2015年中考数学试卷解析分类汇编专题37_操作探究

合集下载

2015年山东省青岛市中考数学试题及解析

2015年山东省青岛市中考数学试题及解析

2015年XX省XX市中考数学试卷一、选择题〔本题满分24分,共有8小题,每小题3分〕下列每小题都给出标号为A,B,C,D 的四个结论,其中只有一个是正确的1.〔3分〕〔2015•XX 〕的相反数是〔〕A.﹣B.C.D.22.〔3分〕〔2015•XX〕某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为〔〕A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.〔3分〕〔2015•XX〕下列四个图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.4.〔3分〕〔2015•XX〕如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=〔〕A.B.2C.3D.+25.〔3分〕〔2015•XX〕小刚参加射击比赛,成绩统计如下表:成绩〔环〕 6 7 8 9 10次数 1 3 2 3 1关于他的射击成绩,下列说法正确的是〔〕A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环6.〔3分〕〔2015•XX〕如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=〔〕A.30°B.35°C.45°D.60°7.〔3分〕〔2015•XX〕如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为〔〕A.4B.4C.4D.288.〔3分〕〔2015•XX〕如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值X围是〔〕A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2 D.﹣2<x<0或x>2二、填空题〔本题满分18分,共有6小题,每小题3分〕9.〔3分〕〔2015•XX〕计算:3a3•a2﹣2a7÷a2=.10.〔3分〕〔2015•XX〕如图,将平面直角坐标系中“鱼〞的每个“顶点〞的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.11.〔3分〕〔2015•XX〕把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s〔cm2〕与高h〔cm〕之间的函数关系式为.12.〔3分〕〔2015•XX〕如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为〔1,1〕,〔﹣1,1〕,把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为.13.〔3分〕〔2015•XX〕如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.14.〔3分〕〔2015•XX〕如图,在一次数学活动课上,X明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和X明所搭几何体拼成一个无缝隙的大长方体〔不改变X明所搭几何体的形状〕,那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.三、作图题〔本题满分4分〕用圆规、直尺作图,不写作法,但要保留作图痕迹15.〔4分〕〔2015•XX〕用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l与l外一点A.求作:Rt△ABC,使直角边为AC〔AC⊥l,垂足为C〕,斜边AB=c.四、解答题〔本题满分74分,共有9道小题〕16.〔8分〕〔2015•XX〕〔1〕化简:〔+n〕÷;〔2〕关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值X围.17.〔6分〕〔2015•XX〕某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:〔1〕补全条形统计图;〔2〕求扇形统计图扇形D的圆心角的度数;〔3〕若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?18.〔6分〕〔2015•XX〕小颖和小丽做“摸球〞游戏:在一个不透明的袋子中装有编号为1﹣4的四个球〔除编号外都相同〕,从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.19.〔6分〕〔2015•XX〕小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.〔结果保留整数〕〔参考数据:sin35°≈,cos35°≈,tan35°≈〕20.〔8分〕〔2015•XX〕某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.〔1〕求制作每个甲盒、乙盒各用多少米材料?〔2〕如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l〔m〕与甲盒数量n〔个〕之间的函数关系式,并求出最少需要多少米材料?21.〔8分〕〔2015•XX〕已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.〔1〕求证:△ABD≌△CAE;〔2〕连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.22.〔10分〕〔2015•XX〕如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线时的点C到墙面OB的水平距离为3m,到地面OA的距离为m.〔1〕求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;〔2〕一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?〔3〕在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.〔10分〕〔2015•XX〕[问题提出]用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?[问题探究]不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.[探究一]〔1〕用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.〔2〕用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.〔3〕用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.〔4〕用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n 3 4 5 6m 1 0 1 1[探究二]〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?〔仿照上述探究方法,写出解答过程,并将结果填在表②中〕〔2〕用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?〔只需把结果填在表②中〕表②n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…[问题解决]:用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中〕表③n 4k﹣1 4k 4k+1 4k+2m[问题应用]:用2016根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔写出解答过程〕,其中面积最大的等腰三角形每腰用了根木棒.〔只填结果〕24.〔12分〕〔2015•XX〕已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB 方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t〔s〕〔0<t<4〕,连接PQ,MQ,MC,解答下列问题:〔1〕当t为何值时,PQ∥MN?〔2〕设△QMC的面积为y〔cm2〕,求y与t之间的函数关系式;〔3〕是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.〔4〕是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.2015年XX省XX市中考数学试卷参考答案与试题解析一、选择题〔本题满分24分,共有8小题,每小题3分〕下列每小题都给出标号为A,B,C,D 的四个结论,其中只有一个是正确的1.〔3分〕〔2015•XX〕的相反数是〔〕A.﹣B.C.D.2考点:实数的性质.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣〞,据此解答即可.解答:解:根据相反数的含义,可得的相反数是:﹣.故选:A.点评:此题主要考查了相反数的含义以与求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣〞.2.〔3分〕〔2015•XX〕某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为〔〕A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 001=1×10﹣9,故选:D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.〔3分〕〔2015•XX〕下列四个图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.〔3分〕〔2015•XX〕如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=〔〕A.B.2C.3D.+2考点:角平分线的性质;含30度角的直角三角形.分析:根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.解答:解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.点评:本题考查了角的平分线的性质以与直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.5.〔3分〕〔2015•XX〕小刚参加射击比赛,成绩统计如下表:成绩〔环〕 6 7 8 9 10次数 1 3 2 3 1关于他的射击成绩,下列说法正确的是〔〕A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环考点:众数;加权平均数;中位数;极差.分析:根据极差反映了一组数据变化X围的大小,求极差的方法是用一组数据中的最大值减去最小值,以与众数是出现次数最多的数,中位数是按大小顺序排列后,最中间的一个即是中位数,所有数据的和除以数据个数即是平均数,分别求出即可.解答:解:A、极差是10﹣6=4环,故本选项错误;B、把数从小到大排列起来;6,7,7,7,8,8,9,9,9,10,位于中间的两个数都是8,所以中位数是〔8+8〕÷2=8,故本选项正确;C、7和9都出现了3次,次数最多,所以众数是7环和9环,故本选项错误;D、平均数=〔6+7×3+8×2+9×3+10〕=8,故本选项错误;故选:B.点评:此题主要考查了极差,平均数,众数与中位数,解决问题的关键是正确把握这几种数概念的区别与联系.6.〔3分〕〔2015•XX〕如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=〔〕A.30°B.35°C.45°D.60°考点:切线的性质;正多边形和圆.分析:连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.解答:解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.点评:本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.7.〔3分〕〔2015•XX〕如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为〔〕A.4B.4C.4D.28考点:菱形的性质;三角形中位线定理.分析:首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.解答:解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.点评:此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.8.〔3分〕〔2015•XX〕如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值X围是〔〕A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2 D.﹣2<x<0或x>2考点:反比例函数与一次函数的交点问题.分析:先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.解答:解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值X围是﹣2<x<0或x>2.故选D.点评:本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x 的取值X围是解答此题的关键.二、填空题〔本题满分18分,共有6小题,每小题3分〕9.〔3分〕〔2015•XX〕计算:3a3•a2﹣2a7÷a2=a5.考点:整式的混合运算.分析:根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少.解答:解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.点评:〔1〕此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.〔2〕此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.〔3〕此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.〔3分〕〔2015•XX〕如图,将平面直角坐标系中“鱼〞的每个“顶点〞的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是〔2,3〕.考点:坐标与图形性质.分析:先写出点A的坐标为〔6,3〕,横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.解答:解:点A变化前的坐标为〔6,3〕,将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是〔2,3〕,故答案为〔2,3〕.点评:此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.11.〔3分〕〔2015•XX〕把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s〔cm2〕与高h〔cm〕之间的函数关系式为s=.考点:根据实际问题列反比例函数关系式.分析:利用长方体的体积=圆柱体的体积,进而得出等式求出即可.解答:解:由题意可得:sh=3×2×1,则s=.故答案为:s=.点评:此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.12.〔3分〕〔2015•XX〕如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为〔1,1〕,〔﹣1,1〕,把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为2﹣2.考点:旋转的性质;坐标与图形性质;正方形的性质;正多边形和圆.分析:如图,首先求出正方形的边长、对角线长;进而求出OA′的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′的长度,即可解决问题.解答:解:如图,由题意得:正方形ABCD的边长为2,∴该正方形的对角线长为2,∴OA′=;而OM=1,∴A′M=﹣1;由题意得:∠MA′N=45°,∠A′MN=90°,∴∠MNA′=45°,∴MN=A′M=;由勾股定理得:A′N=2﹣;同理可求D′M′=2﹣,∴MN=2﹣〔4﹣2〕=2﹣2,∴正八边形的边长为2﹣2.点评:该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点与其应用问题;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键.13.〔3分〕〔2015•XX〕如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=40°.考点:圆内接四边形的性质;三角形内角和定理.专题:计算题.分析:先根据三角形外角性质计算出∠EBF=∠A+∠E=85°,再根据圆内接四边形的性质计算出∠BCD=180°﹣∠A=125°,然后再根据三角形外角性质求∠F.解答:解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.点评:本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.14.〔3分〕〔2015•XX〕如图,在一次数学活动课上,X明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和X明所搭几何体拼成一个无缝隙的大长方体〔不改变X明所搭几何体的形状〕,那么王亮至少还需要19个小立方体,王亮所搭几何体的表面积为48.考点:由三视图判断几何体.分析:首先确定X明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.解答:解:∵亮所搭几何体恰好可以和X明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵X明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×〔9+7+8〕=48,故答案为19,48.点评:本题考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键,难度不大.三、作图题〔本题满分4分〕用圆规、直尺作图,不写作法,但要保留作图痕迹15.〔4分〕〔2015•XX〕用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l与l外一点A.求作:Rt△ABC,使直角边为AC〔AC⊥l,垂足为C〕,斜边AB=c.考点:作图—复杂作图.专题:作图题.分析:在直线l另一侧取点P,以点A为圆心,AP为半径画弧交直线l于M、N,再作线段MN的垂直平分线交l于C,然后以点A为圆心,c为半径画弧交l于B,连结AB,则△ABC为所作.解答:解:如图,△ABC为所求.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题〔本题满分74分,共有9道小题〕16.〔8分〕〔2015•XX〕〔1〕化简:〔+n〕÷;〔2〕关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值X围.考点:分式的混合运算;根的判别式.专题:计算题.分析:〔1〕原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;〔2〕根据方程有两个不相等的实数根,得到根的判别式大于0,求出m的X围即可.解答:解:〔1〕原式=•=•=;〔2〕∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.点评:此题考查了分式的混合运算,以与根的判别式,熟练掌握运算法则是解本题的关键.17.〔6分〕〔2015•XX〕某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:〔1〕补全条形统计图;〔2〕求扇形统计图扇形D的圆心角的度数;〔3〕若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?考点:条形统计图;用样本估计总体;扇形统计图.分析:〔1〕根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;〔2〕用360°乘以对应的比例即可求解;〔3〕用总人数乘以对应的百分比即可求解.解答:解:〔1〕抽取的总人数是:10÷25%=40〔人〕,在B类的人数是:40×30%=12〔人〕.;〔2〕扇形统计图扇形D的圆心角的度数是:360×=27°;〔3〕能在1.5小时内完成家庭作业的人数是:2000×〔25%+30%+35%〕=1800〔人〕.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.〔6分〕〔2015•XX〕小颖和小丽做“摸球〞游戏:在一个不透明的袋子中装有编号为1﹣4的四个球〔除编号外都相同〕,从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:列表得出所有等可能的情况数,找出数字之和大于5的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.解答:解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 〔1,1〕〔2,1〕〔3,1〕〔4,1〕2 〔1,2〕〔2,2〕〔3,2〕〔4,2〕3 〔1,3〕〔2,3〕〔3,3〕〔4,3〕4 〔1,4〕〔2,4〕〔3,4〕〔4,4〕所有等可能的情况有16种,其中数字之和大于5的情况有〔2,4〕,〔3,3〕,〔3,4〕,〔4,2〕,〔4,3〕,〔4,4〕共6种,故小颖获胜的概率为:=,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.点评:此题考查了游戏公平性,以与列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.〔6分〕〔2015•XX〕小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.〔结果保留整数〕〔参考数据:sin35°≈,cos35°≈,tan35°≈〕考点:解直角三角形的应用-仰角俯角问题.分析:作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.解答:解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.点评:本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.20.〔8分〕〔2015•XX〕某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.〔1〕求制作每个甲盒、乙盒各用多少米材料?〔2〕如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l〔m〕与甲盒数量n〔个〕之间的函数关系式,并求出最少需要多少米材料?考点:一次函数的应用;分式方程的应用;一元一次不等式的应用.分析:〔1〕设制作每个乙盒用x米材料,则制作甲盒用〔1+20%〕x米材料,根据“同样用6m材料制成甲盒的个数比制成乙盒的个数少2个〞,列出方程,即可解答;〔2〕根据所需要材料的总长度l=甲盒材料的总长度+乙盒材料的总长度,列出函数关系式;再根据“甲盒的数量不少于乙盒数量的2倍〞求出n的取值X围,根据一次函数的性质,即可解答.解答:解:〔1〕设制作每个乙盒用x米材料,则制作甲盒用〔1+20%〕x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴〔1+20%〕x=0.6〔米〕,答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.〔2〕根据题意得:l=0.6n+0.5〔3000﹣n〕=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2〔3000﹣n〕解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.点评:本题考查了一次函数的应用,解决本题的关键是利用一次函数的性质解决实际问题.21.〔8分〕〔2015•XX〕已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.〔1〕求证:△ABD≌△CAE;〔2〕连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.考点:全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.分析:〔1〕运用AAS证明△ABD≌△CAE;〔2〕易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.解答:证明:〔1〕∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE〔AAS〕;〔2〕AB=DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.点评:本题主要考查了三角形全等的判定与性质,矩形的判定与性质以与平行四边形的判定。

安徽省2015年中考数学试题解析

安徽省2015年中考数学试题解析

安徽省2015年中考数学试题解析安徽省2015年中考数学试卷注意事项: 1.你拿到的试卷满分为150分,考试时间为120分钟. 2.本卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请你“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的). 1.在-4,2,-1,3这四个数中,比-2小的数是() A.-4 B.2 C.-1 D.3 考点:有理数大小比较.. 分析:根据有理数大小比较的法则直接求得结果,再判定正确选项.解答:解:∵正数和0大于负数,∴排除2和3.∵|�2|=2,|�1|=1,|�4|=4,∴4>2>1,即|�4|>|�2|>|�1|,∴�4<�2<�1.故选:A.点评:考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小. 2.计算8×2的结果是() A.10 B.4 C.6 D.2 考点:二次根式的乘除法.. 分析:直接利用二次根式的乘法运算法则求出即可.解答:解:× = =4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键. 3.移动互联已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为() A.1.62×104 B.1.62×106 C.1.62×108 D.0.162×109 考点:科学记数法―表示较大的数.. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1.62亿用科学记数法表示为1.62×108.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列几何体中,俯视图是矩形的是()考点:简单几何体的三视图.. 分析:根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.解答:解:A、俯视图为圆,故错误; B、俯视图为矩形,正确; C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键. 5.与1+5最接近的整数是() A.4 B.3 C.2 D.1 考点:估算无理数的大小.. 分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+ 最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴ 最接近的整数是2,∴与1+ 最接近的整数是3,故选:B.点评:此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法. 6.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是() A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5 C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5 考点:由实际问题抽象出一元二次方程.. 专题:增长率问题.分析:根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.解答:解:设2014年与2013年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.点评:此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b. 7.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人) 2 5 6 6 8 7 6 根据上表中的信息判断,下列结论中错误的是() A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分考点:众数;统计表;加权平均数;中位数.. 分析:结合表格根据众数、平均数、中位数的概念求解.解答:解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为: =44.425.故错误的为D.故选D.点评:本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键. 8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有() A.∠ADE=20° B.∠ADE=30° C.∠ADE =1 2∠ADC D.∠ADE=1 3∠ADC 考点:多边形内角与外角;三角形内角和定理.. 分析:利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE= ∠EDC,因为∠ADC=∠ADE+∠EDC= ∠EDC+∠EDC= ∠EDC,所以∠ADC= ∠ADC,即可解答.解答:解:如图,在△AED中,∠AED=60°,∴∠A=180°�∠AED�∠ADE=120°�∠ADE,在四边形DEBC中,∠DEB=180°�∠AED=180°�60°=120°,∴∠B=∠C=(360°�∠DEB�∠EDC)÷2=120°�∠EDC,∵∠A=∠B=∠C,∴120°�∠ADE=120°�∠EDC,∴∠ADE= ∠EDC,∵∠ADC=∠ADE+∠EDC= ∠EDC+∠EDC= ∠EDC,∴∠ADE= ∠ADC,故选:D.点评:本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C. 9.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是[()] A.25 B.35 C.5 D.6 考点:菱形的性质;矩形的性质.. 分析:连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO= AC=2 ,根据△AOE∽△ABC,即可得到结果.解答:解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD 是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC= =4 ,∴AO= AC=2 ,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴ ,∴ ,∴AE=5.故选C.点评:本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键. 10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()考点:二次函数的图象;正比例函数的图象.. 分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b�1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b�1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b�1)x+c 的对称轴x=�>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b�1)x+c=0有两个不相等的根,∴函数y=ax2+(b�1)x+c与x轴有两个交点,∵方程ax2+(b�1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=�>0,∴�>0,∴函数y=ax2+(b�1)x+c的对称轴x=�>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分) 11.-64的立方根是.考点:立方根.. 分析:根据立方根的定义求解即可.解答:解:∵(�4)3=�64,∴�64的立方根是�4.故答案为�4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 12.如图,点A、B、C在半径为9的⊙O上,AB⌒的长为,则∠ACB的大小是.考点:弧长的计算;圆周角定理.. 分析:连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB= ∠AOB=20°.解答:解:连结OA、OB.设∠AOB=n°.∵ 的长为2π,∴ =2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.点评:本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.考点:规律型:数字的变化类.. 分析:首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征. 14.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则 1 a+ 1 b=1;②若a=3,则b+c=9;③若a=b =c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是 (把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.. 分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴ + =1,此选项正确;②∵a=3,则3+b=3b,b= ,c= ,∴b+c= + =6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:a2 a�D1 +1 1�Da • 1 a ,其中a=- 1 2.考点:分式的化简求值.. 专题:计算题.分析:原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,把a 的值代入计算即可求出值.解答:解:原式=(�)• = • = ,当a=�时,原式=�1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 16.解不等式: x 3>1- x-3 6.考点:解一元一次不等式.. 分析:先去分母,然后移项并合并同类项,最后系数化为1即可求出不等式的解集.解答:解:去分母,得2x >6�x+3,移项,得2x+x>6+3,合并,得3x>9,系数化为1,得x>3.点评:本题考查了一元一次不等式的解法,解答本题的关键是熟练掌握解不等式的方法步骤,此题比较简单.四、(本大题共2小题,每小题8分,满分16分) 17.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点). (1)请画出△ABC关于直线l对称的△A1B1C1; (2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C3B2.考点:作图-轴对称变换;作图-平移变换.. 分析:(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键. 18.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).考点:解直角三角形的应用-仰角俯角问题.. 分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.解答:解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥A C,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE= ,∴BE=CE•cot30°=12× =12 .在Rt△BDE中,由∠DBE=45°,得DE=BE=12 .∴CD=CE+DE=12( +1)≈32.4.答:楼房CD的高度约为32.4m.点评:考查了解直角三角形的应用�仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.五、(本大题共2小题,每小题10分,满分20分) 19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.考点:列表法与树状图法..分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为: = .点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 20.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ. (1)如图1,当PQ∥AB时,求PQ的长度; (2)如图2,当点P在BC上移动时,求PQ长的最大值.考点:圆周角定理;勾股定理;解直角三角形.. 专题:计算题.分析:(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°= ,然后在Rt△OPQ中利用勾股定理可计算出PQ= ;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ= ,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP= OB= ,所以PQ长的最大值= .解答:解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B= ,∴OP=3tan30°= ,在Rt△OPQ中,∵OP= ,OQ=3,∴PQ= = ;(2)连结OQ,如图2,在Rt△OPQ中,PQ= = ,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP= OB= ,∴PQ长的最大值为 = .点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.六、(本题满分12分)21.如图,已知反比例函数y= k1 x与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m). (1)求k1、k2、b的值; (2)求△AOB 的面积; (3)若M(x1,y1)、N(x2,y2)是比例函数y= k1 x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.考点:反比例函数与一次函数的交点问题.. 分析:(1)先把A点坐标代入y= 可求得k1=8,则可得到反比例函数解析式,再把B(�4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b 的图象与y轴的交点坐标为(0,6),可求S△AOB= ×6×2+ ×6×1=9;(3)根据反比例函数的性质即可得到结果.解答:解:(1)∵反比例函数y= 与一次函数y=k2x+b的图象交于点A(1,8)、B(�4,m),∴k1=8,B(�4,�2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),∴S△AOB= ×6×2+ ×6×1=9;(3)∵比例函数y= 的图象位于一、三象限,∴在每个象限内,y 随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M (x1,y1)在第三象限,N(x2,y2)在第一象限.点评:本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.七、(本题满分12分) 22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2. (1)求y与x之间的函数关系式,并注明自变量x的取值范围; (2)x为何值时,y有最大值?最大值是多少?考点:二次函数的应用.. 专题:应用题.分析:(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y 与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.解答:解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=�x+10,2a=�x+20,∴y=(� x+20)x+(� x+10)x=� x2+30x,∵a=� x+10>0,∴x<40,则y=�x2+30x(0<x<40);(2)∵y=�x2+30x=�(x�20)2+300(0<x<40),且二次项系数为�<0,∴当x=20时,y有最大值,最大值为300平方米.点评:此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.八、(本题满分14分) 23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC; (2)求证:△AGD∽△EGF; (3)如图2,若AD、BC所在直线互相垂直,求 AD EF的值.考点:相似形综合题.. 分析:(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE= ∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.解答:(1)证明:∵GE 是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC 中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴ ,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGE=∠AHB=90°,∴∠AGE=∠AGB=45°,∴ ,又∵△AGD∽△EGF,∴ = = .点评:本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.。

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015•上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015•上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点: 多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015•上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点: 菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015•上海)计算:|﹣2|+2=4.考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015•上海)方程=2的解是x=2.考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(4分)(2015•上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4.考点:根的判别式.分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015•上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015•上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b 的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015•上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分析:由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)11 12 13 14 15人数 5 5 16 15 12那么“科技创新社团"成员年龄的中位数是14岁.考点: 中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015•上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015•上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=22.5度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B 相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考点: 圆与圆的位置关系;点与圆的位置关系.专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D 与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015•上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC 的延长线于点E,那么线段DE的长等于4﹣4.考点: 解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解答:解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015•上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015•上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解答:解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015•上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1。

2015年中考真题精品解析 数学(青岛卷)精编word版(解析版)

2015年中考真题精品解析 数学(青岛卷)精编word版(解析版)

(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.2的相反数是( ).A .2-B .2C .21D .2【答案】A考点:相反数的定义.2.某种计算机完成一次基本运算的时间约为0.000 000 001s ,把0.000 000 001s 用科学计数法可以表示为( ).A .s 8101.0-⨯B .s 9101.0-⨯C .s 8101-⨯D .s 9101-⨯ 【答案】D【解析】试题分析:科学计数法是指:a ×10n,且1≤a <10,小数点向右移动几位,则n 的相反数就是几. 考点:科学计数法3.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).【答案】B【解析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可以判定B既是轴对称图形,也是中心对称图形.考点:轴对称图形与中心对称图形.4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=().3A.3B.2 C.3 D.2【答案】C考点:角平分线的性质和中垂线的性质.5.小刚参加射击比赛,成绩统计如下表A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环【答案】B【解析】试题分析:根据表格可得极差为10-6=4环;中位数为8环;众数为7环和9环;平均数为(6+21+16+27+10)÷10=8环.考点:平均数、极差、众数和中位数的计算.6.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35° C.45° D.60°【答案】A【解析】试题分析:连接OA ,根据直线PA 为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP -∠OAB=90°-60°=30°.考点:切线的性质7.如图,菱形ABCD 的对角线AC 、BC 相交于点O ,E 、F 分别是AB 、BC 边上的中点,连接EF ,若,BD=4,则菱形ABCD 的周长为( ).A .4B ..D .28【答案】C考点:菱形的性质、三角形中位线性质、勾股定理.8.如图,正比例函数x k y 11=的图像与反比例函数x k y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ).A .22>或<x x -B .202<<或<x x - C .2002<<或<<x x - D .202>或<<x x -【答案】D【解析】试题分析:根据函数的交点可得点B 的横坐标为-2,根据图象可得当一次函数的函数值大于反比例函数的函数值时x >2或-2<x <0.考点:反比例函数与一次函数.第Ⅱ卷 二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:.________232723=÷-⋅a a a a【答案】5a考点:同底数幂的计算.10.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的31,那么点A 的对应点A '的坐标是_______.【答案】(2,3)【解析】试题分析:根据图示可得点A 的坐标为(6,3),则变换后点A ′的坐标为(6×13,3),即(2,3). 考点:点的坐标变换.11.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (2cm )与高)(cm h 之间的函数关系是为_________________________【答案】S=6h 【解析】试题分析:根据题意可得长方体的体积与圆柱体的体积相等,则圆柱体的体积=长方体的体积=3×2×1=6立方厘米,即Sh=6,则S=6h. 考点:反比例函数的应用12.如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A ,B 的坐标分别为(1,1)、(-1,1), 把正方形ABCD 绕原点O 逆时针旋转45°得到正方形A ′B ′C ′D ′则正方形ABCD 与正方形A ′B ′C ′D ′重叠部分形成的正八边形的边长为_____________________.【答案】 2【解析】试题分析:如图所示:根据题意可得A ′D ′,=AB=2,A ′0=OD ′,OM=1,根据△FMD ′∽△A ′OD ′,则=FD MDA D OD ¢′′′′,即'2FD ,则FD ′=2,则A ′E=FD ′=2∴EF=2-(2-(2-2,即正八边形的边长为-2.考点:相似三角形的应用13.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E=30°,则∠F= .【答案】40°考点:圆内接四边形的性质.14.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体表面积为________________.【答案】19;48.【解析】试题分析:大长方体每层9个小正方体,总共4层,则总共需要36个正方形,则36-17=19个,表面积为46.考点:几何体的组成三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.l及外一点A.15.已知:线段c,直线l求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C)斜边AB=c.【答案】略.考点:作图.四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:nn n n n 1)12(2-÷++; (2)关于x 的一元二次方程 0322=-+m x x 有两个不相等的实数根,求m 的取值范围 【答案】11n n +-;m >-98【解析】试题分析:首先将括号里面的分式进行通分,然后将除法改成乘法进行约分计算;根据一元二次方程根的判别式可得:当方程有两个不相等的实数根,则△=2b -4ac >0,从而得出m 的不等式,然后进行求解. 试题解析:(1)原式=11)1)(1()1(2-+=+-⨯+n n n n n n n (2)由题知9)(2432>m -⨯⨯-=∆,解得89->m , 答:m 的取值范围是89->m 考点:分式的化简、一元二次方程根的判别式.17.(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】略;27°;1800【解析】试题分析:根据A 的人数和百分比求出总人数,然后根据总人数和B 的百分比计算B 的人数,补全图形;根据扇形D 的人数和总人数的比值求出D 所占的百分比,从而得出圆心角度数;根据A 、B 、C 的总的百分比得出人数.试题解析:(1) (2)︒=⨯︒27403360 (3)1800%)35%30%25(2000=++⨯考点:条形统计图、扇形统计图.18.(本小题满分6分) 小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。

2015年北京中考数学试卷解析

2015年北京中考数学试卷解析

2015年北京市高级中等学校招生考试数学试卷逐题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个符合题意的•1. 截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000立方米,将140 000用科学记数法表示应为A. 14X 104B.1.4 X 105C.1.4 X 106D.0.14 X 106【答案】B【解析】难度:★本题考查了有理数的基础一科学计数法.难度易.2. 实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A. aB.bC.cD.d【答案】A【解析】难度:★本题考查了有理数的基础数轴的认识以及绝对值的几何意义;3. 一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为D.【答案】B【解析】难度:★本题考查了概率问题,难度易4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为C.B.A.【答案】D【解析】难度:★本题考查了轴对称图形的判断;难度易5.如图,直线1 1,1 2,1 3交于一点,直线14 // 1/仁124°,/ 2=88°,则/ 3的度数为1114若A.26B.36°C.46°【答案】B【解析】难度:★D.56°本题考查了相交线平行线中角度关系的考查,难度易6. 如图,公路AC, BC互相垂直,公路AB的中A点M和点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为A.0.5kmB.0.6kmC.0.9kmD.1.2km【答案】D【解析】难度:★本题考查了直角三角形斜边中线等于斜边一半的性质,难度易7. 某市6月份的平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21B.21,21.5C.21,22D.22,22【答案】C【解析】难度:★ 本题考查了中位数,众数的求法,难度易;8. 右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东,正北方向为x轴,y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A. 景仁宫(4,2)B. 养心殿(-2,3)C. 保和殿(1,0)B M CD. 武英殿(-3.5 , -4) 【答案】B 【解析】难度:★本题考查了平面直角坐标系点的坐标的确定,难度易;会员年卡类型办卡费用(元)每次游泳收费(元)A 类 50 25B 类 200 20C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25X 20=550元,若一年 内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A 类会员年卡 B.购买B 类会员年卡 C.购买C 类会员年卡 D.不购买会员年卡【答案】C【解析】难度:★★本题考查了方案讨论问题,难度中•10. 一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的 AB,BC,CA, OA,OB,O (组成,为记录寻宝者的行进路线,在 BC 的中点M 处放置了一台定位仪 器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为 y ,若寻宝者匀速 行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可 能为A.A — O^BB.B —A ^CC.B — OXD.C — B —O【答案】C【解析】难度:★★本题考查了动点函数图像与路径问题,难度中二、填空题(本题共18分,每小题3 分)11. ________________________________ 分解因式:5x 3 - 10x 2 + 5x = 【答案】5x(x-1)2 【解析】难度:★本题考查了因式分解的计算,难度易12. 右图是由射线AB, BC,CD,DE,EA 组成的平面图形,则/ 1+Z 2+Z 3+Z 4+ / 5= _______ . 【答案】360°【解析】难度:★本题考查了多边形的外角和为360°,难度易;13. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术,正负术和方程术, 其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛 五,羊二,直金十两;牛二,羊五,直金八两.问:牛,羊各直金几何?” 译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问: 每头牛,每只羊各值多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 _________【解析】难度:★★本题考查了简单的二元一次方程组的应用问题, 但是阅读量较大,需要学生迅速【答案】6x + 2y=10 ?2x + 5y= 8 D2B1A4E53 C提取有用信息,难度中14. 关于x 的一元二次方程ax 2 + bx + - = 0有两个相等的实数根,写出一组满足条4 件的实数a,b 的值:a= ________ b = _______ . 【答案】a=4,b=2(答案不唯一,满足a b 2) 【解析】难度:★本题考查了根据一元二次方程根的情况求参数值的问题,难度易;15. 北京市2009~2014年轨道交通日均客运量统计 如图所示,根据统计图中提供的信息,预估 2015 年北京市轨道交通日均客运量约为 _________ 人 次,你的预估理由是 ____________________________ 【答案】1038 根据2009〜2014年平均增长率.【解析】难度:★ 本题考查了根据图像求平均增长率问题,难度易16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线, 已知:线段AB,I卜m“川"H JJ L 111求作:线段AB 的垂直平分线.小芸的作法如下:【解析】难度:★本题考查了垂直平分线的画图依据,难度易;三、解答题(本题共72分,第17〜26题每小题5分,第27题7分,第28题7 分,第29题8 分)217•计算:-43 2 4s in 60o.2【答案】5 ,3【解析】难度:★解:原式=4-1+2- 3 +2 :. 3=5+ ,3本题考查了实数,零指数幕,负整数幕,特殊角的三角函数值的运算,二次根式的化简.综合考查了实数的混合运算.解决此类问题的关键是熟练记住三角函数值,掌握实数,零指数幕,负整数幕的运算及二次根式的化简•难度易•18. 已知2a23a 6 0,求代数式3a 2a 1 2a 1 2a 1的值.【答案】7【解析】难度:★★解:原式=6a23a 4a21=6a23a 4a21=2a23a 1••• 2a2 +3a- 6 = 02a23a 6原式=6+1=7本题考查了整式的混合运算与化简求值,注意先化简,再整体代入求值.难度中.4x1 7x 1019.解不等式组 x 8,并写出它的所有非负整数解 x 5 ----------3【答案】解集为2 x 7;非负整数解:x=0, 1, 2, 3 2解:解①得:x 2 解②得:x —2原不等式的解集为 2 x -2它的所有非负整数解为x=0,1, 2,3本题考查了一元一次不等式的解法及把解集在数轴上表示出来,解答这类问题 学生往往会在解题时不注意移项时”变号“而出现错误 .重点掌握不等式的基本 性质,难度易•20. 如图,在△ ABC 中, ABAC, AD 是BC 边上的中线,BE 丄AC 于点E , 求证: CBE BAD【答案】证明见解析 【解析】难度:★★ 证明:T AB= ACABC 是等腰三角形T AD 是BC 边上中线【解析】 难度: 7x 10①BAD CADADB ADC 90o••• BE A ACBEA 90oAEB ADB•••DAOB二DAEB+DEADAOB EBC ADBCBE BAD本题考查了等腰三角形的概念及”三线合一“的性质,八字模型的运用•难度中•21. 为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市 民使用.到2013年底,全市已有公租自行车25 000辆,租赁600个.预计到2015 年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量 是2013年底平均每个租赁点的公租自行车数量的 1.2倍.预计到2015年底,全 市将有租赁点多少个?【答案】1000个【解析】难度:★★解:设2015年底,全市将有租赁点解得:x=1000经检验:x=1000是原分式方程的解 答:预计到2015年底,全市将有租赁点1000个• 本题考查了分式方程的应用,找出题目中蕴含的数量关系,列出方程解出即可 难度中.22. 在YU 中,过点D 作DEL AB 于点E ,点F 在边CD 上,DF=BE,连接AF, BF.(1) 求证:四边形BFDE 是矩形;(2) 若 CF=3,BF=4,DF=5,求证:AF 平分 DAB .【答案】证明见解析;【解析】难度:★★(1)证明:•••四边形ABCD1平行四边形 DF// BEV DF=BE四边形DEBF 是平行四边形根据题意得:50000 x600•••DE丄ABDEB 90°四边形BFDE是矩形(2)证明:Q四边形BFDE是矩形BFD 90°BFC 90°在Rt△ BFC中, CF=3, BF=4BC . BF2 CF232 42 5••四边形ABCD!平行四边形BC=AD=5, DFA FAB• DF=5AD=DFDAF DFADAF FABAF平分DAB本题考查了平行四边形的性质,矩形的判定及性质•等腰三角的定义及性质运用,主要考查了平时所讲到的”角平分线+平行必出等腰的模型•难度中•23. 在平面直角坐标系xOy中,直线y kx b(k 0)与双曲线y 8的一个交点x为P(2, m),与x轴、y轴分别交于点A, B.(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)4(2) 1 或3【解析】难度:★★★解:(1)v p是直线与双曲线的交点,P在双曲线y 8上.xm=4(2)<方法一代入法>由(1)知,P(2,4)代入直线y=kx+b得:4=2k+bb=4-2 kv直线交x轴、y轴于A、B两点4 2kA ,0 ,B 0,4 2kkPA j2 A 4222k又v PA=2ABk=1 或k=3k的值为1或3(2)<方法二几何法>此题分情况讨论①若k>0且P、A分别在点B的两侧如图①01■■ \r\ns_亠■'4'加i<il/ \ r »:AB4 2k424 2k 4 2k 2/ \ *jT \/ \ 1图①•••PA=2ABB为PA中点OB为中位线B (0,2 )y kx 2(k 0)4=2k+2k=1②若k>0且P、B分别在点A的两侧如图②【解析】难度:★★本题考察了反比例函数和一次函数的基本性质;两点之间坐标距离公式;分类讨论;相似.难度中•本题可用两种方法解决:第一种可利用两点之间坐标距离公式计算得出答案,虽然比较好思考,计算量却很大;第二种利用几何法画图求相似的方法,分类讨论一次函数中k的取值范围画出不同情况的图形解决问题•24. 如图,AB是。

中考数学模拟试卷精选汇编:操作探究答案

中考数学模拟试卷精选汇编:操作探究答案

图1图2操作探究一.选择题1.(2015•山东滕州羊庄中学•4月模拟)如图1,⊙O 的半径为1,点O 到直线m 的距离为2,点P 是直线m 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是A .1B .3C .2D .5答案:B ;二.填空题1.(2015•山东滕州东沙河中学•二模)如图2,以点P (2,0)为圆心,3为半径作圆,点M (a ,b )是⊙P 上的一点,则ab的最大值是____.答案:3;三.解答题1.(2015·江苏高邮·一模)(本题满分12分)数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:(1)如图1,若连接矩形ABCD 的对角线AC 、BD 相交于点O ,则Rt △ADC 可由Rt △ABC经过旋转变换得到,这种旋转变换的旋转中心是点▲、旋转角度是▲°;(2)如图2,将矩形纸片ABCD 沿折痕EF 对折、展平.再沿折痕GC 折叠,使点B 落在EF 上的点B ′处,这样能得到∠B ′GC .求∠B ′GC 的度数.(3)如图3,取AD 边的中点P ,剪下△BPC ,将△BPC 沿着射线BC 的方向依次进行平移变换,每次均移动BC 的长度,得到了△CDE 、△EFG 和△GHI (如图4).若BH =BI ,BC =a ,则:①证明以BD 、BF 、BH 为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于5015,请求出a 的最大整数值.解:(1)点O 、180°……………………2分(2)连接BB',由题意得EF 垂直平分BC ,故BB'=B'C ,由翻折可得,AB CDO(图1)EF ADB CB ′G(图2)PBC (图3)B PCIE DG FHa (图4)ADB'C =BC ,∴△BB'C 为等边三角形.∴∠B'CB =60°,(或由三角函数FC :B'C =1:2求出∠B'CB =60°也可以.)∴∠B'CG =30°,∴∠B'GC =60°……………………4分(3)①分别取CE 、EG 、GI 的中点P 、Q 、R ,连接DP 、FQ 、HR 、AD 、AF 、AH ,∵△ABC 中,BA =BC ,根据平移变换的性质,△CDE 、△EFG 和△GHI 都是等腰三角形,∴DM ⊥CE ,FQ ⊥EG ,HN ⊥GI .在Rt △AHN 中,AH =AI =4a ,AH 2=HN 2+AN 2,HN 2=154a 2,则DM 2=FQ 2=HN 2=154a 2,AD 2=AM 2+DM 2=6a 2,AF 2=AQ 2+FQ 2=10a 2,新三角形三边长为4a 、6a 、10a .∵AH 2=AD 2+AF 2∴新三角形为直角三角形.……………………4分(或通过转换得新三角形三边就是AD 、DI 、AI ,即求△GAI 的面积或利用△HAI 与△HGI 相似,求△HAI 的面积也可以)②其面积为126a 10a =15a 2.∵15a 2<5015∴a 2<50∴a 的最大整数值为7.……………………2分2.(2015·江苏江阴·3月月考)提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD ∥BC ),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).图1AB CD图2ABCD背景介绍:这条分割直线..既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.尝试解决:ABCIEDGFHaMQN(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF 分别交AD 、BC 于点E 、F .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD ∥BC ,∠A =90°,AD <BC ,AB=4cm ,BC =6cm ,CD =5cm .请你找出梯形ABCD 的所有“等分积周线”,并简要的说明确定的方法.答案:解:(1)作线段AD (或BC )的中垂线即可.(2)小华不会成功.直线平分梯形ABCD 面积,则21(AE +BF )AB=21(ED +CF )AB ∴AE +BF =ED +CF ,又∵AB <CD ,∴此时AE +BF +AB <ED +CF +CD ∴小华不可能成功(3)可求得:S 梯形ABCD =18,C 梯形ABCD =18,由(2)可知直线分别交AD 、BC 于点E 、F 时不可能,只要分以下几种情况:①当直线分别交AD 、AB 于E 、F 时有S △AEF ≤S △ABD ,又∵S △ABD =6<9,∴不可能同理,当直线分别交AD 、CD 于E 、F 时S △AEF ≤S △ACD <9,∴不可能②当直线分别交AB 、BC 于E 、F 时设BE =x ,则BF =9−x由直线平分梯形面积得:12x (9−x )=9求得:x 1=3,x 2=6>4(舍去)∴BE =3③当直线分别交CD 、BC 于E 、F 时设CE =x ,可得:S △ECF =12×4x5×(9−x )=92x 2-18x +45=0此方程无解,∴不可能④当直线分别交AB 、CD 于、E 、F 时设CF =x ,可得:S BFEC =12×(3−x 5)(6−3x 5)+6x 225=9∴x1=0,与②同x2=5,BF=−2,舍去综上所述,符合条件的直线共有一条3.(2015·江苏江阴要塞片·一模)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=①在P1(0,-3),P2(4,6),P3(2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;②若点P在直线2y x=-+上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________.答案:解(1)10×1.5+(18﹣10)×2=31,········2分(2)①当x≤10时,y=1.5x,········3分②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,········4分③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,········5分(3)①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,········6分②当20≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,········7分∴25≤m≤45,········9分综合①、②可得m的取值范围为:25≤m≤50.········10分4(2015·福建漳州·一模)动手操作:用两种不同的方法,将下图中一个等腰三角形分割成四个等腰三角形.解:答案:解:每画一个图正确得4分5(2015•山东滕州东沙河中学•二模)如图3,四边形ABCD为矩形,点E在边BC上,四边形AEDF为菱形.(1)求证:ΔABE≌ΔDCE;(2)试探究:当矩形ABCD长宽满足什么关系时,菱形AEDF为正方形?请说明理由答案:解:(1)略(2)AD=2AB.6.(2015•山东滕州羊庄中学•4月模拟)如图4-1,正方形ABCD的对角线AC与BD相交于点M,正方形MNPQ与正方形ABCD全等,将正方形MNPQ绕点M顺时针旋转,在旋转过程中,射线MN与射线MQ分别交正方形ABCD的边于E、F两点。

2015年安徽省中考数学试卷解析

2015年安徽省中考数学试卷解析
在△AED中,∠AED=60°,
∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,
在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,
∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣ ∠EDC,
∵∠A=∠B=∠C,
∴120°﹣∠ADE=120°﹣ ∠EDC,
解答:解:连结OA、OB.设∠AOB=n°.
∵ 的长为2π,
∴ =2π,
∴n=40,
∴∠AOB=40°,
∴∠ACB= ∠AOB=20°.
故答案为20°.
点评:本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.
13、考点:规律型:数字的变化类..
分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.
∴三次传球后,球恰在A手中的概率为: = .
点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
20、考点:圆周角定理;勾股定理;解直角三角ቤተ መጻሕፍቲ ባይዱ..
专题:计算题.
分析:(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°= ,然后在Rt△OPQ中利用勾股定理可计算出PQ= ;
在Rt△OPQ中,∵OP= ,OQ=3,
∴PQ= = ;
(2)连结OQ,如图2,
在Rt△OPQ中,PQ= = ,
当OP的长最小时,PQ的长最大,
此时OP⊥BC,则OP= OB= ,

2015年陕西省中考数学试题及解析

2015年陕西省中考数学试题及解析

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=().2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是().4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正2)二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2015•陕西)正八边形一个内角的度数为.13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B 点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=().))2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是().4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=7.(3分)(2015•陕西)不等式组的最大整数解为()解:8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正2x=二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.:12.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A==14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.的图象过|ab|=2|cd|=2的图象过==|ab|=2|cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=ACAD=6,MN=AD=33三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.﹣+2﹣+83+2﹣17.(5分)(2015•陕西)解分式方程:﹣=1.,是分式方程的解.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.,21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B 点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米),,,22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:.=24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.BC=,,BE=25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.)代入上式,得解得:y=(MD==26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.=4BC AE=2424=2CD=2AE=8=4+12OB=OP=4﹣解得:OQ=,OB=BOQ==,.。

2015年全国中考数学试卷分类汇编专题37操作探究

2015年全国中考数学试卷分类汇编专题37操作探究

=2,∴,==.:.【答案】(1)(,m );(2)(3)存在m 452122565y 2++-=x x 【解析】解:(1)设D 的坐标为:(d ,m ),根据题意得:CD (第26题图)因为CD ∥EA ,所以∠CDE =∠AED ,又因为∠AED =∠所以CD =CE =EA =d ,OE =2m -d ,55点P坐标为(1.6,3.2)和(0.9,3.2)。请补全以下求不等式的解集的过程根据不等式特征构造二次函数;画出二次函数的图象求得方程的解为锯齿线标示出函数图象中可得不等式的解集为求不等式的解集的解集【答案】(1)②;③.(2)②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.【解析】试题分析:(1)正确画出图像,借助图像可知与x轴的交点的横坐标的值就是y=0时的一元二次方程的解,然后借助图像找到x轴上方的部分的x的取值就是不等式的解集;②;③.(2)①构造二次函数,并画出图象.②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.(说明:以上三步中某一步出现错误,则以后的各步均不得分;若把不等式化为,构造函数进行求解亦可,具体评分参照上述标准)(3)①当时,解集为或(用“或”与“和”字连接均可).②当时,解集为(或亦可) .③当时,解集为全体实数.考点:二次函数的图像与一元二次方程的解,与不等式的解集2. (2015•浙江杭州,第21题10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹)4. (2015•浙江衢州,第21题8分)如图1,将矩形沿折叠使顶点落在上的点处沿折叠,使顶点落在折痕上的点处再将矩形沿折叠此时顶点恰好落在上的点处求证:;已知,求和的长【答案】解:(1)证明:由折叠知: .∵由矩形知:,∴.(2)如答图,∵,∴∴.由折叠知:,∴.∵,∴.又∵,由(1)可得,,∴.∴.∴.【考点】折叠问题;矩形的性质;折叠对称的性质;等腰直角三角形的判定和性质;全等三角形的判定和性质.【分析】(1)由折叠和矩形的性质可得(2)判断和都是等腰直角三角形,即可,由求得;由证明,得到,从而由求得. 5, (2015岳阳第23题10分)如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,又∵点P为线段CD的中点,∴PC=PD,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=P B.(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•A B.故答案为:PA=P B.点评:(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.(3)此题还考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.。

江西省2015年中考数学试题(解析版)(附答案)

江西省2015年中考数学试题(解析版)(附答案)

2015年中考真题精品解析 数学(江西卷)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.计算0(1)-的结果为( ) A .1B .-1C .0D .无意义【答案】A考点:幂的计算.2.2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”,标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300 000用科学计数法表示为( ) A .6310⨯ B .5310⨯ C .60.310⨯ D .43010⨯ 【答案】B 【解析】试题分析:科学计数法是指:a ×10n,且1≤a <10,n 为原数的整数位数减一. 考点:科学计数法.3.如图所示的几何体的左视图为( )【答案】D 【解析】试题分析:根据三视图可得,这个图形的左视图为两个矩形合在一起的一个大矩形.考点:三视图.4.下列运算正确的是( )A .236(2)6a a =B .2232533a b ab a b -∙=- C .1b aa b b a +=---D .21111a a a -∙=-+ 【答案】C考点:幂的乘方计算、同底数幂的乘法、分式的计算.5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然后向右扭动框架,观察所得四边形的变化.下面判断错误..的是( ) A .四边形ABCD 由矩形变为平行四边形 B .BD 的长度增大C .四边形ABCD 的面积不变D .四边形ABCD 的周长不变【答案】C 【解析】试题分析:当向右扭动框架时,四边形ABCD 由矩形改变为平行四边形,BD 的长度增大,面积减小,周长不变.考点:矩形与平行四边形的性质.6.已知抛物线y =ax 2+bx +c(a >0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )A .只能是x=-1B .可能是y 轴C .在y 轴右侧且在直线x=2的左侧D .在y 轴左侧且在直线x=-2的右侧 【答案】D考点:二次函数的性质.二、填空题(本大题共8小题,每小题3分,共24分) 7.一个角的度数为20°,则它的补角的度数为 . 【答案】160° 【解析】试题分析:当两角之和为180°,则两角互补,则它的补角度数为:180°-20°=160°. 考点:补角的性质.8.不等式组110239x x ⎧-⎪⎨⎪-<⎩≤,的解集是 .【答案】-3<x ≤2 【解析】试题分析:解不等式①可得:x ≤2,解不等式②可得:x >-3,则不等式组的解为-3<x ≤2.考点:解不等式组.9.如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA=OB .则图中有 对全等三角形.【答案】3考点:三角形全等的判定.10.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A=50°,∠B=30°,则∠ADC 的度数为 .【答案】110°考点:圆的基本性质、三角形外角的性质.11.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 【答案】25 【解析】试题分析:根据一元二次方程的韦达定理可得:m+n=4,mn=-3,则原式=2()m n +-3mn=16-3×(-3)=16+9=25. 考点:韦达定理.12.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 . 【答案】6考点:二元一次方程组、中位数的计算.13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.计算结果精确到0.1cm,可用科学计算器).【答案】14.1【解析】试题分析:过点B作BE⊥CD,根据BC=BD可得△BCD为等腰三角形,根据等腰三角形的三线合一定理可得:∠CBE=40°÷2=20°,根据Rt△BCE的三角函数可得:cos∠CBE=BEBC,则BE=BC·cos20°≈14.1cm.考点:等腰三角形的性质、三角函数的计算.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.【答案】2或考点:直角三角形的性质.三、(本大题共4小题,每小题6分,共24分)15.先化简,再求值:22(2)(2)a a b a b +-+,其中1a =-,b = 【答案】2a -42b ;-11. 【解析】试题分析:首先根据单项式与多项式乘法计算法则和完全平方公式将括号去掉,然后进行合并同类项化简,最后将a 和b 的值代入化简后的式子进行计算.试题解析:原式=22a +4ab -(2a +4ab+42b )=22a +4ab -2a -4ab -42b =2a -42b当a=-1,=2(1)--4×2=1-12=-11.考点:代数式的化简求值.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称.已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.【答案】(0,52);B(-2,4)、C(-2,2)、1B (2,1)、1C (2,3).(2)、根据中心对称的性质可得:B(-2,4)、C(-2,2)、1B (2,1)、1C (2,3). 考点:平面直角坐标系、对称中心的性质.17.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺........,根据下列条件分别在图1,图2中画出一条弦.,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法). (1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切与点P ,且l ∥BC .【答案】略.试题解析:如图所示:考点:圆的基本性质、作图题.18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m的值.【答案】略;m=2.【解析】试题分析:必然事件为口袋里的球全部都是黑球,即将红球全部取出;随机事件为口袋里不全部都是黑球,即红球没有被全部取光;取出m个红球,在放入m个黑球,则口袋里黑球的数量为(6+m)个,则根据概率的计算法则列出方程,并进行求解.试题解析:(1)、(2)、根据题意可得:105=解得:m=2.考点:概率的计算与应用.四、(本大题共4小题,每小题8分,共32分)19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【答案】120份,30°;略;1375人.试题解析:(1)、30÷25%=120(人) 10÷120×360°=30°(2)、如图所示:(3)、1500×3080120+=1375(人)考点:条形统计图、扇形统计图.20.(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15.过点A作AE⊥BC,垂足为E,沿AE 剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A .平行四边形B .菱形C .矩形D .正方形(2)如图2,在(1)中的四边形纸片AEE'D 中,在EE'上取一点F ,使EF=4,剪下△AEF ,将它平移至△DE'F'的位置,拼成四边形AFF'D . ①求证:四边形AFF'D 是菱形; ②求四边形AFF'D 的两条对角线的长.【答案】C ,试题解析:(1)、C(2)、①、∵AD=5,S □ABCD =15 ∴AE=3 又∵在图2中,EF=4∴在Rt △AEF 中, ∴AF=AD=5又∵AF ∥DF ′ AF=DF ′ ∴四边形AFF ′D 是平行四边形 ∴四边形AFF ′D 是菱形②、连接AF ′,DF 在Rt △DE ′F 中 ∵E ′F=E ′E -EF=5-4=1 DE ′=3 ∴DF=在Rt △AEF ′中,EF ′=EE ′+E ′F ′=5+4=9,AE=3 ∴AF ′. 考点:勾股定理、菱形的判定.21.如图,已知直线y=ax +b 与双曲线(0)ky x x=>交于A(x 1,y 1),B(x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于点P(x 0,0),与y 轴交于点C . (1)若A ,B 两点坐标分别为(1,3),(3,y 2).求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB=BP ,求A ,B 两点的坐标; (3)结合(1),(2)中的结果,猜想并用等式表示x 1,x 2,x 0之间的关系(不要求证明).【答案】(1)、P(4,0);(2)、A(2,2),B(4,1);(3)、1x +2x =0x .试题解析:(1)、把A(1,3)代入y=k x 得:k=3 ∴反比例函数的解析式为y=3x∵点B(3,2y )也在双曲线上 ∴2y =1 把A(1,3)、B(3,1)代入y=ax+b 得:331a b a b ì+=ïí+=ïî截得:14a b ì=-ïí=ïî ∴y=-x+4 当y=0时,x=4 ∴点P 的坐标为(4,0)考点:反比例函数、三角形相似、一次函数.22.甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离..A.端.的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;②求甲、乙第6此相遇时t的值.【答案】略;略;甲:s=5t(0≤t≤20),乙:s=100-4t(0≤t≤25);t=1100 9试题解析:(1)、如图所示:(2)、(2)、①、甲:s=5t(0≤t≤20),乙:s=100-4t(0≤t≤25)②、由表格可得:甲、乙两人第6次相遇时,他们所跑的路程之和为200×6-100=1100(m)T=1100÷(5+4)=11009(s)考点:一次函数的性质.五、(本大题共10分)23.如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.(1)、函数y=ax2-2ax+a+3(a>0)的最小值为;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)、当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);(3)、若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x +1)2+1=0的解.【答案】(1)、3;-1≤x ≤1;(2)、1;矩形;(3)、1x 1,2x =-11x =2,2x =-4.【解析】试题分析:根据函数的最值求出得出最小值,根据二次函数的解析式求出两个函数的对称轴,则两个对称轴之间y 随x 的增大而减小;过点M 作MB ⊥x 轴,垂足为B ,过点N 作NC ⊥MB ,垂足为C ,分别求出点M 和点N 的坐标,得出MB ,OB ,MC 和NC 的值,然后根据Rt △MNC 的勾股定理求出MN 的长度,根据函数解析式求出点E 、F 的坐标,求出EF 的长度,根据EF=MN 得出a 的值;由△AMN 为等腰三角形,可分如下三种情况,当MN=NA 时,过点N 作ND ⊥x 轴,垂足为点D ,根据Rt △NDA 的勾股定理求出点m 的坐标,从而求出方程的解;当MA=NA 时,过点M 作MG ⊥x 轴,垂足为点G ,根据Rt △MGA 的勾股定理求出m 的值,从而得出方程的解;当MN=MA 时,方程无解. 试题解析:(1)、3;-1≤x ≤1(2)、如图1,过点M 作MB ⊥x 轴,垂足为B ,过点N 作NC ⊥MB ,垂足为C ∵y=a 2x -2ax+a+3=a 2(1)x -+3 ∴点M 的坐标为(1,3),MB=3,OB=1 又∵y=-a 2(1)x ++1(a >0)∴点N 的坐标为(-1,1) 在Rt △MNC 中,MC=2,NC=2 ∴=当x=0时,21(01)y a =-+3=a+3,22(01)y a =-++1=1-a∴E 、F 两点的坐标分别为(0,a+3),(0,1-a) ∴EF=a+3-(1-a)=2a+2∵EF=MN ∴ ∴ 1 四边形ENFM 为矩形.(3)、由△AMN 为等腰三角形,可分如下三种情况:①、如图2,当MN=NA 时,过点N 作ND ⊥x 轴,垂足为点D在Rt △NDA 中,222NA DA ND =+ 即222(1)1m =++ ∴1m 1,2m =-1(舍去)∴1,0) ∴抛物线y=-a 2(1)x ++1(a >0)的左交点坐标为(-10)∴方程-a 2(1)x ++1=0的解为:1x 1,2x =-1③、当MN=MA 时,2223(1)m +-= ∴m 无实数解,舍去综上所述,当△AMN 为等腰三角形时,方程-a 2(1)x ++1=0的解为1x 1,2x =-11x =2,2x =-4.考点:二次函数的性质、等腰三角形的性质. 六、(本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=AB=3.求AF的长.【答案】(1)、(2)、2a+2b=52c;(3)、AF=4.【解析】试题分析:根据直角三角形的性质得出a和b的值;连接EF,设AF与BE交于点P,根据AF,BE是△ABC的中线得出EF是△ABC的中位线,则PE PFPB PA==12,设PF=m,PE=n,则AP=2m,PB=2n,根据Rt△APB、Rt△APE和Rt△BPF的勾股定理得出各式,然后得出所求的答案;设AF ,BE 交于点P ,取AB 的中点H ,连接FH ,AC ,根据E ,G 分别是AD ,CD 的中点,F 是BC 的中点得出EG ∥AC ∥FH ,根据BE ⊥EG ,FH ⊥BE 得出四边形ABCD 是平行四边形,则AD ∥BC ,AD=BC ,从而得到△ABF 是“中垂三角形”,根据(2)中的结论得出AF 的长度.试题解析:(1)、(2)、猜想:2a ,2b ,2c 三者之间的关系是:2a +2b =52c证明:如图1,连接EF ,设AF 与BE 交于点P ∵AF ,BE 是△ABC 的中线 ∴EF 是△ABC 的中位线 ∴EF ∥AB ,且EF=12AB=12c ∴PE PF PB PA ==12设PF=m ,PE=n ,则AP=2m ,PB=2n 在Rt △APB 中,222(2)(2)m n c += ①在Rt △APE 中,222(2)()2b m n += ② 在Rt △BPF 中,222(2)()2a m n += ③由①得:22m n +=24c 由②+③得:5(22m n +)=224a b + ∴2a +2b =52c考点:新定义型题、平行四边形的性质、勾股定理、三角形相似.。

2015年山西省中考数学试卷详解版

2015年山西省中考数学试卷详解版

2015年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。

在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2015•山西)计算﹣3+(﹣1)的结果是()A.2 B.﹣2 C.4 D.﹣4【考点】M114 有理数【难度】容易题【分析】根据同号两数相加的法则进行计算即﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【解答】D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.2.(3分)(2015•山西)下列运算错误的是()A.=1 B.x2+x2=2x4C.|a|=|﹣a| D.=【考点】M113 绝对值M11H 整式M11L 分式运算M11M 指数幂【难度】容易题【分析】A、原式利用零指数幂法则计算得:原式=1,正确;B、原式合并同类项得:原式=2x2,错误;C、原式利用绝对值的代数意义判断即|a|=|﹣a|,正确;D、原式利用乘方的意义计算得到:原式=,正确,故选B【解答】B【点评】此题考查了分式的乘除法,绝对值,合并同类项,以及零指数幂,熟练掌握运算法则是解本题的关键.3.(3分)(2015•山西)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C.D.【难度】容易题【分析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.【解答】B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE 的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14【考点】M323 三角形的中位线M324 三角形的面积、周长【难度】容易题【分析】点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.【解答】C.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(3分)(2015•山西)我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想 B.函数思想 C.数形结合思想 D.公理化思想M127 解一元二次方程【难度】容易题【分析】上述解题过程利用了转化的数学思想.具体为:解:我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是转化思想,故选A.【解答】A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(3分)(2015•山西)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】M31A 相交线(对顶角、邻补角、同位角、同旁内角、内错角)M31B 平行线的判定及性质M32G 三角形的外角性质【难度】容易题【分析】如图,直线a∥b,首先根据平行线的判定及性质证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=∠1=∠ANM=55°,借助三角形外角的性质求出∠AMO=∠A+∠ANM=60°+55°=115°,利用两直线平行,同位角相等得∠2=∠AMO=115°.故选C【解答】C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.注意:两直线平行,内错角、同位角相等,同旁内角互补!7.(3分)(2015•山西)化简﹣的结果是()A.B.C.D.【考点】M11L 分式运算【难度】容易题【分析】原式第一项约分后,利用同分母分式的减法法则计算,即:原式=﹣=﹣==,故选A.【解答】A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2015•山西)我国古代秦汉时期有一部数学著作,堪称是世界数学经典名著.它的出现,标志着我国古代数学体系的正式确立.它采用按类分章的问题集的形式进行编排.其中方程的解法和正负数加减运算法则在世界上遥遥领先,这部著作的名称是()A.《九章算术》 B.《海岛算经》 C.《孙子算经》 D.《五经算术》【考点】M613 数学常识【难度】容易题【分析】根据数学常识解答即此著作是《九章算术》,故选A.【解答】A.【点评】此题考查数学常识,关键是根据以往知识进行解答.9.(3分)(2015•山西)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【考点】M222 概率的计算【难度】容易题【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案P(初一3班)==,故选B..【解答】B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2015•山西)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.【考点】M328 直角三角形性质与判定M32A 勾股定理及其逆定理M32B 锐角三角函数【难度】中等题【分析】如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【解答D.【点评】本题考查了直角三角形性质与判定,勾股定理及其逆定理,锐角三角函数等知识点;注意:先求出AC、AB的长,再求正切函数.根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2015•山西)不等式组的解集是.【考点】M12F 解一元一次不等式(组)【难度】容易题【分析】首先分别计算出两个不等式的解集,再根据大大取大确定不等式组的解集.具体为:解:,由①得:x>4,由②得:x>2,不等式组的解集为:x>4.故答案为:x>4.【解答】x>4.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.(3分)(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)【考点】M327 等边三角形性质与判定M335 正方形的性质与判定M612 规律探究【难度】中等题【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有3n+1个三角形.故答案为:3n+1.【解答】3n+1.【点评】此题考查图形的变化规律,属于中考常考题型,关键是找出图形之间的运算规律,利用规律解决问题.13.(3分)(2015•山西)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.【考点】M341 圆的有关概念M342 圆的有关性质【难度】容易题【分析】首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又∠A=40°,继而求得∠ABD=90°﹣∠A=50°,由圆的内接四边形的性质,求得∠C=180°﹣∠A=140°,然后由点C为的中点,可得CB=CD,即可求得∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.【解答】70°.【点评】此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.14.(3分)(2015•山西)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.【考点】M222 概率的计算M223 列表法与树状图法【难度】容易题【分析】画树状图得:∵共有6种等可能的结果,两张卡片标号恰好相同的有2种情况,∴两张卡片标号恰好相同的概率是:=.故答案为:.【解答】.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2015•山西)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.【考点】M32A 勾股定理及其逆定理M32F 相似三角形性质与判定【难度】中等题【分析】分别过点A作AM⊥BF于点M,过点C作CN⊥AB于点N,利用勾股定理得出BN的长,再利用相似三角形的判定与性质得出即可.具体为:解:过点A作AM⊥BF于点M,过点C作CN⊥AB于点N,∵AD=24cm,则NC=24cm,∴BN===7(cm),∵∠AMB=∠CNB=90°,∠ABM=∠CBN,∴△BNC∽△BMA,∴=,∴=,则:AM==,故点A到地面的距离是:+4=(m).故答案为:.【解答】.【点评】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,得出△BNC∽△BMA是解题关键.相似三角形的性质:1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比.2.相似三角形周长的比等于相似比.3.相似三角形面积的比等于相似比的平方16.(3分)(2015•山西)如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.【考点】M329 全等三角形性质与判定M32F 相似三角形性质与判定M416 图形的折叠M32A 勾股定理及其逆定理【难度】较难题【分析】作NF⊥AD,垂足为F,连接DD′,ND′,根据图形折叠的性质得出DD′⊥MN,先证明△DAD′∽△DEM,再证明△NFM≌△DAD′,然后利用勾股定理的知识求出MN的长.具体为:解:作NF⊥AD,垂足为F,连接DD′,ND′,∵将正方形纸片ABCD折叠,使得点D落在边AB上的D′点,折痕为MN,∴DD′⊥MN,∵∠A=∠DEM=90°,∠ADD′=∠EDM,∴△DAD′∽△DEM,∴∠DD′A=∠DME,在△NFM和△DAD′中,∴△NFM≌△DAD′(AAS),∴FM=AD′=2cm,又∵在Rt△MNF中,FN=6cm,∴根据勾股定理得:MN===2.故答案为:2.【解答】2.【点评】此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.注意图形的翻折变换性质:翻折变换是平面到自身的变换,若存在一条直线l,使对于平面上的每一点P及其对应点P′,其连线PP′都被定直线l垂直平分,则称这种变换为翻折变换,定直线l称为对称轴.翻折变换有如下性质:(1)把图形变为与之全等的图形;(2)关于l对称的两点连线被l垂直平分.三、解答题(本大题共8个小题,共72分。

山东省菏泽市2015年中考数学试题及答案解析

山东省菏泽市2015年中考数学试题及答案解析

绝密★启用前 试卷类型:A山东省菏泽市二〇一五年初中学业水平考试及解析数 学 试 题注意事项:1. 本试题分为选择题和非选择题两部分,其中选择题24分,非选择题96分,满分120分,考试时间120分钟.2. 请把答案作答在答题卡上,选择题用2B 铅笔填涂,非选择题用0.5毫米的黑色墨水签字笔书写在答题卡的指定区域内, 答在其他位置上不得分.一、 选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置.)1. 现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学计数法表示为9111091057.D 1057.0.C 107.5.B 107.5.A ⨯⨯⨯⨯2. 将一副直角三角尺如图放置,若∠AOD=20°,则:∠BOC 的大小为A .140° B.160° C.170° D.150°3. 将多项式a 4ax 4ax 2+-分解因式,下列结果中正确的是 )2x )(2x (a .D )4x (a .C )2x (a .B )2x (a .A 222-+-+-4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2S :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A. 甲 B.乙 C.丙 D.丁5.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得 几何体A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是 A.点M B.点N C.点P D.点Q7.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程S 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是8.如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为)2,3.(D )1,3.(C )3,2.(B )3,1.(A ----二.填空题(本大题共有6个小题,每小题3分,共18分,只要求把结果填写在答题卡的相应 区域内)9.直线y= -3x+5不经过的象限为_______________.10.已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为____________. 11.已知A(-1, m) 与B(2, m-3)是反比例函数y=xk图象上的两个点,则m 的值为________. 12.若)n x )(3x (m x x 2+-=++对x 恒成立,则n=_________.13.不等式组⎪⎩⎪⎨⎧+<-≤-41x 3x )1x (3)2x (2的解集是___________. 14.二次函数y=2x 3的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=2x 3的图象上,四边形OBAC 为菱形,且∠OBA= 120°,则菱形OBAC 的面积为___________.三.解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内) 15.(本题12分,每小题6分) (1)计算: 102015)21()14.3(30sin )1(-+-π-︒+-(2)解分式方程:12x x4x 22=-+-16.(本题12分,每小题6分)(1)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞, 工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米,BC=45米,AC=30米,求M 、N 两点之间的直线距离.(2)列方程(组)或不等式(组)解应用题:2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份 快餐最多含有多少克的蛋白质?17.(本题14分,每小题7分) (1)已知m 是方程01x x 2=--的一个根,求4)3m (m )1m (m 22++-+的值.(2)一次函数y=2x+2与反比例函数y=xk(k ≠0)的图象都过点A(1,m), y=2x+2的图象与x 轴交于点B. ①求点B 的坐标及反比例函数的表达式;②点C(0,-2),若四边形ABCD 是平行四边形,请在直角坐标系内画出口ABCD,直接写出点.....D .的坐标...,并判断D 点是否在此反比例函数的图象上,并说明理由.18.(本题10分)如图,在⊿ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线与⊙O的切线AF交于点F。

2015年广东省深圳市中考数学试卷解析版

2015年广东省深圳市中考数学试卷解析版

2015年广东省深圳市中考数学试卷解析版一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−115【解答】解:﹣15的相反数是15,故选:A.2.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.下列主视图正确的是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.4【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴−b2a>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.11.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG =∠A =90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x +6)2=62+(12﹣x )2, 解得:x =4∴AG =GF =4,BG =8,BG =2AG ,②正确;BE =EF =6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,③错误; S △GBE =12×6×8=24,S △BEF =EF EG •S △GBE =610⋅24=725,④正确. 故选:C .二、填空题:13.因式分解:3a 2﹣3b 2= 3(a +b )(a ﹣b ) . 【解答】解:原式=3(a 2﹣b 2)=3(a +b )(a ﹣b ), 故答案为:3(a +b )(a ﹣b )14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 13.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为26=13.故答案为:13.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 21 个太阳.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳, 第二行小太阳的个数是1、2、4、8、…、2n ﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳. 故答案为:21.16.如图,已知点A 在反比例函数y =k x(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E .若△BCE 的面积为8,则k = 16 .【解答】解:∵△BCE 的面积为8, ∴12BC ⋅OE =8,∴BC •OE =16,∵点D 为斜边AC 的中点, ∴BD =DC ,∴∠DBC =∠DCB =∠EBO , 又∠EOB =∠ABC , ∴△EOB ∽△ABC , ∴BC OB=AB OE,∴AB •OB •=BC •OE ∴k =AB •BO =BC •OE =16. 故答案为:16. 三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.【解答】解:原式=2−√3+2×√32+2﹣1=3.18.(6分)解方程:x2x−3+53x−2=4.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=13 7,经检验x1=1与x2=137都为分式方程的解.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×√32=5√3,∴AB=1.5+5√3.答:旗杆AB的高度为(1.5+5√3)米.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【解答】(1)解:由题意可得:BO=4cm,t=42=2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=√2OH=3√2cm,∴AD=AO﹣DO=(3√2−3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴CFCG =CECF,∴CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.【解答】解:(1)∵二次函数y =﹣x 2+bx +c 经过点A (﹣3,0),点C (0,3),∴{c =3−9−3b +c =0,解得{b =−2c =3, ∴抛物线的解析式y =﹣x 2﹣2x +3,(2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P (﹣1,m ),则PM =PD •sin ∠ADE =√55(4﹣m ),PE =m ,∵PM =PE ,∴√55(4﹣m )=m ,m =√5−1, ∴P 点坐标为(﹣1,√5−1);当P 在∠DAB 的外角平分线上时,如图2,作PN ⊥AD ,设P (﹣1,n ),则PN =PD •sin ∠ADE =√55(4﹣n ),PE =﹣n ,∵PN =PE ,∴√55(4﹣n )=﹣n ,n =−√5−1, ∴P 点坐标为(﹣1,−√5−1);综上可知存在满足条件的P 点,其坐标为(﹣1,√5−1)或(﹣1,−√5−1);(3)∵抛物线的解析式y =﹣x 2﹣2x +3,∴B (1,0),∴S △EBC =12EB •OC =3,∵2S △FBC =3S △EBC ,∴S △FBC =92,过F 作FQ ⊥x 轴于点H ,交BC 的延长线于Q ,过F 作FM ⊥y 轴于点M ,如图3,∵S △FBC =S △BQH ﹣S △BFH ﹣S △CFQ =12HB •HQ −12BH •HF −12QF •FM =12BH (HQ ﹣HF )−12QF •FM =12BH •QF −12QF •FM =12QF •(BH ﹣FM )=12FQ •OB =12FQ =92,∴FQ =9,∵BC 的解析式为y =﹣3x +3,设F (x 0,﹣x 02﹣2x 0+3),∴﹣3x 0+3+x 02+2x 0﹣3=9,解得:x 0=1−√372或1+√372(舍去), ∴点F 的坐标是(1−√372,3√37−152), ∵S △ABC =6>92, ∴点F 不可能在A 点下方,综上可知F 点的坐标为(1−√372,3√37−152).2015年广东省深圳市中考数学试卷一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−1152.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106 3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4 4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.5.下列主视图正确的是()A.B.C.D.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90 7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.49.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.10011.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4二、填空题:13.因式分解:3a2﹣3b2=.14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.如图,已知点A在反比例函数y=kx(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.18.(6分)解方程:x2x−3+53x−2=4.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.。

山东省菏泽市2015年中考数学试题和答案解析

山东省菏泽市2015年中考数学试题和答案解析

绝密★启用前 试卷类型:A山东省菏泽市二〇一五年初中学业水平考试及解析数 学 试 题注意事项:1. 本试题分为选择题和非选择题两部分.其中选择题24分.非选择题96分.满分120分.考试时间120分钟.2. 请把答案作答在答题卡上.选择题用2B 铅笔填涂.非选择题用0.5毫米的黑色墨水签字笔书写在答题卡的指定区域内, 答在其他位置上不得分.一、 选择题(本大题共8个小题.每小题3分.共24分.在每小题给出的四个选项A 、B 、C 、D 中.只有一个选项是正确的.请把正确的选项填在答题卡相应位置.)1. 现在网购越来越多地成为人们的一种消费方式.在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元.将数字57000 000 000用科学计数法表示为9111091057.D 1057.0.C 107.5.B 107.5.A ⨯⨯⨯⨯2. 将一副直角三角尺如图放置.若∠AOD=20°.则:∠BOC 的大小为A .140° B.160° C.170° D.150°3. 将多项式a 4ax 4ax 2+-分解因式,下列结果中正确的是 )2x )(2x (a .D )4x (a .C )2x (a .B )2x (a .A 222-+-+-4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2S :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A. 甲 B.乙 C.丙 D.丁5.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得 几何体A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是 A.点M B.点N C.点P D.点Q7.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程S 关于时间t 的函数图象.那么符合小明行驶情况的图象大致是8.如图.在平面直角坐标系xOy 中.直线y=3x 经过点A,作AB ⊥x 轴于点B.将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD.若点B 的坐标为(2.0).则点C 的坐标为)2,3.(D )1,3.(C )3,2.(B )3,1.(A ----二.填空题(本大题共有6个小题.每小题3分.共18分.只要求把结果填写在答题卡的相应 区域内)9.直线y= -3x+5不经过的象限为_______________.10.已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为____________. 11.已知A(-1, m) 与B(2, m-3)是反比例函数y=xk图象上的两个点.则m 的值为________. 12.若)n x )(3x (m x x 2+-=++对x 恒成立.则n=_________.13.不等式组⎪⎩⎪⎨⎧+<-≤-41x 3x )1x (3)2x (2的解集是___________. 14.二次函数y=2x 3的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上.点B 、C 在二次函数y=2x 3的图象上.四边形OBAC 为菱形.且∠OBA= 120°.则菱形OBAC 的面积为___________.三.解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内) 15.(本题12分,每小题6分) (1)计算: 102015)21()14.3(30sin )1(-+-π-︒+-(2)解分式方程:12x x4x 22=-+-16.(本题12分,每小题6分)(1)如图,M 、N 为山两侧的两个村庄.为了两村交通方便.根据国家的惠民政策.政府决定打一直线涵洞, 工程人员为了计算工程量.必须计算M 、N 两点之间的直线距离.选择测量点A 、B 、C.点B 、C 分别在AM 、AN 上.现测得AM=1千米、AN=1.8千米.AB=54米.BC=45米.AC=30米.求M 、N 两点之间的直线距离.(2)列方程(组)或不等式(组)解应用题:2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份 快餐最多含有多少克的蛋白质?17.(本题14分,每小题7分)(1)已知m 是方程01x x 2=--的一个根,求4)3m (m )1m (m 22++-+的值.(2)一次函数y=2x+2与反比例函数y=xk(k ≠0)的图象都过点A(1,m), y=2x+2的图象与x 轴交于点B. ①求点B 的坐标及反比例函数的表达式;②点C(0,-2),若四边形ABCD 是平行四边形,请在直角坐标系内画出口ABCD,直接写出点.....D .的坐标...,并判断D 点是否在此反比例函数的图象上,并说明理由.18.(本题10分)如图,在⊿ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E.BC的延长线与⊙O的切线AF交于点F。

2015年中考数学试题及答案(解析版)

2015年中考数学试题及答案(解析版)

中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。

)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作探究一、选择题1. (2015?浙江宁波,第12题4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. ①②B. ②③C. ①③D. ①②③ 【答案】A .【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l ,①的长和宽分别为,a b ,②③的边长分别为,c d .根据题意,得2a c d c b d a b c l =+⎧⎪=+⎨⎪++=⎩ ①②③,-①②,得2a c c b a b c -=-⇒+=,将2a b c +=代入③,得1422c l c l =⇒=(定值), 将122c l =代入2a b c +=,得()122a b l a b l +=⇒+=(定值),而由已列方程组得不到d .∴分割后不用测量就能知道周长的图形标号为①②. 故选A .2. (2015?浙江省绍兴市,第10题,4分) 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A. ②号棒B. ⑦号棒C. ⑧号棒D. ⑩号棒考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二.填空题1. (2015?浙江杭州,第16题4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________【答案】23+或423+.【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NH⊥BM于点H,易证四边形BMDN是菱形,且∠MBN=∠C=30°.第16题CBAD设BN =DN =x ,则NH =12x . 根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN =3. ∴CD =23+.如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H , 易证四边形BAEC 是菱形,且∠BCH =30°. 设BC =CE =x ,则BH =12x . 根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1. 在Rt BCH ∆中,CH =3,∴EH =23-. 易证BCD EHB ∆∆∽,∴CD BCHB EH=,即123CD =-. ∴)()()2234232323CD +==+-+.综上所述,CD =23+或423+.2. (2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA =OB =18cm ,若衣架收拢时,∠AOB =60°,如图2,则此时A ,B 两点之间的距离是 ▲ cm考点:等边三角形的判定与性质.. 专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可. 解答:解:∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =OB =18cm , 故答案为:18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.3. (2015?四川广安,第16题3分)如图,半径为r 的⊙O 分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t 1、t 2、t 3,则t 1、t 2、t 3的大小关系为 t 2>t 3>t 1 .考点: 轨迹..分析: 根据面积,可得相应的周长,根据有理数的大小比较,可得答案. 解答: 解:设面积相等的等边三角形、正方形和圆的面积为3.14, 等边三角型的边长为a ≈2, 等边三角形的周长为6; 正方形的边长为b ≈1.7, 正方形的周长为1.7×4=6.8; 圆的周长为3.14×2×1=6.28, ∵6.8>6.28>6, ∴t 2>t 3>t 1. 故答案为:t 2>t 3>t 1.点评: 本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(2015?广东梅州,第14题,3分)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB =4,BC =2,那么线段EF 的长为 . 考点:翻折变换(折叠问题)..分析:如图,AC 交EF 于点O ,由勾股定理先求出AC 的长度,根据折叠的性质可判断出RT △EOC ∽RT △ABC ,从而利用相似三角形的对应边成比例可求出OE ,再由EF =2OE 可得出EF 的长度 解答:解:如图所示,AC 交EF 于点O 由勾股定理知AC =2,又∵折叠矩形使C 与A 重合时有EF ⊥AC , 则Rt △AOE ∽Rt △ABC , ∴,第14题图EFCD∴OE =故EF =2OE =. 故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT △AOE ∽RT △ABC ,利用相似三角形的性质得出OE 的长.三.解答题1. (2015?浙江省台州市,第24题)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点 (1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2. (2015辽宁大连,26,12分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(2m ,m ),翻折矩形OABC ,使点A 与点C 重合,得到折痕DE .设点B 的对应点为F ,折痕DE 所在直线与y 轴相交于点G ,经过点C 、F 、D 的抛物线为c bx ax ++=2y 。

(1)求点D 的坐标(用含m 的式子表示)(2)若点G 的坐标为(0,-3),求该抛物线的解析式。

(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点P ,使PM =21EA ?若存在,直接写出P 的坐标,若不存在,说明理由。

【答案】(1)(m 45,m );(2)2122565y 2++-=x x (3)存在,点P 坐标为(1.6,3.2)和(0.9,3.2)。

【解析】解:(1)设D 的坐标为:(d ,m ),根据题意得:CD =d ,OC =m (第26题图)因为CD ∥EA ,所以∠CDE =∠AED ,又因为∠AED =∠CED ,所以∠CDE =∠CED , 所以CD =CE =EA =d ,OE =2m -d ,在Rt △COE 中,222CE OE OC =+,()2222d d m m =-+,解得:m 45d =。

所以D 的坐标为:(m 45,m ) (2)作DH 垂直于X 轴,由题意得:OG =3,OE =OA -EA =2m -m 45=m 43.EH =OH -OE =m 45-m 43=m 21,DH =m . △GOE ∽△DHE ,HD OG HE OE =,mm m 32143=。

所以m =2.所以此时D 点坐标为(25,2),CD =25,CF =2,FD =BD =4-25=1.5 因为CD ×FI =CF ×FD ,FI =2×1.5÷2.5=1.2 CI =6.12.122222=-=-FI CF , 所以F 的坐标为(1.6,3.2)抛物线为c bx ax ++=2y 经过点C 、F 、D ,所以代入得:⎪⎩⎪⎨⎧=++=++=2.36.16.125.225.622c b a c b a c 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==122565a 2b c 所以抛物线解析式为2122565y 2++-=x x 。

(3)存在,因为PM =21EA ,所以PM =21CD .以M 为圆心,MC 为半径化圆,交抛物线于点F 和点P .如下图:点P坐标为(1.6,3.2)和(0.9,3.2)。

3. (2015?浙江滨州,第24题14分)根据下列要求,解答相关问题.(1)请补全以下求不等式的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数;并在下面的坐标系中(见图1)画出二次函数的图象(只画出图象即可).②求得界点,标示所需:当y=0时,求得方程的解为;并用锯齿线标示出函数图象中y≥0的部分.③借助图象,写出解集:由所标示图象,可得不等式的解集为.(2)利用(1)中求不等式解集的步骤,求不等式的解集.①构造函数,画出图象:②求得界点,标示所需:③借助图像,写出解集:(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式的解集.【答案】(1)②;③.(2)②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.【解析】试题分析:(1)正确画出图像,借助图像可知与x轴的交点的横坐标的值就是y=0时的一元二次方程的解,然后借助图像找到x轴上方的部分的x的取值就是不等式的解集;②;③.(2)①构造二次函数,并画出图象.②当y=4时,求得方程的解为;③借助图象,直接写出不等式的解集:.(说明:以上三步中某一步出现错误,则以后的各步均不得分;若把不等式化为,构造函数进行求解亦可,具体评分参照上述标准)(3)①当时,解集为或(用“或”与“和”字连接均可).②当时,解集为(或亦可) .③当时,解集为全体实数.考点:二次函数的图像与一元二次方程的解,与不等式的解集2. (2015?浙江杭州,第21题10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹) 单位长度【答案】解:(1)(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即2,3,4a b c === 时满足a <b <c . 如答图的ABC ∆即为满足条件的三角形.【考点】三角形三边关系;列举法的应用;尺规作图.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形. (2)首先判断满足条件的三角形只有一个:2,3,4a b c === ,再作图: ①作射线AB ,且取AB =4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则ABC ∆即为满足条件的三角形.4. (2015?浙江衢州,第21题8分)如图1,将矩形沿折叠,使顶点落在上的点处,然后将矩形展平,沿折叠,使顶点落在折痕上的点处,再将矩形沿折叠,此时顶点恰好落在上的点处,如图2.(1)求证:; (2)已知,求和的长.【答案】解:(1)证明:由折叠知:.∵由矩形知:,∴.(2)如答图,∵,∴∴.由折叠知:,∴.∵,∴.又∵,由(1)可得,,∴.∴.∴.【考点】折叠问题;矩形的性质;折叠对称的性质;等腰直角三角形的判定和性质;全等三角形的判定和性质.【分析】(1)由折叠和矩形的性质可得(2)判断和都是等腰直角三角形,即可,由求得;由证明,得到,从而由求得.5,(2015岳阳第23题10分)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD 的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段P A与PB的数量关系:P A=PB.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的P A与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:P A?PB=k?A B.考点:几何变换综合题..分析:(1)根据三角形CBD是直角三角形,而且点P为线段CD的中点,应用直角三角形的性质,可得P A=PB,据此解答即可.(2)首先过C作CE⊥n于点E,连接PE,然后分别判断出PC=PE、∠PCA=∠PEB、AC=BE;然后根据全等三角形判定的方法,判断出△P AC∽△PBE,即可判断出P A=PB仍然成立.(3)首先延长AP交直线n于点F,作AE⊥BD于点E,然后根据相似三角形判定的方法,判断出△AEF∽△BPF,即可判断出AF?BP=AE?BF,再个AF=2P A,AE=2k,BF=AB,可得2P A?PB=2k.AB,所以P A?PB=k?AB,据此解答即可.解答:解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P为线段CD的中点,∴P A=P B.(2)把直线l向上平移到如图②的位置,P A=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,又∵点P为线段CD的中点,∴PC=PD,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△P AC和△PBE中,∴△P AC∽△PBE,∴P A=P B.(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF ∽△BPF , ∴,∴AF ?BP =AE ?BF ,∵AF =2P A ,AE =2k ,BF =AB , ∴2P A ?PB =2k .AB , ∴P A ?PB =k ?A B . 故答案为:P A =P B .点评: (1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从图象中获取信息,并能利用获取的信息解答相应的问题的能力. (2)此题还考查了直角三角形的性质和应用,要熟练掌握.(3)此题还考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.6.(2015?江苏南昌,第24题12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE 是△ABC 的中线, AF ⊥BE , 垂足为P .像△ABC 这样的三角形均为“中垂三角形”.设BCa ,ACb ,ABc .特例探索(1)如图1,当∠ABE =45°,c22时,a = ,b ;如图2,当∠ABE =30°,c4时, a = ,b ;45°30°图3图2图1EFBEFAPEF PAPA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD= ,AB =3. 求AF 的长.EA答案:解析:(1)如图1,连接EF ,则EF 是△ABC 的中位线, ∴EF =AB 12∵∠ABE =45°,AE ⊥EF ∴△ABP 是等腰直角三角形, ∵EF ∥AB ,∴△EFP 也是等腰直角三角形, ∴AP =BP =2 ,EP =FP=1, ∴AE =BF , ∴a b 25.如图2,连接EF ,则EF 是△ABC 的中位线. ∵∠ABE =30°,AE ⊥BF ,AB =4,∴AP =2, BP =, ∵EF //AB 12, ∴PE ,PF =1,∴AEBF ∴a213 , b 27.(2) a b c 2225如图3,连接EF , 设AP =m ,BP =n .,则c AB m n 2222∵EF //AB 12, ∴PE =12BP =12n , PF =12AP =12m ,∴AE m n 22214 , BF n m 22214 ,∴b AC AE m n 2222244,图2B图3Aa BC BF n m 2222244∴()a b m n c 2222255(3)如上图,延长EG ,BC 交于点Q , 延长QD ,BA 交于点P ,延长QE ,BE 分别交PB ,PQ 于点M ,N ,连接EF . ∵四边形ABCD 是平行四边形,∴AD //BC , AB //CD ,∵E ,G是分别是AD ,CD 的中点,∴△EDG ≌△QCG ≌△EAM , ∴CQ =DE , DG =AM =1.5,∴BM =4.5.∵CD CQ BPBQ ,∴BP3535,∴BP =9, ∴M 是BP 的中点; ∵AD //FQ , ∴四边形ADQF 是平行四边形,∴AF ∥PQ ,∵E ,F 分别是AD ,BC 的中点,∴AE //BF , ∴四边形ABFE 是平行四边形,∴OA =OF , 由AF ∥PQ 得:,OF BF QN BQ 51335 OA BAPN BP 3193, ∴OA OFPN QN , ∴PN =QN , ∴N 是PQ 的中点; ∴△BQP 是“中垂三角形”, ∴()PQ BQ BP 2222255359144,∴PQ 12, ∴AFPQ 143。

相关文档
最新文档