高二数学(人教A版)必修5 第1-3章 技能演练作业 1-1-2 Word版含解析]

合集下载

2020版数学人教A版必修5学案:第一章 1.2 第1课时 距离、高度问题 Word版含解析

2020版数学人教A版必修5学案:第一章 1.2 第1课时 距离、高度问题 Word版含解析

§1.2应用举例第1课时距离、高度问题学习目标 1.会用正弦、余弦定理解决生产实践中有关距离、高度的测量问题.2.培养提出问题、正确分析问题、独立解决问题的能力.知识点一实际问题中的常用角(1)仰角和俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角.目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示.(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为140°(如图所示).(3)方向角①正北或正南方向线与目标方向线所成的锐角.②东南方向:指经过目标的射线是正东和正南的夹角平分线(如图所示).类似还有东北方向、西南方向等.知识点二距离问题知识点三高度问题1.南偏东30°指正南为始边,在水平面内向东旋转30°.(√)2.两点间不可通又不可视问题的测量方案实质是构造已知两边及夹角的三角形并求解.(√)3.两点间可视但不可到达问题的测量方案实质是构造已知两角及一边的三角形并求解.( √ )4.高度问题大多通过仰角转化为水平面内的距离问题来解决.( √ )题型一 距离问题命题角度1 不可通又不可视的两点间距离例1 (1)如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与A ,B 不共线的一点C ,然后给出了三种测量方案:(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ): ①测量A ,B ,b ;②测量a ,b ,C ;③测量A ,B ,a . 则一定能确定A ,B 间距离的所有方案的个数为( )A .3B .2C .1D .0 答案 A解析 因为A ,B 间是湖泊,可视不可达,故三个方案涉及的量均可测,并能用这些量解三角形求出AB .(2)A ,B 两地之间隔着一个山岗如图,现选择另一点C ,测得CA =7 km ,CB =5 km ,C =60°,则A ,B 两点之间的距离为 km.答案39解析 由余弦定理,得AB 2=CA 2+CB 2-2CA ·CB ·cos C =72+52-2×7×5×12=39,∴AB =39.反思感悟 解实际应用题,通常要把实际问题抽象为数学问题,然后解决. 命题角度2 可视不可达的两点间的距离例2 如图所示,在一岸边选定两点A ,B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则BC 为 m.答案 60(6-2)解析 由题意知,∠ACB =180°-30°-75°=75°, 由正弦定理,BC =AB sin ∠ACB ·sin ∠CAB =120sin 75°·sin 30°=1206+24×12=60(6-2). 反思感悟 求可视不可达的两点间的距离时,由于构造的三角形的两边均不可直接测量,故只能寻求构造已知两角及一边的三角形.命题角度3 测量两个不可到达点间的距离例3 如图,为了测量正在海面匀速行驶的某船的速度,在海岸上选取距离1千米的两个观察点C ,D ,在某天10:00观察到该船在A 处,此时测得∠ADC =30°,2分钟后该船行驶至B 处,此时测得∠ACB =60°,∠BCD =45°,∠ADB =60°,则船速为千米/分钟.答案64解析 在△ACD 中,CD =1,∠ADC =30°, ∠ACD =∠ACB +∠BCD =105°, ∴∠CAD =180°-30°-105°=45°. 由正弦定理,AD =CD sin ∠CAD ·sin ∠ACD=122·6+24=3+12.同理,在△BCD 中,BD =CD sin ∠CBD ·sin ∠BCD =122·22=1.在△ADB 中,AB 2=AD 2+BD 2-2AD ·BD ·cos ∠ADB =⎝⎛⎭⎪⎫3+122+12-2·3+12·1·12=32.∴AB =62,∴船速为64千米/分钟. 反思感悟 本方案的实质是把求不可到达的两点A ,B 之间的距离转化为例1中的题型.题型二 高度问题命题角度1 在同一铅垂面内的高度问题例4 某登山队在山脚A 处测得山顶B 的仰角为35°,沿倾斜角为20°的斜坡前进1 000 m 后到达D 处,又测得山顶的仰角为65°,则山的高度为 m .(精确到1 m) 答案 811解析 如图,过点D 作DE ∥AC 交BC 于E ,因为∠DAC =20°, 所以∠ADE =160°,于是∠ADB =360°-160°-65°=135°. 又∠BAD =35°-20°=15°,所以∠ABD =30°. 在△ABD 中,由正弦定理,得AB =AD sin ∠ADB sin ∠ABD =1 000×sin 135°sin 30°=1 0002(m).在Rt △ABC 中,BC =AB sin 35°≈811(m). 所以山的高度为811 m.反思感悟 (1)底部可到达,此类问题可直接构造直角三角形.(2)底部不可到达,但仍在同一与地面垂直的平面内,此类问题中两次观测点和所测垂线段的垂足在同一条直线上,观测者一直向“目标物”前进.命题角度2 不在同一铅垂面内的高度问题例5 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是( )A .10 mB .10 2 mC .10 3 mD .10 6 m 答案 D解析 在△BCD 中,CD =10 m ,∠BDC =45°, ∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理,得BC sin ∠BDC =CD sin ∠DBC ,BC =10sin 45°sin 30°=102(m).在Rt △ABC 中,tan 60°=ABBC,AB =BC ×tan 60°=106(m). 反思感悟 此类问题特点:底部不可到达,且涉及与地面垂直的平面,观测者两次观测点所在直线不经过“目标物”,解决办法是把目标高度转化为地平面内某量,从而把空间问题转化为平面内解三角形问题.三角形测量中的数学抽象典例 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径:一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.求索道AB 的长.解 在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )] =sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ·sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.[素养评析] 数学抽象指舍去事物的一切物理属性,得到数学研究对象.在本例中,我们舍去A ,B ,C 三处的景致、海拔、经度、纬度等非本质属性,得到纯粹的三个点,舍掉步行、乘缆车、速度等表征,直接抽象出线段AC ,AB 的长,都属于数学抽象.1.如图所示,设A ,B 两点在河的两岸,一测量者与A 在河的同侧,在所在的河岸边先确定一点C ,测出A ,C 的距离为50 m ,∠ACB =45°,∠CAB =105°后,可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 ∠ABC =180°-45°-105°=30°,在△ABC 中,由AB sin 45°=50sin 30°,得AB =100×22=50 2. 2.(2018·河南南阳八校联考)如图,要测出山上一座天文台BC 的高,从山腰A 处测得AC =60 m ,天文台最高处B 的仰角为45°,天文台底部C 的仰角为15°,则天文台BC 的高为( )A .20 2 mB .30 2 mC .20 3 mD .30 3 m答案 B解析 由题图,可得∠B =45°,∠BAC =30°,故BC =AC ·sin ∠BAC sin ∠B=60sin 30°sin 45°=302(m). 3.如图,某人向正东方向走了x 千米,然后向右转120°,再朝新方向走了3千米,结果他离出发点恰好13 千米,那么x 的值是 .答案 4解析 由余弦定理,得x 2+9-3x =13, 整理得x 2-3x -4=0,解得x =4(舍负).4.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,A ,B ,C ,D 四点共圆,则AC 的长为 km.答案 7解析 因为A ,B ,C ,D 四点共圆,所以D +B =π. 在△ABC 和△ADC 中,由余弦定理可得82+52-2×8×5×cos(π-D ) =32+52-2×3×5×cos D , 整理得cos D =-12,代入得AC 2=32+52-2×3×5×⎝⎛⎭⎫-12=49,故AC =7.1.测量距离和高度问题都可以转化成利用正弦、余弦定理求解三角形边的问题. 2.正弦、余弦定理在实际测量中的应用的一般步骤 (1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解. (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.一、选择题1.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( ) A .10 2 m B .20 m C .20 3 m D .40 m答案 D解析 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40. 故电视塔的高度为40 m.2.如图,在河岸AC 测量河的宽度,测量下列四组数据,较适宜的是( )A .a ,c ,αB .b ,c ,αC .c ,a ,βD .b ,α,γ 答案 D3.甲骑电动车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 ( )A .6 kmB .3 3 kmC .3 2 kmD .3 km 答案 C解析 由题意知,AB =24×14=6(km),∠BAS =30°,∠ASB =75°-30°=45°.由正弦定理,得BS =AB sin ∠BAS sin ∠ASB=6sin 30°sin 45°=32(km).4.已知海上A ,B 两个小岛相距10海里,C 岛临近陆地,若从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 岛与C 岛之间的距离是( ) A .10 3 海里 B.1063 海里C .5 2 海里D .5 6 海里答案 D解析 如图所示,C =180°-60°-75°=45°,AB =10.由正弦定理得10sin 45°=BC sin 60°,所以BC =56,故选D.5.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m 答案 D解析 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理,得AB sin C =AC sin B ,即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.6.如图,甲、乙二人同时从点A 出发,甲沿正东方向走,乙沿北偏东30°方向走.当乙走了2 km 到达B 点时,甲走到C 点,此时两人相距 3 km ,则甲走的路程AC 等于( )A .2 3 kmB .2 km C. 3 km D .1 km答案 D 解析 依题意知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , 即3=22+AC 2-2×2·AC ·cos 60°, AC 2-2AC +1=0. 解得AC =1.7.如图所示,D ,C ,B 在地平面同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m答案 D解析 方法一 设AB =x m ,则BC =x m. ∴BD =(10+x )m.∴tan ∠ADB =AB DB =x 10+x =33.解得x =5(3+1) m.∴A 点离地面的高AB 等于5(3+1) m. 方法二 ∵∠ACB =45°,∴∠ACD =135°, ∴∠CAD =180°-135°-30°=15°. 由正弦定理,得AC =CDsin ∠CAD·sin ∠ADC=10sin 15°·sin 30°=206-2. ∴AB =AC sin 45°=5(3+1)m. 二、填空题8.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔间的距离为 km. 答案 30 2 解析 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,则∠ABC =45°, AC =60 km ,根据正弦定理,得BC =AC sin ∠BAC sin ∠ABC=60sin 30°sin 45°=302(km).9.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x = cm. 答案1063解析 如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,则在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知 x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063 (cm).三、解答题10.如图所示,A ,B 是水平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD .解 由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此只需在△ABD 中求出AD 即可,在△ABD 中,∠BDA =180°-45°-120°=15°, 由AB sin 15°=ADsin 45°, 得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1)(m).即山的高度为800(3+1) m.11.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且AB =BC =60 m ,求建筑物的高度.解 设建筑物的高度为h ,由题图知, P A =2h ,PB =2h ,PC =233h ,∴在△PBA 和△PBC 中,分别由余弦定理,得cos ∠PBA =602+2h 2-4h 22×60×2h ,①cos ∠PBC =602+2h 2-43h 22×60×2h .②∵∠PBA +∠PBC =180°, ∴cos ∠PBA +cos ∠PBC =0.③由①②③,解得h =306或h =-306(舍去),即建筑物的高度为30 6 m.12.一次机器人足球比赛中,甲队1号机器人由A 点开始做匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 做匀速直线滚动,如图所示,已知AB =4 2 dm ,AD =17 dm ,∠BAD =45°,若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?解 设机器人最快可在点C 处截住足球,点C 在线段AD 上,连接BC ,如图所示,设BC =x dm ,由题意知CD =2x dm ,AC =AD -CD =(17-2x )dm. 在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A , 即x 2=(42)2+(17-2x )2-82(17-2x )cos 45°, 解得x 1=5,x 2=373.所以AC =17-2x =7(dm)或AC =-233(dm)(舍去).所以该机器人最快可在线段AD 上离A 点7 dm 的点C 处截住足球.13.某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.则汽车到达M 汽车站还需行驶 千米. 答案 15解析 由题设,画出示意图,设汽车前进20千米后到达B 处.在△ABC 中,AC =31,BC =20,AB =21, 由余弦定理,得cos C =AC 2+BC 2-AB 22AC ×BC =2331,则sin 2C =1-cos 2C =432312,sin C =12331,所以sin ∠MAC =sin(120°-C ) =sin 120°cos C -cos 120°sin C =35362.在△MAC 中,由正弦定理,得MC =AC sin ∠MAC sin ∠AMC =3132×35362=35.从而有MB =MC -BC =15.故汽车到达M 汽车站还需行驶15千米.14.在某次地震时,震中A (产生震动的中心位置)的南面有三座东西方向的城市B ,C ,D .已知B ,C 两市相距20 km ,C ,D 相距34 km ,C 市在B ,D 两市之间,如图所示,某时刻C 市感到地表震动,8 s 后B 市感到地表震动,20 s 后D 市感到地表震动,已知震波在地表传播的速度为每秒1.5 km.求震中A 到B ,C ,D 三市的距离.解 在△ABC 中,由题意得AB -AC =1.5×8=12(km). 在△ACD 中,由题意得AD -AC =1.5×20=30(km). 设AC =x km ,AB =(12+x )km ,AD =(30+x )km. 在△ABC 中,cos ∠ACB =x 2+400-(12+x )22×20×x=256-24x 40x =32-3x5x, 在△ACD 中,cos ∠ACD =x 2+1 156-(30+x )268x=256-60x 68x =64-15x17x.∵B ,C ,D 在一条直线上,∴64-15x 17x =-32-3x5x ,即64-15x 17=3x -325,解得x =487. ∴AB =1327 km ,AD =2587km.即震中A 到B ,C ,D 三市的距离分别为1327 km ,487 km ,2587km.。

人教A版高中数学必修五第一部分 第一章 1.1 1.1.1 应用创新演练.doc

人教A版高中数学必修五第一部分  第一章  1.1  1.1.1  应用创新演练.doc

高中数学学习材料鼎尚图文*整理制作1.(2012·浏阳高二检测)在△ABC中,若sin A>sin B,则A与B的大小关系为() A.A>B B.A<BC.A≥B D.A、B的大小关系不确定解析:∵sin A>sin B,∴2R sin A>2R sin B,即a>b,故A>B.答案:A2.在△ABC中,A=60°,a=43,b=42,则B等于()A.45°或135°B.135°C.45°D.以上答案都不对解析:由asin A=bsin B,得sin B=b·sin Aa=42×sin 60°43=22.∵a>b,∴A>B,而A=60°,∴B为锐角,∴B=45°.答案:C3.(2011·辽宁高考)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos 2A=2a,则ba=()A.2 3 B.2 2C. 3D. 2解析:由正弦定理,得sin 2A sin B+sin B cos 2A=2sin A,即sin B·(sin 2A+cos2A)=2sin A.所以sin B=2sin A.∴ba=sin Bsin A= 2.答案:D4.在△ABC中,由已知条件解三角形,其中有两解的是() A.b=20,A=45°,C=80°B.a=30,c=28,B=60°C .a =14,b =16,A =45°D .a =12,c =15,A =120°解析:由a =14,b =16,A =45°,知sin B =427. 又∵a <b ,A =45°. ∴B 有两解.答案:C5.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =________.解析:由正弦定理,得sin C =AB ·sin A BC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C )=sin 60°·cos C -cos 60°·sin C =3314. 答案:33146.(2012·烟台高二检测)在△ABC 中,最大边长是最小边长的2倍,且2AB ·AC =|AB |·|AC |,则此三角形的形状是________.解析:∵2AB ·AC =|AB |·|AC |, ∴cos A =12.∴A =π3. ∴a 边不是最大边也不是最小边,不妨设b <c ,则2b =c ,由正弦定理知2sin B =sin C ,∴2sin B =sin(2π3-B ). ∴2sin B =32cos B +12sin B . ∴tan B =33.∴B =π6,C =π2. ∴此三角形为直角三角形.答案:直角三角形7.在△ABC 中,B =45°,AC =10,cos C =255,求BC 的长.解:由cos C =255得sin C =55, sin A =sin(180°-45°-C )=22(cos C +sin C )=31010, 由正弦定理,得BC =AC sin A sin B =10×3101022=3 2. 8.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且b =6,a =23,A =30°,试求ac 的值.解:由正弦定理a sin A =b sin B,得 sin B =b sin A a =6sin 30°23=32. 由条件b =6,a =23,b >a 知B >A .∴B =60°或120°.(1)当B =60°时,C =180°-A -B=180°-30°-60°=90°.在Rt △ABC 中,C =90°,a =23,b =6,c =43,∴ac =23×43=24.(2)当B =120°时,C =180°-A -B =180°-30°-120°=30°,∴A =C ,则有a =c =2 3.∴ac =23×23=12.。

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。

人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)

人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)

综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。

高中数学人教版必修5课后习题答案[电子档]

高中数学人教版必修5课后习题答案[电子档]

高中数学必修5课后习题答案1第二章 数列2.1 数列的概念与简单表示法练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33)1、(1)2,3,5,7,11,13,17,19;(2)2,6,22,3,10,23,14,15,4,32; (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,2,(3),2,5,(6),7; n a n =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+.习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.n 1 2 … 5 … 12 … n n a 21 33 … 69 … 153 … 3(34)n +该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪;3310(10.72)10.217559a =⨯+=﹪; 10(10.72n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2 等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立.习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s.习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯; (2)2021年底,沙化面积开始小于52810 hm ⨯.2、略.2.3 等差数列的前n 项和练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4 等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,1a 3a 5a 7aq2 4 8 16 2或2-50 20.080.00320.2则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元. 习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯= 还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =.当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=,得111(1)22111()n n n n a a qa qa q ---===.那么数列{}n a 是以1a 为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为50505013100.0525.6310 m m 5.6310 m a a q ==⨯≈⨯=⨯ 这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列. 由3240a =,得2231(1)105(1)240a a q q =+=+=,解得24010.51105q =-≈ 6、由已知条件知,,2a bA G ab +==,且22()0222a b a b ab a b A G ab ++---=-==≥ 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10.习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===.解得 4221n ≈,所以动物约在距今4221年前死亡.3、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅.2.5 等比数列的前n 项和练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q 所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. a sa q a pa ksq p kOna n (第3题)(2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n b bb a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t ) 可节约的土地为165048320⨯=(2m )4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元)(5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>.所以第二种领奖方式获奖者受益更多. 8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n nS a a a a n d a n d a n d ++=+++=++++++ 2121()22n a a a n n d S n d =++++⨯=+ 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪. 4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1 不等关系与不等式练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)3274+<; (2)710314+>+.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)(1)02x x +>+>,所以112xx +>+4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd>于是0a bd c>>,所以a b d c > 3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩ 所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少.3.2 一元二次不等式及其解法练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x 的集合是331,133⎧⎫⎪⎪-+⎨⎬⎪⎪⎩⎭;使2362y x x =-+的值大于0的x 的集合为331,133x x x ⎧⎫⎪⎪<->+⎨⎬⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x 的集合是331133x x ⎧⎫⎪⎪-<<+⎨⎬⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅;使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅; 使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠.习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)131322x x ⎧⎫⎪⎪-<<⎨⎬⎪⎪⎩⎭; (3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以249y x x =-+的定义域是R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x = 所以221218y x x =-+-的定义域是{}3x x = 3、{}322,322m m m <-->-+或; 4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒.依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)55255222x x ⎧⎫-+⎪⎪<<⎨⎬⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为42423,322x x x ⎧⎫⎪⎪<-<+⎨⎬⎪⎪⎩⎭或. 4、设风暴中心坐标为(,)a b ,则3002a =,所以22(3002)450b +<,即150150b -<< 而300215015(221)13.7202-=-≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3 二元一次不等式(组)与简单的线性规划问题练习(P86)1、B .2、D .3、B .4、分析:把已知条件用下表表示:工序所需时间/分钟收益/元 打磨 着色 上漆 桌子A10 6 6 40桌子B5 12 9 30 工作最长时间 450 480 450解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩ 得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+,当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元.习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥y=x x+y=1CBA -1O1yx5x +3y=15x -5y=3y=x+1yx15B3AO(1)(2)(第1题)(第2题)xyA500200400250Oy=2x -2y xO1-11yx22Oxy321Oxy -2O2、3、分析:将所给信息下表表示:每次播放时间/分广告时间/分收视观众/万连续剧甲80 1 60 连续剧乙40 1 20 播放最长时间320 最少广告时间6解:设每周播放连续剧甲x 次,播放连续剧乙y 次,收视率为z . 目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+=(万)答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==y=x 3+1y=x+2y=4-x -1-15424O 1(第2题)yx586O1(第3题)y=120-3xy=100-xxy12010010040MO得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)60z x yx y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元)y=-2-23xy=4-23xyx-3-22564O1(第1题)y=12-x 2y=x+3yx-2-33O1(第2题)所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.4 基本不等式2a bab +≤练习(P100)1、因为0x >,所以1122x x x x+⨯=≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 2210020a b ab +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()3242323264S ab bc ac a b ab =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少.习题3.4 A 组(P100)1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 223612a b ab +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x= 1236003120068005800480058002360012480058000z y x x x⨯=⨯+⨯+=++⨯⨯+=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++由基本不等式与不等式的性质 6[27218]6(18122)108722S ⨯-+=⨯-=-≤当72x x=,即62x =m 时,ADP ∆的面积最大,最大面积是(108722)-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+()()2()()2a b a ba cbc a c b c x x--=----⋅≤当且仅当()()a cbc x x--=,即()()x a c b c =--时,tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1、511212537+<+. 2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为 2224Z x y xy S =+=≥当2x y =,即x S =,2y S =时,Z 可以取得最小值,最小值为4S . 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤ 当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P 时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即a v b =且a cb ≤时,y 有最小值. 22sa say sbv sbv s ab v v=+⨯=≥,最小值为2s ab . 当a cb >时,由函数sa y sbv v =+的单调性可知,vc =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)231334x x x x ⎧⎫-<>⎨⎬⎩⎭或或≤≤3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥5、因为22x y +是区域内的点到原点的距离的平方 所以,当240330x y x y -+=⎧⎨--=⎩即2,3A A x y ==时,22x y +的最大值为13.当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45.6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ x+y=62x+y=10x+y=10yx1010656O(第4题)xy12L 1L 3L 2AB C (第5题)比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(二) Word版含答案

【创新设计】2022-2021学年高二数学人教A必修5学案:1.2 应用举例(二) Word版含答案

1.2 应用举例(二)[学习目标] 1.能够运用正弦定理、余弦定理等学问和方法解决一些有关底部不行到达的物体高度测量的问题.2.巩固深化解三角形实际问题的一般方法,养成良好的争辩、探究习惯.3.进一步培育同学学习数学、应用数学的意识及观看、归纳、类比、概括的力量.[学问链接] 现实生活中,人们是怎样测量底部不行到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?要点一 测量仰角求高度问题例1 如图所示,A 、B 是水平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD .解 由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此只需在△ABD 中求出AD 即可,在△ABD 中,∠BDA =180°-45°-120°=15°, 由AB sin 15°=ADsin 45°, 得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1) (m).即山的高度为800(3+1) m.规律方法 在运用正弦定理、余弦定理解决实际问题时,通常都依据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.和高度有关的问题往往涉及直角三角形的求解. 跟踪演练1 如图,地平面上有一旗杆OP ,为了测得它的高度h ,在地面上选一基线AB ,AB =20 m ,在A 点处测得P 点仰角∠OAP =30°,在B 点处测得P 点的仰角∠OBP =45°,又测得∠AOB =60°,求旗杆的高度h .(结果保留两个有效数字)解 在Rt △AOP 中,∠OAP =30°,OP =h , ∴OA =OP ·1tan 30°=3h .在Rt △BOP 中,∠OBP =45°,∴OB =OP ·1tan 45°=h .在△AOB 中,AB =20,∠AOB =60°,由余弦定理得AB 2=OA 2+OB 2-2×OA ×OB ·cos 60°, 即202=(3h )2+h 2-2·3h ·h ·12,解得h 2=4004-3≈176.4,∴h ≈13(m).答 旗杆高度约为13 m. 要点二 测量俯角求高度问题例2 如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD . 解 在△ABC 中, ∠BCA =90°+β, ∠ABC =90°-α, ∠BAC =α-β,∠CAD =β. 依据正弦定理得AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BCsin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).答 山的高度为h cos αsin βsin (α-β).规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练2 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案 30解析 设两条船所在位置分别为A 、B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303,BC =30tan 45°=30,C =30°, AB 2=(303)2+302-2×303×30×cos 30°=900,所以AB =30. 要点三 测量方位角求高度问题例3 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,求塔AB 的高度.解 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理,得BC sin 45°=CDsin 30°, BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=ABBC,AB =BC tan 60°=10 6. 答 塔AB 的高度为10 6 m.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练3 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.答案 30 2解析 如图,由已知条件, 得AC =60 km ,∠BAC =30°, ∠ACB =105°,∠ABC =45°.由正弦定理得BC =AC sin ∠BAC sin B=302(km)1.已知两座灯塔A ,B 与海洋观看站C 的距离相等,灯塔A 在观看站C 的北偏东40°,灯塔B 在观看站C 的南偏东60°,则灯塔A 在灯塔B 的( ) A .北偏东10° B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如右图,因△ABC 为等腰三角形,所以∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B.2.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为( ) A .2h 米 B.2h 米 C.3h 米D .22h 米答案 A解析 如图所示, BC =3h , AC =h , ∴AB =3h 2+h 2=2h (米).3.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________. 答案 20 3 m ,4033 m 解析 甲楼的高为20tan 60°=20×3=203; 乙楼的高为203-20tan 30°=203-20×33=4033.1.在争辩三角形时,机敏依据两个定理可以查找到多种解决问题的方案,但有些过程较烦琐,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.2.测量底部不行到达的建筑物的高度问题.由于底部不行到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.一、基础达标1.为了测某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶的仰角为30°,塔基的俯角为45°,那么塔AB 的高为( ) A .20⎝⎛⎭⎫1+33 mB .20⎝⎛⎭⎫1+32 mC .20(1+3) mD .30 m答案 A解析 如图,h =20tan 30°+20tan 45°=20⎝⎛⎭⎫1+33(m),故选A.2.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600 m 后测得仰角为2θ,连续在地面上前进200 3 m 以后测得山峰的仰角为4θ,则该山峰的高度为( ) A .200 m B .300 m C .400 m D .100 3 m 答案 B解析 法一 如图,△BED ,△BDC 为等腰三角形,BD =ED =600,BC =DC =200 3.在△BCD 中,由余弦定理可得cos 2θ=6002+(2003)2-(2003)22×600×2003=32,∴2θ=30°,4θ=60°.在Rt △ABC 中,AB =BC ·sin 4θ=2003×32=300,故选B. 法二 由于△BCD 是等腰三角形,12BD =DC cos 2θ,即300=2003cos 2θ.cos 2θ=32,2θ=30°,4θ=60°. 在Rt △ABC 中,AB =BC ·sin 4θ=2003×32=300,故选B.3.一架飞机在海拔8 000 m 的高度飞行,在空中测出前下方海岛两侧海岸俯角分别是30°和45°,则这个海岛的宽度为________m. 答案 5 856.4 解析 宽=8 000tan 30°-8 000tan 45°=5 856.4(m). 4.为测量某塔的高度,在A ,B 两点进行测量的数据如图所示,求塔的高度.解 在△ABT 中,∠ATB =21.4°-18.6°=2.8°,∠ABT =90°+18.6°,AB =15(m). 依据正弦定理,AB sin 2.8°=ATcos 18.6°,AT =15×cos 18.6°sin 2.8°.塔的高度为AT ·sin 21.4°=15·cos 18.6°sin 2.8°sin 21.4°≈106.19(m).所以塔的高度为106.19 m.5.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D处时,再看灯塔B 在货轮的南偏东60°. 求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24 (n mile).所以A 处与D 处的距离为24 n mile. (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°=192, 解得CD =8 3 n mile.即灯塔C 与D 处的距离为8 3 n mile. 二、力量提升6.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15 mB .5 mC .10 mD .12 m答案 C解析 如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h .在Rt △AOD 中,∠ADO =30°,则OD =3h . 在△OCD 中,∠OCD =120°,CD =10,由余弦定理得OD 2=OC 2+CD 2-2OC ·CD cos ∠OCD , 即(3h )2=h 2+102-2h ×10×cos 120°, ∴h 2-5h -50=0,解得h =10或h =-5(舍).7.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m ,则电视塔在这次测量中的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m 答案 D解析 由题意画出示意图,设高AB =h ,在Rt △ABC 中,由已知BC =h , 在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD 得,3h 2=h 2+5002+h ·500,解之得h =500 m .故选D. 8.如图,在山脚A 测得山顶P 的仰角为α,沿倾斜角为β的斜坡向上走a 米到B ,在B 处测得山顶P 的仰角为γ,求证:山高h =a sin αsin (γ-β)sin (γ-α).解 在△ABP 中,∠ABP =180°-γ+β,∠BP A =180°-(α-β)-∠ABP =180°-(α-β)-(180°-γ+β)=γ-α. 在△ABP 中,依据正弦定理,AP sin ∠ABP =AB sin ∠APB ,AP sin (180°-γ+β)=αsin (γ-α),AP =a ×sin (γ-β)sin (γ-α)所以山高h =AP sin α=a sin αsin (γ-β)sin (γ-α).9.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.摸索究图中B 、D 间距离 km ,2≈1.414,与另外哪两点间距离相等,然后求B 、D 的距离(计算结果精确到0.01 6≈2.449).解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,∴CD =AC =0.1,又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,∴BD =BA ,在△ABC 中,AB sin ∠BCA =AC sin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620.因此,BD =32+620≈0.33 km ,故B 、D 的距离约为0.33 km.三、探究与创新10.为保障高考的公正性,高考时每个考点都要安装手机屏蔽仪,要求在考点四周1千米处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约1.732千米有一条北偏东60°方向的大路,在此处检查员用手机接通电话,以每小时12千米的速度沿大路行驶,问最长需要多少分钟检查员开头收不到信号,并至少持续多长时间该考点才算合格?解 如图所示,考点为A ,检查开头处为B , 设大路上C ,D 两点到考点的距离为1千米. 在△ABC 中,AB =3≈1.732(千米),AC =1(千米), ∠ABC = 30°,由正弦定理sin ∠ACB =sin 30°AC ·AB =32,∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°, ∴BC =AC =1(千米),在△ACD 中,AC =AD ,∠ACD =60°,∴△ACD 为等边三角形,∴CD =1(千米).∵BC12×60=5,∴在BC上需5分钟,CD上需5分钟.所以最长需要5分钟检查员开头收不到信号,并持续至少5分钟才算合格.。

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

人教A版高中数学必修1-5教材课后习题答案目录必修1第一章课后习题解答 (1)必修1第二章课后习题解答 (33)必修1第三章课后习题解答 (44)必修2第一章课后习题解答 (51)必修2第二章课后习题解答 (56)必修2第三章课后习题解答 (62)必修2第四章课后习题解答 (78)必修3第一章课后习题解答 (97)必修3第二章课后习题解答 (110)必修3第三章课后习题解答 (120)必修4第一章课后习题解答 (125)必修4第二章课后习题解答 (147)必修4第三章课后习题解答 (162)必修5第一章课后习题解答 (177)必修5第二章课后习题解答 (188)必修5第三章课后习题解答 (201)新课程标准人教A 版高中数学必修1第一章课后习题解答1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空: (1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程的所有实数根组成的集合为; (2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,290x -={3,3}-82,3,5,78{2,3,5,7}326y x y x =+⎧⎨=-+⎩14x y =⎧⎨=⎩即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得, 所以不等式的解集为.1.1.2集合间的基本关系 练习(第7页) 1.写出集合的所有子集.1.解:按子集元素个数来分类,不取任何元素,得; 取一个元素,得; 取两个元素,得;取三个元素,得,即集合的所有子集为.2.用适当的符号填空:(1)______; (2)______; (3)______; (4)______; (5)______; (6)______. 2.(1)是集合中的一个元素;(2); (3) 方程无实数根,; (4)(或) 是自然数集合的子集,也是真子集;(5)(或) ;(6)方程两根为. 3.判断下列两个集合之间的关系: (1),;3y x =+26y x =-+(1,4)3y x =+26y x =-+{(1,4)}453x -<2x <453x -<{|2}x x <{,,}a b c ∅{},{},{}a b c {,},{,},{,}a b a c b c {,,}a b c {,,}a b c ,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅a {,,}a b c 02{|0}x x =∅2{|10}x R x ∈+={0,1}N {0}2{|}x x x ={2,1}2{|320}x x x -+={,,}a a b c ∈a {,,}a b c 20{|0}x x ∈=2{|0}{0}x x ==2{|10}x R x ∅=∈+=210x +=2{|10}x R x ∈+==∅{0,1}N {0,1}N ⊆{0,1}N {0}2{|}x x x =2{0}{|}x x x ⊆=2{|}{0,1}x x x ==2{2,1}{|320}x x x =-+=2320x x -+=121,2x x =={1,2,4}A ={|8}B x x =是的约数(2),;(3),.3.解:(1)因为,所以;(2)当时,;当时,, 即是的真子集,;(3)因为与的最小公倍数是,所以. 1.1.3集合的基本运算 练习(第11页) 1.设,求. 1.解:,.2.设,求. 2.解:方程的两根为, 方程的两根为,得, 即.3.已知,,求. 3.解:,.4.已知全集,,求. 4.解:显然,,{|3,}A x x k k N ==∈{|6,}B x x z z N ==∈{|410}A x x x N +=∈是与的公倍数,{|20,}B x x m m N +==∈{|8}{1,2,4,8}B x x ==是的约数AB 2k z =36k z =21k z =+363k z =+B A BA 41020AB ={3,5,6,8},{4,5,7,8}A B ==,A B A B {3,5,6,8}{4,5,7,8}{5,8}A B =={3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==22{|450},{|1}A x x x B x x =--===,A B A B 2450x x --=121,5x x =-=210x -=121,1x x =-={1,5},{1,1}A B =-=-{1},{1,1,5}A B A B =-=-{|}A x x =是等腰三角形{|}B x x =是直角三角形,A B A B {|}A B x x =是等腰直角三角形{|}A B x x =是等腰三角形或直角三角形{1,2,3,4,5,6,7}U ={2,4,5},{1,3,5,7}A B ==(),()()U U U A B A B {2,4,6}UB ={1,3,6,7}UA =则,.1.1集合习题1.1 (第11页) A 组 1.用符号“”或“”填空:(1)_______; (2)______; (3)_______;(4_______; (5; (6)_______.1.(1) 是有理数; (2)是个自然数; (3)是个无理数,不是有理数; (4是实数;(5)是个整数;(6) 是个自然数.2.已知,用 “”或“” 符号填空:(1)_______; (2)_______; (3)_______. 2.(1); (2); (3). 当时,;当时,; 3.用列举法表示下列给定的集合: (1)大于且小于的整数; (2); (3).3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(){2,4}U A B =()(){6}U U A B =∈∉237Q 23N πQ R Z 2N 237Q ∈23723N ∈239=Q π∉πR Z 3=2N ∈25={|31,}A x x k k Z ==-∈∈∉5A 7A 10-A 5A ∈7A ∉10A -∈2k =315k -=3k =-3110k -=-16{|(1)(2)0}A x x x =-+={|3213}B x Z x =∈-<-≤162,3,4,5{2,3,4,5}(1)(2)0x x -+=122,1x x =-={2,1}-3213x -<-≤12x -<≤x Z ∈{0,1,2}24y x =-(2)反比例函数的自变量的值组成的集合;(3)不等式的解集.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为; (2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.选用适当的符号填空: (1)已知集合,则有:_______; _______;_______; _______;(2)已知集合,则有: _______; _______; _______; _______;(3)_______;_______.5.(1); ;; ;,即;(2);; ; =;;(3); 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形. 6.设集合,求.2y x =342x x ≥-20x ≥244x -≥-4y ≥-24y x =-{|4}y y ≥-0x ≠2y x ={|0}x x ≠342x x ≥-45x ≥342x x ≥-4{|}5x x ≥{|233},{|2}A x x x B x x =-<=≥4-B 3-A {2}B B A 2{|10}A x x =-=1A {1}-A ∅A {1,1}-A {|}x x 是菱形{|}x x 是平行四边形{|}x x 是等腰三角形{|}x x 是等边三角形4B -∉3A -∉{2}B BA 2333x x x -<⇒>-{|3},{|2}A x xB x x =>-=≥1A ∈{1}-A ∅A {1,1}-A 2{|10}{1,1}A x x =-==-{|}x x 是菱形{|}x x 是平行四边形{|}x x 是等边三角形{|}x x 是等腰三角形{|24},{|3782}A x x B x x x =≤<=-≥-,A B A B6.解:,即,得,则,.7.设集合,,求,,,.7.解:,则,,而,, 则,.8.学校里开运动会,设,,,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为.(1); (2).9.设,,,,求,,.9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即,.3782x x -≥-3x ≥{|24},{|3}A x x B x x =≤<=≥{|2}A B x x =≥{|34}A B x x =≤<{|9}A x x =是小于的正整数{1,2,3},{3,4,5,6}B C ==A B AC ()A B C ()A B C {|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数{1,2,3}A B ={3,4,5,6}A C ={1,2,3,4,5,6}B C ={3}B C =(){1,2,3,4,5,6}A B C =(){1,2,3,4,5,6,7,8}A B C ={|}A x x =是参加一百米跑的同学{|}B x x =是参加二百米跑的同学{|}C x x =是参加四百米跑的同学AB AC ()A B C =∅{|}A B x x =是参加一百米跑或参加二百米跑的同学{|}A C x x =是既参加一百米跑又参加四百米跑的同学{|}S x x =是平行四边形或梯形{|}A x x =是平行四边形{|}B x x =是菱形{|}C x x =是矩形B C A B S A {|}B C x x =是正方形{|}AB x x =是邻边不相等的平行四边形{|}SA x x =是梯形10.已知集合,求,,,.10.解:,,,,得,,,.B 组 1.已知集合,集合满足,则集合有 个.1. 集合满足,则,即集合是集合的子集,得个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合之间有什么关系? 2.解:集合表示两条直线的交点的集合, 即,点显然在直线上, 得.3.设集合,,求.3.解:显然有集合,当时,集合,则; 当时,集合,则; 当时,集合,则;{|37},{|210}A x x B x x =≤<=<<()R A B ()R A B ()R A B()R A B {|210}A B x x =<<{|37}A B x x =≤<{|3,7}RA x x x =<≥或{|2,10}RB x x x =≤≥或(){|2,10}RA B x x x =≤≥或(){|3,7}RA B x x x =<≥或(){|23,710}R A B x x x =<<≤<或(){|2,3710}R A B x x x x =≤≤<≥或或{1,2}A =B {1,2}A B =B 4B A B A =B A ⊆B A 4{(,)|}C x y y x ==y x =21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭,C D 21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭21,45x y x y -=+=21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭(1,1)D y x =DC {|(3)()0,}A x x x a a R =--=∈{|(4)(1)0}B x x x =--=,A B A B {|(4)(1)0}{1,4}B x x x =--==3a ={3}A ={1,3,4},A B A B ==∅1a ={1,3}A ={1,3,4},{1}A B A B ==4a ={3,4}A ={1,3,4},{4}A B A B ==当,且,且时,集合,则.4.已知全集,,试求集合. 4.解:显然,由,得,即,而,得,而,即.第一章 集合与函数概念 1.2函数及其表示 1.2.1函数的概念 练习(第19页)1.求下列函数的定义域:(1); (2).1.解:(1)要使原式有意义,则,即,得该函数的定义域为; (2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数, (1)求的值;(2)求的值.2.解:(1)由,得, 同理得,1a ≠3a ≠4a ≠{3,}A a ={1,3,4,},A B a A B ==∅{|010}U A B x N x ==∈≤≤(){1,3,5,7}U A B =B {0,1,2,3,4,5,6,7,8,9,10}U =U A B =UB A⊆()U UA B B=(){1,3,5,7}U A B ={1,3,5,7}UB =()UU B B ={0,2,4,6,8.9,10}B =1()47f x x =+()1f x =470x +≠74x ≠-7{|}4x x ≠-1030x x -≥⎧⎨+≥⎩31x -≤≤{|31}x x -≤≤2()32f x x x =+(2),(2),(2)(2)f f f f -+-(),(),()()f a f a f a f a -+-2()32f x x x =+2(2)322218f =⨯+⨯=2(2)3(2)2(2)8f -=⨯-+⨯-=则,即;(2)由,得, 同理得, 则,即. 3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度与时间关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为的圆形木头锯成矩形木料,如果矩形的一边长为,面积为,把表示为的函数.1.解:显然矩形的另一边长为,,且, 即. 2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.(2)(2)18826f f +-=+=(2)18,(2)8,(2)(2)26f f f f =-=+-=2()32f x x x =+22()3232f a a a a a =⨯+⨯=+22()3()2()32f a a a a a -=⨯-+⨯-=-222()()(32)(32)6f a f a a a a a a +-=++-=222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=h t 21305h t t =-21305y x x =-()1f x =0()g x x =0t >0()(0)g x x x =≠25cm xcm 2ycm y x 2250x cm -222502500y x x x x =-=-050x <<22500(050)y x x x =-<<2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象.3.解:,图象如下所示.,从到的映射4.设正弦”,与中元素相对应是“求中的元素是什么?与中的元素相对应的的中元素是什么?4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是. 1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:|2|y x =-2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩{|},{0,1}A x x B ==是锐角A B A 60B B 22A 3sin 602=A 60B 322sin 452=B 22A 45离开家的距离 时间 (A ) 离开家的距离 时间 (B ) 离开家的距离 时间 (C ) 离开家的距离时间 (D )(1); (2);(3); (4). 1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;(4)要使原式有意义,则,即且, 得该函数的定义域为. 2.下列哪一组中的函数与相等?(1); (2);(3). 2.解:(1)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.画出下列函数的图象,并说出函数的定义域和值域.3()4x f x x =-()f x=26()32f x x x =-+()1f x x =-40x -≠4x ≠{|4}x x ≠x R ∈()f x =R 2320x x -+≠1x ≠2x ≠{|12}x x x ≠≠且4010x x -≥⎧⎨-≠⎩4x ≤1x ≠{|41}x x x ≤≠且()f x ()g x 2()1,()1x f x x g x x =-=-24(),()f x x g x ==2(),()f x x g x ==()1f x x =-R 2()1x g x x =-{|0}x x ≠()f x ()g x 2()f x x =R 4()g x ={|0}x x ≥()f x ()g x 2x =()f x ()g x(1); (2); (3); (4).3.解:(1)定义域是,值域是; (2)定义域是,值域是;(3)3y x =8y x =45y x =-+267y x x =-+(,)-∞+∞(,)-∞+∞(,0)(0,)-∞+∞(,0)(0,)-∞+∞定义域是,值域是;(4)定义域是,值域是.4.已知函数,求,,,. 4.解:因为,所以,即;同理,, 即;, 即;, 即. 5.已知函数, (1)点在的图象上吗?(2)当时,求的值; (3)当时,求的值.(,)-∞+∞(,)-∞+∞(,)-∞+∞[2,)-+∞2()352f x x x =-+(2)f -()f a -(3)f a +()(3)f a f +2()352f x x x =-+2(2)3(2)5(2)2852f -=⨯--⨯-+=+(2)852f -=+22()3()5()2352f a a a a a -=⨯--⨯-+=++2()352f a a a -=++22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++2(3)31314f a a a +=++22()(3)352(3)3516f a f a a f a a +=-++=-+2()(3)3516f a f a a +=-+2()6x f x x +=-(3,14)()f x 4x =()f x ()2f x =x5.解:(1)当时,, 即点不在的图象上;(2)当时,, 即当时,求的值为;(3),得, 即.6.若,且,求的值. 6.解:由,得是方程的两个实数根,即,得,即,得, 即的值为.7.画出下列函数的图象:(1); (2).7.图象如下:3x =325(3)14363f +==-≠-(3,14)()f x 4x =42(4)346f +==--4x =()f x 3-2()26x f x x +==-22(6)x x +=-14x =2()f x x bx c =++(1)0,(3)0f f ==(1)f -(1)0,(3)0f f ==1,320x bx c ++=13,13b c +=-⨯=4,3b c =-=2()43f x x x =-+2(1)(1)4(1)38f -=--⨯-+=(1)f -80,0()1,0x F x x ≤⎧=⎨>⎩()31,{1,2,3}G n n n =+∈。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

2020-2021学年高二数学人教A版必修5学案:1.1.2 余弦定理 Word版含解析

2020-2021学年高二数学人教A版必修5学案:1.1.2 余弦定理 Word版含解析

1.1.2余弦定理[目标] 1.了解向量法推导余弦定理的过程;2.能利用余弦定理求三角形中的边角问题;3.能利用正、余弦定理解决综合问题.[重点] 能利用余弦定理求三角形中的边角问题.[难点] 余弦定理的推导及能利用正、余弦定理解决综合问题.知识点一余弦定理[填一填][答一答]1.在△ABC中,若a2=b2+c2,a2>b2+c2,a2<b2+c2,能否说△ABC分别是直角三角形,钝角三角形,锐角三角形?提示:若a2=b2+c2,则△ABC是直角三角形;若a2>b2+c2,则△ABC是钝角三角形;若a2<b2+c2,则△ABC不一定是锐角三角形,因为a不一定是最大边.2.已知三角形内角的余弦值求角时,是否存在多解的情况?提示:在已知三角形内角的余弦值求角时,由于函数y=cos x在(0,π)上单调递减,所以角的余弦值与角一一对应,故不存在多解的情况.知识点二余弦定理及其推论的应用[填一填]余弦定理及其推论可解决两类基本的解三角形的问题:一类是已知两边及夹角解三角形;另一类是已知三边解三角形.[答一答]3.在三角形中,已知两边及一边的对角,可用正弦定理解三角形,能否用余弦定理解该三角形?提示:能用余弦定理解.设另一边为x,由余弦定理列出方程求解.4.余弦定理推论的作用有什么?提示:余弦定理的推论是余弦定理的第二种形式,适用于已知三角形三边来确定三角形的角的问题.用余弦定理的推论还可以根据角的余弦值的符号来判断三角形中的角是锐角还是钝角.类型一已知三角形三边解三角形[例1]已知△ABC中,a b c=26(3+1),求△ABC 的各内角度数.[分析]根据三边比例关系设出三边,然后用余弦定理推论求出两个内角,再用三角形内角和定理求出第三个内角. [解] ∵a b c =26(3+1),令a =2k ,b =6k ,c =(3+1)k (k >0). 由余弦定理的推论得:cos A =b 2+c 2-a 22bc=6+(3+1)2-42×6×(3+1)=22,∴A =45°, cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1)=12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.已知三角形的三边求三角时,一般利用余弦定理的推论先求出两角,再根据三角形内角和定理求出第三个角.,利用余弦定理的推论求角时,应注意余弦函数在(0,π)上是单调的.当余弦值为正时,角为锐角;当余弦值为负时,角为钝角.[变式训练1] (1)在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 为( C )A.π3B.π6C.2π3D.π3或2π3解析:在△ABC 中,由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.∵A ∈(0,π),∴A =2π3.(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a -b =4,a +c =2b ,且最大角为120°,则此三角形的最大边长为14.解析:已知a -b =4,则a >b 且a =b +4.又a +c =2b ,则b +4+c =2b ,所以b =c +4,则b >c ,从而知a >b >c ,所以a 为最大边,故A=120°,b =a -4,c =2b -a =a -8. 由余弦定理,得a 2=b 2+c 2-2bc cos A =b 2+c 2+bc =(a -4)2+(a -8)2+(a -4)(a -8),即a 2-18a +56=0,解得a =4或a =14.又b =a -4>0,所以a =14,即此三角形的最大边长为14.类型二 已知三角形两边及一角解三角形[例2] (1)在△ABC 中,已知b =3,c =23,A =30°,求a ;(2)在△ABC 中,已知b =3,c =33,B =30°,求角A 、角C 和边a .[分析] (1)已知两边及其夹角,可直接利用余弦定理求出第三条边;(2)已知两边及一边的对角,可利用余弦定理求解,也可利用正弦定理求解.[解] (1)由余弦定理,得a 2=b 2+c 2-2bc cos A =32+(23)2-2×3×23cos30°=3,所以a = 3.(2)解法一:由余弦定理b 2=a 2+c 2-2ac cos B ,得32=a 2+(33)2-2a ×33×cos30°,即a 2-9a +18=0,解得a =3或a =6.当a =3时,A =30°,C =120°;当a =6时,由正弦定理,得sin A =a sinB b =6×123=1.∴A =90°,∴C =60°.解法二:由b <c ,B =30°,b >c sin30°=33×12=332,知本题有两解.由正弦定理,得sin C =c sin B b =33×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6;当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.已知三角形的两边及一角解三角形的方法:已知三角形的两边及一角解三角形,必须先判断该角是给出两边中一边的对角,还是给出两边的夹角.若是给出两边的夹角,可以由余弦定理求第三边;若是给出两边中一边的对角,可以利用余弦定理建立一元二次方程,解方程求出第三边(也可以两次应用正弦定理求出第三边).[变式训练2] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =4.解析:由3sin A =2sin B 及正弦定理知:3a =2b .又因为a =2,所以b =3.由余弦定理得:c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.类型三 判断三角形的形状[例3] 在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2cos A sin B ,试判断△ABC 的形状.[分析] 判断三角形的形状时,一般有两种思路:一种是考虑三角形的三边关系;另一种是考虑三角形的内角关系.当然有时可将边和角巧妙结合,同时考虑.[解] 方法一:利用边的关系来判断.由正弦定理得sin C sin B =c b ,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b .又cos A =b 2+c 2-a 22bc ,∴c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,∴a =b .又(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab ,∴4b 2-c 2=3b 2,∴b =c .综上,a =b =c ,∴△ABC 为等边三角形.方法二:利用角的关系来判断.∵△ABC 中,sin C =sin(A +B ),又2cos A sin B =sin C =sin A cos B +cos A sin B ,∴sin(A -B )=0,又∵-180°<A -B <180°,∴A -B =0°.即A =B .又∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab ,∴a 2+b 2-c 2=ab .∴由余弦定理知2ab cos C =ab ,∴cos C =12.∴C =60°,∴△ABC 为等边三角形.利用三角形的边角关系判断三角形的形状时,需要从“统一”入手,即使用转化思想解决问题.一般有两条思考路线:(1)先化边为角,再进行三角恒等变换,求出三角之间的数量关系.(2)先化角为边,再进行代数恒等变换,求出三边之间的数量关系.[变式训练3] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,b =3c ,试判断△ABC 的形状.解:由余弦定理得a 2=b 2+c 2-2bc cos A .又因为cos A =13,b =3c ,所以a 2=b 2+c 2-2×3c ×c ×13=b 2-c 2. 所以a 2+c 2=b 2,所以B =π2,所以△ABC 是直角三角形.1.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( C )A .4B .8C .4或8D .无解解析:由3a =3b =12,得a =4,b =43,利用余弦定理可得a 2=b 2+c 2-2bc cos A ,即16=48+c 2-12c ,解得c =4或c =8.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若c 2-a 2-b 22ab >0,则△ABC ( C )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析:由c 2-a 2-b 22ab >0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.3.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =2.解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2.4.在△ABC 中,已知a =7,b =3,c =5,则最大的角是120°. 解析:∵a >c >b ,∴A 为最大角.cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12, 又∵0°<A <180°,∴A =120°.5.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x-6=0的根,求第三边c 的长.解:5x 2+7x -6=0可化为(5x -3)·(x +2)=0.∴x 1=35,x 2=-2(舍去).∴cos C =35.根据余弦定理,c 2=a 2+b 2-2ab cos C=52+32-2×5×3×35=16.∴c =4,即第三边长为4.——本课须掌握的四大方面1.适用范围:余弦定理对任意的三角形都成立.2.结构特征:“平方”、“夹角”、“余弦”.3.揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.4.主要功能:余弦定理的主要功能是实现三角形中边角关系的互化. 莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

课时训练3解三角形的实际应用举例一、测量中的距离问题1.有一长为10 m的斜坡,倾斜角为60°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是()A.5B.5√3C.10√3D.10答案:D解析:如图,在Rt△ABC中,AC=10,∠ACB=60°.∴AB=5√3,BC=5,在Rt△ABD中,∠ADB=30°,∴BD=15.∴CD=BD-BC=10.2.(2015福建宁德五校联考,14)一艘船以15 km/h的速度向东航行,船在A处看到灯塔B在北偏东60°处;行驶4 h后,船到达C处,看到灯塔B在北偏东15°处,这时船与灯塔的距离为km.答案:30√2解析:根据题意画出图形,如图所示,可得B=75°-30°=45°,在△ABC中,根据正弦定理得,ACsinB =BCsin∠BAC,即22=BC12,∴BC=30√2 km,即此时船与灯塔的距离为30√2 km.3.(2015福建厦门高二期末,15)如图,某观测站C在A城的南偏西20°,一条笔直公路AB,其中B在A 城南偏东40°,B与C相距31千米.有一人从B出发沿公路向A城走去,走了20千米后到达D处,此时C,D之间的距离为21千米,则A,C之间的距离是千米.答案:24解析:由已知得CD=21,BC=31,BD=20,在△BCD 中,由余弦定理得cos ∠BDC=212+202-3122×21×20=-17. 设∠ADC=α,则cos α=17,sin α=4√37. 在△ACD 中,由正弦定理,得AC=21sinαsin60°=24.二、测量中的高度与角度问题4.如图,D ,C ,B 三点在地面同一直线上,DC=a ,从C ,D 两点测得A 点的仰角分别是β,α(α<β),则A 点距离地面的高度AB 等于( )A.asinαsinβsin(β-α) B.asinαsinβcos(α-β) C.asinαcosβsin(β-α) D.acosαsinβcos(α-β)答案:A解析:在△ACD 中,∠DAC=β-α,DC=a ,∠ADC=α,由正弦定理得AC=asinαsin(β-α), ∴在Rt △ACB 中,AB=AC sin β=asinαsinβsin(β-α).5.运动会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10√6 m(如图所示),则旗杆的高度为( ) A.10 m B.30 mC.10√3 mD.10√6 m答案:B解析:如图所示,由题意知∠AEC=45°,∠ACE=180°-60°-15°=105°,∴∠EAC=180°-45°-105°=30°,由正弦定理知CE sin ∠EAC=AC sin ∠CEA,∴AC=CE·sin∠CEAsin∠EAC=20√3(m),∴在Rt△ABC中,AB=AC·sin∠ACB=30(m).∴旗杆的高度为30 m.6.当甲船位于A处时获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10 n mile C处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B处救援,则sin θ的值等于()A.√217B.√22C.√32D.5√714答案:D解析:根据题目条件可作图如图:在△ABC中,AB=20,AC=10,∠CAB=120°,由余弦定理有BC2=AB2+AC2-2AB·AC cos∠CAB=202+102-2×20×10cos 120°=700,∴BC=10√7.再由正弦定理得ABsin∠ACB =BCsin∠CAB,∴sin∠ACB=AB·sin∠CAB=20×sin120°10√7=√217.又0°<∠ACB<90°,∴cos∠ACB=2√7,∴sin θ=sin(30°+∠ACB)=sin 30°cos∠ACB+cos 30°sin∠ACB=1×2√7+√3×√21=5√7.7.某海岛周围38 n mile有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30 n mile后测得此岛在东北方向,若不改变航向,则此船触礁的危险(填“有”或“无”).答案:无解析:由题意在△ABC中,AB=30 n mile,∠BAC=30°,∠ABC=135°,∴∠ACB=15°. 由正弦定理,得BC=AB sin ∠ACB·sin ∠BAC=30sin15°·sin 30°=6-24=15(√6+√2).在Rt △BDC 中,CD=√22BC=15(√3+1)>38.∴无触礁的危险.8.如图,在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距40√2海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ(其中sinθ=√2626,0°<θ<90°)且与点A 相距10√13海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由. 解:(1)因为AB=40√2,AC=10√13,∠BAC=θ,sin θ=√26,0°<θ<90°,所以cos θ=√1-(√2626)2=5√2626.由余弦定理得BC=√AB 2+AC 2-2AB ·AC ·cosθ=10√5,所以该船的行驶速度为v=10√523=15√5(海里/小时).(2)设直线AE 与BC 的延长线相交于点Q. 在△ABC 中,由余弦定理得 cos ∠ABC=AB 2+BC 2-AC 22AB ·BC=√2)2√5)2√13)22×402×105=3√1010,所以sin ∠ABC=√1-cos 2∠ABC =√1-910=√1010. 在△ABQ 中,由正弦定理得AQ=ABsin∠ABCsin(45°-∠ABC)=40√2×√101022×21010=40.因为AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×√55=3√5<7.故该船会进入警戒水域.(建议用时:30分钟)1.如图,已知两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B 在观察站C的南偏东60°,则灯塔A在灯塔B的()的位置.A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°答案:B解析:由图可知,∠ACB=180°-(40°+60°)=80°.又∵AC=BC,∴∠A=∠CBA=12(180°-80°)=50°.∵CE∥BD,∴∠CBD=∠BCE=60°,∴∠ABD=60°-50°=10°.∴灯塔A在灯塔B的北偏西10°的位置.2.如图所示,为测一树的高度,在地面上选取A,B两点(点A,B与树根部在同一直线上),从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60 m,则树的高度为()A.(30+30√3) mB.(30+15√3) mC.(15+30√3) mD.(15+3√3) m答案:A解析:设树高为h,则由题意得√3h-h=60,∴h=√3-1=30(√3+1)=(30√3+30)(m).3.一艘客船上午9:30在A处,测得灯塔S在它的北偏东30°,之后它以32 n mile/h的速度继续沿正北方向匀速航行,上午10:00到达B处,此时测得船与灯塔S相距8√2 n mile,则灯塔S在B处的()A.北偏东75°B.东偏南75°C.北偏东75°或东偏南75°D.以上方位都不对答案:C解析:根据题意画出示意图,如图,由题意可知AB=32×12=16,BS=8√2,∠A=30°.在△ABS中,由正弦定理得ABsinS =BSsinA,sin S=ABsinABS=16sin30°8√2=√22,∴S=45°或135°,∴B=105°或15°,即灯塔S在B处的北偏东75°或东偏南75°.4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行3 h后,又测得灯塔在货轮的东北方向,则货轮的速度为()A.103(√6+√2) n mile/hB.103(√6−√2) n mile/hC.103(√6+√3) n mile/hD.103(√6−√3) n mile/h答案:B解析:如图,设货轮的时速为v,则在△AMS中,∠AMS=45°,∠SAM=105°,∠ASM=30°,SM=20,AM=3v.由正弦定理得3vsin30°=20sin105°,即v=206sin105°=103(√6−√2)(n mile/h).5.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离d2之间的关系为()A.d1>d2B.d1=d2C.d1<d2D.不能确定大小答案:C解析:如图,B,C,D分别是第一、二、三辆车所在的位置,由题意可知α=β.在△PBC中,d1sinα=PBsin∠PCB,在△PCD中,d2sinβ=PDsin∠PCD,∵sin α=sin β,sin∠PCB=sin∠PCD,∴d1d2=PBPD.∵PB<PD,∴d1<d2.6.如图,某人于地面上C处观察一架迎面飞来的飞机在A处的仰角为30°,过1 min后到B再测得仰角为45°,如果该飞机以450 km/h的速度沿水平方向飞行,则飞机的高度为 km.答案:15(√3+1)4解析:如图,∠DCA=60°,∠DCB=45°,设飞机高为h,则BD=h,AD=√3h.又AB=450×160=7.5,由AD-BD=AB得√3h-h=7.5.∴h=√3-1=15(√3+1)4.7.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min后到点B处望见灯塔在船的北偏东75°方向上,则船在点B时与灯塔S的距离是 km.答案:3√2解析:如图,由条件知,AB=24×1560=6(km).在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°.由正弦定理,得BSsin30°=ABsin45°,∴BS=6sin30°sin45°=3√2.8.海上一观测站测得方位角为240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为90 n mile/h.此时海盗船距观测站10√7 n mile,20 min后测得海盗船距观测站20 n mile,再过min,海盗船到达商船.答案:403解析:如图,设开始时观测站、商船、海盗船分别位于A,B,C处,20 min后,海盗船到达D处,在△ADC 中,AC=10√7,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC22AD·CD =400+900-7002×20×30=12.∴∠ADC=60°,在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,∴BD=AD=20,2090×60=403(min).9.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°方向,距离为12√6 km,在A 处看灯塔C 在货轮的北偏西30°方向,距离为8√3 km,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解:(1)在△ABD 中,∠ADB=60°,∠B=45°,由正弦定理得AD=AB ·sinB sin ∠ADB=12√6×√2232=24(km).∴A 处与D 处的距离为24 km .(2)在△ACD 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°,解得CD=8√3(km).∴灯塔C 与D 处的距离为8√3 km .。

高二数学人教A必修5 模块综合检测 Word版含解析

高二数学人教A必修5 模块综合检测 Word版含解析

模块综合检测(时间:120分钟满分:150分)知识点分布表一、选择题(本大题共12小题,每小题5分,共60分)1.(2015江西吉安联考,1)若a,b,c∈R,a>b,则下列不等式成立的是()A. B.C.a2>b2D.a|c|>b|c|答案:B解析:A.∵当1>-2时,1<-不成立,∴不成立.B.∵c2+1≥1,a>b,∴,故B正确.C.∵当1>-2时,1>4不成立,∴a2>b2不成立.D.当c=0时,0=a|c|>b|c|=0,不成立.故选B.2.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为()A. B.3 C. D.7答案:A解析:S=×AB·AC sin 60°=×2×AC=,所以AC=1.所以BC2=AB2+AC2-2AB·AC cos 60°=3.所以BC=,故选A.3.若5,x,y,z,21成等差数列,则x+y+z的值为()A.26B.29C.39D.52答案:C解析:因为5,x,y,z,21构成等差数列,所以y是x,z的等差中项,也是5,21的等差中项,所以x+z=2y,5+21=2y,所以y=13,x+z=26,所以x+y+z=39.4.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知b cos C+c cos B=2b,则等于()A.1B.C.2D.答案:C解析:利用正弦定理,将b cos C+c cos B=2b化为sin B cos C+sin C cos B=2sin B, 即sin(B+C)=2sin B.∵sin(B+C)=sin A,∴sin A=2sin B.利用正弦定理可得a=2b,故=2.5.已知数列{a n}满足3a n+1+a n=0,a2=-,则{a n}的前10项和等于()A.-6(1-3-10)B.(1-3-10)C.3(1-3-10)D.3(1+3-10)答案:C解析:由3a n+1+a n=0,得=-.所以{a n}是以q=-为公比的等比数列.所以a1=a2·=-×(-3)=4.所以S10=--=3(1-3-10),故选C.6.(2015河北邯郸三校联考,6)设变量x,y满足约束条件--则目标函数z=3x-y的最大值为() A.-4 B.0 C. D.4答案:D解析:画出不等式组表示的平面区域,将目标函数变形为y=3x-z,作出目标函数对应的直线,当直线过(2,2)时,直线在y轴上的截距最小,z最大,最大值为6-2=4.故选D.7.已知等差数列{a n}满足,a1>0,5a8=8a13,则前n项和S n取最大值时,n的值为()A.20B.21C.22D.23答案:B解析:由5a8=8a13得5(a1+7d)=8(a1+12d)⇒d=-a1,由a n=a1+(n-1)d=a1+(n-1)-≥0⇒n≤=21,所以数列{a n}前21项都是正数,以后各项都是负数,故S n取最大值时,n的值为21,选B.8.(2015福建宁德五校联考,8)已知正实数a,b满足=1,x=a+b,则实数x的取值范围是()A.[6,+∞)B.(2,+∞)C.[4,+∞)D.[3+2,+∞)答案:D解析:∵=1,∴x=a+b=(a+b)=2+1+≥3+2当且仅当即时等号成立.故选D.9.(2015河南南阳高二期中,7)在△ABC中,若tan A tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定答案:A解析:因为A和B都为三角形中的内角,由tan A tan B>1,得到1-tan A tan B<0,且得到tan A>0,tan B>0,即A,B为锐角,所以tan(A+B)=<0,-则A+B∈,即C为锐角,所以△ABC是锐角三角形.10.(2015山东潍坊四县联考,10)已知数列{a n}中,a1=2,na n+1=(n+1)a n+2,n∈N*,则a11=()A.36B.38C.40D.42答案:D解析:因为na n+1=(n+1)a n+2,n∈N*,所以在等式的两边同时除以n(n+1),得=2-.所以+2---.所以a11=42.故选D.11.(2015陕西高考,10)设f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q答案:C解析:∵f(x)=ln x,∴p=f()=ln(ln a+ln b)=r.又∵0<a<b,∴.又∵y=ln x为递增函数,∴ln>ln,即q>r,综上p=r<q.12.(2015河南南阳高二期中,6)对于数列{a n},定义数列{a n+1-a n}为数列a n的“差数列”,若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=()A.3n-1B.3n+1+2C.-D.-答案:C解析:∵a1=1,a n+1-a n=3n,∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=3n-1+3n-2+…+31+1=---.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.(2015广东湛江高二期末,14)若x>4,函数y=x+-,当x=时,函数有最小值为.答案:5 6解析:∵x>4,∴x-4>0.∴y=x+-=x-4+-+4≥2--+4=6.当且仅当x-4=-即x=5时等号成立.14.(2015山东潍坊四县联考,12)等差数列{a n},{b n}的前n项和分别为S n,T n,且-,则=.答案:解析:-.15.设数列{a n}满足:a1=1,a2=4,a3=9,a n=a n-1+a n-2-a n-3(n=4,5,),则a2 015=.答案:8 057解析:由a n=a n-1+a n-2-a n-3,得a n+1=a n+a n-1-a n-2,两式作和得:a n+1=2a n-1-a n-3,即a n+1+a n-3=2a n-1(n=4,5,…).∴数列{a n}的奇数项和偶数项均构成等差数列.∵a1=1,a3=9,∴奇数项构成的等差数列的公差为8.则a2 015=a1+8(1 008-1)=1+8×1 007=8 057.故答案为8 057.16.(2015福建宁德五校联考,16)在△ABC中,内角A,B,C的对边分别为a,b,c,有下列结论:①若A>B,则sin A>sin B;②若c2<a2+b2,则△ABC为锐角三角形;③若a,b,c成等差数列,则sin A+sin C=2sin(A+C);④若a,b,c成等比数列,则cos B的最小值为.其中结论正确的是.(填上全部正确结论的序号)答案:①③④解析:对于①,若A>B,则a>b,由正弦定理得sin A>sin B,命题①正确;对于②,若c2<a2+b2,则cos C=->0,说明C为锐角,但A,B不一定为锐角,△ABC不一定是锐角三角形,命题②错误;对于③,若a,b,c成等差数列,则a+c=2b,结合正弦定理得:sin A+sin C=2sin B,即sin A+sinC=2sin(A+C),命题③正确;对于④,若a,b,c成等比数列,则b2=ac,则cos B=--,命题④正确.三、解答题(17~20小题及22小题每小题12分,21小题10分,共70分)17.(2015福建厦门高二期末,17)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=4,cos B=.(1)若b=3,求sin A的值;(2)若△ABC的面积为12,求b的值.解:(1)∵cos B=,0<B<π,∴sin B=-.由正弦定理可得:.又a=4,b=3,∴sin A=.(2)由面积公式,得S△ABC=ac sin B,∴ac×=12,可解得c=10.由余弦定理,b2=a2+c2-2ac cos B=52,解得b=2.18.(2015河北邯郸三校联考,18)数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.解:(1)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意,舍去,故c=2.(2)当n≥2时,由于a2-a1=c,a3-a2=2c,…,a n-a n-1=(n-1)c,所以a n-a1=[1+2+…+(n-1)]c=- c.又a1=2,c=2,故a n=2+n(n-1)=n2-n+2(n=2,3,…).当n=1时,上式也成立.所以a n=n2-n+2(n=1,2,…).19.(2015河南南阳高二期中,19)△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC的面积为.(1)求证:a,2,c成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.(1)证明:∵A,B,C成等差数列,∴B=60°.又△ABC的面积为,∴ac sin 60°=,即ac=4.∵ac=22,∴a,2,c成等比数列.(2)解:在△ABC中,根据余弦定理,得b2=a2+c2-2ac cos 60°=a2+c2-ac≥2ac-ac=ac=4,∴b≥2,当且仅当a=c时,等号成立.∴△ABC的周长L=a+b+c≥2+b=4+b,当且仅当a=c时,等号成立.∴L≥4+2=6,当且仅当a=c时,等号成立.∴△ABC周长的最小值为6.∵a=c,B=60°,∴此时△ABC为等边三角形.20.(2015福建宁德五校联考,22)已知f(x)=x2-abx+2a2.(1)当b=3时,①若不等式f(x)≤0的解集为[1,2],求实数a的值;②求不等式f(x)<0的解集.(2)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.解:(1)当b=3时,f(x)=x2-abx+2a2=x2-3ax+2a2,①∵不等式f(x)≤0的解集为[1,2],∴1,2是方程x2-3ax+2a2=0的两根.∴解得a=1.②∵x2-3ax+2a2<0,∴(x-a)(x-2a)<0.∴当a>0时,此不等式的解集为(a,2a),当a=0时,此不等式的解集为空集,当a<0时,此不等式的解集为(2a,a).(2)由题意f(2)=4-2ab+2a2>0在a∈[1,2]上恒成立,即b<a+在a∈[1,2]上恒成立.又a+≥2=2,当且仅当a=,即a=时上式等号成立.∴b<2,实数b的取值范围是(-∞,2).21.(2015河南郑州高二期末,20)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某市的一条道路在一个限速为40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12 m,乙车刹车距离略超过10 m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x+0.01x2=12,即x2+10x-1 200=0,解得x=30或x=-40(x=-40不符合实际意义,舍去).这表明甲车的车速为30 km/h.甲车车速不会超过限速40 km/h.对于乙车,有0.05x+0.005x2>10,即x2+10x-2 000>0,解得x>40或x<-50(x<-50不符合实际意义,舍去).这表明乙车的车速超过40 km/h,超过规定限速.22.(2015河南南阳高二期中,22)已知数列{a n}中,a1=1,a1+2a2+3a3++na n=a n+1(n∈N*).(1)求数列{a n}的通项a n;(2)求数列{n2a n}的前n项和T n;(3)若存在n∈N*,使得a n≥(n+1)λ成立,求实数λ的取值范围.解:(1)因为a1+2a2+3a3+…+na n=a n+1(n∈N*),所以a1+2a2+3a3+…+(n-1)a n-1=a n(n≥2).两式相减得na n=a n+1-a n,所以=3(n≥2).因此数列{na n}从第二项起,是以2为首项,以3为公比的等比数列, 所以na n=2·3n-2(n≥2).故a n=-(2)由(1)可知当n≥2时,n2a n=2n·3n-2,当n≥2时,T n=1+4·30+6·31+…+2n·3n-2,∴3T n=3+4·31+…+2(n-1)·3n-2+2n·3n-1.两式相减得T n=-·3n-1(n≥2).又∵T1=a1=1也满足上式,∴T n=-·3n-1.(3)a n≥(n+1)λ等价于λ≤,由(1)可知当n≥2时,-,设f(n)=-(n≥2,n∈N*),则f(n+1)-f(n)=---<0,∴.又及,∴所求实数λ的取值范围为λ≤.。

高中数学人教A版必修5学案1.2应用举例 Word版含答案

高中数学人教A版必修5学案1.2应用举例 Word版含答案
....
【答案】
. 中,角,,所对的边分别为 . 已知 .
()求的值;
()求 的面积.
【答案】() ; ()
【解析】解:(Ⅰ)由题意知: ,

由正弦定理得:
(Ⅱ)由余弦定理得:
又因为为钝角,所以,即,
所以
第一章解三角形(人教版新课标)
第节应用举例
【思维导图】【微试题】源自.钝角三角形的面积是,=,=,则=()
.. .
【答案】
.一船自西向东航行,上午时到达灯塔的南偏西°、距塔海里的处,下午时到达这座灯塔的东南方向的处,
则这只船航行的速度为()
海里时.海里时海里时.海里时
【答案】
.在地面上一点测得一电视塔尖的仰角为°,再向塔底方向前进,又测得塔尖的仰角为°,则此电视塔高约为().

人教A版高中数学必修五第一部分第一章1.11.1.2应用创新演练.docx

人教A版高中数学必修五第一部分第一章1.11.1.2应用创新演练.docx

1.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( )A .4B .8C .4或8D .无解解析:由3a =3b =12,得a =4,b =43,利用余弦定理可得a 2=b 2+c 2-2bc cos A ,即16=48+c 2-12c ,解得c =4或c =8.答案:C2.(2012·宁阳高二检测)在△ABC 中,b cos A =a cos B ,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .锐角三角形解析:因为b cos A =a cos B ,所以b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac. 所以b 2+c 2-a 2=a 2+c 2-b 2.所以a 2=b 2.所以a =b .故此三角形是等腰三角形.答案:B3.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2D.2π3解析:p ∥q ⇒(a +c )(c -a )-b (b -a )=0,即c 2-a 2-b 2+ab =0⇒a 2+b 2-c 22ab =12=cos C ,∴C =π3. 答案:B4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 解析:∵(a 2+c 2-b 2)tan B =3ac ,∴a 2+c 2-b 22ac tan B =32, 即cos B tan B =32,sin B =32,B =π3或2π3. 答案:D5.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,则第三边c 的长为________.解析:5x 2+7x -6=0可化为(5x -3)(x +2)=0.∴x 1=35,x 2=-2(舍去). ∴cos C =35. 根据余弦定理,c 2=a 2+b 2-2ab cos C=52+32-2×5×3×35=16. ∴c =4,即第三边长为4.答案:46.(2012·开封高二检测)在△ABC 中,sin A ∶sin B ∶sin C =21∶4∶5,则角A =________.解析:由sin A ∶sin B ∶sin C =21∶4∶5可设a =21k ,b =4k ,c =5k ,∴cos A =16k 2+25k 2-21k 22×4k ×5k =12,∴A =60°. 答案:60°7.在△ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,且cos A =14.若a =4,b +c =6,且b <c ,求b 、c 的值.解:由余弦定理a 2=b 2+c 2-2bc cos A ,即a 2=(b +c )2-2bc -2bc cos A ,∴16=36-52bc .∴bc =8. 由⎩⎪⎨⎪⎧ b +c =6,bc =8,b <c 可求得⎩⎪⎨⎪⎧b =2,c =4. 8.(2012·广州高二检测)a ,b ,c 分别是△ABC 中角A 、B 、C 的对边,且(sin B +sin C+sin A )(sin B +sin C -sin A )=185sin B sin C ,边b 和c 是关于x 的方程x 2-9x +25cos A =0的两根(b >c ).(1)求角A 的正弦值;(2)求边a ,b ,c ;(3)判断△ABC 的形状.解:(1)∵(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B sin C , 结合正弦定理得(b +c +a )(b +c -a )=185bc , 整理得b 2+c 2-a 2=85bc , 由余弦定理得cos A =b 2+c 2-a 22bc =45, ∴sin A =35. (2)由(1)知方程x 2-9x +25cos A =0可化为x 2-9x +20=0,解之得x =5或x =4,∵b >c ,∴b =5,c =4.由余弦定理知a 2=b 2+c 2-2bc cos A ,∴a =3.(3)∵a 2+c 2=b 2,∴△ABC 为直角三角形.。

高二数学人教A必修5练习:第一章 解三角形 Word版含解析.docx

高二数学人教A必修5练习:第一章 解三角形 Word版含解析.docx

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1B .23+1 C .26D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin45°=b sin60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135°B .60° C .45°D .135° 答案 C解析 由a sin A =b sin B 得sin B =b sin A a =2sin60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3. 又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin150°1010=102.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得 3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A 即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43; 当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin2B sin B=2cos B ∈(2,3),故ab的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形B .锐角三角形 C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C . 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B⇔sin2A =sin2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45°B .60°C .75°D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A =sin120°cos A -cos120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S . 解 cos B =2cos 2B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A.3B .3 C.5D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3B.π6 C.π4D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6.3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1B.2C .2D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a =a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14B.34C.24D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b2c,∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45°. 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3. 三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形B .直角三角形 C .等腰三角形D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形B .直角三角形 C .等腰直角三角形D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( ) A .a >b B .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin (A -B )sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB=53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C . 解(1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC =|BA |·|BC |·cosB=accosB=21. ∴ac=35,∵cosB=53,∴sinB=54. ∴S △ABC=21acsinB=21×35×54=14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B=sin B sin 2B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理 由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解.三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有一解时只有一解.两边和其中一边的对角如(a,b,A)余弦定理正弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P在点Q的北偏西45°10′方向上,则点Q在点P的()A.南偏西45°10′B.南偏西44°50′C.南偏东45°10′D.南偏东44°50′答案 C2.已知两灯塔A和B与海洋观测站C的距离都等于a km,灯塔A在观测站C的北偏东20°方向上,灯塔B在观测站C的南偏东40°方向上,则灯塔A与灯塔B的距离为() A.a km B.3a kmC.2a km D.2a km答案 B解析∠ACB=120°,AC=BC=a,∴由余弦定理得AB=3a.3.海上有A、B两个小岛相距10nmile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是()A.103nmileB.1063nmileC.52nmileD.56nmile答案 D解析在△ABC中,∠C=180°-60°-75°=45°.由正弦定理得:BCsin A=ABsin B∴BCsin60°=10sin45°解得BC=5 6.4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为()A.502mB.503mC.252mD.2522m答案 A解析由题意知∠ABC=30°,由正弦定理ACsin∠ABC=ABsin∠ACB,∴AB=AC·sin∠ACBsin∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N处,又测得灯塔在货轮的东北方向,则货轮的速度为()A.20(6+2) 海里/小时B.20(6-2) 海里/小时C.20(6+3) 海里/小时D.20(6-3) 海里/小时答案 B解析由题意,∠SMN=45°,∠SNM=105°,∠NSM=30°.由正弦定理得MNsin30°=MSsin105°.∴MN=MS sin30°sin105°=106+24=10(6-2).则v货=20(6-2) 海里/小时.6.甲船在岛B的正南A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507分钟B.157小时 C .21.5分钟D .2.15分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎫x -5142-257+100 ∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120m ,则河的宽度为______.答案 60m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin90°=CD sin30°, ∴CD =60(m)∴河的宽度为60m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin60°·sin15°=6-223(km).设C 到直线AB 的距离为d ,则d =BC ·sin75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为126nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为83nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(nmile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos30°, 解得CD =83≈14(nmile).即A 处与D 处的距离为24nmile , 灯塔C 与D 处的距离约为14nmile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB=∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin30°=CDsin45°,则BC =CD sin30°sin45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>βB .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .203m ,4033mB .103m,203mC .10(3-2) m,203m D.1523m ,2033m 答案 A解析 h 甲=20tan60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60m ,则树的高度为( )A .30+303mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米B.2h 米 C.3h 米D .22h 米答案 A解析 如图所示, BC =3h ,AC =h , ∴AB =3h 2+h 2=2h . 5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600m 后测仰角为原来的2倍,继续在平行地面上前进2003m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200mB .300mC .400mD .1003m 答案 B解析 如图所示,600·sin2θ=2003·sin4θ,∴cos2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16B .17.5C .18D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB =ACsin B ,∴1sin ∠CAB =3sin120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos120°=a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10nmile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9nmile 的速度向一小岛靠近,舰艇时速21nmile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β). 即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50m ,BC =120m ,于A 处测得水深AD =80m ,于B 处测得水深BE =200m ,于C 处测得水深CF =110m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD=30°,∠ADB=30°,∠ACB=45°∵AB=30,∴BC=30,BD=30tan30°=30 3.在△BCD中,CD2=BC2+BD2-2BC·BD·cos30°=900,∴CD=30,即两船相距30m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章解三角形复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135°B .135° C .45°D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形B .直角三角形 C .钝角三角形D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =h sin α, 在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25B .51C .493D .49 答案 D解析 S △ABC =12AC ·AB ·sin60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos60°=552+162-2×16×55×12=2401.∴BC =49. 6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30°B .60° C .120°D .150°答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b 2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3cm,5cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos60° =13.∴a sin A =13sin60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2解析 如图所示,BC sin45°=ACsin30°∴BC =AC sin30°×sin45°=2012×22。

高二数学人教A版必修五优化练习:第一章章末优化总结Word版含解析

高二数学人教A版必修五优化练习:第一章章末优化总结Word版含解析

章末检测(一) 解三角形时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于钝角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC 中,sin A ∶sin B ∶sin C =a ∶b ∶c .其中正确的个数是( )A .1B .2C .3D .4解析:正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比就确定了,故③正确;由比例性质和正弦定理可推知④正确.故选B.答案:B2.在△ABC 中,A =60°,b =6,c =10,则△ABC 的面积为( )A .15 6B .153C .15D .30答案:B3.△ABC 为钝角三角形,a =3,b =4,c =x ,C 为钝角,则x 的取值范围是( )A .x <5B .5<x <7C .1<x <5D .1<x <7 解析:由已知条件可知x <3+4且32+42<x 2,∴5<x <7.答案:B4.在△ABC 中,已知AC =2,BC =3,cos A =-45.则sin B 的值为( ) A .1B.35C.12D.25 解析:在△ABC 中,sin A =1-cos 2A =1-⎝⎛⎭⎫-452=35. ∵BC sin A =AC sin B,∴sin B =AC BC ·sin A =23×35=25. 答案:D5.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3B .3 C. 5D .5解析:c 2=a 2+b 2-2ab cos C ,∴c = 3.答案:A6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23 解析:b 2=ac ,c =2a ,∴b 2=2a 2,b =2a .∴cos B =a 2+c 2-b 22ac =34. 答案:B7.在△ABC 中,根据下列条件解三角形,其中有两解的是( )A .b =10,∠A =45°,∠C =70°B .a =30,b =25,∠A =150°C .a =7,b =8,∠A =98°D .a =14,b =16,∠A =45°解析:A 中已知两角与一边,有唯一解;B 中,a >b ,且∠A =150°,也有唯一解;C 中b >a ,且∠A =98°为钝角,故解不存在;D 中由于b ·sin 45°<a <b ,故有两解.答案:D8.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么角A ,B ,C 的大小关系为( )A .A >B >CB .B >A >C C .C >B >AD .C >A >B解析:由正弦定理得a sin 30°=b sin B ,∴sin B =32,又∵B 为锐角,∴B =60°,∴C =90°,即C >B >A .答案:C9.有一长为1 km 的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1 kmB .2sin 10° kmC .2cos 10° kmD .cos 20° km解析:如图所示,∠ABC =20°,AB =1 km ,∠ADC =10°,∴∠ABD =160°.在△ABD 中,由正弦定理AD sin 160°=AB sin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°(km). 答案:C 10.在△ABC 中,a 、b 、c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形解析:因为a =2b cos C ,所以由余弦定理得:a =2b ·a 2+b 2-c 22ab,整理得b 2=c 2,则此三角形一定是等腰三角形.答案:C11.在△ABC 中,三内角A ,B ,C 分别对应三边a ,b ,c ,tan C =43,c =8,则△ABC 外接圆的半径R 为( )A .10B .8C .6D .5解析:由tan C =43>0且C ∈(0,π),得C ∈⎝⎛⎭⎫0,π2.由同角三角函数的基本关系式,得cos C =11+tan 2C =35,sin C =cos C tan C =45,由正弦定理,有2R =c sin C =845=10,故外接圆半径为5,故选D.答案:D12.设锐角△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2)解析:由a sin A =b sin B =b sin 2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3.又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.答案:A二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.在等腰△ABC 中,已知sin A ∶sin B =1∶2,底边BC =10,则△ABC 的周长是________. 解析:由正弦定理得BC ∶AC =sin A ∶sin B =1∶2.又∵BC =10,∴AC =20,∴AB =AC =20.∴△ABC 的周长是10+20+20=50.答案:5014.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C=________. 解析:由余弦定理,得a 2=b 2+c 2-2bc cos A ,即49=b 2+25+5b ,解得b =3或b =-8(舍去),所以sin B sin C =b c =35. 答案:3515.在△ABC 中,若S △ABC =123,ac =48,c -a =2,则b =________.解析:由S △ABC =12ac sin B 得sin B =32,∴B =60°或120°.由余弦定理得,b 2=a 2+c 2-2ac cos B =(a -c )2+2ac -2ac cos B =22+2×48-2×48cos B ,∴b 2=52或148,即b =213或237. 答案:213或23716.△ABC 的三内角A ,B ,C 所对边分别是a ,b ,c ,设向量m =(a +b ,sin C ),n =(3a +c ,sin B -sin A ),若m ∥n ,则角B 的大小为________.解析:由m ∥n ,∴(a +b )(sin B -sin A )-sin C (3a +c )=0,由正弦定理有(a +b ) (b -a )=c (3a +c ),即a 2+c 2-b 2=-3ac ,再由余弦定理得cos B =-32,∵B ∈(0°,180°),∴B =150°.答案:150°三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =4,b =5,c =61.(1)求C 的大小;(2)求△ABC 的面积.解析:(1)依题意,由余弦定理得cos C =42+52-(61)22×4×5=-12. ∵0°<C <180°,∴C =120°.(2)S △ABC =12ab sin C =12×4×5×sin 120°=12×4×5×32=5 3. 18.(12分)在△ABC 中,已知(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. 解析:由题意可知a 2[sin(A +B )-sin(A -B )]=b 2[sin(A -B )+sin(A +B )],即a 2·2sin B cos A =b 2·2sin A cosB.∵sin A sin B ≠0,∴2sin A cos A =2sin B cos B ,即sin 2A =sin 2B ,∴A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.19.(12分)在△ABC 中,a ,b , c 分别为角A ,B ,C 的对边,a 2-(b -c )2=bc ,(1)求角A ;(2)若b sin B =c =2,求b 的值. 解析:(1)由a 2 -(b -c )2=bc 得:a 2-b 2-c 2=-bc ,∴cos A =b 2+c 2-a 22bc =12, 又0<A <π,∴A =π3. (2)b sin B =c sin C ,∴sin C =1.∴C =π2, ∴B =π6.∵b sin B=c =2, ∴b =2sin B =2sin π6=1. 20.(12分)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B .解析:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c. 由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°. 21.(13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14. (1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解析:(1)因为cos 2C =1-2sin 2C =-14,及0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =c sin C,得c =4. 由cos 2C =2cos 2C -1=-14,及0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C .得b 2±6b -12=0,解得b =6或26,所以{ b =6,c =4.或{ b =26,c =4.22.(13分)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ⎝⎛⎭⎫其中sin θ=2626,0°<θ<90°且与点A 相距1013海里的位置C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.解析:(1)如图所示,AB =402,AC =1013,∠BAC =θ,sin θ=2626. 由于0°<θ<90°,所以cos θ=1-⎝⎛⎭⎫26262=52626. 由余弦定理得BC =AB 2+AC 2-2AB ·AC ·cos θ=10 5.所以船的行驶速度为1054060=10523=155(海里/小时).(2)如图所示,以A 为原点建立平面直角坐标系,设点B 、C 的坐标分别是B (x 1,y 1)、C (x 2,y 2),BC 与x 轴的交点为D ,由题设有,x 1=y 1=22AB =40, x 2=AC cos ∠CAD=1013cos(45°-θ)=30,y 2=AC sin ∠CAD =1013sin(45°-θ)=20. 所以过点B 、C 的直线l 的斜率k =2010=2,直线l 的方程为y =2x -40.又点E (0,-55)到直线l 的距离d =|0+55-40|1+4=35<7,所以船会进入警戒水域.。

人教A版高中数学必修五第一部分第一章1.11.1.1应用创新演练.docx

人教A版高中数学必修五第一部分第一章1.11.1.1应用创新演练.docx

1.(2012·浏阳高二检测)在△ABC中,若sin A>sin B,则A与B的大小关系为() A.A>B B.A<BC.A≥B D.A、B的大小关系不确定解析:∵sin A>sin B,∴2R sin A>2R sin B,即a>b,故A>B.答案:A2.在△ABC中,A=60°,a=43,b=42,则B等于()A.45°或135°B.135°C.45°D.以上答案都不对解析:由asin A=bsin B,得sin B=b·sin Aa=42×sin 60°43=22.∵a>b,∴A>B,而A=60°,∴B为锐角,∴B=45°.答案:C3.(2011·辽宁高考)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos 2A=2a,则ba=()A.2 3 B.2 2C. 3D. 2解析:由正弦定理,得sin 2A sin B+sin B cos 2A=2sin A,即sin B·(sin 2A+cos2A)=2sin A.所以sin B=2sin A.∴ba=sin Bsin A= 2.答案:D4.在△ABC中,由已知条件解三角形,其中有两解的是()A .b =20,A =45°,C =80°B .a =30,c =28,B =60°C .a =14,b =16,A =45°D .a =12,c =15,A =120°解析:由a =14,b =16,A =45°,知sin B =427. 又∵a <b ,A =45°. ∴B 有两解.答案:C5.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =________.解析:由正弦定理,得sin C =AB ·sin A BC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C )=sin 60°·cos C -cos 60°·sin C =3314. 答案:33146.(2012·烟台高二检测)在△ABC 中,最大边长是最小边长的2倍,且2AB ·AC =|AB |·|AC |,则此三角形的形状是________.解析:∵2AB ·AC =|AB |·|AC |, ∴cos A =12.∴A =π3. ∴a 边不是最大边也不是最小边,不妨设b <c ,则2b =c ,由正弦定理知2sin B =sin C ,∴2sin B =sin(2π3-B ). ∴2sin B =32cos B +12sin B . ∴tan B =33.∴B =π6,C =π2. ∴此三角形为直角三角形.答案:直角三角形7.在△ABC 中,B =45°,AC =10,cos C =255,求BC 的长. 解:由cos C =255得sin C =55, sin A =sin(180°-45°-C )=22(cos C +sin C )=31010, 由正弦定理,得BC =AC sin A sin B =10×3101022=3 2. 8.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且b =6,a =23,A =30°,试求ac 的值.解:由正弦定理a sin A =b sin B,得 sin B =b sin A a =6sin 30°23=32. 由条件b =6,a =23,b >a 知B >A .∴B =60°或120°.(1)当B =60°时,C =180°-A -B=180°-30°-60°=90°.在Rt △ABC 中,C =90°,a =23,b =6,c =43,∴ac =23×43=24.(2)当B =120°时,C =180°-A -B =180°-30°-120°=30°,∴A =C ,则有a =c =2 3.∴ac =23×23=12.。

人教新课标版数学高二-人教A必修5学案 第一章 解三角形 章末复习提升

人教新课标版数学高二-人教A必修5学案 第一章 解三角形 章末复习提升

1.三角形解的个数的确定已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角”,此时一般用正弦定理,但也可用余弦定理.(1)利用正弦定理讨论:若已知a 、b 、A ,由正弦定理a sin A =b sin B ,得sin B =b sin Aa .若sin B >1,无解;若sin B =1,一解;若sin B <1,两解.(2)利用余弦定理讨论:已知a 、b 、A .由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0,这是关于c 的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形一解;若方程有两不同正数解,则三角形有两解. 2.三角形形状的判定方法判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角恒等式所体现的角之间的关系.如:sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如:sin A =a2R (R 为△ABC 外接圆半径),cos A =b 2+c 2-a 22bc 等,通过代数恒等变换求出三条边之间的关系进行判断. 3.解三角形应用题的基本思路解三角形应用题的关键是将实际问题转化为解三角形问题来解决.其基本解题思路是:首先分析此题属于哪种类型的问题(如:测量距离、高度、角度等),然后依题意画出示意图,把已知量和未知量标在示意图中(目的是发现已知量与未知量之间的关系),最后确定用哪个定理转化,哪个定理求解,并进行作答.解题时还要注意近似计算的要求.题型一 利用正、余弦定理解三角形 解三角形的一般方法:(1)已知两角和一边,如已知A 、B 和c ,由A +B +C =π求C ,由正弦定理求a 、b . (2)已知两边和这两边的夹角,如已知a 、b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a 、b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况. (4)已知三边a 、b 、c ,可应用余弦定理求A 、B 、C .例1 在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =12+3,求A 和tan B 的值.解 由余弦定理cos A =b 2+c 2-a 22bc =12,A ∈(0°,180°).因此A =60°.在△ABC 中,C =180°-A -B =120°-B .由已知条件,应用正弦定理12+3=c b =sin C sin B =sin (120°-B )sin B =sin 120°cos B -cos 120°sin Bsin B =32tan B +12,从而tan B =12.跟踪演练1 如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,求AD 的长度.解 在△ABC 中,∵AB =AC =2,BC =23,由余弦定理,得cos C =a 2+b 2-c 22ab =32,∴sinC =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC ,∴AD =222×12= 2.题型二 与解三角形有关的综合问题该类问题以三角形为载体,在已知条件中设计了三角形的一些边角关系,由于正弦定理和余弦定理都是关于三角形的边角关系的等式,通过定理的运用能够实现边角互化,在边角互化时,经常用到三角函数中两角和与差的公式及倍角公式等.例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -b )cos C =c ·cos B ,△ABC 的面积S =103,c =7. (1)求角C ;(2)求a ,b 的值. 解 (1)∵(2a -b )cos C =c cos B , ∴(2sin A -sin B )cos C =sin C cos B , 2sin A cos C -sin B cos C =cos B sin C , 即2sin A cos C =sin(B +C ),∴2sin A cos C =sin A .∵A ∈(0,π),∴sin A ≠0, ∴cos C =12,∴C =π3.(2)由S =12ab sin C =103,C =π3,得ab =40.①由余弦定理得:c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos π3),∴72=(a +b )2-2×40×⎝⎛⎭⎫1+12.∴a +b =13.② 由①②得a =8,b =5或a =5,b =8.跟踪演练2 在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,若a =2,C =π4,cosB 2=255, 求△ABC 的面积S .解 因为cos B =2cos 2B 2 -1=35,所以sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =sin 3π4cos B -cos 3π4sin B =7210.由正弦定理,得c =a sin C sin A =107,所以S =12ac sin B =12×2×107×45=87.题型三 正、余弦定理在实际中的应用 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解; (4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案. 例3 如图,a 是海面上一条南北方向的海防警戒线,在a 上点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20 km 和54 km 处.某时刻,监测点B 收到发自静止目标P 的一个声波信号,8 s 后监测点A,20 s 后监测点C 相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A 到P 的距离为x km ,用x 表示B ,C 到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线a 的距离(精确到0.01 km).解 (1)由题意得P A -PB =1.5×8=12(km),PC -PB =1.5×20=30(km). ∴PB =(x -12)(km),PC =(18+x )(km).在△P AB 中,AB =20 km ,cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-(x -12)22x ·20=3x +325x .同理cos ∠P AC =72-x3x .∵cos ∠P AB =cos ∠P AC ,∴3x +325x =72-x 3x ,解得x =1327(km). (2)作PD ⊥a 于D ,在Rt △PDA 中 ,PD =P A cos ∠APD =P A cos ∠P AB =x ·3x +325x =3×1327+325≈17.71(km).所以静止目标P 到海防警戒线a 的距离为17.71 km.跟踪演练3 甲船在A 处、乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?解 设甲、乙两船经t 小时后相距最近,且分别到达P 、Q 两处,因乙船到达A 处需2小时.图(1) 图(2)①当0≤t <2时,如图(1)在△APQ 中,AP =8t ,AQ =20-10t , 所以PQ =AQ 2+AP 2-2AQ ·AP cos 120°= (20-10t )2+(8t )2-2(20-10t )×8t ×⎝⎛⎭⎫-12 =84t 2-240t +400=221t 2-60t +100.②当t =2时,PQ =8×2=16.③当t >2时,如图(2)在△APQ 中,AP =8t ,AQ =10t -20, ∴PQ =AQ 2+AP 2-2AQ ·AP cos 60°=221t 2-60t +100.综合①②③知,PQ =221t 2-60t +100 (t ≥0).当且仅当t =3021=107时,PQ 最小.答 甲、乙两船行驶107小时后,相距最近.题型四 函数与方程思想的应用与函数思想相联系的就是方程思想.所谓方程思想,就是在解决问题时,用事先设定的未知数沟通问题所涉及的各量间的制约关系,列出方程(组),从而求出未知数及各量的值,使问题获得解决,所设的未知数沟通了变量之间的联系.方程可以看做未知量与已知量相互制约的条件,它架设了由已知探索未知的桥梁.本章在利用正、余弦定理求角或边长时,往往渗透着函数与方程思想.例4 在△ABC 中,已知A >B >C ,且A =2C ,b =4,a +c =8,求a ,c 的长.解 由正弦定理得a sin A =c sin C ,∵A =2C ,∴a sin 2C =csin C ,∴a =2c cos C .又∵a +c =8,∴cos C =8-c2c,①由余弦定理及a +c =8,得cos C =a 2+b 2-c 22ab =a 2+42-c 28a =(8-c )2+42-c 28(8-c )=10-2c8-c .②由①②知8-c 2c =10-2c8-c ,整理得5c 2-36c +64=0.∴c =165或c =4(舍去).∴a =8-c =245.故a =245,c =165.跟踪演练4 已知函数f (x )=32sin 2x -1+cos 2x 2-12,x ∈R . (1)求函数f (x )的最小值和最小正周期;(2)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且c =3,f (C )=0,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值. 解 (1)∵f (x )=32sin 2x -1+cos 2x 2-12=sin ⎝⎛⎭⎫2x -π6-1,∴函数f (x )的最小值是-2, 最小正周期是T =2π2=π.(2)由题意得f (C )=sin(2C -π6)-1=0,∴sin(2C -π6)=1,∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3,∵m ∥n ,∴12=sin A sin B ,由正弦定理得,a b =12,①由余弦定理得,c 2=a 2+b 2-2ab cos π3,即3=a 2+b 2-ab ,② 由①②解得a =1,b =2.1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B等价于a>b等价于sin A>sin B.2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.正弦定理是一个关于边角关系的连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.运用余弦定理时,要注意整体思想的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技能演练
基 础 强 化
1.在△ABC 中,a 2+b 2<c 2,则这个三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形
D .等边三角形
解析 由a 2+b 2<c 2,知cos C =a 2+b 2-c
22ab <0,
又0<C <π,∴C 为钝角.故△ABC 为钝角三角形. 答案 B
2.在△ABC 中,已知a 2+b 2-c 2=ab ,则C =( ) A .60° B .120° C .30°
D .45°或135°
解析 由cos C =a 2+b 2-c 22ab =ab 2ab =12, 又0°<C <180°,∴C =60°. 答案 A
3.在△ABC 中,a :b :c =3:5:7,则△ABC 的最大角是( ) A .30° B .60° C .90°
D .120°
解析 由a :b :c =3:5:7,知最大边为c ,
∴最大角为C ,设a =3k ,b =5k ,c =7k (k >0),则cos C =a 2+b 2-c 22ab =-1
2,又0°<C <180°,∴C =120°.
答案 D
4.在△ABC 中,B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形
B .等边三角形
C .等腰三角形
D .直角三角形
解析 由b 2=ac 及余弦定理,得 b 2=a 2+c 2-2ac cos60° 即ac =a 2+c 2-ac ,
∴(a -c )2=0,∴a =c ,又B =60°, ∴△ABC 为等边三角形. 答案 B
5.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( )
A .19
B .14
C .-18
D .-19
解析 由余弦定理,得cos B =AB 2+BC 2-CA 22·AB ·BC =72+52-622·7·5=1935.
∴AB →·BC →=|AB →||BC →|cos 〈AB →,BC →〉=7×5×⎝
⎛⎭
⎪⎫-1935=-19.
答案 D
6.在△ABC 中,已知a ,b 是方程x 2-5x +2=0的两根,C =120°,则边c =____________.
解析 由韦达定理,得a +b =5,ab =2. 由(a +b )2=a 2+b 2+2ab , 得a 2+b 2=52-2×2=21. ∴c 2=a 2+b 2-2ab cos120°=23. ∴c =23. 答案
23
7.在△ABC 中,若a =7,b =8,cos C =13
14,则最大角的余弦值为____________.
解析 c 2
=a 2
+b 2
-2ab cos C =72
+82
-2×7×8×13
14=9.
∴c =3,因此最大角为B ,由余弦定理,得 cos B =a 2+c 2-b 22ac =-17. 答案 -1
7
8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =__________.
解析 由余弦定理,得
cos B =a 2+c 2-b 22ac =1+3-72×1×3==-32,∴B =5π6.
答案 5π6
能 力 提 升
9.在△ABC 中,已知a =7,b =10,c =6,判断△ABC 的形状. 解 由余弦定理,知cos B =a 2+c 2-b 22ac =72+62-1022×7×6=-528.
在△ABC 中,0°<B <180°,∴90°<B <180°. ∴△ABC 为钝角三角形.
10.在△ABC 中,m =⎝


⎪⎫cos C 2,sin C 2,
n =⎝ ⎛⎭⎪⎫cos C 2,-sin C 2,且m 与n 的夹角为π
3.
(1)求C ;
(2)已知c =72,三角形面积S =33
2,求a +b . 解 (1)∵m =(cos C 2,sin C
2), n =(cos C 2,-sin C
2), ∴m ·n =cos 2C
2-sin 2C
2=cos C . 又m ·n =|m |·|n |cos π3=12, ∴cos C =1
2.又0<C <π, ∴C =π
3.
(2)∵c 2=a 2+b 2-2ab cos C ,c =7
2, ∴49
4=a 2+b 2-ab =(a +b )2-3ab . ∵S =12ab sin C =12ab sin π3=3
4ab , 而S =33
2,∴ab =6.
∴(a +b )2=494+3ab =494+18=121
4. ∴a +b =11
2.
品 味 高 考
11.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c .已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .
解 由余弦定理,得a 2-c 2=b 2-2bc cos A . 又a 2-c 2=2b ,b ≠0,
∴ b =2c cos A +2.① 又∵sin A cos C =3cos A sin C . ∴sin A cos C +cos A sin C =4cos A sin C . ∴sin(A +C )=4cos A sin C ,sin B =4sin C cos A . 由正弦定理,得sin B =b
c sin C ,故 b =4c cos A .② 由①、②解得b =4.
12.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝ ⎛⎭
⎪⎫2A -π4的值. 解 (1)在△ABC 中,根据正弦定理,AB sin C =BC
sin A , 于是AB =sin C
sin A BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得 cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2
A =55,
从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2
A =35. ∴sin(2A -π4)=sin2A cos π4-cos2A sin π
4 =210.。

相关文档
最新文档