山东省冠县武训高级中学七年级下学期期末综合试题数学试题1 新人教版

合集下载

人教版七年级数学下册期末测试题含答案(共五套).docx

人教版七年级数学下册期末测试题含答案(共五套).docx

精品文档七年级第二学期综合测试题(一)一、选择题: ( 本大题共 10 个小题,每小题 3 分,共 30 分) 1.若 m >- 1,则下列各式中错误的 是( )...A .6m >- 6B .- 5m <- 5C .m+1>0D .1-m <22. 下列各式中 , 正确的是 ( )A. 16 =±4B. ± 16 =4C.327 =-3D.( 4)2 =-43.已知 a >b >0,那么下列不等式组中无解 的是()..A .xa B .xa C .x aD .x bxbxbx ax b4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转 50°,后右转 40°(B)先右转 50°,后左转 40°(C) 先右转 50°,后左转 130° (D)先右转 50°,后左转 50°5.解为x1的方程组是()y 2A. x y 1B.x y 1 C.x y 3 D.x 2 y 3 3xy 53x y53x y 13x y 56.如图,在△ ABC 中,∠ ABC=50,∠ ACB=80,BP 平分∠ ABC ,CP 平分∠ACB ,则∠ BPC 的大小是( ) A .1000 B .1100 C .1150 D.1200AAA 1小刚PDBCC 1小军BCB 1小华(1)(2)(3).精品文档角形的个数是()A.4B.3C.2D.1 8.在各个内角都相等的多边形中,一个外角等于一个内角的1,则这个多2边形的边数是()A.5B.6C.7D.8 9.如图,△ A1B1C1是由△ ABC沿 BC方向平移了 BC长度的一半得到的,若△ABC的面积为 20 cm2,则四边形 A1DCC1的面积为()2B.12 cm2C2D2 A.10 cm.15 cm.17 cm 10.课间操时 , 小华、小军、小刚的位置如图 1, 小华对小刚说 , 如果我的位置用 (?0,0) 表示 , 小军的位置用 (2,1) 表示 , 那么你的位置可以表示成 ( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)A二、填空题:11.49 的平方根是 ________, 算术平方根是 ______,-8的立方根B是_____.李庄12. 不等式 5x-9 ≤3(x+1) 的解集是 ________.火车站13.如果点 P(a,2) 在第二象限 , 那么点 Q(-3,a) 在_______.14.如图 3 所示 , 在铁路旁边有一李庄 , 现要建一火车站 ,? 为了使李庄人乘火车最方便 ( 即距离最近 ), 请你在铁路旁选一点来建火车站 ( 位置已选好 ),说明理由 :____________.15.从 A沿北偏东 60°的方向行驶到 B, 再从 B沿南偏西 20°的方向行驶到C,?则∠ ABC=度.16. 如图 ,AD∥BC,∠D=100°,CA 平分∠ BCD,则∠ DAC=_______.17.给出下列正多边形:①正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是 _____________.( 将所有答案的序号都填上 ).DC精品文档x 3(x 2) 4,三、解答题 :19.解不等式组: 2x1 x 1 , 并把解集在数轴上表示出来.5 2 .2 x3 y1 20.解方程组: 342 4(x y)3(2x y) 1721. 如图 , AD ∥BC , AD 平分∠ EAC,你能确定∠ B 与∠ C 的数量关系吗 ?请说明理由。

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。

6m>-6.B。

-5m<-5.C。

m+1>0.D。

1-m<22.下列各式中,正确的是()A。

16=±4.B。

±16=4.C。

3-27=-3.D。

(-4)²=163.已知a>b>0,那么下列不等式组中无解的是()A。

{x<a。

x>-a。

x>a。

x>-a}。

B。

{x>-b。

x<-b。

x <-b。

x<b}C。

{x<a。

x>-a。

x>a。

x<-a}。

D。

{x<-b。

x>-b。

x <-b。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°。

B。

先右转50°,后左转40°C。

先右转50°,后左转130°。

D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1.x-y=3.3x+y=5}。

B。

{x-y=1.x-y=-1.x-y=3.3x+y=-5}C。

{x-y=1.x-y=-1.3x-y=5.3x+y=5}。

D。

{x-y=1.x-y=-1.3x-y=5.3x+y=-5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°。

B。

110°。

C。

115°。

D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4.B。

3.C。

2.D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

人教版(七年级)初一下册数学期末测试题及答案

人教版(七年级)初一下册数学期末测试题及答案

人教版(七年级)初一下册数学期末测试题及答案一、选择题1.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 2.若(x+2)(2x-n)=2x 2+mx-2,则( )A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1; 3.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=105.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 6.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .4 7.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 8.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°9.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件10.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个 二、填空题11.多项式2412xy xyz +的公因式是______.12.若x +3y -4=0,则2x •8y =_________.13.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.14.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为_________.15.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.16.计算:5-2=(____________) 17.若(x ﹣2)x =1,则x =___.18.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.分解因式:ab ﹣ab 2=_____.三、解答题21.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;22.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.23.解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩24.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:_____.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是_____.25.已知在△ABC中,试说明:∠A+∠B+∠C=180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )26.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.27.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.28.0=,|1|z -=,求x y z ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.2.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2+4x-nx-2n ,又∵(x+2)(2x-n)=2x 2+mx-2,∴2x 2+(4-n)x-2n=2x 2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算. 3.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.7.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.8.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.9.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查;B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.10.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y -4=0∴x+3y=4∴2x•8y=2x•(23)y =2x+3y =24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x +3y -4=0∴x +3y=4∴2x •8y =2x •(23)y =2x+3y =24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.m <2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m <2故答案为:m <2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m <2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m <2故答案为:m <2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.14.11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键.15.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x =﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x =﹣1.②当2x+3=﹣1时,解得:x =﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x =﹣2.③当x+2016=0时,x =﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x =﹣2016.综上所述,当x =﹣1,或x =﹣2,或x =﹣2016时,代数式(2x+3)x+2016的值为1. 故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==,故答案为:1 25.【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.18.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).19.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)AB CD//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.20.ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式解析:ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.三、解答题21.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.22.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y =5,x•y =94 ∴52-(x-y)2=4×94 ∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m ﹣2020)=-1∴[(2019﹣m)+(m ﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m ﹣2020)+ (m ﹣2020)2=1∵(2019﹣m)2+(m ﹣2020)2=15∴2(2019﹣m)(m ﹣2020)=1-15=-14∴(2019﹣m)(m ﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.23.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对() 3122 15233x xx x⎧+<+⎪⎨-≤+⎪⎩①②,解不等式①,得x<3,解不等式②,得1x≥-,∴原不等式组的解集为13x-≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.24.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A、B、C向右平移4个单位后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB,作出AB的高CD即可;(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(3)如图所示,(4)△ABC的面积=5×7-12×7×5-12×7×2-12×5×1=8.25.DAB,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE∥BC,∴∠B=∠DAB,∠C=∠CAE,故答案为:DAB,CAE;方法二:∵DE∥AC,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.26.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.27.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答; (3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.28.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】0=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.。

2024—2025学年最新人教版七年级下学期数学期末考试试卷(含答题卡和参考答案)

2024—2025学年最新人教版七年级下学期数学期末考试试卷(含答题卡和参考答案)

最新人教版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数中,属于无理数的是()A.1.414B.C.D.02、已知点P的坐标为P(﹣2,4),则点P在第()象限.A.一B.二C.三D.四3、若x>y,则下列式子错误的是()A.x+1>y+1B.>C.﹣2x<﹣2y D.1﹣x>1﹣y 4、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行5、若2m﹣4与3m﹣1是同一个正数的两个平方根,则这个正数为()A.1B.4C.±1D.±46、若a<<b,且a与b为连续整数,则a与b的值分别为()A.1;2B.2;3C.3;4D.4;57、如图,a∥b,∠3=80°,∠2=30°,则∠1的度数是()A.30°B.40°C.50°D.80°8、已知方程组的解满足x+y=2,则k的值为()A.2B.﹣2C.4D.﹣49、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣610、若不等式组的整数解共有四个,则a的取值范围是()A.6≤a<7B.6<a≤7C.6<a<7D.5≤a≤6二、填空题(每小题3分,满分18分)11、若(m﹣2)x n+=0是二元一次方程,则m+n的值.12、已知a<5,不等式(a﹣5)x>a﹣5解集为.13、已知A点(﹣2a+6,a)在象限角平分线上,则a的值为.14、若,则=.15、若不等式组的解集为x<1,则a的取值范围为.16、如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=30°,则∠EFC'的度数为°.、最新人教版七年级下学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:+|2﹣|+﹣(﹣).18、解不等式组,并求出它的非负整数解.19、已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′(,)、B′(,)、C′(,)的坐标;(2)求出△ABC的面积=;(3)点P在y轴上,且△BCP是△ABC的面积的2倍,求点P的坐标.20、运动是一切生命的源泉,运动使人健康、使人聪明、使人快乐,运动不仅能改变人的体质,更能改变人的品格,某中学为了解学生一周在家运动时长t (单位:小时)的情况,从本校学生中随机抽取了部分学生进行问卷调查,并将收集的数据整理分析,共分为四组(A.0≤t<1,B.1≤t<2,C.2≤t <3,D.3≤t<4,其中每周运动时间不少于3小时为达标),绘制了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)请补全频数分布直方图,并计算在扇形统计图中C组所对应扇形的圆心角的度数;(3)若该校有学生2000人,试估计该校学生一周在家运动时长不足2小时的人数.21、如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:AB∥CD;(2)若∠EHF=75°,∠D=35°,求∠AEM的度数.22、为开展“校园读书活动”某中学读书会计划采购数学文化和文学名著两类书籍共100本,经了解,购买20本数学文化和50本文学名著共需1700元,30本数学文化比30本文学名著贵450元.(注:所采购的同类书籍价格都一样)(1)求每本数学文化和文学名著的价格;(2)若校园读书会要求购买数学文化本数不少于文学名著,且总费用不超过2780元,请求出所有符合条件的购书方案.23、已知关于x,y的方程组的解都不大于1.(1)求m的取值范围;(2)化简:++|m+3|+|m﹣5|﹣|x+y﹣2|.24、如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于A(0,a)、B(b,0)两点,且a、b满足|a﹣4|+(2b﹣a)2=0.(1)求A、B两点的坐标;(2)如图1,过点B作直线AB的垂线,在此垂线上截取线段BC,使BC=AB,求点C的坐标;(3)如图2,在(2)的条件下,BC交y轴于点E,点F为x轴负半轴上一点,记△ABE的面积为S1,四边形FOEC的面积为S2,设点F(x,0),.①用含x的式子表示y;②当2x+5y=﹣2时,求的值.25、已知A(0,a),B(b,0),满足(2a+b﹣10)2+=0,C,D分别为x轴,y轴正半轴上的点,且满足CD∥AB.(1)求A,B两点的坐标.(2)作∠DAB和∠CBA的角平分线交于点M,试求的比值.(3)分别过点A、点B作x、y轴的平行线交于点N,有一动点P从B点出发沿BO﹣OA方向以每秒1个单位长度的速度运动,同时有一动点Q从A点出发沿AN﹣NB方向以每秒个单位长度的速度运动,当两个点有一个到达终点时另一个随之停止运动,设运动时间为t,求t为何值时,以P、A、Q、B 为顶点的图形的面积为四边形OBNA面积的一半?最新人教版七年级下学期数学期末考试试卷(参考答案)11、-1 12、x<1 13、2或6 14、2 15、a≥2 16、120三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2﹣1.18、不等式组的非负整数解为:0,1,2,3.19、(1)A'(0,4),B'(﹣1,﹣1),C'(3,1)(2)6(3)P(0,4)或(0,﹣8)20、(1)120(2)(3)70021、(1)证明略(2)110°22、(1)每本数学文化的价格为35元,每本文学名著的价格为20元(2)案1:购进数学文化50本,文学名著50本;方案2:购进数学文化51本,文学名著49本;方案3:购进数学文化52本,文学名著48本23、(1)﹣3≤m≤5(2)824、(1)A(0,4)、B(2,0)(2)点C的坐标为(﹣2,﹣2)(3)①y=x﹣1②25、(1)A(0,3),B(4,0)(2)或;(3)t=或t=。

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。

山东省冠县武训高级中学七年级下学期期末综合试题数学试题3 新人教版

山东省冠县武训高级中学七年级下学期期末综合试题数学试题3 新人教版

D A l 1l 2B C 21第2题 第3题 第4题 (时间120分 满分120分)一、填空题(每小题2分,20分)1. 方程753=-y x ,用含x 的代数式表示y ,则 。

2. 如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A =________度.3. 如图,直线l 1∥l 2,AB ⊥l 1,垂足为D ,BC 与直线l 2相交于点C ,若∠1=30°,则∠2=___。

4. 如图,将三角板的直角顶点放在直尺的一边上,∠1 =30°∠2 =50°,∠3 = °。

5. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,,则这个方程可以是________。

(只要写出一个) 6. 一个多边形对角线的条数是边数的2倍,这样的多边形的边数是_______。

7. 如果不等式32<-x 和32<-x 同时成立,则x 的取值范围是 。

8.若方程组234,3223x y x y m +=⎧⎨+=-⎩的解满足51=+y x ,则m =______。

9. 点 P 在第二象限,到x 轴和y 轴的距离分别是3和7,那么点P 的坐标为 。

10.按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数列{a n }满足一个关系式:121+-=+n n n na a a ,(n=1,2,3,…,n),且21=a .根据已知条件计算432,,a a a 的值,然后进行归纳猜想n a =_________ (用含n 的代数式表示)二、选择题(每小题3分24分)11. 若点P 为直线外一点,点A 、B 、C 、D 为直线l 上的不同的点,其中PA=3, PB=4,PC=5, PD=3。

那么点P 到直线1的距离是( )A .小于3B . 3C .不大于3D .不小于3 12. 三角形的三个内角两两一定互为( )A .同位角B .内错角C .同旁内角D .邻补角13. 下列长度的三条线段,能组成三角形的是( )A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm14. 如图,11002145∠=∠=,,那么3∠=( )A .55°B .65°C .75°D .85°15. 一个四边形,截一刀后得到的新多边形的内角和将( )A.增加180ºB.减少180º C .不变 D.以上三种情况都有可能16. 已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为( )1 2 3 第14题 A D E第18题 A .50 B .80 C .50或80 D .40或6517. 某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了10分,答错了或不答扣5分,至少要答对( )道题,其得分才会不少于95分?A .14B .13C .12D .1118.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )A .54个B .90个C .102个D .114个三、解答题(76分)19.(8分)解下列二元一次方程组及不等式组:(1)解二元一次方程组 3582 1.x y x y +=⎧⎨-=⎩,①②(2)解不等式组,并把它的解集表示在数轴上3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ①②20.(8分)将一副直角三角尺如图放置,已知AE BC ∥,求AFD ∠的度数.A C DF21.(8分)2009年5月1日,历史悠久的木格格高中喜迎七十华诞,值此喜庆之致,校友们欢聚一堂,共话往事,共叙友情,共商母校的发展在计,并为正在筹建的“文化长廊”踊跃捐款。

(完整版)人教版七年级数学下册期末试卷及答案

(完整版)人教版七年级数学下册期末试卷及答案

(完整版)人教版七年级数学下册期末试卷及答案一、选择题1.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( ) A .2- B .0C .1D .22.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x-3.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8C .6D .104.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .14 5.x 2•x 3=( ) A .x 5 B .x 6 C .x 8 D .x 9 6.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或157.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°8.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+9.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.已知5m a =,3n a =,则2m n a -的值是_________.12.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.13.233、418、810的大小关系是(用>号连接)_____. 14.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.15.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.16.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.17.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.18.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.19.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解? 22.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.23.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 24.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?27.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .28.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可. 【详解】解:()232()2(2)2x a x x x a x ax --+-=+, ∵不含2x 项, ∴(2)0a -+=, 解得2a =-. 故选:A . 【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.2.C解析:C 【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2). 考点:因式分解.3.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.6.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6此时366+>,满足三角形的三边关系定理 则其周长为36615++= 综上,该三角形的周长为15 故选:B . 【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.7.C解析:C 【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数. 【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ; 在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°. 故选:C . 【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.8.C解析:C 【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数. 【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意. 故选C9.C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x圈,乙每分钟跑y圈则可列方组为:331 661 x yx y+=⎧⎨-=⎩故选:C.【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,故答案为:. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】解:22m n m n a a a -=÷, ∵5m a =, ∴22525m a ==, ∴22252533m nm n aa a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.12.61° 【分析】根据平行线的性质可得∠GEB 的度数,进而得的度数,再根据角平分线的定义即得答案. 【详解】 解:, , . EF 平分, .故答案为:61°. 【点睛】本题考查了平行线的性质、角解析:61° 【分析】根据平行线的性质可得∠GEB 的度数,进而得AEG ∠的度数,再根据角平分线的定义即得答案.解://AB CD , 158GEB ∴∠=∠=︒,18058122AEG ∴∠=︒-︒=︒. EF 平分AEG ∠, 61AEF ∴∠=︒. 故答案为:61°. 【点睛】本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.418>233>810 【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案. 【详解】 解:∵,, ∴236>233>230, ∴418>233>810. 故答案为:418>233>81解析:418>233>810 【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案. 【详解】 解:∵()18182364=2=2,()10103308=2=2,∴236>233>230, ∴418>233>810. 故答案为:418>233>810 【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.14.【分析】已知是方程组的解,将代入到方程组中可求得a ,b 的值,即可得到关于x ,y 的方程组,利用加减消元法解方程即可. 【详解】 ∵是方程组的解 ∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数15.28°【分析】根据平行线的性质求出∠DE F的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.16.【分析】先把二元一次方程组求解出来,用m表示,再根据有整数解求解m的值即可得到答案;【详解】解:,把①②式相加得到:,即:,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键; 17.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm ,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm ,∴阴影部分的宽为6-3=3cm ,∵向右平移1cm ,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.18.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.19.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15-6-5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21-6-8=7cm.故AC长为7cm.“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.20.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键. 22.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=12∠ABD=40°,进而得出答案.【详解】解:∵AC//BD,∠BAC=100°,∴∠ABD=180°﹣∠BAC=180°-100°=80°,∵BC平分∠ABD,∴∠CBD=12∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.23.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.24.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 25.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键. 26.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.27.(1)见解析;(2)平行且相等; 9 .【分析】(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论【详解】(1)如图所示△DEF 即为所求;(2)∵△DEF 由△ABC 平移而成,∴AD ∥BE ,AD =BE ;线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S=⨯= 故答案为:平行且相等;9【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键. 28.6【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】 3321130y x --=,|1|24z x y -=--+, 332113y x -=--|1|240z x y -+-+=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为6.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.。

人教版七年级下册数学期末真题50题含答案(山东)

人教版七年级下册数学期末真题50题含答案(山东)

人教版七年级下册数学期末真题50题含答案(山东)一、单选题1.下列图形中∠1和∠2是对顶角的是( )A .B .C .D .2.在下列各数:3.14,﹣π,、13111) A .2 B .3 C .4 D .53.下列方程组中,是二元一次方程组的是( )A .10428x y x z +=⎧⎨-=⎩B .123xy x y =⎧⎨==⎩C .23x y =⎧⎨=⎩D .22103x y x y ⎧+=⎨-=⎩4m -,则实数m 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧5.如图,点E 在AC 的延长线上,下列条件中,不能判定AB CD ∥的是( )A .12∠=∠B .3=4∠∠C .A DCE ∠=∠D .180D DBA ∠+∠=︒6.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( )A .﹣6<t <112-B .1162t -≤<-C .1162t -<≤-D .1162t -≤<- 7.有下列命题:∠两条直线被第三条直线所截,同位角相等;∠0.1的算术平方根是0.01;∠算术平方根等于它本身的数是1;∠如果点P (3﹣2n ,1)到两坐标轴的距离相等,则n=1;∠若a 2=b 2,则a=b ;∠=a=b .其中假命题的个数是( )A .3个B .4 个C .5个D .6个8.若一个正数的两个不同平方根是21a -和2a -+,则这个正数是( )A .1B .3C .4D .99.如图,在66⨯方格中有两个涂有阴影的图形M 、N ,每个小正方形的边长都是1个单位长度,图(1)中的图形M 平移后位置如图(2)所示,以下对图形M 的平移方法叙述正确的是( )A .先向右平移2个单位长度,再向下平移3个单位长度B .先向右平移1个单位长度,再向下平移3个单位长度C .先向右平移1个单位长度,再向下平移4个单位长度D .先向右平移2个单位长度,再向下平移4个单位长度10.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x 斤,乙种药材y 斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?【 】A .20x 60y 280{x y 2+=-=B .60x 20y 280{x y 2+=-=C .20x 60y 280{y x 2+=-= D .60x 20y 280{y x 2+=-= 11.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或﹣4 12.已知线段AB 在平面直角坐标系中,A ,B 坐标分别为(m ,n ),(2,3),将线段AB 平移至A 1B 1,A 1,B 1坐标为(n-1,3-m ),(-1,-2),则A 点的坐标是( ) A .(-5,3) B .(-3,5) C .(3,-5) D .(5,3) 13.下列式子中,正确的是( )A2-B.0.6=-C2=-D6=±14.下列语句中,不是命题的是()A.两点之间线段最短B.连接A,B两点C.平行于同一直线的两直线平行D.相等的角都是直角15.下列说法中,正确的个数是()∠-64的立方根是-4;∠49的算术平方根是±7;∠127的立方根为13;∠116的一个平方根14.A.1B.2C.3D.4 16.如图,已知∠1=60°,如果CD∠BE,那么∠B的度数为()A.70°B.100°C.110°D.120°17.坐标为(x ,x–1)的点一定不会在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限18.若关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解是二元一次方程3214x y+=的一个解,则m的值是()A.1B.-1C.2D.-2 19.如图,与①中的三角形相比,②中的三角形发生的变化是()A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位20.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是()A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7 21.在下列各不等式中,错误的是()A.若a+b>b+c,则a>c B.若a>b,则a-c>b-cC.若ab>bc,则a>c D.若a>b,则2c+a>2c+b22.学校以年级为单位开展广播操比赛,全年级有个班级,每个班级有名学生,规定每班抽名学生参加比赛,这时样本容量是()A.13B.50C.650D.325二、填空题23_____;64的立方根是_____.24.已知2y=那么4x+y=_______.25.如图,计划把河水引到水池A中,先作AB CD⊥,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.26.如图,EF∠AD,AD∠BC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,则∠FEC=_____.27.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为__,点A2018的坐标为____;28.已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,则a= ______,b=______.29.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是___________________它是_______命题(填“真”或“假”).30.m的平方根是n-3和n-7,那么mn=____________.31.已知两点A ()3m -,,B (),4n -,若AB∠y 轴,则n = ________, m 的取值范围是__________.32π,0,﹣6由小到大用“<”号连起来,可表示为_____.33.如果213262310a b a b x y -++--=是一个二元一次方程,则a =__________,b=___________.34.若不等式组121x a x a <+⎧⎨>-⎩无解,则a 的取值范围是________ 35.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程______________.36.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形统计图如果该校有810名学生,则喜爱跳绳的学生约有______人.37.如图,在平面直角坐标系中,点A 1(1,2),A 2(2,0),A 3(3,-2),A 4(4,0)……根据这个规律,探究可得点A 2017的坐标是________.三、解答题38.计算:(1)|2|(2)()21|3|22-- . (3)5211446x y x y +=⎧⎨-=⎩ ;(4)求不等式组的11313(1)8x x x x-⎧+≥⎪⎨⎪--<-⎩整数解.39.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,求221m m-+的值.40.关于X的不等式组2123x ax b-⎧⎨-⎩解集为11x-.求(1)(1)a b+-的值.41.已知点A(a-1,2),B(-3,b+1),根据下列要求确定a,b的值;(1)直线AB//x轴,且AB=5;(2)直线AB//y轴,且AB=5;(3)A,B两点在第一、三象限的角平分线上;42.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?43.已知:如图,AD∠BC,EF∠BC,∠1=∠2.求证:∠DGC=∠BAC.44.已知:直线AB∠CD,点M,N 分别在直线AB,CD 上,点E 为平面内一点.(1)如图1,∠BME,∠E,∠END 的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF 平分∠MEN,NP 平分∠END,EQ∠NP,求∠FEQ 的度数.(用含m 的式子表示)(3)如图3,点G 为CD 上一点,∠BMN=n∠EMN,∠GEK=n∠GEM,EH∠MN交AB 于点H,探究∠GEK,∠BMN,∠GEH 之间的数量关系(用含n 的式子表示)45.某次数学测验中有15道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对多少道题,成绩才能在60分以上?46.(1)23533x yx y-⎧=⎪⎪⎨+⎪=⎪⎩(2)1223x yx y+=⎧⎪⎨-=⎪⎩某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:47.求样本容量及表格中a,b,c的值,并补全统计图;48.若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中生人数;49.∠根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;∠如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?50.求使方程组224563x y mx y m+=+⎧⎨+=+⎩的解都是正数的m的取值范围.51.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B 与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.52.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.53.近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活.∠为了解某地区土地沙化情况,环保部门对该地区进行了连续四年跟踪观测,所记录的近似数据如下表:(1)根据表中提供的信息,在不采取任何措施的情况下,∠试定出该地区沙漠面积y (万亩)与x(年数)之间的关系式(用含x的式子表示y),并计算到第20∠年时该地区的沙漠面积;(2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务.在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么所节余的资金还能植树多少亩?54.已知AB∠CD,∠ABE与∠CDE两个角的角平分线相交于点F,(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2,若∠ABM=13∠ABF,∠CDM=13∠CDF,试写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,∠E=m°,请直接用含有n,m°的代数式表示出∠M.55.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?参考答案:1.D【分析】根据对顶角的定义“两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角”判断即可.【详解】根据对顶角的概念可知,A、B、C中的∠1与∠2都不符合对顶角的特征,而D图中的∠1与∠2只有一个公共顶点且两个角的两边互为反向延长线,属于对顶角.故选D.【点睛】本题主要考查了对顶角的概念,解题时要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点,反向延长线等.2.B【详解】解:根据无理数的三种形式:∠开方开不尽的数,∠无限不循环小数,∠含有π的数,无理数有−π3个.故选B.3.C【分析】根据二元一次方程组的定义,可得答案.【详解】A、是三元一次方程组,故A不符合题意;B、是二元二次方程组,故B不符合题意;C、是二元一次方程组,故C符合题意;D、是二元二次方程组,故D不符合题意;故选C.【点睛】本题考查了二元一次方程组,熟记二元一次方程组的定义是解题关键.4.C【分析】根据二次根式、算术平方根和绝对值的意义可知m≤0,从而可判断出实数a在数轴上的对应点位置.【详解】m -∠m≤0,∠m在原点或原点左侧.故选:C.【点睛】本题考查了二次根式、算术平方根的意义和绝对值的意义及实数与数轴的关系,答案第1页,共23页根据绝对值的意义求出a ≤0是解答本题的关键.5.B【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A .∠∠1=∠2,∠AB CD ∥,故本选项不符合题意;B .∠∠3=∠4,∠AC BD ∥,故本选项符合题意;C .∠∠A =∠DCE ,∠AB CD ∥,故本选项不符合题意;D .∠∠D +∠DBA =180°,∠AB CD ∥,故本选项不符合题意.故选:B .【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键. 6.C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】∠2553x x +->-, ∠20x <; ∠32x t x +->, ∠32x t >-;∠不等式组的解集是:2032t x <<-.∠不等式组恰有5个整数解,∠这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.7.C【分析】利用平行线的性质、算术平方根的定义、点的坐标等知识分别判断后即可确定假命题的个数.【详解】∠两条平行直线被第三条直线所截,同位角相等,故错误,是假命题; ∠0.1 的算术平方根是0.01,错误,是假命题;∠算术平方根等于它本身的数是1和0,故错误,是假命题;∠如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或2,故错误,是假命题;∠若a2=b2,则a=±b,故错误,是假命题;∠a=b,正确,是真命题,假命题有5个,故选C.【点睛】此题考查了命题与定理的知识,解题的关键是了解平行线的性质、算术平方根的定义、点的坐标等知识,难度不大,熟悉课本中的概念是解题关键.8.D【分析】依据平方根的性质列方出求解即可.【详解】∠一个正数的平方根是2a-1和-a+2,∠2a-1-a+2=0.解得:a=-1.∠2a-1=-3.∠这个正数是9.故选:D.【点睛】本题主要考查的是平方根的定义和性质,依据平方根的性质列出关于a的方程是解题的关键.9.B【分析】根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.【详解】由图(1)可知,图M先向右平移1个单位长度,再向下平移3个单位长度,可得题图(2),故选B【点睛】本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.10.A【详解】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程:20x60y280{x y2+=-=.故选A.11.D【分析】根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】∠A(a,0),B(0,10),∠OA =|a |,OB =10,∠S △AOB =12OA •OB =12•10|a |=20,解得:a =±4.故选D .【点睛】本题考查了坐标与图形性质,根据三角形的面积公式列出关于a 的含绝对值符号的一元一次方程是解题的关键.12.D【分析】根据平移的性质可得:A 、B 应向相同的方向平移相同的单位,再根据A 1的坐标列出方程组,解方程组即可.【详解】根据题意可得:B 点向左平移了3个单位,向下平移了5个单位,故A 点应向相同的方向平移相同的单位,及A 1的坐标为(m-3,n-5),所以可得方程组: 1335n m m n -=-⎧⎨-=-⎩, 解得53m n =⎧⎨=⎩故选:D【点睛】此题主要考查图形的平移及平移特征,掌握在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解答此题的关键.13.A【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可.【详解】A.∠3(2)8-=-,2=-,故本选项正确,符合题意;B.∠20.60.36=,∠0.6-,故本选项错误,不符合题意;C.∠2(2)4-=,2,故本选项错误,不符合题意;D. ∠2636=,6=,故本选项错误,不符合题意.故选:A.【点睛】考查立方根,算术平方根,掌握它们的定义是解题的关键.14.B【详解】试题分析:根据命题的概念,是判断一件事情的句子,可知选项B中连接A、B 两点不是判断一件事情,故不是命题.故选B15.C【分析】如果x3=a,那么x叫作a的立方根,根据立方根的定义,如(-4)3=-64,即可对∠进行判断,同理判断∠;再根据平方根及算术平方根的定义对∠、∠进行判断,即可得出答案.【详解】根据立方根的定义可知:-64的立方根为-4,127的立方根是13,所以∠正确,∠正确;利用平方根、算术平方根的定义可知:49的算术平方根是7,116的平方根是14,所以∠错误,∠正确.即说法正确的只有∠、∠和∠.故选C.【点睛】本题考查立方根与平方根的相关知识,关键是掌握平方根和立方根的定义. 16.D【详解】160∠=︒2160∴∠=∠=︒//CD BE180218060120B∴∠=︒-∠=︒-︒=︒故选D17.B【分析】先判断出纵坐标小于横坐标,再根据各象限内点的坐标特征解答.【详解】∠x >x-1,∠点(x ,x-1)的横坐标一定大于纵坐标,∠第二象限内点的横坐标是负数,纵坐标是正数,∠横坐标一定小于纵坐标,∠点(x ,x-1)一定不会在第二象限.故选B .【点睛】本题考查各象限内点的坐标特征,解题的关键是熟练掌握各象限内点的坐标特征. 18.C【分析】先把m 看成已知数解方程组24x y m x y m +=⎧⎨-=⎩,再把x ,y 代入方程3214x y +=中求出m 的值即可.【详解】解:24x y m x y m +=⎧⎨-=⎩①②, ∠-∠得:3y 3=-m ,即y m =-,把y m =-代入∠得:()2+-=x m m ,解得:3x m =,把3x m y m=⎧⎨=-⎩代入方程3214x y +=中得: ()33+2=14⨯-⨯m m ,解得:m=2,故选C.【点睛】本题是对二元一次方程组的考查,熟练掌握二元一次方程组的解法是解决本题的关键.19.A【详解】由图∠到图∠,点(1,1)平移到点(−2,1),点(3,1)平移到点(0,1),都是向左平移3个单位,∠图形平移规律为:向左平移3个单位.故选A.20.C【分析】将两个方程相加即可得到结论.【详解】43x m y m +=⎧⎨-=⎩①② 由∠+∠得:x +y =7.故选C.【点睛】考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.21.C【分析】根据不等式的性质分析判断.【详解】A.若a b b c +>+,不等式两边同时减去b ,不等号的方向不变,则a c >正确;B.若a b >,不等式两边同时加上c ,不等号的方向不变,则a c b c ->- 正确;C.若ab bc >,不等式两边同时除以b ,而b 的符号不确定,当0b <时,不等号的方向改变,则a c >错误;D.若a b >,不等式两边同时加上2c ,不等号的方向不变,则22c a c b +>+正确.故选C.【点睛】此题考查不等式的性质,难度不大,解题的关键在于熟练掌握不等式的性质. 22.D【分析】样本容量是指样本中个体的数目,据此即可求解.【详解】解:∠全年级有13个班级,每班抽25个学生参加比赛,∠调查中的样本容量是13×25=325,故选D .【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.23.464的立方根即可.【详解】的平方根是∠43=64,∠64的立方根是4故答案为4【点睛】本题主要考查了立方根和平方根,解题的关键是运用立方根和平方根的定义求值.24.4【分析】先根据二次根式有意义的条件求出x 的值,代入求出y 的值,再代入求值即可.【详解】根据题意得:420240x x -≥⎧⎨-≥⎩, ∠4x-2=0 x=12∠y=2∠4x+y=2+2=4故答案为4【点睛】本题考查的是二次根式有意义的条件及求代数式的值,能根据二次根式有意义的条件求出x 的值是关键.25.连接直线外一点与直线上所有点的连线中,垂线段最短【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【详解】解:∠连接直线外一点与直线上所有点的连线中,垂线段最短,∠沿AB 开渠,能使所开的渠道最短,故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点睛】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.26.20.【分析】由EF 与AD 平行,AD 与BC 平行,利用平行于同一条直线的两直线平行得到EF 与BC 平行,利用两直线平行同旁内角互补求出∠ACB 度数,进而求出∠FCB 度数,根据CE 为角平分线求出∠BCE 度数,再利用两直线平行内错角相等即可求出所求角度数.【详解】∠EF∠AD ,AD∠BC ,∠EF∠BC,∠∠ACB+∠DAC=180°,∠∠DAC=115°,∠∠ACB=65°,又∠∠ACF=25°,∠∠FCB=∠ACB-∠ACF=40°,∠CE平分∠BCF,∠∠BCE=20°,∠EF∠BC,∠∠FEC=∠ECB,∠∠FEC=20°,故答案为20.【点睛】本题考查了平行线的性质与判定,熟练掌握平行线的性质是解本题的关键.27.(-3,1)(0,4)【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2018除以4,根据商和余数的情况确定点A2018的坐标即可.【详解】∠A1的坐标为(3,1),∠A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∠2018÷4=504余2,∠点A2018的坐标与A2的坐标相同,为(0,4),故答案为(-3,1);(0,4)【点睛】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.28.142【分析】因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【详解】解方程组:它的解满足方程组5325x yx y+⎧⎨-⎩==,解得:解之得12x y ==⎧⎨-⎩,代入5451ax y x by +⎧⎨+⎩==, 解得142a b ⎧⎨⎩==, 故答案为14;2..【点睛】此题很简单,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.29. 如果同旁内角互补,那么这两条直线平行 真【分析】命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:∠“同旁内角互补,两直线平行”的条件是:“同旁内角互补”,结论为:“两直线平行”,∠写成“如果…,那么…”的形式为:“如果同旁内角互补,那么两直线平行”,为真命题, 故答案为:如果同旁内角互补,那么两直线平行;真.30.20【分析】直接利用平方根的定义得出n 的值进而求出m 的值,即可得出答案.【详解】m 的平方根是3n -和7n -,370n n ∴-+-=,解得:5n =,则32n -=,故4m =,则20mn =.故答案为20 .【点睛】本题考查平方根的定义,解题的关键是熟练掌握平方根的定义.31. -3 m≠ -4【详解】已知两点A(-3,m),B(n ,-4),AB∠y 轴,可得n=-3,m≠-4.32.﹣【详解】正数大于0和负数,0大于负数,所以-6<0π,故答案为-6<0π. 33. 1 2【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【详解】∠213262310a b a b x y -++--=是一个二元一次方程,∠2113261a b a b -+=⎧⎨+-=⎩, 解得,12a b =⎧⎨=⎩,故答案为1,2.【点睛】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键. 34.a≥2【分析】根据“大大小小找不到(无解)”的法则求解,但是要注意当两数相等时,解集也是空集即无解,不要漏掉相等这个关系.【详解】不等式组121x a x a ⎨⎩+-⎧<> 无解, 根据大大小小找不到(无解)可知:2a-1≥a+1,解得a≥2.故答案为a≥2.【点睛】此题考查不等式组无解的情况,解题关键在于根据“大大小小找不到(无解)”的法则求解35.110(10)2x y -=+ 【分析】本题的等量关系有:甲队调出10人到乙队,则乙队人数是甲队人数的2倍,可以列出方程.【详解】根据已知,从甲队调10人至乙队,可得甲队人数为(10)x -,乙队人数为(10)y +,又因为此时甲队人数是乙队人数的一半,故答案为110(10)2x y -=+. 【点睛】此题考查二元一次方程,解题的关键是读懂题意,熟练掌握二元一次方程. 36.243【分析】先计算出跳绳所占的百分比,再用810乘以百分比,即可解答.【详解】跳绳所占的百分比为:100%15%45%10%30%---=,81030%243⨯=(人),故答案为:243.【点睛】此题考查扇形统计图,解题的关键是读懂扇形统计图中的信息.37.(2017,2)【详解】分析:由图形得出点的横坐标依次是0、1、2、3、4、…、n ,纵坐标依次是0、2、0、-2、0、2、0、-2、…,四个一循环,继而求得答案.详解:观察图形可知,点的横坐标依次是0、1、2、3、4、…、n ,纵坐标依次是0、2、0、−2、0、2、0、−2、…,四个一循环,2017÷4=504…1,故点A2017坐标是(2017,2).故答案为(2017,2).点睛:本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解本题的关键是根据图形得出规律.38.(1)(2)-4(3)212xy=⎧⎪⎨=⎪⎩(4)-1、0、1【分析】(1)根据绝对值、算术平方根、立方根的定义即可解答.(2)根据绝对值、算术平方根、立方根及乘方的定义即可解答.(3)利用加减消元法解答.(4)分别求出两个不等式的解集,找出其公共部分即可确定整数解.【详解】(1)原式=232333(2)原式=34144(3)5211 446x yx y①②+=⎧⎨-=⎩∠×2+∠得:14x=28x=2把x=2代入∠得:10+2y=11y=12∠原方程组的解为:212 xy=⎧⎪⎨=⎪⎩(4)11313(1)8xxx x-⎧+≥⎪⎨⎪--<-⎩①②解不等式∠得:1x≤解不等式∠得:2x∠原不等式组的解集为:21x∠原不等式组的整数解为:-1、0、1【点睛】本题考查的是实数的运算、解二元一次方程组及解一元一次不等式组,掌握绝对值、算术平方根、立方根及乘方的定义及解方程组及不等式组的方法是关键.39.9【详解】分析:将m 看做常数,表示出x 与y ,代入2x y +=中,求出m 的值,即可确定出所求式子的值.详解:35223x y m x y m +=+⎧⎨+=⎩解得:264x m y m =-⎧⎨=-⎩,∠x +y =2,∠2m −6+4−m =2,解得:m =4,则2221424116819.m m -+=-⨯+=-+=点睛:考查二元一次方程组的解,掌握二元一次方程组的解法是解题的关键.40.-6【分析】分别解出两个不等式的解集,结合不等式组的解集求出a 、b 的值,代入求值即可.【详解】2123x a x b -⎧⎨-⎩①② 解不等式∠得: 12a x解不等式∠得: 32x b∠原不等式组的解集为11x -∠112321a b +⎧=⎪⎨⎪+=-⎩ ,解得:12a b =⎧⎨=-⎩ ∠()(1)(1)236a b +-=⨯-=-【点睛】本题考查的是一元一次不等式组的解集,掌握一元一次不等式组的解法及解集的确定方法是关键.41.(1)a=3或-7,b=1 (2)a=-2,b=6或-4 (3)a=3,b=-4【分析】(1)根据平行于x 轴的直线上的点的纵坐标相等列式计算即可得解;(2)根据平行于y 轴的直线上的点的横坐标相等列式计算即可得解;(3)根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列式计算即可得解.【详解】(1)∠直线AB∠x 轴,且AB=5∠b+1=2,a-1-(-3)=±5,解得a=3或-7,b=1;(2)∠直线AB∠y 轴,AB=5∠a-1=-3,b+1-2=±5,解得a=-2,b=6或-4;(3)∠A 、B 两点在第一、三象限的角平分线上,∠a-1=2,b+1=-3,解得a=3,b=-4.【点睛】本题考查了坐标与图形性质,熟记平行于坐标轴上的直线上的点的坐标特征以及象限角平分线上的点的坐标特征是解题的关键.42.(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:∠购买A 型公交车6辆,则B 型公交车4辆;∠购买A 型公交车7辆,则B 型公交车3辆;∠购买A 型公交车8辆,则B 型公交车2辆;(3)购买A 型公交车8辆,B 型公交车2辆费用最少,最少费用为1100万元.【详解】解:(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +⎧⎨+⎩==, 解得100150x y ⎧⎨⎩==, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由题意得()()1001501012006010010680a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:6≤a ≤8,因为a 是整数,所以a =6,7,8;则(10-a)=4,3,2;三种方案:∠购买A型公交车6辆,B型公交车4辆;∠购买A型公交车7辆,B型公交车3辆;∠购买A型公交车8辆,B型公交车2辆.(3)∠购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;∠购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;∠购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.43.证明见解析.【详解】试题分析:求出AD∠EF,推出∠1=∠2=∠BAD,推出DG∠AB即可.试题解析:∠AD∠BC,EF∠BC,∠∠EFB=∠ADB=90°,∠EF∠AD,∠∠1=∠BAD,∠∠1=∠2,∠∠2=∠BAD,∠DG∠AB,∠∠DGC=∠BAC.点睛:此题考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系,应用平行线的判定和性质定理时,一定要弄清楚题设和结论.44.(1)∠E=∠BME+∠END;(2)12m°;(3)∠GEK=∠BMN+n·∠GEH【详解】试题分析:(1)过点E作l∠AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;(2)利用角平分线的性质可得∠NEF=12∠MEN,∠ENP=12∠END,由EQ∠NP,可得∠QEN=∠ENP=12∠END,由(1)的结论可得∠MEN=∠BME+∠END,等量代换得出结论;(3)由已知可得∠EMN=1 n∠BMN,∠GEM=1n∠GEK,由EH∠MN,可得∠HEM=∠ENM=1n∠BMN,因为。

山东省冠县武训高级中学七年级数学下册 第6章《平面直角坐标系》综合水平测试题1 新人教版

山东省冠县武训高级中学七年级数学下册 第6章《平面直角坐标系》综合水平测试题1 新人教版

同步训练第6章《平面直角坐标系》综合水平测试题1一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.某同学的座位号为(4,2),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定2.下列各点中,在第二象限的点是( )(A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3)3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3)4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)5.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )(A )(3,2) (B )(3,2--) (C )(2,3-) (D )(2,3-)6.如果点P (5,y )在第四象限,则y 的取值范围是( )(A )0y < (B )0y > (C )0y ≤ (D )0y ≥7.如图:正方形ABCD 中点A 和点C 的坐标分别为)3,2(-和)2,3(-,则点B 和点D 的坐标分别为( ).(A ))2,2(和)3,3( (B ))2,2(--和)3,3((C ))2,2(--和)3,3(-- (D ))2,2(和)3,3(--8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( )(A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) Y X D CBA 0-3-2-1-3-2-1432143219.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5)(C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0)10.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).(A )(-2,-5) (B )(-2,5) (C )(2,-5) (D )(2,5)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.12. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限.13. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.15. 已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 的坐标是______.16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标________. A CB18.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标是 .三、认真答一答:(本大题共4小题,每小题10分,共40分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.市场宾馆超市医院火车站文化宫体育场20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。

新人教版七年级(下)期末数学试卷(含答案) (1)

新人教版七年级(下)期末数学试卷(含答案) (1)

联考七年级(下)期末数学试卷一、选择题(本大题共 8 小题,共 24.0 分) 1. 下列方程是二元一次方程的是( )A. x +2=1B. x 2+2y =2C . 1x+y =4D . x + 13y =02. 在下列实数227,3.14159265,-8,3π中无理数有( )A. 3 个B. 4 个C. 5 个D. 6 个3.下列说法不一定成立的是()A. 若 a >b ,则 a +c >b +cB. 若 a +c >b +c ,则 a >bC. 若 a >b ,则 ac 2>bc 2D. 若 ac 2>bc 2,则 a >b4.为了了解某校七年级 400 名学生的体重情况,从中抽取 50 名学生的体重进行统计分析,在这个问题中,总体是指()A. 400B. 被抽取的 50 名学生C. 400 名学生的体重D. 被抽取的 50 名学生的体重5. 已知14x y =⎧⎨=⎩是方程 k x +y =3 的一个解,那么 k 的值是()A. 7B. 1C. -1D. -76.要使两点 P 1(x 1,y 1)、P 2(x 2,y 2)都在平行于 y 轴的某一直线上,那么必须满足( )A. x 1=x 2B. y 1=y 2C. |x 1|=|y 2| D . |y 1|=|y 2| 7.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①∠BOE =70°②OF 平分∠BOD③∠POE =∠BOF ④∠POB =2∠DOF其中正确的结论的个数为( )A. 4B. 3C. 2D. 18. 在方程组14x y =⎧⎨=⎩中,若未知数 x ,y 满足 x +y >0,则 m的取值范围在数轴上的表示应是如图所示的( )A.B.C.D.二、填空题(本大题共 6 小题,共 18.0 分)9. 计算: 23-=10. 如图,AB ∥CD ,直线 EF 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2= 度.11.若方程组01x by x y +=⎧⎨+=-⎩的解是1?x y =⎧⎨=⎩,其中y 的值看不清楚了,则 b 的值是12. 若样本容量是 40,在样本的频数分布直方图中各小长方形的高之比是 3:2:4:1,则第二小组的频数为 .13. 为了解学生动地课外阅读的喜好,某校从七年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计, 图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.①由这两个统计图可知喜欢“科学常识”的学生有 90 人; ②若该年级共有 1200 名学生,则可估计喜爱“科普常识”的学生约有 360 人; ③由这两个统计图不能确定喜欢”小说”的人数; ④在扇形统计图中,“漫画”所在扇形的圆心角为 72°. 以上说法正确的是 .(填写序号)14. 若不等式组2123x a x b -<⎧⎨->⎩的解集是-3<x <2,则 a +b =.三、计算题(本大题共 1 小题,共 8.0 分) 15. (1)解方程组24824x y x y -=⎧⎨+=-⎩(2)解不等式组253(1)742x x x x -≤-⎧⎪⎨+>⎪⎩四、解答题(本大题共 9 小题,共 70.0 分) 16. x 取哪些非负整数时, 325x -的值大于213x +与 1 的差.17. 阅读理解:我们把ab c d 称作二阶行列式,规定它的运算法则为a b c d=ad -bc ,例如1234=1×4-2×3=-2,如果231x x->0,求 x 的取值范围,并在数轴上表示来.18. 某超市开业十周年举行了店庆活动,对 A 、B 两种商品实行打折出售.打折前,购买 5 件 A 商品和 1 件 B 商品需用 84 元;购买 6 件 A 商品和 3 件 B 商品需用 108 元.而店庆期间,购买 3 件 A 商品和 8 件 B 商品仅需 72 元,求店庆期间超市的折扣是多 少?19. 近年来,我国很多地区持续出现雾霾天气.某社区为了调查本社区居民对雾霾天气主要成因的认识情况,随机对该社区部分居民进行了问卷调查,要求居民从五个主要成因中只选 择其中的一项,被调查居民都按要求填写了问卷.社区对调 查结果进行了整理,绘制了如下不完整的统计图表.被调查 居民选择各选项人数统计表请根据图表中提供的信息解答下列问题:(1)填空:m = ,n = ,扇形统计图中 C 选项所占的百分比为 . (2)若该社区居民约有 6 000 人,请估计其中会选择 D 选项的居民人数. (3)对于“雾霾”这个环境问题,请你用简短的语言发出倡议.20. 如图,在 3×3 的方格内,填写了一些代数式和数.(1)在图中各行、各列及对角线上三个数之和都相等,请你求出 x ,y 的值.(2)把满足(1)的其它6 个数填入图(2)中的方格内.21. 如图,∠1=∠2,∠BAE=∠BDE,EA 平分∠BEF.(1)求证:AB∥DE;(2)BD 平分∠EBC 吗?为什么?22. △ABC 在方格中位置如图,A 点的坐标为(-3,1).(1)写出B、C 两点的坐标;(2)把△ABC 向下平移1 个单位长度,再向右平移2 个单位长度,请你画出平移后的△A1B1C1;(3)在x 轴上存在点D,使△DB1C1 的面积等于3,求满足条件的点D 的坐标.23. 在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253 名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7 名医生,现打算选租甲、乙两种客车,甲种客车载客量为40 人/辆,乙种客车载客量为30 人/辆.(1)请帮助旅行社设计租车方案;(2)若甲种客车租金为350 元/辆,乙种客车租金为280 元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45 座和30 座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4 名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20 座上座率,请直接写出旅行社的租车方案?24. 如图所示,A(1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-3,2).(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1 个单位长度,运动时间为t 秒,回答下列问题:①当t= 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.。

山东省冠县武训高级中学七年级数学下册 第7章《三角形》整章测试题1 新人教版

山东省冠县武训高级中学七年级数学下册 第7章《三角形》整章测试题1 新人教版

同步训练第7章《三角形》整章测试题 1(满分:120分 时间:90分钟)一、选择题(每题3分,共30分) 1.图中三角形的个数是( ) A .8 B .9 C .10 D .112.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个 6.下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

A 、3个 B 、4个 C 、5个 D 、6个第2题图第1题图第5题图7.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( ) (A )x 2190+(B )x 2190- (C )x 290+ (D )x +90 8.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、1809.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(全卷满分:100分,考试时间:120分钟)在很多人的印象中,数学是一门内容枯燥、难以理解的课程。

事实又是怎样的呢?一位哲人曾经说过:“生活中并不缺乏美,而是缺乏发现美的眼睛。

” 事物的数学背景,往往蕴藏在丰富多彩的生活现象中,这需要我们独到的眼光,细心的观察,大胆的想象,创造性思考,做个生活的有心人,才能获得“发现”。

同学们,经过一年的学习,你是否体会到数学就在我们的身 边?那么让我们用“发现”的眼光一同走进这次水平测试吧。

祝你成功!注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题2分,共计20) 1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE,还需要添加的条件是 .8.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)= (22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .11.下列图形中不是..正方体的展开图的是( )第5题32 1c b a 第3题 E D CB A 第7题 t (小时) 2 O 30 S (千米) 第9题 七年级数学试题卷 第1页(共6页)七年级数学 第1页(共8页)A B C D15. 由四舍五入得到近似数3.00万( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( )A.2(n -1)B.2n -1C.2(n +1)D.2n +1 17.下列关系式中,正确..的是( ) A.()222b a b a -=- B.()()22b a b a b a -=-+C.()222b a b a +=+ D.()222b 2ab a b a +-=+18. 则对这种产品来说,该厂( ) A.1月至3月每月产量逐月增加,4、5两月产量逐月 减小B.1月至3月每月产量逐月增加,4、5两月产量与3月 持平C.1月至3月每月产量逐月增加,4、5两月产量均停止 生产D. 1月至3月每月产量不变,4、5两月均停止生产 19.下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形 20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )三、精心算一算(21题3分,22题5分,共计8分)第18题 1 2 3 4 5 t (月) O c (件) 七年级数学试题卷 第2页(共6页) 七年级数学 第1页(共8页)21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)第23题 M五、请你做裁判(第25题小4分,第26小题4分,共计8分)25.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息.(2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?28.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD.小明认为图中的两个三角形全等,他的思考过程是:在△ABO 和△DCO 中第25题 1 2 3 4 5 3 七年级数学试题卷 第4页(共6页)七年级数学 第1页(共8页)2001 2002 2003 2004 2005 20061万只第27题⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是,面积是 (写成多项式乘法的形式)aa bb第30题ODCBA第28题七年级数学试题卷 第5页(共6页)七年级数学 第1页(共8页)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?七年级下学期期末水平质量检测 数学试卷参考答案及评分标准一、细心填一填(每题2分,共计20)二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分) 三、精心算一算(21题3分,22题5分,共计8分) 21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分 当x=0时,原式=2 ……5分 四、认真画一画(23题4分,24题4分,共计8分) 23.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分 五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35 解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.……2分题号 11 12 13 14 15 16 17 18 19 20 选项DCCDDABBDC第二种 第一种第24题第三种 第四种第23题M七年级数学参考答案 第1页(共2页)七年级数学 第1页(共8页)①解=(10+0.3)(10-0.3)=19.993.01022=-根据小赵的设计可以设宽为x 米,长为(x +2)米,根据题意得2x +(x +2)=35 解得x=11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分)七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,b a b a -+ . (3)b a b a -+=22b a -.(4):评分标准:每空1分,(4)小题各1分 八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.②解=[2m +(n -p )][2m -(n -p )] =()()22p n 2m -- =222p 2np n 4m -+-七年级数学参答案 第2页(共2页)七年级数学 第1页(共8页)。

相关文档
最新文档