2013年普通高等学校夏季招生全国统一考试数学文史类(北京卷)讲解
2013年北京高考文数参考答案详解
2013年普通高等学校招生全国统一考试北京(文数)参考答案一、选择题1.B 2.D 3.C 4.A 5.B 6.C 7.C 8.B1. 【答案】B.【解析】本题考查集合基本运算,So easy ,不好意思多解释。
如果选错,建议自裁。
2. 【答案】D.【解析】本题考查不等式的简单性质,可以根据不等式的关系,或者用代特值的方法搞定。
比如我们不妨设0,1,0=-==c b a ,分别代入四个选项,排除A 、B 、C,故选择D3. 【答案】C.【解析】本题考查奇偶性和单调性。
函数为偶函数,排除A 、B 、D,所以选择C 4. 【答案】A.【解析】本题考查简单的复数运算以及几何意义,i i i 21)2(+=-,选择A 5. 【答案】B.【解析】本题考查解三角形的正弦定理。
在ABC ∆中,5,3==b a ,31sin =A ,Bb A a sin sin =,代入即可。
6. 【答案】C.【解析】本题考查算法初步。
S=1,i=0;S=32,i=1,S=2113,i=2跳出循环。
7. 【答案】C.【解析】本题考查圆锥曲线的基本性质和常用逻辑用语的基本关系。
双曲线1,21,1,,1222222>>+==+===m m ac e m c m b a 解得8. 【答案】B.【解析】本题考查立体几何中的距离问题。
结合图形,分类讨论即可。
本题特点为麻烦而不困难,就不多解释了。
二、填空题9.【答案】=p 2;x=-1.【解析】本题考查抛物线的基本性质,px y 22=的焦点坐标为)0,1(,=p 2;准线方程为x=-1。
10.【答案】3.【解析】本题考查立体几何中的三视图求体积问题,其中最容易出问题的有两个地方:其一是看不出原几何体的形状,此题题干明确指出几何体为四棱锥,故不存在此问题;其二找不准边的关系,尤其是左视图的边的长度问题。
此题简单也无此陷阱,所以直接利用边长代入体积公式即可。
31333131=⨯⨯⨯==Sh V 11.【答案】2,122n +-【解析】本题考查等比数列的基础知识,可以利用方程思想将已知全部转化为首项和公比的关系,代入公式即可,不多解释了。
2013年普通高等学校招生全国统一考试数学文试题(北京卷)
2013年普通高等学校招生全国统一考试数学文试题(北京卷)绝密★启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上答无效。
考试结束后,将本卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2)设a,b,c∈R,且a<b,则( )(A)ac>bc (B)<(C)a2>b2(D)a3>b3(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A)y= (B)y=e-3(C)y=x2+1 (D)y=lg∣x∣(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(5)在△ABC中,a=3,b=5,sinA= ,则sinB (A)(B)(C)(D)1(6)执行如图所示的程序框图,输出的S值为(A)12(B)33(C)21610(D)987积为__________.(11)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项sn=_____.(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.(13)函数f(x)=的值域为_________.(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP =λAB+μAC (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
2013年北京市高考数学试卷(文科)答案与解析
2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.,但是B根据函数,函数满足=5.(5分)(2013•北京)在△ABC中,a=3,b=5,sinA=,则sinB=()BsinA=,=.6.(5分)(2013•北京)执行如图所示的程序框图,输出的S值为()的值为7.(5分)(2013•北京)双曲线的离心率大于的充分必要条件是()Bb=.利用离心率建立解:双曲线,说明b=,等价于∴双曲线的离心率大于的充分必要条件是8.(5分)(2013•北京)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()=,=到各顶点的距离的不同取值有,,二、填空题共6小题,每小题5分,共30分.9.(5分)(2013•北京)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1.=1=110.(5分)(2013•北京)某四棱锥的三视图如图所示,该四棱锥的体积为3.所以体积11.(5分)(2013•北京)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=2;前n 项和S n=2n+1﹣2.项和公式即可得出,∴12.(5分)(2013•北京)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.=故答案为:13.(5分)(2013•北京)函数的值域为(﹣∞,2).所以函数14.(5分)(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.,根据,,,,解之得坐标满足不等式组|CF|=,d==×三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•北京)已知函数f(x)=.(Ⅰ)求f(x)的最小正周期及最大值;(Ⅱ)若α∈(,π),且f(α)=,求α的值.(Ⅱ)通过,且T=,函数的最大值为:,,,又∵16.(13分)(2013•北京)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)P=17.(13分)(2013•北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)(2013•北京)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.,19.(14分)(2013•北京)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.,(与椭圆的交点,从而解得y=代入椭圆方程得±,)AC=2与椭圆(20.(14分)(2013•北京)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.从而可证时,。
2013年北京高考(文科)数学试卷
1 y x A.
题
2 π ,π ,且 f(α)= ,求 α 的值. 2 2
D.y=lg |x| D.第四象限 ).
答
1 ,则 sin B=( 3
D.1 6.执行如图所示的程序框图,输出的 S 值为( ). 请
1 A. 5
5 B. 9
5 C. 3
勿
A.1 内
2
2 B. 3
13 C. 21
线
B.m≥1 C.m>1 D.m>2 8.如图,在正方体 ABCD-A1B1C1D1 中,P 为对角线 BD1 的三等分点,P 到各顶点 的距离的不同取值有( ). A.3 个 B.4 个 C.5 个 D.6 个
装
订
第二部分(非选择题
二、填空题共 6 小题,每小题 5 分,共 30 分.
2
共 110 分)
2013 北京(文科)数学 第 1 页 共 4 页 2013 北京(文科)数学 第2页 共4页
2013 年普通高等学校夏季招生全国统一考试数学文史类(北京卷)
2013 年普通高等学校夏季招生全国统一考试数学文史类(北京卷)
17.(本小题共 14 分)如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD,CD=2AB,平面 PAD⊥平面 ABCD,PA ⊥AD.E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
610 D. 987
).
y2 =1 的离心率大于 2 的充分必要条件是( 7.双曲线 x - m
1 A.m> 2
16.(本小题共 13 分)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图,空气质量指数小于 100 表示空 气质量优良,空气质量指数大于 200 表示空气重度污染.某人随机选择 3 月 1 日至 3 月 13 日中的某一天 到达该市,并停留 2 天.
北京11-13年文科数学高考真题及答案
14.(2013北京,文14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足 =λ +μ (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
解析:集合A中的元素仅有-1,0,1三个数,集合B中元素为大于等于-1且小于1的数,故集合A,B的公共元素为-1,0,故选B.
2.
答案:D
解析:A选项中若c小于等于0则不成立,B选项中若a为正数b为负数则不成立,C选项中若a,b均为负数则不成立,故选D.
3.
答案:C
解析:A选项为奇函数,B选项为非奇非偶函数,D选项虽为偶函数但在(0,+∞)上是增函数,故选C.
4.
答案:A
解析:i(2-i)=1+2i,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.
5.
答案:B
解析:根据正弦定理, ,则sinB= sinA= ,故选B.
6.
答案:C
解析:i=0时,向下运行,将 赋值给S,i增加1变成1,经判断执行否,然后将 赋值给S,i增加1变成2,经判断执行是,然后输出 ,故选C.
A.m> B.m≥1C.m>1 D.m>2
8.(2013北京,文8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有().
A.3个B.4个C.5个D.6个
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.(2013北京,文9)若抛物线y2=2px的焦点坐标为(1,0),则p=__________;准线方程为__________.
2013年全国普通高等学校招生统一考试文科数学(北京卷带解析)试题
2013年全国普通高等学校招生统一考试文科(北京卷)数学试题1、【题文】已知集合,,则()A.B.C.D.2、【题文】设,且,则()A.C.D.B.3、【题文】下列函数中,既是偶函数又在区间上单调递减的是()D.A.B.C.4、【题文】在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5、【题文】在中,,,,则()D.A.B.C.6、【题文】执行如图所示的程序框图,输出的值为()A.B.C.D.7、【题文】双曲线的离心率大于的充分必要条件是()B.C.D.A.8、【题文】如图,在正方体中,为对角线的三等分点,到各顶点的距离的不同取值有()A.个B.个C.个D.个9、【题文】若抛物线的焦点坐标为,则____;准线方程为_____.10、【题文】某四棱锥的三视图如图所示,该四棱锥的体积为__________.11、【题文】若等比数列满足,,则公比__________;前项_____.12、【题文】设为不等式组表示的平面区域,区域上的点与点之间的距离的最小值为_ _.13、【题文】函数的值域为_________.14、【题文】已知点,,,若平面区域由所有满足(,)的点组成,则的面积为__________.15、【题文】已知函数(Ⅰ)求的最小正周期及最大值;(Ⅱ)若,且,求的值.16、【题文】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17、【题文】如图,在四棱锥中,,,,平面底面,.和分别是和的中点,求证:(Ⅰ)底面;(Ⅱ)平面;(Ⅲ)平面平面.18、【题文】已知函数.(Ⅰ)若曲线在点处与直线相切,求与的值.(Ⅱ)若曲线与直线有两个不同的交点,求的取值范围.19、【题文】直线与椭圆相交于,两点,为坐标原点.(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;(Ⅱ)当点在上且不是的顶点时,证明:四边形不可能为菱形.20、【题文】给定数列.对,该数列前项的最大值记为,后项的最小值记为,.(1)设数列为,,,,写出,,的值;(2)设是公比大于的等比数列,且.证明:是等比数列.(3)设是公差大于的等差数列,且,证明:是等差数列.。
2013年高考文科数学北京卷word解析版
2013年高考文科数学北京卷word解析版D则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫⎪⎝⎭,则|PB |=3a =,|PD |a =,|1PD |=99=,|1PC |=|1PA |a =,|PC |=|PA |3a =,|1PB |3=,故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.(2013北京,文9)若抛物线y 2=2px 的焦点坐标为(1,0),则p =__________;准线方程为__________.答案:2 x =-1解析:根据抛物线定义12p=,∴p =2,又准线方程为x =2p-=-1,故填2,x =-1.10.(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V=13×3×3×1=3,故该棱锥的体积为3.11.(2013北京,文11)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和S n=__________.答案:22n+1-2解析:根据等比数列的性质知a3+a5=q(a2+a4),∴q=2,又a2+a4=a1q+a1q3,故求得a1=2,∴S n=21212n(-)-=2n+1-2.12.(2013北京,文12)设D为不等式组0,20,30xx yx y≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为__________.解析:区域D表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =05=13.(2013北京,文13)函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________.答案:(-∞,2) 解析:当x ≥1时,1122loglog 1x ≤,即12logx ≤,当x <1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2). 14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.答案:3解析:AP =λAB +μAC ,AB =(2,1),AC =(1,2). 设P (x ,y ),则AP =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3), |A1B 1|==, 两直线距离d ==,∴S =|A 1B 1|·d =3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(2013北京,文15)(本小题共13分)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求f (x )的最小正周期及最大值;(2)若α∈π,π2⎛⎫⎪⎝⎭,且f (α)=2,求α的值. 解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )π44x ⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为π2,最大值为2.(2)因为f (α)=2,所以πsin 414α⎛⎫+= ⎪⎝⎭.因为α∈π,π2⎛⎫ ⎪⎝⎭,所以4α+π4∈9π17π,44⎛⎫ ⎪⎝⎭. 所以π5π442α+=.故9π16α=. 16.(2013北京,文16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,文17)(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD ⊥平面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.18.(2013北京,文18)(本小题共13分)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解:由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b =f(0)=1.(2)令f′(x)=0,得x=0.f(x)与f′(所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.(2013北京,文19)(本小题共14分)直线y =kx +m (m ≠0)与椭圆W :24x+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A 1,2t ⎛⎫ ⎪⎝⎭,代入椭圆方程得21144t +=,即t =. 所以|AC |=(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由2244,x y y kx m ⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2), 则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为14k -.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,文20)(本小题共13分)给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列的前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n -1是等差数列.解:(1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q >1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且1iidq d +=(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)设d 为d 1,d 2,…,d n -1的公差. 对1≤i ≤n -2,因为B i ≤B i +1,d >0, 所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1}, 所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列. 因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1, 所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i . 因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.。
2013年北京高考文科数学试卷及解析
1 cos 4 x 2
(1)求 f ( x ) 的最小正周期及最大值。 (2)若 (
2
, ) ,且 f ( )
2 ,求 的值。 2
【考点】本题考查三角函数的诱导公式、二倍角公式、三角函数的周期、最小值等相关公式。
1 x
B. y e
x
C. y x 1
2
D. y lg x
【答案】C 【考点】本题主要考查一些常见函数的图像和性质,意在考查考生对幂函数、二次函数、指数函数、对数函数以及函数图 像之间的变换关系的掌握情况。 【解析】y = ������是奇函数,选项 A 错;y=e 指数函数,非奇非偶,选项 B 错;y = lg |������ |是偶函数,但在(0,∞)上单调 递增,选项 D 错,只有选项 C 是偶函数且在(0,∞)上单调递增。 4.在复平面内,复数 i (2 i ) 对应的点位于() A.第一象限 C.第三象限 【答案】A 【考点】本题主要考查复数的运算法则和几何意义。 【解析】因为 i(2—i)=1+2i,所以对应的点的坐标为(1.2)在第一象限,故选 A. 5.在 ABC 中, a 3 , b 5 , sin A B.第二象限 D.第四象限
6 13
(2)此人停留的两天共有 13 种选择,分别是:(1, 2) ,(2,3) ,(3, 4) ,(4,5) ,(5, 6) ,(6, 7) ,(7,8) ,(8,9) , (9,10) ,
(10,11) , (11,12) , (12,13) , (13,14)
其中只有一天重度污染的为 (4,5) , (5, 6) , (7,8) , (8,9) ,共 4 种, 所以概率为 P2
2013年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (文科) word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(大纲卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,文1)设全集U ={1,2,3,4,5},集合A ={1,2},则U A =( ).A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅ 答案:B解析:由题意得U A ={3,4,5}.故选B .2.(2013大纲全国,文2)已知α是第二象限角,sin α=513,则cos α=( ). A .1213- B .513- C .513 D .1213答案:A解析:∵α是第二象限角,∴cos α=1213==-.故选A .3.(2013大纲全国,文3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=0. ∴|m |2-|n |2=0,即(λ+1)2+1-[(λ+2)2+4]=0. ∴λ=-3.故选B .4.(2013大纲全国,文4)不等式|x 2-2|<2的解集是( ).A .(-1,1)B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2) 答案:D解析:|x 2-2|<2⇒-2<x 2-2<2⇒0<x 2<4⇒0<|x |<2⇒-2<x <0或0<x <2.故选D .5.(2013大纲全国,文5)(x +2)8的展开式中x 6的系数是( ).A .28B .56C .112D .224 答案:C解析:T 2+1=28C x 8-2·22=112x 6.故选C .6.(2013大纲全国,文6)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x-1(x >0) 答案:A解析:由y =f (x )=21log 1x ⎛⎫+ ⎪⎝⎭⇒1+1x =2y⇒x =121y-. ∵x >0,∴y >0. ∴f -1(x )=121x -(x >0).故选A .7.(2013大纲全国,文7)已知数列{a n }满足3a n +1+a n =0,243a =-,则{a n }的前10项和等于( ).A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10) 答案:C解析:∵3a n +1+a n =0⇒a n +1=13-a n , ∴{a n }是以13-为公比的等比数列. 又∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C .8.(2013大纲全国,文8)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ).A .22x +y 2=1 B .22132x y += C .22143x y += D .22154x y += 答案:C解析:如图,|AF 2|=12|AB |=32,|F 1F 2|=2, 由椭圆定义得 |AF 1|=2a -32.① 在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=232⎛⎫ ⎪⎝⎭+22.② 由①②得a =2,∴b 2=a 2-c 2=3.∴椭圆C的方程为22143x y +=,应选C .9.(2013大纲全国,文9)若函数y =sin(ωx +φ)(ω>0)的部分图像如图,则ω=( ).A .5B .4C .3D .2 答案:B解析:∵由题中图象可知x 0+π4-x 0=2T .∴π2T =.∴2ππ2ω=.∴ω=4.故选B .10.(2013大纲全国,文10)已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,则a=().A.9 B.6 C.-9 D.-6答案:D解析:由题意知y′|x=-1=(4x3+2ax)|x=-1=-4-2a=8,则a=-6.故选D.11.(2013大纲全国,文11)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于().A.23BC.D.13答案:A解析:如图,设AA1=2AB=2,AC交BD于点O,连结OC1,过C作CH⊥OC1于点H,连结DH.∵BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1.∵CH⊂平面ACC1A1,∴CH⊥BD.∴CH⊥平面C1BD.∴∠CDH为CD与平面BDC1所成的角.OC1==由等面积法得OC1·CH=OC·CC1,2CH=.∴CH=23.∴sin∠CDH=22313CHCD==.故选A.12.(2013大纲全国,文12)已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若MA·MB=0,则k=().A.12B.2CD.2答案:D解析:设AB:y=k(x-2),代入y2=8x得:k2x2-(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),则∴x1+x2=2248kk+,x1x2=4.(*)∵MA·MB=0,∴(x1+2,y1-2)·(x2+2,y2-2)=0,即(x1+2)(x2+2)+(y1-2)(y2-2)=0.∴x1x2+2(x1+x2)+4+y1y2-2(y1+y2)+4=0.①∵11222,2,y k x y k x =(-)⎧⎨=(-)⎩∴y 1+y 2=k (x 1+x 2-4),②y 1·y 2=k 2(x 1-2)(x 2-2)=k 2[x 1x 2-2(x 1+x 2)+4].③ 由(*)及①②③得k =2.故选D .二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,文13)设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=______.答案:-1解析:∵f (x )是以2为周期的函数,且x ∈[1,3)时,f (x )=x -2, 则f (-1)=f (-1+2)=f (1)=1-2=-1.14.(2013大纲全国,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有__________种.(用数字作答)答案:60解析:分三步:第一步,一等奖有16C 种可能的结果;第二步,二等奖有25C 种可能的结果;第三步,三等奖有33C 种可能的结果.故共有123653C C C 60=(种)可能的结果.15.(2013大纲全国,文15)若x ,y 满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z =-x +y 的最小值为______.答案:0解析:z =-x +y ⇒y =x +z ,z 表示直线y =x +z 在y 轴上的截距,截距越小,z 就越小.画出题中约束条件表示的可行域(如图中阴影部分所示),当直线过点A (1,1)时,z min =0.16.(2013大纲全国,文16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于______.答案:16π解析:如图,设MN 为公共弦,长度为R ,E 为MN 中点,连结OE ,EK ,则OE ⊥MN ,KE ⊥MN .∴∠OEK 为圆O 与圆K 所在平面的二面角. ∴∠OEK =60°.又△OMN 为正三角形,∴OE. ∵OK =32,且OK ⊥KE , ∴OE ·sin 60°=32.32=.∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,文17)(本小题满分10分)等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式; (2)设1n nb na =,求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d ,则 a n =a 1+(n -1)d .因为71994,2,a a a =⎧⎨=⎩所以11164,1828.a d a d a d +=⎧⎨+=(+)⎩解得a 1=1,12d =.所以{a n }的通项公式为12n n a +=.(2)因为22211n b n n n n ==-(+)+,所以2222222122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭.18.(2013大纲全国,文18)(本小题满分12分)设△ABC 的内角A,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C C . 解:(1)因为(a +b +c )(a -b +c )=ac , 所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cosA cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=1+22 =2,故A -C =30°或A -C =-30°, 因此C =15°或C =45°.19.(2013大纲全国,文19)(本小题满分12分)如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解:取PD 的中点F ,连结OF ,则OF ∥PB . 由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BDOP= 故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD . 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1, 所以A 到平面PCD 的距离为1.20.(2013大纲全国,文20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判. (1)求第4局甲当裁判的概率;(2)求前4局中乙恰好当1次裁判的概率.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2. P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)记B 1表示事件“第1局比赛结果为乙胜”,B 2表示事件“第2局乙参加比赛时,结果为乙胜”, B 3表示事件“第3局乙参加比赛时,结果为乙胜”, B 表示事件“前4局中乙恰好当1次裁判”. 则B =1B ·B 3+B 1·B 2·3B +B 1·2B .P (B )=P (1B ·B 3+B 1·B 2·3B +B 1·2B )=P (1B ·B 3)+P (B 1·B 2·3B )+P (B 1·2B ) =P (1B )P (B 3)+P (B 1)P (B 2)P (3B )+P (B 1)P (2B )=111484++=58.21.(2013大纲全国,文21)(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.解:(1)当a =f (x )=x 3-2+3x +1,f ′(x )=3x 2-+3.令f ′(x )=0,得11x =,21x .当x ∈(1)时,f ′(x )>0,f (x )在(1)是增函数;当x ∈11)时,f ′(x )<0,f (x )在11)是减函数;当x ∈1,+∞)时,f ′(x )>0,f (x )在1,+∞)是增函数. (2)由f (2)≥0得54a ≥-. 当54a ≥-,x ∈(2,+∞)时, f ′(x )=3(x 2+2ax +1)≥25312x x ⎛⎫-+ ⎪⎝⎭=312x ⎛⎫- ⎪⎝⎭(x -2)>0,所以f (x )在(2,+∞)是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是5,4⎡⎫-+∞⎪⎢⎣⎭.22.(2013大纲全国,文22)(本小题满分12分)已知双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C (1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.(1)解:由题设知3c a =,即2229a b a+=,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,并求得x =由题设知,=a 2=1.所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),|k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1·x 2=22988k k +-.于是|AF 1|==-(3x1+1),|BF1|=3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=2 3 -.故226283kk=--,解得24 5k=,从而x1·x2=19 9 -.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.。
2013年北京市高考数学文科试卷(有答案)
2013年北京市高考数学文科试卷(有答案)绝密★启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上答无效。
考试结束后,将本卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x(A){0}(B){-1,,0}(C){0,1}(D){-1,,0,1}(2)设a,b,c∈R,且a(A)ac>bc(B)b2(D)a3>b3(3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(A)y=(B)y=e-3(C)y=x2+1(D)y=lg∣x∣(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(5)在△ABC中,a=3,b=5,sinA=,则sinB(A)(B)(C)(D)1(6)执行如图所示的程序框图,输出的S值为(A)1(B)(C)(D)(7)双曲线x²-=1的离心率大于的充分必要条件是(A)m>(B)m≥1(C)m大于1(D)m>2(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有(A)3个(B)4个(C)5个(D)6个第二部分(非选择题共110分)二、填空题共6题,每小题5分,共30分。
(9)若抛物线y2=2px的焦点坐标为(1,0)则p=____;准线方程为_____(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.(11)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项sn=_____.(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.(13)函数f(x)=的值域为_________.(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP=λAB+μAC(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.三、解答题共6小题,共80分。
2013年高考真题解析——北京卷(数学文)纯word版
2013·北京卷(文科数学)1. 已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ) A .{0} B .{-1,0} C .{0,1} D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1∉B ,∴A ∩B ={-1,0},故选B. 2. 设a ,b ,c ∈,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 32.D [解析] ∵函数y =x 3在上是增函数,a >b , ∴a 3>b 3. 3., 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x |3.C [解析] 对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x |是偶函数,但在(0,+∞)上有y =lg x ,此时单调递增,排除.只有C 符合题意.4. 在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.A [解析] ∵i(2-i)=2i +1,∴i(2-i)对应的点为(1,2),因此在第一象限.5. 在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 5.B [解析] 由正弦定理得a sin A =b sin B ,即313=5sin B ,解得sin B =59. 6. 执行如图1-1所示的程序框图,输出的S 值为( )图1-1A .1 B.23C.1321D.6109876.C [解析] 执行第一次循环时S =12+12×1+1=23,i =1;执行第二次循环时S =⎝⎛⎭⎫232+12×23+1=1321,i =2,此时退出循环,故选C. 7., 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1C .m >1D .m >27.C [解析] 双曲线的离心率e =ca=1+m >2,解得m >1.故选C.8., 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )图1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP =33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33,联结AP ,PC ,PB 1,则有△ABP ≌△CBP ≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.9. 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________. 9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.10., 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.11. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n=________.11.2 2n +1-2 [解析] ∵a 3+a 5=q (a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.12. 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.12.2 55[解析] 在平面直角坐标系中画出可行域,如图所示.根据可行域可知,区域D 内的点到点(1,0)的距离最小值为点(1,0)到直线2x -y =0的距离,即d =|2-0|5=2 55.13. 函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.13.(-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).14. 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.14.3 [解析] 设P (x ,y ),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3. 又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y ≤9,0≤x -2y ≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A (3,0),B (5,1),所以|AB |=(5-3)2+(1-0)2=5,点B (5,1)到直线x-2y =0的距离d =35,∴其面积S =5×35=3.15.,,, 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎫π2,π,且f (α)=22,求α的值. 15.解:(1)因为f (x )=(2cos 2 x -1)sin 2x +12cos 4x=cos 2x ·sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin ⎝⎛⎭⎫4α+π4=1. 因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.16.,, 图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气 重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大. 17.,, 如图1-5,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .图1-517.证明:(1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE , 所以ABED 为平行四边形, 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形, 所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD , 所以P A ⊥CD .又因为AD ∩P A =A ,所以CD ⊥平面P AD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF , 所以CD ⊥EF ,所以CD ⊥平面BEF , 所以平面BEF ⊥平面PCD . 18.,,, 已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 18.解:由f (x )=x 2+x sin x +cos x ,得 f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0. f (x )与f ′(x )的情况如下:x (-∞,0)0 (0,+∞)f ′(x ) - 0 + f (x )1所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b , 所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.,, 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1,即t =±3. 所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.,,, 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且d i +1d i=q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.。
2013年北京高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(北京卷) 数学(文) 第一部分 (选择题 共40分)一、 选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}1,0,1A =-,{}|11B x x =-<…,则A B = ( )A.{}0B. {}1,0-C. {}0,1D. {}1,0,1-【测量目标】集合的含义与表示、集合的基本运算,数形结合思想.【考查方式】给出A ,B 的集合,求A ,B 的交集.【参考答案】B【试题解析】}{}{π1,0,1,11A B x x =-=-< …且1B ∉{}1,0A B ∴=-2.设,,a b c ∈R ,且a b >,则( ) A. ac bc > B. 11a b< C. 22a b > D. 33a b > 【测量目标】不等式比较大小.【考查方式】给出两实数的的大小,求出其他实数的大小.【参考答案】D【试题解析】A 项,c 0…时,由a b >不能得到ac bc >,故不正确;B 项0,0a b ><(如1,2a b ==-)时,由a b >不能得到11a b<,故不正确; C 项,由22()()a b a b a b -=+-及a b >可知当0a b +<时(如2,3a b =-=-或2,3a b ==-)均不能得到22a b >,故不正确;D 项,3322()()a b a b a ab b -=-++=223()24b a b a b ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,因为223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即 33a b >.3.下列函数中,既是偶函数又在区间(0,+)∞上单调递减的是( )A. 1y x= B. e x y -= C. 21y x =-+ D. lg y x = 【测量目标】偶函数、函数单调性的判断.【考查方式】给出各类函数,判断是否为偶函数及在(0,)∞上单调递减.【参考答案】C【试题解析】A 项,1y x=时奇函数,故不正确;B 项,e x y -=为非奇非偶函数,故不正确;C,D 两项中的两个函数都是偶函数,且21y x =-+在(0,+∞)上是减函数,lg y x =在(0,+∞)上是增函数,故选C .4.在复平面内,复数i(2i)-对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【测量目标】复数的运算法则及复数的几何意义.【考查方式】给出复数,求出复数所对应的点在哪个象限.【参考答案】A【试题解析】2i(2i)2i i 12i z =-=-=+ ,∴复数z 在复平面内的对应点位(1,2),在第一象限.5.在△ABC 中,3,5a b ==,1sin 3A = ,则sinB =( ). A. 15 B. 59 C.3D. 1 【测量目标】正弦定理.【考查方式】给出三角形的两边长及其中一边所对应的角的正弦值,求出另一边的正弦值.【参考答案】B【试题解析】在ABC △中,由正弦定理sin sin a b A B =,得15sin 53sin 39b A B a ⨯===.6.执行如图所示的程序框图,输出的S 值为( ).A. 1B. 23C.1321D. 610987 【测量目标】循环结构的程序图框.【考查方式】给出程序图,由,S i 的循环关系求出最后输出S 的值.【参考答案】C【试题解析】当0,1i S ==时,执行2121S S S +=+后得23S =,11i i =+=;(步骤1) 当21,3i S ==时,执行2121S S S +=+后得13,1221S i i ==+=,(步骤2) 第6题图由于此时2i …是成立的,因此输出13.21S =(步骤3)7.双曲线221y x m -=的充分必要条件是( ). A. 12m > B. 1m … C. 1m > D. 2m > 【测量目标】双曲线离心率及充分必要条件的定义与理解..【参考答案】C【试题解析】用m m 的不等式求解.双曲线221y x m -=的离心率e = 1.e m > 8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( ).A.3个B. 4个C. 5个D. 6个【测量目标】空间几何定理及点到线段距离的计算.【考查方式】给出正方体图及点与直线的位置,求出点与各点的距离取值.【参考答案】B【试题解析】如图,取底面ABCD 的中心O ,连接,,.PA PC PO AC ⊥ 平面1D D B ,又PO ⊂平面1,.DD B AC PO ∴⊥又O 是BD 的中点,.PA PC ∴=(步骤1)同理,取1B C 与1BC 的交点H ,易证1B C ⊥平面111,.DC B B C PH ∴⊥又H 是1B C 的中点,1.PB PC ∴=11PA PB PC ∴==(步骤2) 第8题图同理可证11.PA PC PD ==又P 是1BD 的三等分点,11,PB PD PB PD ∴≠≠≠故点到正方体的顶点的不同距离有4个.(步骤3)第二部分(非选择题 共110分)二.填空题共6题,每小题5分,共30分.9.若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.【测量目标】抛物线标准方程的定义及其应用.【考查方式】给出抛物线的标准方程及焦点坐标,求p 与准线方程.【参考答案】2;1x =-.【试题解析】 抛物线的焦点坐标为(2p ,0),准线方程为.2p x =-又抛物线焦点坐标为(1,0),故2p =,准线方程为1x =-.10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【测量目标】空间几何体的三视图的理解和计算.【考查方式】给出四棱锥的三视图,求其体积.【参考答案】3.【试题解析】 将三视图还原为直观图,然后根据三视图特征数据,利用体积公式求解,由几何体的三视图可知该几何体时一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为19133V =⨯⨯=.11.若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项和n S =_____. 第10题图【测量目标】等比数列的公式及前n 项和.【考查方式】给出等比数列中两组等比项关系,求等比数列的公比与前n 项和.【参考答案】2;122n +-【试题解析】设等比数列{}n a 的首项为1a ,公比为q ,则:由2420a a +=得()21(1)20.1a q q += 由3540a a +=得()221(1)40.2a q q += 由()()12解得12, 2.q a ==故11(1)2(12)2 2.112n n n a q S q +--===---12.设D 为不等式组0,2030x x y x y ⎧⎪-⎨⎪+-⎩………, 第12题图表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【测量目标】二元一次不等式的几何意义,,用基本不等式解决简单的最大(小)值问题.【考查方式】给出不等式组,求不等式组表示的区域到给定点的距离的最新小值.【试题解析】不等式组表示的区域D 如图阴影部分所示,由图知点P (1,0)与平面区域D 上的点的最短距离为点P (1,0)到直线2y x =的距离d ==13.函数()f x =12log ,12,1x x x x ⎧⎪⎨⎪<⎩…的值域为_________.【测量目标】对数与指数的概念及其运算性质,分段函数的值域.【考查方式】给出()f x 的分段函数,求值域.【参考答案】(,2)-∞【试题解析】当1x …时,1122log log 10,x =∴…1x …时,()0.f x …当1x <时,1022,x <<即0() 2.f x <<因此函数()f x 的值域为(,2)-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB AC λμ=+ 10λμ(2,1)剟剟的点P 组成,则D 的面积为__________.【测量目标】向量的几何表示、向量线性运算的性质及其几何意义.【考查方式】给出平面区域上的三点,求满足关于点的向量关系的平面区域的面积.【参考答案】3【试题解析】设(),P x y <则(1,1).AP x y =-+由题意知(2,1),(1,2).AB AC ==由AP AB AC λμ=+ 知(1,1)(2,1),(1,2),x y λμ-+=+即 21,2 1.x y λμλμ+=-⎧⎨+=+⎩ 23,323,3x y y x λμ--⎧=⎪⎪∴⎨-+⎪=⎪⎩第14题图12,01,λυ⎧⎨⎩剟剟(步骤1) 3236,023 3.x y y x --⎧⎨-+⎩ 剟剟 作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出(4,2),(6,3)M N ,故MN = 又20x y -=与230x y --=之间的距离为d =故平面区域D的面积为3.S ==(步骤2)三.解答题共6小题,共80分。
2013北京高考数学试题(文科)完整word精校解析版电子教案
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )A .15B .59C D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m -=的充分必要条件是A .12m > B .1m ≥ C .1m > D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
2013年普通高等学校招生全国统一考试数学(北京卷)文
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2013北京,文1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=().A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案:B解析:集合A中的元素仅有-1,0,1三个数,集合B中元素为大于等于-1且小于1的数,故集合A,B的公共元素为-1,0,故选B.2.(2013北京,文2)设a,b,c∈R,且a>b,则().A.ac>bcB.1a <1bC.a2>b2D.a3>b3答案:D解析:A选项中若c小于等于0则不成立,B选项中若a为正数b为负数则不成立,C选项中若a,b均为负数则不成立,故选D.3.(2013北京,文3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是().A.y=1xB.y=e-xC.y=-x2+1D.y=lg |x|答案:C解析:A选项为奇函数,B选项为非奇非偶函数,D选项虽为偶函数但在(0,+∞)上是增函数,故选C.4.(2013北京,文4)在复平面内,复数i(2-i)对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:i(2-i)=1+2i,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.5.(2013北京,文5)在△ABC中,a=3,b=5,sin A=13,则sin B=().A.15B.59C.√53D.1答案:B解析:根据正弦定理,asinA =bsinB,则sin B=basin A=53·13=59,故选B.6.(2013北京,文6)执行如图所示的程序框图,输出的S 值为( ).A.1B.23C.1321D.610987答案:C解析:i=0时,向下运行,将S 2+12S+1=23赋值给S ,i 增加1变成1,经判断执行否,然后将S 2+12S+1=1321赋值给S ,i 增加1变成2,经判断执行是,然后输出S=1321,故选C .7.(2013北京,文7)双曲线x 2-y 2m =1的离心率大于√2的充分必要条件是( ). A.m>12B.m ≥1C.m>1D.m>2答案:C解析:该双曲线离心率e=√1+m1,由已知√1+m >√2,故m>1,故选C .8.(2013北京,文8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ).A.3个B.4个C.5个D.6个答案:B解析:设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a ,0),B (a ,a ,0),B 1(a ,a ,a ),A (a ,0,0),A 1(a ,0,a ),P (23a ,23a ,13a), 则|PB ⃗⃗⃗⃗⃗ |=√19a 2+19a 2+19a 2=√33a ,|PD ⃗⃗⃗⃗⃗ |=√49a 2+49a 2+19a 2=a , |PD 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+49a 2+49a 2=2√33a , |PC 1⃗⃗⃗⃗⃗⃗⃗ |=|PA 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+19a 2+49a 2=a ,|PC ⃗⃗⃗⃗⃗ |=|PA ⃗⃗⃗⃗⃗ |=√49a 2+19a 2+19a 2=√63a , |PB 1⃗⃗⃗⃗⃗⃗⃗ |=√19a 2+19a 2+49a 2=√63a ,故共有4个不同取值,故选B .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.(2013北京,文9)若抛物线y 2=2px 的焦点坐标为(1,0),则p= ;准线方程为 . 答案:2 x=-1解析:根据抛物线定义p2=1,∴p=2,又准线方程为x=-p2=-1,故填2,x=-1.10.(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为 .答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V=13×3×3×1=3,故该棱锥的体积为3.11.(2013北京,文11)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = . 答案:2 2n+1-2解析:根据等比数列的性质知a 3+a 5=q (a 2+a 4),∴q=2,又a 2+a 4=a 1q+a 1q 3,故求得a 1=2,∴S n =2(1-2n )1-2=2n+1-2.12.(2013北京,文12)设D 为不等式组{x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 . 答案:2√55解析:区域D 表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x-y=0的距离√5=2√55. 13.(2013北京,文13)函数f (x )={log 12x ,x ≥1,2x ,x <1的值域为 .答案:(-∞,2)解析:当x ≥1时,lo g 12x ≤lo g 121,即lo g 12x ≤0,当x<1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2).14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 答案:3解析:AP ⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC ⃗⃗⃗⃗⃗ =(1,2). 设P (x ,y ),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1, 可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3), |A 1B 1|=√(4-3)2+22=√5,两直线距离d=√2+1=5, ∴S=|A 1B 1|·d=3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(2013北京,文15)(本小题共13分)已知函数f (x )=(2cos 2x-1)sin 2x+12cos 4x. (1)求f (x )的最小正周期及最大值; (2)若α∈(π2,π),且f (α)=√22,求α的值.解:(1)因为f (x )=(2cos 2x-1)sin 2x+12cos 4x=cos 2x sin 2x+12cos 4x =12(sin 4x+cos 4x ) =√22sin (4x +π4), 所以f (x )的最小正周期为π2,最大值为√22.(2)因为f (α)=√22,所以sin (4α+π4)=1.因为α∈(π2,π),所以4α+π4∈(9π4,17π4). 所以4α+π4=5π2.故α=9π16.16.(2013北京,文16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”..所以此人在该市停留期间只有1天空气重度污染的概率为413(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,文17)(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥平面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.18.(2013北京,文18)(本小题共13分)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解:由f(x)=x2+x sin x+cos x,得f'(x)=x(2+cos x).(1)因为曲线y=f (x )在点(a ,f (a ))处与直线y=b 相切, 所以f'(a )=a (2+cos a )=0,b=f (a ).解得a=0,b=f (0)=1. (2)令f'(x )=0,得x=0. f (x )与f'(x )的情况如下:所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y=f (x )与直线y=b 最多只有一个交点; 当b>1时,f (-2b )=f (2b )≥4b 2-2b-1>4b-2b-1>b , f (0)=1<b ,所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b.由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f (x )与直线y=b 有且仅有两个不同交点.综上可知,如果曲线y=f (x )与直线y=b 有两个不同交点,那么b 的取值范围是(1,+∞).19.(2013北京,文19)(本小题共14分)直线y=kx+m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点. (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t=±√3. 所以|AC|=2√3.(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由{x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx+4m 2-4=0.设A (x 1,y 1),C (x 2,y 2), 则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m=m1+4k 2.所以AC 的中点为M (-4km 1+4k2,m 1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k. 因为k ·(-14k)≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,文20)(本小题共13分)给定数列a 1,a 2,…,a n ,对i=1,2,…,n-1,该数列的前i 项的最大值记为A i ,后n-i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i -B i . (1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n-1是等差数列.解:(1)d1=2,d2=3,d3=6.(2)因为a1>0,公比q>1,所以a1,a2,…,a n是递增数列.因此,对i=1,2,…,n-1,A i=a i,B i=a i+1.于是对i=1,2,…,n-1,d i=A i-B i=a i-a i+1=a1(1-q)q i-1.=q(i=1,2,…,n-2),因此d i≠0且d i+1d i即d1,d2,…,d n-1是等比数列.(3)设d为d1,d2,…,d n-1的公差.对1≤i≤n-2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i.又因为A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n-1是递增数列.因此A i=a i(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<a n-1.因此a n=B1.所以B1=B2=…=B n-1=a n.所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.。
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I新课标)
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A .11i 2-- B .11+i 2-C .11+i 2D .11i 2-答案:B 解析:212i 12i 12i i 2i1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12 B .13 C .14 D .16答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13.4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2则C 的渐近线方程为( ).A .y =14x ± B .y =13x ±C .y =12x ± D .y =±x答案:C解析:∵2e =2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±, ∴渐近线方程为12y x =±.故选C. 5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2, ∵h (0)=-1<0,h (1)=1>0, ∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B. 6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n 答案:D解析:11211321113nnn n a a a q a q S q q --(-)===---=3-2a n,故选D. 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3). 当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减.∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4].故选A.8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C上一点,若|PF |=POF 的面积为( ).A .2B .C .D .4 答案:C解析:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=故选C.9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A.当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1. 令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .5 答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15.∵cos A =2364926b b+-⨯,∴b =5或135b =-(舍).故选D.11.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限, 由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.答案:2解析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0, 即t a ·b +(1-t )b 2=0. ∴12t +1-t =0. ∴t =2.14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3.15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R , 则AH =23R , OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.答案: 解析:∵f (x )=sin x -2cos xx -φ),其中sin φcos φ当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭=12n n-. 18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.61.3 1.4 1.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好. 19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C A 1C 2=OC 2+21OA , 故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. 20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=4±. 当ky x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2,所以|AB ||x 2-x 1|=187.当k =4-|AB |=187.综上,|AB |=|AB |=187.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(1)证明:DB =DC ;(2)设圆的半径为1,BC CE 交AB 于点F ,求△BCF 外接圆的半径.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE , 故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线,所以BG . 设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt△BCF.23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=15,,212,1,236, 1.x xx xx x⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a⎡⎫-⎪⎢⎣⎭时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立.故2a-≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
【精校】2013年普通高等学校招生全国统一考试(北京卷)数学文
2013年普通高等学校招生全国统一考试(北京卷)数学文一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( )A. {0}B. {-1,0}C. {0,1}D. {-1,0,1}解析:∵A={-1,0,1},B={x|-1≤x<1},∴A∩B={-1,0}.答案:B2.(5分)设a,b,c∈R,且a>b,则( )A. ac>bcB.C. a2>b2D. a3>b3解析:A.3>2,但是3×(-1)<2×(-1),故A不正确;B.1>-2,但是,故B不正确;C..-1>-2,但是(-1)2<(-2)2,故C不正确;D.∵a>b,∴a3>b3,成立.答案:D.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上是单调递减的是( )A.B. y=e-xC. y=-x2+1D. y=lg|x|解析:对于A,函数满足f(-x)=-=-f(x),可得函数是奇函数,且不是偶函数,可得A项不符合题意;对于B,函数y=e-x不满足f(-x)=f(x),得函数不是偶函数,可得B项不符合题意;对于C,函数y=-x2+1满足f(-x)=-(-x)2+1=-x2+1=f(x),∴函数y=-x2+1是R上的偶函数又∵函数y=-x2+1的图象是开口向下的抛物线,关于y轴对称∴当x∈(0,+∞)时,函数为减函数.故C项符合题意对于D,因为当x∈(0,+∞)时,函数y=lg|x|=lgx,底数10>1所以函数y=lg|x|在区间(0,+∞)上是单调递增的函数,可得D项不符合题意.答案:C4.(5分)在复平面内,复数i(2-i)对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限解析:∵复数z=i(2-i)=-i2+2i=1+2i∴复数对应的点的坐标是(1,2),这个点在第一象限,答案:A.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=( )A.B.C.D. 1解析:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===. 答案:B6.(5分)执行如图所示的程序框图,输出的S值为( )A. 1B.C.D.解析:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.答案:C.7.(5分)双曲线的离心率大于的充分必要条件是( )A.B. m≥1C. m>1D. m>2解析:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于 m>1,∴双曲线的离心率大于的充分必要条件是m>1.答案:C.8.(5分)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有( )A. 3个B. 4个C. 5个D. 6个解析:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(-3,-3,3),设P(x,y,z),∵=(-1,-1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.答案:B.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p= ;准线方程为 .解析:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=-1,答案:2,x=-1.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.解析:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积. 答案:3.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q= ;前n项和S n= . 解析:设等比数列{a n}的公比为q,∵a2+a4=20,a3+a5=40,∴,解得.∴==2n+1-2.答案:2,2n+1-2.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为 .解析:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x-y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.答案:.13.(5分)函数的值域为.解析:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(-∞,2). 答案:(-∞,2).14.(5分)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.解析:设P的坐标为(x,y),则=(2,1),=(1,2),=(x-1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部,其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x-y-6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3答案:3三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=.(Ⅰ)求f(x)的最小正周期及最大值;(Ⅱ)若α∈(,π),且f(α)=,求α的值.解析:(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可. 答案:(Ⅰ)因为==,∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解析:(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.答案:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率p=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)、(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,34),共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以此人在该市停留期间只有1天空气重度污染的概率p=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.17.(13分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解析:(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.答案:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解析:(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.答案:(I)f′(x)=2x+xcosx,∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).于是当x>0时,f′(x)>0,故f(x)单调递增.当x<0时,f′(x)<0,f(x)单调递减.∴当x=0时,f(x)取得最小值f(0)=1,故当b>1时,曲线y=f(x)与直线y=b有两个不同交点.故b的取值范围是(1,+∞).19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.解析:(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.答案:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2-1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n-1,该数列前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i-B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n-1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;(Ⅲ)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n-1是等差数列.解析:(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知a n=a1q n-1(a1>0,q>1),由d k=a k-a k+1⇒d k-1=a k-1-a k(k≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<d n-1,可用反证法证明a1,a2,…,a n-1是单调递增数列;再证明a m为数列{a n}中的最小项,从而可求得是a k=d k+a m,问题得证.答案:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1-B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,a n-1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n-1,且为单调递增的数列.于是当k=1,2,…n-1时,d k=A k-B k=a k-a k+1,进而当k=2,3,…n-1时,===q为定值.∴d1,d2,…,d n-1是等比数列;(Ⅲ)若d1,d2,…,d n-1是公差大于0的等差数列,则0<d1<d2<…<d n-1.先证明a1,a2,…,a n-1是单调递增数列.否则设a k是第一个使得a k≤a k-1成立的项,则A k-1=A k,B k-1≤B k,因此d k-1=A k-1-B k-1≥A k-B k=d k,矛盾.因此a1,a2,…,a n-1是单调递增数列…①再证明a m为数列{a n}中的最小项,否则设a k<a m(k=1,2,…n-1),显然k≠1,否则d1=A1-B1=a1-B1≤a1-a1=0,与d1>0矛盾;因而k≥2,此时考虑d k-1=A k-1-B k-1=a k-1-a k<0,矛盾.因此a m为数列{a n}中的最小项,…②综合①②d k=A k-B k=a k-a m(k=1,2,…n-1),于是a k=d k+a m,也即a1,a2,…,a n-1是等差数列.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013年高考文科数学北京卷word解析版
2013年高考文科数学北京卷word解析版2013年普通高等学校夏季招生全国统一考试数学文史类(北京卷)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2013北京,文1)已知集合A={-1,0,1},B={x|-1≤x <1},则A∩B=().A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}答案:B解析:集合A中的元素仅有-1,0,1三个数,集合B 中元素为大于等于-1且小于1的数,故集合A,B 的公共元素为-1,0,故选B.2.(2013北京,文2)设a,b,c∈R,且a>b,则().A.ac>bc B.11<a bC.a2>b2D.a3>b3答案:D解析:A选项中若c小于等于0则不成立,B选项中若a为正数b为负数则不成立,C选项中若a,b 均为负数则不成立,故选D.3.(2013北京,文3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是().A.1yB.y=e-xxC.y=-x2+1 D.y=lg |x|答案:C解析:A选项为奇函数,B选项为非奇非偶函数,D 选项虽为偶函数但在(0,+∞)上是增函数,故选C.4.(2013北京,文4)在复平面内,复数i(2-i)对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 答案:A解析:i(2-i)=1+2i ,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.5.(2013北京,文5)在△ABC 中,a =3,b =5,sin A =13,则sin B =( ).A .15B .59C D .1答案:B解析:根据正弦定理,sin sin a b A B =,则sin B =basin A =515339⋅=,故选B. 6.(2013北京,文6)执行如图所示的程序框图,输出的S 值为( ).A .1B .23C .1321 D .610987 答案:C解析:i =0时,向下运行,将212213S S +=+赋值给S ,i 增则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫⎪⎝⎭, 则|PB |3a =,|PD |a =, |1PD |=, |1PC |=|1PA |a =, |PC |=|PA |3a =,|1PB |=3a =,故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.(2013北京,文9)若抛物线y 2=2px 的焦点坐标为(1,0),则p =__________;准线方程为__________.答案:2 x =-1解析:根据抛物线定义12p=,∴p =2,又准线方程为x =2p-=-1,故填2,x =-1.10.(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V =13×3×3×1=3,故该棱锥的体积为3.11.(2013北京,文11)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =__________;前n 项和S n =__________.答案:2 2n +1-2解析:根据等比数列的性质知a 3+a 5=q (a 2+a 4), ∴q =2,又a 2+a 4=a 1q +a 1q 3,故求得a 1=2, ∴S n =21212n (-)-=2n +1-2.12.(2013北京,文12)设D 为不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为__________.答案:5解析:区域D 表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =05=13.(2013北京,文13)函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________.答案:(-∞,2)解析:当x ≥1时,1122loglog 1x ≤,即12logx ≤,当x <1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2). 14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.答案:3解析:AP =λAB +μAC ,AB =(2,1),AC =(1,2). 设P (x ,y ),则AP =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3), |A 1B 1|=,两直线距离d ==,∴S =|A 1B 1|·d =3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(2013北京,文15)(本小题共13分)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求f (x )的最小正周期及最大值;(2)若α∈π,π2⎛⎫⎪⎝⎭,且f (α)=2,求α的值. 解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=π424x ⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为π2,最大值为2.(2)因为f (α)=2,所以πsin 414α⎛⎫+= ⎪⎝⎭. 因为α∈π,π2⎛⎫ ⎪⎝⎭,所以4α+π4∈9π17π,44⎛⎫⎪⎝⎭. 所以π5π442α+=.故9π16α=. 16.(2013北京,文16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为4 13.(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,文17)(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD ⊥平面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.18.(2013北京,文18)(本小题共13分)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解:由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b =f(0)=1.(2)令f′(x)=0,得x=0.f(x)与f′(x)的情况如下:所以函数f(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1<b,所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.(2013北京,文19)(本小题共14分)直线y =kx +m (m ≠0)与椭圆W :24x +y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A 1,2t ⎛⎫ ⎪⎝⎭,代入椭圆方程得21144t +=,即t =所以|AC |=(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0. 由2244,x y y kx m ⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2), 则1224214x x kmk +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为14k -.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,文20)(本小题共13分)给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列的前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n -1是等差数列.解:(1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q >1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且1iidq d +=(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)设d 为d 1,d 2,…,d n -1的公差. 对1≤i ≤n -2,因为B i ≤B i +1,d >0, 所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1}, 所以a i +1=A i +1>A i ≥a i . 从而a 1,a 2,…,a n -1是递增数列. 因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1, 所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i . 因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校夏季招生全国统一考试数学文史类(北京卷)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( ).A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.设a,b,c∈R,且a>b,则( ).A.ac>bc B.11<a b C.a2>b2 D.a3>b33.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ).A.1yx=B.y=e-x C.y=-x2+1 D.y=lg |x|4.在复平面内,复数i(2-i)对应的点位于( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在△ABC中,a=3,b=5,sin A=13,则sin B=( ).A.15 B.59 C.3 D.16.执行如图所示的程序框图,输出的S值为( ).A.1 B.23 C.1321 D.6109877.双曲线x2-2ym=1的充分必要条件是( ).A.m>12 B.m≥1 C.m>1 D.m>28.如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有( ).A.3个 B.4个 C.5个 D.6个第二部分(非选择题共110分) 二、填空题共6小题,每小题5分,共30分.9.若抛物线y2=2px的焦点坐标为(1,0),则p=__________;准线方程为__________.10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.11.若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和S n=__________.12.设D为不等式组0,20,30xx yx y≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为__________.13.函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________. 14.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP u u u r =λAB u u u r +μAC u u u r (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求f (x )的最小正周期及最大值;(2)若α∈π,π2⎛⎫ ⎪⎝⎭,且f (α)=2,求α的值.16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥平面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点.求证:(1)PA ⊥底面ABCD ;(2)BE ∥平面PAD ;(3)平面BEF ⊥平面PCD .18.(本小题共13分)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。
(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。
直线y=kx+m(m≠0)与椭圆W:24x+y2=1相交于A,C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(本小题共13分)给定数列a1,a2,…,a n,对i=1,2,…,n-1,该数列的前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i-B i.(1)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n-1是等比数列;(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n-1是等差数列.2013年普通高等学校夏季招生全国统一考试数学文史类(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.答案:B解析:集合A 中的元素仅有-1,0,1三个数,集合B 中元素为大于等于-1且小于1的数,故集合A ,B 的公共元素为-1,0,故选B.2.答案:D解析:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D.3.答案:C解析:A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0,+∞)上是增函数,故选C. 4.答案:A解析:i(2-i)=1+2i ,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.5.答案:B解析:根据正弦定理,sin sin a b A B =,则sin B =b a sin A =515339⋅=,故选B. 6.答案:C 解析:i =0时,向下运行,将212213S S +=+赋值给S ,i 增加1变成1,经判断执行否,然后将21132121S S +=+赋值给S ,i 增加1变成2,经判断执行是,然后输出1321S =,故选C. 7.答案:C解析:该双曲线离心率1e =m >1,故选C.8.答案:B解析:设正方体的棱长为a .建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫⎪⎝⎭,则|PB u u u r |=,|PD u u u r |a =,|1PD u u u u r |=,|1PC u u u u r |=|1PA u u u r |a =,|PC uuu r |=|PA u u u r |3a =, |1PB u u u r |=, 故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.答案:2 x =-1解析:根据抛物线定义12p =,∴p =2,又准线方程为x =2p -=-1,故填2,x =-1. 10.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V =13×3×3×1=3,故该棱锥的体积为3.11.答案:2 2n +1-2解析:根据等比数列的性质知a 3+a 5=q (a 2+a 4),∴q =2,又a 2+a 4=a 1q +a 1q 3,故求得a 1=2, ∴S n =21212n (-)-=2n +1-2. 12.答案:5解析:区域D 表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =0的距离=13.答案:(-∞,2)解析:当x ≥1时,1122log log 1x ≤,即12log 0x ≤,当x <1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2).14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP u u u r =λAB u u u r +μAC u u u r (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.答案:3 解析:AP u u u r =λAB u u u r +μAC u u u r ,AB u u u r =(2,1),AC u u u r =(1,2). 设P (x ,y ),则AP u u u r =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A 1B 1|=,两直线距离d ==, ∴S =|A 1B 1|·d =3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=π424x ⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为π2,最大值为2.(2)因为f (α)=2,所以πsin 414α⎛⎫+= ⎪⎝⎭. 因为α∈π,π2⎛⎫ ⎪⎝⎭,所以4α+π4∈9π17π,44⎛⎫ ⎪⎝⎭. 所以π5π442α+=.故9π16α=. 16.解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”. 所以此人在该市停留期间只有1天空气重度污染的概率为413. (3)从3月5日开始连续三天的空气质量指数方差最大.17.证明:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE .所以ABED 为平行四边形.所以BE ∥AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以BE ∥平面PAD .(3)因为AB ⊥AD ,而且ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD ,所以PA ⊥CD .所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF .所以CD ⊥EF .所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .18.解:由f (x )=x 2+x sin x +cos x ,得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ).解得a =0,b =f (0)=1.(2)令f ′(x )=0,得x =0.f (x )与f ′(x )所以函数f (x )在区间(=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b. 由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A 1,2t ⎛⎫ ⎪⎝⎭,代入椭圆方程得21144t +=,即t =所以|AC |=(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2), 则1224214x x km k +=-+,121222214y y x x m k m k++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为14k -. 因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.解:(1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q >1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且1i id q d +=(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i.又因为A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n-1是递增数列.因此A i=a i(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<a n-1.因此a n=B1.所以B1=B2=…=B n-1=a n.所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.。