i =-2-i. 三、解答题11.已知复数z 1=(1+b i)(2+i),z 2=3+(1-a )i (a ,b ∈R ,i 为虚数单位).(1)若z 1=z 2,求实数a ,b 的值;(2)若b =1,a =0,求|z 1+z 21-2i|. 解 (1)复数z 1=(1+b i)(2+i)=2-b +(2b +1)i ,z 2=3+(1-a )i ,由z 1=z 2,可得⎩⎪⎨⎪⎧ 2-b =3,2b +1=1-a ,解得⎩⎪⎨⎪⎧a =2,b =-1, 所以实数a =2,b =-1.(2)若b =1,a =0,则z 1=1+3i ,z 2=3+i.|z 1+z21-2i |=|1+3i +3-i||1-2i|=42+221+(-2)2=2. 12.已知复数z 1满足z 1(1-i)=2(i 为虚数单位),若复数z 2满足z 1+z 2是纯虚数,z 1·z 2是实数,求复数z 2.解 ∵z 1(1-i)=2,∴z 1=21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i. 设z 2=a +b i(a ,b ∈R ),∵z 1+z 2=1+a +(b +1)i 是纯虚数,∴⎩⎪⎨⎪⎧1+a =0,1+b ≠0, ∴a =-1,b ≠-1. ∴z 1·z 2=(1+i)(-1+b i)=(-1-b )+(b -1)i ,又z 1·z 2是实数,则b -1=0,∴b =1,∴z 2=-1+i.13.求虚数z ,使z +9z∈R ,且|z -3|=3. 解 设z =a +b i(a ,b ∈R 且b ≠0),则z +9z =a +b i +9a +b i =(a +9a a 2+b 2)+(b -9b a 2+b2)i. 由z +9z ∈R ,得b -9b a 2+b 2=0, 又b ≠0,故a 2+b 2=9.① 又由|z -3|=3,得(a -3)2+b 2=3.②由①②,得⎩⎨⎧a =32,b =±332,即z =32+332i 或z =32-332i. 四、探究与拓展14.若a 是复数z 1=(1-i)(3+i)的虚部,b 是复数z 2=1+i 2-i 的实部,则ab =________. 答案 -25解析 z 1=(1-i)(3+i)=4-2i ,由a 是复数z 1=(1-i)(3+i)的虚部,得a =-2.z 2=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=1+3i 5=15+35i , 由b 是复数z 2=1+i 2-i的实部,得b =15. 则ab =-2×15=-25. 15.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i. (1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.解 (1)AB →对应的复数为z B -z A =(2+i)-1=1+i ,BC →对应的复数为z C -z B =(-1+2i)-(2+i)=-3+i , AC →对应的复数为z C -z A =(-1+2i)-1=-2+2i.(2)由(1)知|AB →|=|1+i|=2,|BC →|=|-3+i|=10,|AC →|=|-2+2i|=22,∴|AB →|2+|AC →|2=|BC →|2.故△ABC 为直角三角形.(3)S △ABC =12|AB →|·|AC →|=12×2×22=2.。
复数单元测试题+答案
一、复数选择题1.复数11z i=-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 2.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .2 3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知i 为虚数单位,复数12i 1i z +=-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若复数1z i =-,则1z z=-( )A B .2 C .D .4 8.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+ 10.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i11.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z 的实部为,则z 为( )A .1BC .2D .412.( )A .i -B .iC .iD .i -13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .814.已知i 为虚数单位,则43i i =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 15.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1-18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>25.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >26.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 28.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .530.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C .解析:C【分析】根据复数的几何意义得,a b .【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =,∴1a b +=.故选:C .3.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 4.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚部1>0∴复数Z 在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.C【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果.【详解】因为,所以,所以复数在复平面上的对应点位于第三象限,故选:C.解析:C【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果.【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+, 所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限,故选:C. 7.A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A将1z i =-代入1z z-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由1z i =-,得2111z i i i i z i i---===---,则11z i z=--==-,故选:A. 8.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】 利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B9.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为313i z i ⋅=-, 所以()13133i z i i i i-==-=+-, 复数z 的共扼复数是3z i =-,故选:A10.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 11.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B.12.B【分析】首先,再利用复数的除法运算,计算结果. 【详解】复数.故选:B解析:B【分析】首先3i i=-,再利用复数的除法运算,计算结果.【详解】133i ii+====.故选:B13.D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】,故则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】()312++=+a i i bi,故332a i bi-+=+则32,38a b a b-==∴+=故选:D14.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】对43ii-的分子分母同乘以3i+,再化简整理即可求解.【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C15.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.25.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.26.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
第七章 复数 单元测试卷(解析版)
第七章 复数单元测试卷一、单选题1.(辽宁省葫芦岛市2021-2022学年高三上学期期末数学试题)已知i 为虚数单位,则复数()i 12i z =-的虚部是( ) A .i B .1 C .2 D .2i【答案】B 【分析】化简复数2i z =+即得解. 【详解】解:由题得()i i 122i z =-=+, 所以复数的虚部为1. 故选:B2.(山东省德州市2021-2022学年高三上学期期末数学试题)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】根据复数的模长公式以及四则运算得出55z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】 221i 22|2i |2(1)5i i +=+=-=+-=,55(1i)55z +=== 则复数z 在复平面内所对应的点坐标为55⎝⎭,在第一象限.故选:A3.(山东省淄博市2021-2022学年高三上学期期末数学试题)已知复数z 是纯虚数,11i z+-是实数,则z =( )A .-iB .iC .-2iD .2i【答案】B 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B4.(2022·广东茂名·一模)已知,a b 为实数,且2ii 1ib a +=++(i 为虚数单位),则i a b +=( ) A .34i + B .12i + C .32i -- D .32i +【答案】A 【分析】利用复数的乘除运算化简,再利用复数相等求得,a b ,进而得解. 【详解】()()2i 1i 2i 22i i 22i 1i 2222b b b b b b +-+-+++-===++ 由题意知222=12b a b +⎧=⎪⎪⎨-⎪⎪⎩,解得34a b =⎧⎨=⎩,所以i 34i a b +=+故选:A5.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C.6.(2022·内蒙古包头·高二期末(文))对于非零实数a ,b ,以下四个式子均恒成立,对于非零复数a ,b ,下列式子仍然恒成立的是( ) A .||||||ab a b = B .10a a+≠ C .()20a b +≥D .22a a =【答案】A 【分析】对于选项A :结合复数的乘法和模长公式即可判断;选项B :计算1a a+,然后根据复数运算结果举出反例即可;选项CD :复数的平方可能为虚部不为0的复数,而虚部不为0的复数与实数既不能比较大小也不相等. 【详解】不妨令11i a x y =+,22i b x y =+,选项A :112212121221(i)(i)()i ab x y x y x x y y x y x y =++=-++,从而222222121212211122||()()||||ab x x y y x y x y x y x y a b =-++++,故A 正确; 选项B :111111222211111111i ()i i x y a x y x y a x y x y x y +=++=++-+++, 当10x =,11y =时,10a a+=,故B 错误; 因为复数的平方可能还是虚部不为0的复数,而虚部不为0的复数不能与实数比较大小且不等于实数,故CD 错误. 故选:A7.(2022·湖北·武钢三中高三阶段练习)已知202120221i i 1i z +⎛⎫=+ ⎪-⎝⎭,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【分析】先利用复数的除法和乘方化简复数z ,再利用复数的几何意义求解. 【详解】21i 12i i i 1i 2+++==-,且i 的乘方运算是以4为周期的运算 所以202120222021202221i i 1i 1i i i i i z +⎛⎫=+++ ===-⎝-⎪+⎭,所以复数z 所对应的点()1,1-,在第二象限. 故选:B8.(2022·全国·高一)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10 C .11 D .无数【答案】C 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4k Z ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C二、多选题9.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【分析】若i z a b =+ ,则i z a b =-,22z z a b ==+,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC10.(2022·江西·高三阶段练习(理))已知复数z 满足()12i 5z -=(其中i 为虚数单位),则下列选项正确的是( ) A .5z =B .复数z 的共轭复数为12i z =+C .复数z 在复平面表示的点位于第一象限D .复数z 的虚部为2 【答案】CD 【分析】利用复数代数形式的乘除运算求出复数z ,然后逐一核对四个选项即可得出答案. 【详解】解:因为()12i 5z -=,所以()()()512i 512i 12i 12i 12i z +===+--+, 所以145z +A 错误; 复数z 的共轭复数为12i z =-,故B 错误;复数z 在复平面表示的点的坐标为()1,2,位于第一象限,故C 正确; 复数z 的虚部为2,故D 正确. 故选:CD.11.(2021·福建福州·高三期中)复数132z =-,其中i 为虚数单位,则下列结论正确的有( )A .1z z ⋅=B .210z z ++=C .21z z= D .2021132z = 【答案】ABC 【分析】根据共轭复数的概念,复数的运算法则,逐一求解验证即可. 【详解】解:因为132z =-,所以132z =-,对于A : 2131313i 12244z z ⎛⎫⎛⎫⋅=-+-=-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,故A 正确; 对于B :22201131313133i 222414z z ⎛⎫⎛⎫--=+= ⎪ ⎪ ⎭⎛⎫++⎪ ⎪⎝⎝+=++⎝⎭⎭ ⎪ ⎪,故B 正确; 对于C :2131132213213i i44z -===---+,2221313313i 2442z ⎛⎫-=+=- ⎪ ⎪⎝=⎭, 所以21z z=,即选项C 正确;对于D :132z =-+,2132z -=,2231313131222z ⎛⎫⎛⎫⎫⎛⎫-⋅-+=--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=⎭⎝,4z z =,所以20212132z z -==,故D 错误.故选:ABC .12.(2021·重庆·万州纯阳中学校高二阶段练习)欧拉公式i cos isin x e x x =+是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正确的是( ) A .复数2i e 对应的点位于第二象限 B .i 2e π为纯虚数C i 3ix +12D .i 6e π的共轭复数为132-【答案】ABC【分析】利用欧拉公式把选项A ,B ,D 化成复数的代数形式即可计算判断;利用欧拉公式把选项C 的分子化成复数的代数形式,再进行除法运算判断即得. 【详解】对于A ,2i cos 2isin 2e =+,因22ππ<<,即cos20,sin20<>,复数2i e 对应的点位于第二象限,A 正确;对于B ,i2cos isini 22e πππ=+=,i 2e π为纯虚数,B 正确;对于C i (cos isin )(3i)3cos sin 3sin cos 3i 3i(3i)(3i)x x x x x x x+-+-+++-,于是得i 223cos sin 3sin cos 1()()4423ix x x x x +-++,C 正确; 对于D ,6i31cos isini 662e πππ=+=31i 2,D 不正确. 故选:ABC三、填空题13.(2021·天津市第四中学高三阶段练习)已知方程()20R x x m m ++=∈有两个虚根α,β,若3αβ-=,则m 的值是___________. 【答案】52【分析】由已知结合实系数一元二次方程两个虚根互为共轭复数,设出α的代数形式,代入计算作答. 【详解】因α,β是方程()20R x x m m ++=∈有两个虚根,设i(,R)a b a b α=+∈,则i a b β=-,由3αβ-=得:|i (i)||2|3a b a b b +--==,解得3||2b =, 又2(i)(i)0a b a b m ++++=,即22()(2)i 0a b a m ab b -++++=,因R m ∈,于是得:22020a b a m ab b ⎧-++=⎨+=⎩,解得12a =-,52m =,所以m 的值是52.故答案为:5214.(2021·上海长宁·一模)在复平面xoy 内,复数12z ,z 所对应的点分别为12Z Z 、,对于下列四个式子:(1)2211 z z =;(2)1212z z z z ⋅=⋅;(3)2211OZ OZ =;(4)1212OZ OZ OZ OZ ⋅=⋅,其中恒成立的是____________(写出所有恒成立式子的序号) 【答案】(2)(3) 【分析】结合复数运算对四个式子进行分析,由此确定正确答案. 【详解】221111i,2i,2z z z =+==,所以(1)错误.()()121,1,1,1Z Z -,12120,2OZ OZ OZ OZ ⋅=⋅=,所以(4)错误.设()()1212i,i,,,,z a b z c d Z a b Z c d =+=+,()()()2212i z z ac bd ad bc ac bd ad bc ⋅=-++=-++22222222a c b d a d b c =+++22222222222212z z a b c d a c b d a d b c ⋅+++++2)正确.222211OZ OZ a b ==+,所以(3)正确. 故答案为:(2)(3)15.(2021·浙江·模拟预测)已知平面直角坐标系xOy 中向量的旋转和复数有关,对于任意向量x →=(a ,b ),对应复数z =a +ib ,向量x 逆时针旋转一个角度θ,得到复数'(i )(cos isin )cos sin i(sin cos )z a b a b a b θθθθθθ=++=-++,于是对应向量'(cos sin ,sin cos )x a b a b θθθθ→=-+.这就是向量的旋转公式.根据此公式,已知正三角形ABC 的两个顶点坐标是A (1,2),B (3,4),则C 的坐标是___________.(任写一个即可) 【答案】(23,33)-(答案不唯一) 【分析】首先设出C 的坐标,然后分别写出AB →,AC →,利用向量的旋转公式即可求解. 【详解】不妨设C 的坐标为00(,)x y ,且AC →是AB →逆时针旋转60得到, 因为A (1,2),B (3,4),所以(2,2)AB →=,00(1,2)AC x y →=--, 从而AB →对应的复数为22i z =+,AC →对应的复数为'(22i)(cos 60isin 60)13(13)i z =++=-,所以00(1,2)(13,13)AC x y →=--=+,解得023x =033y = 故C 的坐标是(23,33). 故答案为:(23,33).16.(2021·福建·厦门市湖滨中学高三期中)若复数z 满足32i 1z -+=,则62i z --的最小值为__________. 【答案】4 【分析】根据复数模的几何意义得出复数z 对应的点Z 的轨迹是以()3,2C -为圆心,半径为1的圆,然后再根据62i z --的几何意义求最小值即可.【详解】因为复数z 满足32i 1z -+=,则复数z 对应的点Z 的轨迹是以()3,2C -为圆心,半径为1的圆, 又62i z --表示复数z 对应的点Z 与点()6,2P 之间的距离, 所以62i z --的最小值为()()22163221514PC -=-++=-=.故答案为:4.四、解答题17.(2021·贵州遵义·高三阶段练习)已知复数i()z b b =∈R ,31iz +-是实数. (1)求复数z ;(2)若复数2()8m z m --在复平面内所表示的点在第二象限,求实数m 的取值范围. 【答案】 (1)3i z =-(2)(0,9)【分析】 (1)先将i z b =代入31iz +-化简,再由其虚部为零可求出b 的值,从而可求出复数z , (2)先对2()8m z m --化简,再由题意可得2890,60,m m m ⎧--<⎨>⎩从而可求得结果 (1) 因为i z b =,所以33i (3i)(1i)3(3)i 1i 1i 22z b b b b ++++-++===--, 因为31iz +-是实数,所以30b +=,解得3b =-. 故3i z =-.(2)因为3i z =-,所以()222()8(3i)8896i m z m m m m m m --=+-=--+.因为复数2()8m z m --所表示的点在第二象限,所以2890,60,m m m ⎧--<⎨>⎩解得09m <<,即实数m 的取值范围是(0,9).18.(2021·全国·高一课时练习)求复数1i +,1i --2,2i -的辐角主值.【答案】π4,5π4,0,3π2 【分析】计算12r =11cos 2sin 2θθ⎧=⎪⎪⎨⎪⎪⎩结合102πθ≤<,得到辐角主值,同理可得其他答案. 【详解】设这4个复数的模分别为1r ,2r ,3r ,4r ,辐角主值分别为1θ,2θ,3θ,4θ.因为221112r =+11cos 2sin 2θθ⎧=⎪⎪⎨⎪⎪⎩,又102πθ≤<,故1π4θ=. 同理,可以求得:5π5π1i 2cos isin 44⎫--=+⎪⎭, )22cos0isin 0+,3π3π2i 2cos isin 22⎫-=+⎪⎭, 故4个复数的辐角主值分别为π4,5π4,0,3π2. 19.(2021·西藏·拉萨那曲高级中学高二期中(理))已知复数11i z =+,23i z =-.(1)求21z z ; (2)若4i()z a a R =+∈满足2z z +为纯虚数,求||z .【答案】(1)12i -(2)5【分析】(1)根据复数代数形式的运算法则即可求出;(2)根据纯虚数的概念即可求出参数a ,再根据复数模的计算公式即可求出.(1)213i (3i)(1i)33i i 112i 1i (1i)(1i)2z z ------====-++-. (2)因为2(3)3i z z a +=++为纯虚数,∴30a +=,∴3a =-.即34i z =-+,22||(3)45z =-+=.20.(2021·全国·高一课时练习)在复数范围内分解因式:(1)28x +;(2)223x x -+;(3)2321x x -+.【答案】(1)28(22i)(22i)x x x +=+-(2)223(12i)(12i)x x x x -+=--- (3)212123213((x x x x -+-+=) 【分析】利用完全平方公式平方差公式将所给的表达式分解因式. (1)2228=8i (2i)(2i)x x x x +-=+- (2)()22223=12i (12i)(12i)x x x x x -+--=-- (3)∵ 22222112321=3)3[()i ]3339x x x x x -+-+=--( ∴ 212123213[()33x x x x -+=-- ∴ 212123213((x x x x -+-+=) 21.(2021·湖北·高一期末)已知12i +是关于x 的方程20(,)x px q p q R ++=∈的一个根,其中i 为虚数单位. (1)求,p q 的值;(2)记复数i z p q =+,求复数1iz +的模. 【答案】(1)2,5p q =-=(258【分析】(1)由题知()()212i 12i 0p q ++++=,即()()342i 0p q p +-++=,再根据复数相等求解即可; (2)由(1)得25i z =-+,故37i 1i 2z +=+,再求模即可. (1)解:知12i +是关于x 的方程20(,)x px q p q R ++=∈的一个根, 所以()()212i 12i 0p q ++++=,即()()342i 0p q p +-++=, 所以30420p q p +-=⎧⎨+=⎩,解得2,5p q =-=. 所以2,5p q =-=(2)解:由(1)得复数25i z =-+, 所以()()()()25i 1i 25i 37i 1i 1i 1i 1i 2z -+--++===+++- 所以复数1i z +9495844+= 22.(2021·全国·高一课时练习)已知复数()31i 1i z =-. (1)求1arg z 及1z ;(2)当复数z 满足1z =,求1z z -的最大值.【答案】(1)17arg 4z π=,122z = (2)221【分析】(1)化简复数为代数形式后,再化为三角形式,即可求解. (2)z 设为三角形式,和复数1z 的代数形式,共同代入1z z -,化简后可求最大值. (1)解:()31i 1i 22i z =-=-,将1z 化为三角形式,得1772cos isin 44z ππ⎫⎪=⎭+, ∴17arg 4z π=,122z = (2) 解:由于复数z 满足1z =,设cos isin z αα=+,则()()1cos 2sin 2i z z αα-=-++, ()()2221cos 2sin 2924z z πααα⎛⎫-=-++=+- ⎪⎝⎭,当sin 14πα⎛⎫-= ⎪⎝⎭时,21z z -取得最大值942+ 所以1z z -的最大值为221.。
复数选择题专项训练单元测试附解析
复数选择题专项训练单元测试附解析一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( )A .1i +B .1i -+C .1i -D .1i -- 答案:D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i ii i --⨯--+--∴=====--++--.故选:D.2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i iz i i i i ----====--,所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D. 3.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1 C .2 D .3答案:A【分析】利用复数的模长公式结合可求得的值.【详解】,由已知条件可得,解得.故选:A.解析:A【分析】利用复数的模长公式结合0a >可求得a 的值.【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.4.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 答案:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y 答案:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-. 6.若复数1z i =-,则1z z =-( )A B .2C .D .4 答案:A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A【分析】将1z i =-代入1z z-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i i i z i i---===---,则11z i z =--=- 故选:A.7.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 答案:C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C. 解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C. 8.若复数z 满足()322i z i i-+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 答案:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 答案:D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-,故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.10.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3 C .3i D .i -答案:B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部.【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3故选:B11.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i + 答案:A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A12.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限 答案:A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.13.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.14.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上 答案:A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .15.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i ++=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得31x y ⎧=±⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x +=,舍去;故1x y ⎧=⎪⎨⎪=⎩z i =+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.二、复数多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 答案:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =答案:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称答案:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z =C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z = B .若复数2z =,则m =C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 答案:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-+,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m =B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-,()()221420412z z ++=+--+=,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确. 故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.27.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.28.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.29.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.30.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.。
人教版高中数学必修第二册第二单元《复数》测试卷(含答案解析)
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C .z 对应的点在实轴的下方D .z 一定为实数2.下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)3.如果复数z 满足|||i 2|i z z ++-=,那么|1|z i ++的最小值是( ) A .1 B .2 C .2D .54.已知复数1322z i =--,则z z +=( ) A .132i -- B .132i -+ C .132i + D .132i - 5.已知复数,是z 的共轭复数,则=A .B .C .1D .26.已知复数2a ii+-是纯虚数(i 是虚数单位),则实数a 等于 A .-2B .2C .12D .-17.若11z z -=+,则复数z 对应的点在( ) A .实轴上 B .虚轴上C .第一象限D .第二象限8.复数z 满足(1i)2i z -=,则z =A .1i -B .1i -+C .1i --D .1i +9.设3iz i+=,i 是虚数单位,则z 的虚部为( ) A .1 B .-1C .3D .-310.复数21iz i+=-,i 是虚数单位,则下列结论正确的是 A .5z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限11.已知复数21aiz i+=-是纯虚数,则实数a 等于( )AB .2CD12.已知复数z 在复平面内对应的点的坐标为(1,2)-,则复数(1)z i -的虚部为( )A .3-B .3C .3i -D .3i二、填空题13.复数2018|)|z i i i =+(i 为虚数单位),则||z =________.14.设1x ,2x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.15.在复平面内,复数(3)a z =-+表示的点在直线y x =上,则z =_______. 16.如果虚数z 满足38z =,那么3222z z z +++的值是________. 17.复数(1sin )(cos sin )z θθθ=++-i 是实数,[]0,2θπ∈则θ=______. 18.已知复数z 满足等式1i 1z --=,则3z -的最大值为______ 19.若复数214tz t i+=-+在复平面内对应的点位于第四象限,则实数t 的取值范围是____. 20.定义运算a c ad bc b d=-,复数z 满足i 1i 1iz =+,z 为z 的共轭复数,则z =___________.三、解答题21.已知复数1212,34z i z i =-=+,i 为虚数单位.(1)若复数12z az +在复平面上对应的点在第四象限,求实数a 的取值范围; (2)若12z z z =,求z 的共轭复数z . 22.已知复数z 满足:||13z i z =+-,求22(1)(34)2i i z++的值.23.已知复数z=(m ﹣1)+(2m+1)i (m ∈R ) (1)若复数z 为纯虚数,求实数m 的值;(2)若复数z 在复平面内的对应点位于第二象限,求 |z| 的最小值.24.设复数z 的共轭复数为z ,且23z z i +=+,sin cos i ωθθ=-,复数z ω-对应复平面的向量OM ,求z 的值和2OM 的取值范围.25.(1)已知1(其中i 为虚数单位)是关于x 的方程1x ba x+=的一个根,求实数a ,b 的值;(2)从0,2,4,6中任取2个数字,从1,3,5,7中任取1个数字,一共可以组成多少个没有重复数字的三位数?26.若z C ∈,i 为虚数单位,且|22|1z i +-=,求|22|z i --的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定. 【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误;z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C 【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.A解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.3.A解析:A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用点到直线的距离公式求解即可. 【详解】:∵|z +i|+|z -i|=2∴点Z 到点A (0,-1)与到点B (0,1)的距离之和为2. ∴点Z 的轨迹为线段AB .而|z +1+i|表示为点Z 到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A . 【点睛】本题只要弄清楚复数模的几何意义,就能够得到解答.4.C解析:C 【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得1322z z i +=+,从而求得结果. 详解:根据132z i =--,可得132z i =-+,且13144z =+=,所以有1313122z z i i +=-++=+,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.5.A解析:A 【分析】 利用复数除法化简,再求出共轭复数,进而可得结果.【详解】,,,故答案为:A.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6.C解析:C 【解析】2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 7.B解析:B 【分析】首先分析题目,设z x yi =+,将其代入11z z -=+进行化简可得0x =,从而可得结论. 【详解】设z x yi =+,则11x yi x yi +-=++, 即()()222211x y x y -+=++, 解得0x =,所以z yi =,它对应的点在虚轴上. 故选B. 【点睛】本题主要考查复数的模以及复数的几何意义,属于中档题.8.B解析:B 【解析】因为()1i 2i z -=,所以()2i111iz i i i ==+=-+-,选B. 9.D解析:D 【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D. 10.D解析:D 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可【详解】由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -. 11.B解析:B 【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a+≠,即可求解. 【详解】 由题意,复数()()()()2122211122ai i ai a az i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a+≠,解得2a =, 所以实数a 等于2. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由复数的几何意义,得到12z i =-+,再根据复数的运算法则,化简复数为(1)13z i i -=+,结合复数的概念,即可求解.【详解】由题意,复数z 在复平面内对应的点的坐标为(1,2)-, 可得12z i =-+, 又由(1)(12)(1)13z i i i i -=-+-=+,所以复数(1)z i -的虚部为3. 故选:B.13.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题解析:1【分析】由复数模的求法及虚数单位i的性质化简求值.【详解】解:由题得2|1|1211z i=+==-=,||1z∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i的性质,是基础题.14.-2【分析】设(s)则则利用是实数可得于是取则代入化简即可得出【详解】设(s)则则∵是实数∴∴∴∴∴取则∴则故答案为:【点睛】本题考查了实系数一元二次方程的虚根成对定理考查了复数的概念考查了复数的性解析:-2【分析】设1ix s t=+(s,t∈R,0t≠).则2ix s t=-.则122x x s+=,2212x x s t=+.利用212xx是实数,可得223s t=.于是122x x s+=,2212x x s t=+.2112210x xx x⎛⎫++=⎪⎝⎭,取12xxω=,则210ωω++=,31ω=.代入化简即可得出.【详解】设1ix s t=+(s,t∈R,0t≠).则2ix s t=-.则122x x s+=,2212x x s t=+.∵()223223122222i33iis tx s st s t tx s t s t s t+--==+-++是实数,∴2330s t t-=,∴223s t=.∴122x x s+=,2212x x s t=+.∴()22221212121242s x x x x x x x x=+=++=,∴122110x xx x++=,取12x x ω=, 则210ωω++=, ∴31ω=. 则2481632248163211111122222211x x x x x x S x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭220ωωωω=++++2=-.故答案为:2-. 【点睛】本题考查了实系数一元二次方程的虚根成对定理,考查了复数的概念,考查了复数的性质210ωω++=,属于中档题.15.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题 解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果. 【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-. 故答案为:66i - 【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题.16.6【分析】利用立方差公式由得再将所求式子进行等价变形为最后利用整体代入计算求值【详解】由得又z 为虚数得∴故答案为:6【点睛】本题考查立方差公式的应用复数的四则运算考查转化与化归思想考查逻辑推理能力和解析:6 【分析】利用立方差公式,由38z =,得()2(2)240z z z -++=,再将所求式子进行等价变形为()323222242z z z z z z +++=+++-,最后利用整体代入计算求值.【详解】由38z =,得()2(2)240z z z -++=. 又z 为虚数,得2240z z ++=.∴()3232222428026z z z z z z +++=+++-=+-=.故答案为:6 【点睛】本题考查立方差公式的应用、复数的四则运算,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体代入法的灵活运用.17.或【解析】【分析】由复数的虚部为0求得再由的范围得答案【详解】是实数即又或故答案为:或【点睛】本题主要考查了复数的代数表示法实部虚部的概念利用三角函数求角属于中档题解析:4π或54π. 【解析】 【分析】由复数z 的虚部为0求得tan θ,再由θ的范围得答案. 【详解】(1sin )(cos sin )z i θθθ=++-是实数,cos sin 0θθ∴-=,即tan 1θ=, 又[0,2],θπ∈4πθ∴=或54π, 故答案为:4π或54π 【点睛】本题主要考查了复数的代数表示法,实部、虚部的概念,利用三角函数求角,属于中档题.18.【分析】由题意画出图形数形结合得答案【详解】|z ﹣1﹣i|=1的几何意义为复平面内动点到定点(11)距离为1的点的轨迹如图:|z ﹣3|可以看作圆上的点到点(30)的距离由图可知|z ﹣3|的最大值为故 解析:51+【分析】由题意画出图形,数形结合得答案. 【详解】|z ﹣1﹣i |=1的几何意义为复平面内动点到定点(1,1)距离为1的点的轨迹, 如图:|z ﹣3|可以看作圆上的点到点(3,0)的距离.由图可知,|z ﹣3|11=.1. 【点睛】本题考查复数模的求法,考查数形结合的解题思想方法,是基础题.19.【分析】直接由复数代数形式的乘除运算化简复数再由复数在复平面内对应的点位于第四象限列出不等式组求解即可得结论【详解】在复平面内对应的点位于第四象限解得实数的取值范围是故答案为【点睛】复数是高考中的必 解析:()1,2-【分析】直接由复数代数形式的乘除运算化简复数z ,再由复数214tz t i+=-+在复平面内对应的点位于第四象限列出不等式组,求解即可得结论. 【详解】()()2222i 114441i i i t t z t t t t ⎡⎤-++=-+=-+=--+⎢⎥-⎣⎦, 在复平面内对应的点位于第四象限,24010t t ⎧->∴⎨--<⎩,解得12t -<<, ∴实数t 的取值范围是()1,2-,故答案为()1,2-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.20.2+i 【解析】根据题意得到=故得到z=2-i =2+i 故答案为2+i解析:2+i 【解析】 根据题意得到1z i zi i i=-=1i +,故得到z=2-i ,z =2+i.故答案为2+i.三、解答题21.(1)11(,)32-;(2)1255z i =-+. 【分析】(1)化简复数12(13)(42)z az a a i +=++-,再由复数12z az +在复平面上对应的点在第四象限,列出不等式组,即可求解;(2)由复数的除法运算法则,化简得1255z i =--,再根据共轭复数的概念,即可求解. 【详解】(1)由题意,复数1212,34z i z i =-=+,则1212(34)(13)(42)z az i a i a a i +=-++=++-因为复数12z az +在复平面上对应的点在第四象限, 所以130420a a +>⎧⎨-<⎩,解得1132a -<<, 即实数a 的取值范围11(,)32-.(2)由()()()()12123412510123434342555i i z i i z i z i i i -----=====--++-,所以1255z i =-+. 【点睛】与复数的几何意义相关问题的一般步骤:(1)先根据复数的运算法则,将复数化为标准的代数形式;(2)把复数问题转化为复平面内的点之间的关系,依据复数(,)a bi a b R +∈与复平面上的点(,)a b 一一对应,列出相应的关系求解. 22.34i +【分析】先根据复数相等解得z ,再根据复数运算法则求解【详解】设,(,)z a bi a b R =+∈,而||13z i z =+-130i a bi -++=则410{,43330a a z ib b =--=⇒=-+=-= 所以2222(1)(34)2(34)2(34)3422(43)2(34)i i i i i i i z i i i ++++===+-++ 【点睛】本题考查复数相等以及复数运算法则,考查基本分析求解能力,属基础题.23.(1)m=1;(2. 【解析】分析:(1)利用纯虚数的定义即可得出.(2)利用复数模的计算公式、几何意义即可得出.详解:(1)∵z=(m ﹣1)+(2m+1)i (m ∈R )为纯虚数,∴m ﹣1=0且2m+1≠0∴m=1(2)z 在复平面内的对应点为(m ﹣1,2m+1)) 由题意:,∴. 即实数m 的取值范围是.而|z|=()()22121m m -++==, 当时,=. 点睛:本题考查了纯虚数的定义、复数模的计算公式、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.24.1z i =+,322,322⎡-+⎣【详解】 分析:设(),z a bi a b R =+∈则z a bi =-,由23z z i +=+,根据复数相等的充要条件列方程求得1z i =+,由复数减法运算法则以及复数的几何意义,结合辅助角公式求得232sin 4OM πθ⎛⎫=-- ⎪⎝⎭,利用三角函数的有界性可得2OM 的取值范围. 详解:设(),z a bi a b R =+∈则z a bi =-,由23z z i +=+,根据复数相等的充要条件解得11a b =⎧⎨=⎩,所以1z i =+. ()()1sin 1cos z i ωθθ-=-++()()22211OM sin cos θθ=-++ ()32sin cos θθ=--322sin 4πθ⎛⎫=-- ⎪⎝⎭ 因为1sin 14πθ⎛⎫-≤-≤ ⎪⎝⎭,所以322322sin 4πθ⎛⎫-≤-- ⎪⎝⎭ 322≤+即2322322OM -≤≤+故所求1z i =+,2OM 的取值范围是322,322⎡-+⎣.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.25.(1)2a b ==;(2)120.【分析】(1)根据题意,将1x =-代入方程1x b a x +=1=,变形可得1()14b i a ++-=,由复数相等的定义分析可得答案; (2)根据题意,分2种情况讨论:①选出的3个数字中含有0,②选出的3个数字中不含0,求出每种情况三位数的数目,由加法原理计算可得答案.【详解】(1)根据题意,1是方程1x b a x +=1=,变形可得:1()14b i a ++=,则有1140b a ⎧+=⎪⎪=, 解可得2a b ==;(2)根据题意,分2种情况讨论:①选出的3个数字中含有0,此时有2111342248C C C A =种情况,即有48个没有重复数字的三位数;②选出的3个数字中不含0,此时有21334372C C A =种情况,即有72个没有重复数字的三位数;故可以组成4872120+=个没有重复数字的三位数.【点睛】本题主要考查复数的除法运算、复数相等以及排列组合的应用,属于基础题. 26.3【分析】根据|22|1z i +-=,结合复数减法的模的几何意义,判断出z 对应点的轨迹,再根据复数减法的模的几何意义,结合圆的几何性质,求得|22|z i --的最小值.【详解】由|22|1z i +-=得|(22)|1z i --+=,因此复数z 对应的点Z 在以022z i =-+对应的点0Z 为圆心,1为半径的圆上,如图所示.设|22|y z i =--,则y 是Z 点到22i +对应的点A 的距离.又04AZ =,∴由图知min 0||13y AZ =-=.【点睛】本小题主要考查复数减法的模的几何意义,考查数形结合的数学思想方法,属于基础题.。
复数基础测试题题库完整
一、选择题(题型注释)1.若复数z 的实部为1,且||2z =,则复数z 的虚部是( )A2.设i 是虚数单位,复数103i-的虚部为( ) A .-i B .-l C .i D .13.已知i 为虚数单位,a R ∈,如果复数21ai i--是实数,则a 的值为( ) A 、4- B 、2 C 、2- D 、44.已知i 为虚数单位,复数1z i =+,z 为其共轭复数,则22z zz-等于 ( ) A 、1i -- B 、1i - C 、1i -+ D 、1i +5.已知i 是虚数单位,若复数(1i)(2i)a ++是纯虚数,则实数a 等于( )A .2B .12C .12-D .2- 6.设z=1–i (i 是虚数单位),则复数2z+i 2的虚部是A .1B .-1C .iD .-i 7.设a 是实数,若复数211ii a -+-(i 为虚数单位)在复平面对应的点在直线0=+y x 上,则a 的值为( A.1- B.0 C.1 D.28.已知复数z满足()1z =(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知i 是虚数单位,=( A.i - B. C.1- D.10.设(2)34i z i +=+,则z =( A. 2i - B. 2i + C. 12i - D. 12i +11.设(2)34i z i +=+,则z =( A. 2i - B. 2i + C. 12i - D. 12i +12.已知a是实数,是纯虚数,则a 等于( ) A. 1 B.13.已知a 是实数,则a 等于()A.1 B.1- C.14.已知(12)43i z i +=+,则zz =A .543i -B .543i +C .534i +D .534i -15.复数21ii+(i 是虚数单位)的虚部为( )A .1- B .i C .1 D .2 16.在复平面,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 17.在复平面,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限18.在复平面,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值围是 ( ).A .(0,3)B .(-∞,-2)C .(-2,0)D .(3,4)19.设a ∈R ,且(a +i)2i 为正实数,则a 等于 A .2 B .1 C .0 D .-120.i 是虚数单位,321i i -=( A .1+i B .-1+i C .1-i D .-1-i21.复数212i i+-的共轭复数为 ( ).A .-35i B.35i C .-i D .i22.复数z =22ii-+在复平面对应的点所在象限是 ( ).A .第一象限B .第二象限C .第三象限D .第四象限 23.512ii-=( ).A .2-i B .1-2i C .-2+i D .-1+2i24.设a 是实数,且112a ii +++是实数,则a 等于 ( ) A.12 B .1 C.32D .2 25.i 是虚数单位,33ii+=( ). A.13412i - B. 13412i + C. 1326i + D.1326i -26.以2i -5的虚部为实部,以5i +2i 2的实部为虚部的新复数是( )A .2-2iB .2+IC .-5+5i D. 5+5i 27.在复平面,复数2ii+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限28.设复数z 满足z ·i =3+4i (i 是虚数单位),则复数z 的模为 .29.已知虚数z 满足等式i z z 612+=-,则z=30.在复平面,复数2i 1i z =+(为虚数单位)的共轭复数对应的点位于第__________象限.31.在复平面,复数(2-i)2对应的点位于________.32.设复数z 满足|z|=|z -1|=1,则复数z 的实部为________.33.若复数z =1+i(i 为虚数单位),z 是z 的共轭复数,则z 2+z 2的虚部为________.34.设z =(2-i)2(i 为虚数单位),则复数z 的模为________. 35.设(1+2i)z =3-4i(i 为虚数单位),则|z|=________.36.已知i 是虚数单位,则2234i i(+)-=________.37.已知z =(a -i)(1+i)(a ∈R ,i 为虚数单位),若复数z 在复平面对应的点在实轴上,则a =________.38.复数z =2+i 的共轭复数为________.39.在复平面复数21ii-对应点的坐标为________,复数的模为________. 40.若复数z =1-2i ,则z z +z =________.41.复数131ii--=________.42.设复数z 满足i(z +1)=-3+2i ,则z 的实部为________.43.m 取何实数时,复数z =263m m m --++(m 2-2m -15)i.(1)是实数;(2)是虚数;(3)是纯虚数.44.已知复数z =22761m m m -+-+(m 2-5m -6)i(m ∈R),试数m 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数. 45.若z 为复数,且21zz +∈R ,求复数z 满足的条件. 46.已知复数z 1=3和z 2=-5+5i 对应的向量分别为1OZ =a ,2OZ =b ,求向量a 与b 的夹角.47.解关于x 的方程 ①x 2+2x +3=0;②x 2+6x +13=0. 48.计算下列各式:(1)(2-i)(-1+5i)(3-4i)+2i ;(2) 36(13)2(1)12i ii i-+-+-++. 49.实数m 取什么值时,复数z =m +1+(m -1)i 是:(1)实数;(2)虚数;(3)纯虚数.参考答案1.B 【解析】试题分析: 设1(,)z yi x y R =+∈,则由||2z =, 得21 4.y y +==即复数z 的虚部是B .考点:复数的概念,复数的模. 2.D 【解析】试题分析:因为1010(3)33i 10i i +==+-,所以,复数103i -的虚部为1, 选D .考点:复数的概念,复数的四则运算. 3.D 【解析】试题分析:21a i i--i a a i a i )22(22)1(2-+-=+-=是实数,则022=-a,故4=a 选D 考点:复数的运算。
人教版高中数学必修第二册第二单元《复数》测试题(含答案解析)(1)
2.D
解析:D
【分析】
根据 z100
z50
1的结构特点,先由 z
1i 2
,得到 z2
1 i2
2
i ,再代入
z100 z50 1求解.
【详解】
因为 z 1 i 2
所以 z2 1 i2 i,
2
所以 z50 i25 i, z100 i50 i2 1 ,
所 z100 z50 1 i ,
(1)实数 m 取什么数时,z 是实数; (2)实数 m 取什么数时,z 是纯虚数;
(3)实数 m 取什么数时,z 对应的点在直线 x y 7 0 上.
24.已知复数 z1 a i , z2 1 i , a R .
(Ⅰ)当 a 1时,求 z1 z2 的值;
(Ⅱ)若 z1 z2 是纯虚数,求 a 的值;
根据复数与复平面内的点一一对应,
可得向量 OA (2, 3) , OB (3, 2) .
由向量减法的坐标运算可得向量 BA OA OB (5, 5) ,
根据复向量、复数与复平面内的点一一对应,
可得向量 BA 对应的复数是 5 5i ,故选 B.
【点睛】 解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实 现复数、复平面内的点、向量之间的转化.
除运算法则,计算可得所求和. 【详解】 设 S i 2i2 3i3 2020i2020 , iS i2 2i3 3i4 2020i2021 , 上面两式相减可得, (1 i)S i i2 i3 i2020 2020i2021
i(1 i2020 ) 2020i2021 i(1 1) 2020i 2020i ,
求解.
【详解】
由题意,复数
z
复数综合练习题 百度文库(1)
一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+C .1i -D .1i +2.设复数1iz i=+,则z 的虚部是( ) A .12B .12iC .12-D .12i -3.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( ) A .2 B .1 C .0D .1-4.已知复数5i5i 2iz =+-,则z =( )A B .C .D .5.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.设()2211z i i=+++,则||z =( )A B .1C .2D7.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.复数2ii -的实部与虚部之和为( ) A .35 B .15- C .15D .3510.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3C .3iD .i -11.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.若复数z 满足213z z i -=+,则z =( )A .1i +B .1i -C .1i -+D .1i --13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( )A .3B .5C .6D .814.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +二、多选题16.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限17.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-18.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-19.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -20.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =21.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =22.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥23.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >24.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++=26.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数 27.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:.解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .3.D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】 ,它为纯虚数, 则,解得. 故选:D .解析:D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .4.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.5.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为 , 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==--1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.6.D 【分析】利用复数的乘除法运算法则将化简,然后求解. 【详解】 因为, 所以,则. 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D 【分析】利用复数的乘除法运算法则将z 化简,然后求解||z . 【详解】 因为()()()()2221211*********i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z = 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.7.B 【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果. 【详解】 设复数, 由得, 所以,解得,因为时,不能满足,舍去; 故,所以,其对应的解析:B 【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果. 【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故1x y ⎧=⎪⎨⎪=⎩3z i =-+,其对应的点3⎛⎫- ⎪ ⎪⎝⎭位于第二象限, 故选:B.8.C 【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论. 【详解】 由题意,,∴,对应点,在第三象限. 故选:C .解析:C 【分析】由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论. 【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限.故选:C .9.C【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C 【点睛】易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .10.B 【分析】化简,利用定义可得的虚部. 【详解】则的虚部等于 故选:B解析:B 【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3 故选:B11.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .12.A 【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.解析:A 【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩,1z i ∴=+. 故选:A. 13.D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D14.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+-1i =-故选:C15.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i+==-, 故选:A 二、多选题16.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.19.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 20.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.21.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题22.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 23.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.24.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
复数基础练习题百度文库
一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1i z +=( )A .3155i + B .1355i + C .113i + D .13i +2.在复平面内,复数534ii -(i 为虚数单位)对应的点的坐标为( )A .()3,4B .()4,3-C .43,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭3.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1-4.已知复数5i5i 2i z =+-,则z =( )A B .C .D .5.若复数z 满足421iz i +=+,则z =( )A .13i +B .13i -C .3i +D .3i -6.若(1)2z i i -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.设2iz i +=,则||z =( )A B C .2 D .58.若复数2i1i a -+(a ∈R )为纯虚数,则1i a -=( )A B C .3 D .59.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10 D 10.已知2021(2)i z i -=,则复平面内与z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限11.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i -12.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( )A .1-B .12-C .13D .113.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i + 14.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限C .第三象限D .第四象限 15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限21.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i = 22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限 23.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z 24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线25.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =26.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 27.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数28.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z ==D .i -的平方等于129.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 30.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】利用复数的除法法则可化简,即可得解.【详解】,.故选:B.解析:B【分析】 利用复数的除法法则可化简1i z+,即可得解. 【详解】 2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B. 2.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i-的表示,最后选出答案即可. 【详解】因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D3.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .4.B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得,所以.故选:B.解析:B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项.【详解】由题,得()()()5i 2+i 5i 5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.5.C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.,故.故选:C.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.6.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】 本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.7.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .【分析】利用复数的除法运算先求出z,再求出模即可.【详解】()22212i iiz ii i++===-,∴z==故选:B.8.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a的值,最后代入模的公式求模.【详解】由()()()()()()21i2221112a i a a ia ii i i----+-==++-复数2i1ia-+(a∈R)为纯虚数,则2222aa-⎧=⎪⎪⎨+⎪≠⎪⎩,则2a=所以112ai i-=-=故选:B9.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.10.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C 【分析】由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论. 【详解】由题意2021(2)i z ii -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C .11.D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】 由复数的四则运算求出z ,即可写出其共轭复数z .2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,故选:D12.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B13.A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A 14.A由复数的除法求出,然后得出,由复数的几何意义得结果.【详解】由已知,,对应点为,在第一象限,故选:A.解析:A【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.15.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题22.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.23.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 24.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.26.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围27.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或13.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.若复数()()24z i i =--,则z =( ) A .76i --B .76-+iC .76i -D .76i +6.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③8.若复数()41i 34iz +=+,则z =( )A .45B .35C .25D .59.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i +=10.3( )A .i -B .iC .iD .i -11.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5 BC .2D 12.复数21ii+的虚部为( )A .1-B .1C .iD .i -13.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.设复数z 满足(1)2i z -=,则z =( )A .1 BCD .215.题目文件丢失!二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限19.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件23.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i24.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>25.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >26.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 27.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =28.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数29.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =30.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C 【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可 【详解】 解析:因为()()22m m m iz m m mi i--==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.3.C【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.4.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,. 故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .6.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 7.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.8.A 【分析】首先化简复数,再计算求模. 【详解】 , . 故选:A解析:A 【分析】首先化简复数z ,再计算求模. 【详解】()()()2242112434343434i i i z i i i i⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==.故选:A9.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论.因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B10.B 【分析】首先,再利用复数的除法运算,计算结果. 【详解】 复数. 故选:B解析:B 【分析】首先3i i =-,再利用复数的除法运算,计算结果. 【详解】3133i ii +====. 故选:B11.B 【分析】首先求出,再根据复数的模的公式计算可得; 【详解】 解:因为,所以 所以. 故选:B.解析:B 【分析】首先求出3z i +,再根据复数的模的公式计算可得; 【详解】解:因为12z i =-,所以31231z ii i i +=-+=+ 所以3z i +==故选:B .12.B 【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果. 【详解】 ,故虚部为1.解析:B 【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果. 【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴. 故选:B .解析:B 【分析】由复数除法求得z ,再由模的运算求得模. 【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z ==故选:B .15.无二、多选题 16.AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果. 【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0ab ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AC 【分析】根据复数的运算及复数的概念即可求解. 【详解】 因为复数, 所以z 的虚部为1,, 故AC 错误,BD 正确.解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD. 19.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.24.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.25.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.26.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.27.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.28.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +,故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.29.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.30.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.。