2014年09月22日压轴题圆中考真题

合集下载

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)2014年中考数学二轮专题复习试卷:圆(时间:120分钟满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分)1.(2013湖南岳阳)两圆半径分别为3 cm和7 cm,当圆心距d=10 cm时,两圆的位置关系为( )A.外离B.内切C.相交D.外切2.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O 的周长为( )A.18πcmB.16πcmC.20πcmD.24πcm(第2题) (第3题) (第4题)3.(2013浙江舟山)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( )A.215B.8C.210D.2134.(2013福建厦门)如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°5.(2013贵州遵义)如图,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为( )33A.cm?B.(2) cm224C.cmD.3 cm3π +ππ(第5题) (第7题)6.(2013浙江义乌)已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cm10.(2012山东济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间11.(2013重庆)如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O 的周长为( )A.18πcmB.16πcmC.20πcmD.24π cm12.(2012山东烟台)如图,⊙O1,⊙O,⊙O2的半径均为2 cm,⊙O3,⊙O4的半径均为1 cm,⊙O 与其他4个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形O1O4O2O3的面积为( )A.12 cm2B.24 cm2C.36 cm2D.48 cm2(第12题) (第13题) (第14题)13.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 的值为( )33A.B.23C.3D.214.(2012浙江宁波)如图,用邻边长分别为a ,b (a <b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( )51A.b 3a B.b a 25C.b a D.b 2a 2+= == = 15.(2013湖北襄阳)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角 边AC 于点E ,B 、E 是半圆弧的三等分点,弧BE的长为23π,则图中阴影部分的面积为( ) 3A. B.99333332C. D.2223π πππ- -二、填空题(本大题共6个小题,每小题3分,共18分)16.(2012江苏扬州)已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 cm .17.(2013湖南株洲)如图,AB 是⊙O 的直径,∠BAC =42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.18.(2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,则排水管内水的深度为m.19.(2013贵州遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= °.(第19题) (第20题)20.(2013重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)21.(2013湖北孝感)用半径为10 cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为cm.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(2013江苏镇江)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC 的延长线相交于点E,以DE为直径作⊙O交AE 于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.23.(本小题满分10分)(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.24.(本小题满分10分)(2012浙江温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.25.(本小题满分12分)(2013广东)如图所示,⊙O是Rt△ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.26.(本小题满分15分)(2012浙江杭州)如图,AE切⊙O于点E,AT 交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE33,MN222.==(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.参考答案1.D2.C3.D4.B5.C6.B7.A8.C9.B10.A11.C12.B13.D14.D15.D16.4 17.48 18.0.2 19.52 20.10-π21.822.解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC =4, ∵AB =5,BD =3,∴AD =8, ∵∠ACB =90°,DE ⊥AD , ∴∠ACB =∠ADE ,∵∠A =∠A ,∴△ACB ∽△ADE ,BC AC AB,DE AD AE345,DE 8AE ∴==∴==∴DE =6,AE =10, 即⊙O 的半径为3; 过O 作OQ ⊥EF 于Q , 则∠EQO =∠ADE =90°, ∵∠QEO =∠AED , ∴△EQO ∽△EDA ,EO OQ,AE AD 3OQ ,108∴=∴=∴OQ =2.4,即圆心O 到弦EF 的距离是2.4; (2)连接EG , ∵AE =10,AC =4, ∴CE =6, ∴CE =DE =6,∵DE为直径,∴∠EGD=90°,∴EG⊥CD,∴点G为CD的中点.23.解:(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,DE23∴=,∴EC=CD-DE=423;-(2)∵AD1sin DEAAE2∠==,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:FAB DAE EAB22S S S904130482232 3.36023603--π⨯π⨯π=-⨯⨯=-扇形扇形24.(1)证明:连接OD.∵∠DOB=2∠DCB,∠A=2∠DCB, ∴∠A=∠DOB.又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,∴AB是⊙O的切线. (2)解:过点O作OM⊥CD于点M,∵OD=OE=BE=1BO,2∠BDO=90°,∴∠DBO=30°,∠DOB=60°.∠DOB,∵∠DCO=12∴∠DCO =30°, 又∵OM ⊥CD ,OM =1, ∴OC =2OM =2, ∴OB =4,OD =2, ∴BD =OB ·cos ∠DBO 34 3.2=⨯= ∴BD 的长为23.25.(1)证明:在⊙O 中,∵弦BD =BA ,且圆周角∠BCA 和∠BAD 分别对BA 和BD ,∴∠BCA =∠BAD .(2)解:∵BE ⊥DC ,∴∠E =90°. 又∵∠BAC =∠EDB ,∠ABC =90°, ∴△ABC ∽△DEB , AB AC .DEBD∴= 在Rt △ABC 中,∠ABC =90°,AB =12,BC =5, ∴由勾股定理得:AC =13, 1213144DE .DE1213∴=∴=, (3)证明:如图,连接OB , ∵OA =OB,∴∠OAB =∠OBA .∵BA =BD ,∴∠OBD =∠OBA .又∠BDC=∠OAB=∠OBA,∴∠OBD=∠BDC.∴OB∥DE,∴∠OBE=∠DBE+∠OBD=90°.即BE⊥OB于B,所以BE是⊙O的切线.26.解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°.(2)∵AE=33,∠A=30°,∴在Rt△AEC中,ECtan A tan 30,=︒=AE即EC=AE·tan 30°=3.∵OB⊥MN,∴B为MN的中点,又MN=222,∴MB=1MN22.=2连接OM ,在△MOB 中,OM =R,MB =22,22222OB OM MB R 22.COB ,BOC 30,OB 3cos BOC cos 30,OC 23BO OC,2323OC OB R 22.33OC EC OM R,23R 223R,3∴=-=-∠=︒∠=︒==∴=∴==-+==∴-+=在中又整理得:R 2+18R -115=0, 即(R +23)(R -5)=0, 解得:R =-23(舍去)或R =5, ∴⊙O 的半径R 为5.(3)在EF 同一侧,△COB 经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO 交圆O 于点D ,连接DF ,如图所示,∵EF =5,直径ED =10,可得出∠FDE =30°,∴FD=则C △EFD=51015++=+()((COBEFDCOB2C 3CC15351.=+∴=++=由可得∶∶。

2014年全国各地中考数学压轴题及答案解析(二)

2014年全国各地中考数学压轴题及答案解析(二)

2014年全国各地中考数学压轴题及答案解析(二)21.(江苏无锡)如图,菱形ABCD 的边长为2cm ,∠DAB =60°.点P 从A 点出发,以cm /s 的速度,沿AC 向C 作匀速运动;与此同时,点Q 也从A 点出发,以1cm /s 的速度,沿射线AB 作匀速运动.当P 运动到C 点时,P 、Q 都停止运动.设点P 运动的时间为t s .(1)当P 异于A 、C 时,请说明PQ ∥BC ;(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?解:(1)∵四边形ABCD 为菱形,∴AB =BC =2,∠BAC =∠DAB又∵∠DAB =60°,∴∠BAC =∠BCA =30°如图1,连接BD 交AC 于点O∵四边形ABCD 为菱形,∴AC ⊥BD ,OA =AC∴OB =AB =1,∴OA =,AC =2运动t 秒时,AP =t ,AQ =t ,∴==又∵∠P AQ =∠CAB ,∴△P AQ ∽△CAB∴∠APQ =∠ACB ,∴PQ ∥BC (2)如图2,设⊙P 与BC 切于点M ,连接PM ,则PM ⊥BC在Rt △CPM 中,∵∠PCM =30°,∴PM =PC =-t由PQ =AQ =t ,即 -t =t解得t =4-6,此时⊙P 与边BC 有一个公共点如图3,⊙P 过点B ,此时PQ =PB ∵∠PQB =∠P AQ +∠APQ =60°∴△PQB 为等边三角形∴QB =PQ =AQ =t ,∴t =1∴当4-6<t≤1时,⊙P 与边BC 有2个公共点如图4,⊙P 过点C ,此时PC =PQ 即2-t =t ,∴t =3-∴当1<t≤3-时,⊙P 与边BC 有一个公共点当点P 运动到点C ,即t =2时,⊙P 过点B此时⊙P 与边BC 有一个公共点∴当t =4-6或1<t ≤3-或t =2时,⊙P 与菱形ABCD 的边BC 有1个公共点当4-6<t≤1时,⊙P 与边BC 有2个公共点22.(江苏苏州)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形AB CD 以lcm /s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为lcm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm.设正方形移动CD图4时间为x (s ),线段GP 的长为y (cm ),其中0≤x≤2.5.(1)试求出y 关于x 的函数关系式,并求当y =3时相应x 的值;(2)记△DGP 的面积为S 1,△CDG 的面积为S 2,试说明S 1-S 2是常数;(3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.解:(1)∵CG ∥AP ,∴∠CGD =∠P AG∴tan ∠CGD =tan ∠P AG ,Error: Reference source not found ∴=∵GF =4,CD =DA =1,AF =x ,∴GD =3-x ,AG =4-x ∴=,即y =Error: Reference source not found∴y 关于x 的函数关系式为y =Error: Reference source not found 当y =3时,Error: Reference source not found=3,解得x =2.5(2)∵S 1=GP ·GD =·Error: Reference source not found·(3-x)=S 2=GD ·CD =(3-x)·1=∴S 1-S 2=-=,即为常数(3)延长PD 交AC 于点Q ∵正方形ABCD 中,AC 为对角线,∴∠CAD =45°∵PQ ⊥AC ,∴∠ADQ =45°∴∠GDP =∠ADQ =45°∴△DGP 是等腰直角三角形,∴GD =GP∴3-x =Error: Reference source not found,解得x =found∵0≤x≤2.5,∴x =Error: Reference source not found 在Rt △DGP 中,PD =Error: Reference source not found=(3-x)=23.(江苏连云港)如图,甲、乙两人分别从A (1,)、B (6,0)两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以4km /h 的速度行走,t h 后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达O 点前,MN 与AB 不可能平行.(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长,设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值.HH FEP GH HF E P G解:(1)∵A (1,),∴OA =2,∠AOB =60°假设MN ∥AB ,则有=∵OM =2-4t ,ON =6-4t ,∴= 解得t =0即在甲、乙两人到达O 点前,只有当t =0时,△OMN ∽△OAB ∴MN 与AB 不可能平行(2)∵甲达到O 点时间为t ==,乙达到O 点时间为t ==∴甲先到达O 点,∴t =或t =时,O 、M 、N 三点不能构成三角形①当t<时,若△OMN ∽△OBA ,则有 =解得t =2>,∴△OMN 与△OBA 不相似②当 <t <时,∠MON >∠OAB ,显然△OMN 与△OBA 不相似③当t > 时, = ,解得t =2>∴当t =2时,△OMN ∽△OBA(3)①当t ≤时,如图1,过点M 作MH ⊥x 轴,垂足为H 在R t △MOH 中,∵∠AOB =60°∴MH =OM ·sin60°=( 2-4t )× =( 1-2t)∴NH = ( 4t -2 )+( 6-4t)=5-2t∴s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28②当 <t ≤时,如图2,作MH ⊥x 轴,垂足为H 在R t △MNH 中,MH = ( 4t -2 )=( 2t -1)NH = ( 4t -2 )+( 6-4t)=5-2t∴s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28③当t > 时,同理可得s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28综上所述,s =16t2-32t +28∵s =16t 2-32t +28=16( t -1)2+12∴当t =1时,s 有最小值为12∴甲、乙两人距离的最小值为2km24.(江苏南通)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点.点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.(1)若a =2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形.①若a =,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.CBDAQ P解:(1)∵BC =12,D 是BC 的中点∴BD =C D =6∵a =2,∴BP =2t ,DQ =t ,BQ =6-t ∵△BPQ ∽△BDA ,∴=∴=,∴t =(2)①∵a =,∴BP =t∵四边形PQCM 为平行四边形,∴PQ ∥AC ∴△BPQ ∽△BAC ,∴=∴=,∴t =,∴BP =∵AB =AC ,∴PQ =BP =②不存在理由:假设存在实数a ,使得点P 在∠ACB的角平分线上则四边形PQCM 为菱形,∴BP =PQ =CQ =6+t 由①知,=,∴=∴t =-<0∴不存在实数a ,使得点P 在ACB 的角平分线上25.(江苏宿迁)如图,在平面直角坐标系xO y 中,已知直线l 1:y =x 与直线l 2:y =-x +6相交于点M ,直线l 2与x 轴相交于点N .(1)求M 、N 的坐标;(2)在矩形ABCD 中,已知AB =1,BC =2,边AB 在x 轴上,矩形ABCD 沿x 轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD 与△OMN 的重合部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).直接写出S 与自变量t 之间的函数关系式(不需要给出解答过程);(3)在(2)的条件下,当t 为何值时,S 的值最大?并求出最大值.解:(1)对于y =-x +6,令y =0,得x =∴点N 的坐标为(6,0)CB DAQ P MBA CDOB由题意,得解得∴点M 的坐标为(4,2)(2)当0≤t≤1时,S =t2当1<t≤4时,S =t -当4<t<5时,S =- t2+t -当5≤t<6时,S =-t +当6≤t≤7时,S =(7-t)2(3)解法一:当0≤t≤1时,S 最大=当1<t≤4时,S 最大=当4<t<5时,S =-(t -)2+∴当t =时,S 最大=当5≤t<6时,S 最大=当6≤t≤7时,S 最大=综上可知,当t =时,S解法二:由(2)中的函数关系式可知,S 当4<t<5时,S =-(t -)2+∴当t =时,S 的值最大,且最大值是 26.(江苏模拟)已知抛物线与x 轴交于B 、C (1,0)两点,与y 轴交于点A ,顶点坐标为(,-).P 、Q 分别是线段AB 、OB 上的动点,它们同时分别从点A 、O 向B 点匀速运动,速度均为每秒1个单位,设P 、Q 运动时间为t (0≤t ≤4).(1)求此抛物线的解析式,并求出P 点的坐标(用t 表示);(2)当△OPQ 面积最大时求△OBP 的面积;(3)当t 为何值时,△OPQ 为直角三角形?(4)△OPQ 是否可能为等边三角形?若可能请求出t 的值;若不可能请说明理由,并改变Q 点的运动速度,使△OPQ 为等边三角形,求出Q 点运动的速度和此时t 的值.解:(1)设抛物线的解析式为y =a (x -)2-∵抛物线过点C (1,0)∴0=a (1-)2-,∴a =∴y =(x -)2-令y =0,得x 1=1,x 2=4,∴B (4,0)令x =0,得y =3,∴A (0,3)A MCD B A C DBB∴AB ==5过点P 作PM ⊥y 轴于M 则△AMP ∽△AOB ,∴==即==,∴AM =t ,PM =t ∴P (t ,3-t )(2)过点P 作PN ⊥x 轴于N ∴S △OPQ=OQ ·PN =·t ·(3-t)=-t2+t =-(t -)2+∴当t = 时,△OPQ 面积最大此时OP 为AB 边上的中线∴S △OBP=S △AOB=××3×4=3(3)若∠OPQ =90°,则OP 2+PQ 2=OQ 2∴( t)2+(3- t)2+(t -t)2+(3-t)2=t2解得t 1=3,t 2=15(舍去)若∠OQP =90°,则PM =OQ ∴t =t ,∴t =0(舍去)∴当t =3时,△OPQ 为直角三角形(4)∵OP 2=( t)2+(3- t)2,PQ 2=(t - t)2+(3- t)2∴OP ≠PQ ,∴△OPQ 不可能是等边三角形设Q 的速度为每秒k 个单位时,△OPQ 为等边三角形则OQ =2PM ,∴kt =2·t ,得k =PN =OP =OQ ,∴3-t = ·t ∴t =27.(江苏模拟)如图,在梯形纸片ABCD 中,BC ∥AD ,∠A +∠D =90°,tan A =2,过点B 作BH ⊥AD 于H ,BC =BH =2.动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作FE ⊥AD 交折线D -C -B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1.设F 点运动的时间是t (秒).(1)当点E 和点C 重合时,求t 的值;(2)在整个运动过程中,设△EFD 1或四边形EFD 1C 1与梯形ABCD 重叠部分面积为S ,求S 与t 之间的函数关系式和相应自变量t 的取值范围;(3)平移线段CD ,交线段BH 于点G ,交线段AD 于点P .在直线BC 上是否存在点Q ,使△PGQ 为等腰直角三角形?若存在,求出线段BQ 的长;若不存在,说明理由.解:(1)过点C 作CK ⊥AD 于K则四边形BHKC 是矩形,∴HK =BC =2,CK =BH =2在Rt △CKD 中,∠DCK +∠D =90°∵∠A +∠D =90°,∴∠DCK =∠AD 1ABCFEDHAB CDH备用图AB CDH K∴tan ∠DCK =tan A =2,即=2∴DK =4,即t =4(2)∵=tan A =2,BH =2,∴AH =1∴AD =AH +HK +DK =1+2+4=7①当0<t≤3.5时,重叠部分为△EFD 1由题意,D 1F =DF =t在Rt △EFD 中,∠DEF +∠D =90°∵∠A +∠D =90°,∴∠DEF =∠A∴tan ∠DEF =tan A =2,即=2,∴EF =t ∴S =S △EFD 1=D 1F ·EF =t ·t = t2②当3.5<t≤4时,重叠部分为四边形AFEM过点M 作MN ⊥AD 于N则tan A =D 1A =2t -7,=tan A =2,得AN =MN=tan D 1=tan D =cot A =即 = ,得MN = ( 2t -7)∴S =S △EFD 1 - S △MD 1A = t 2- ( 2t -7 )·( 2t -7)=- t 2+ t -③当4<t≤5时,重叠部分为五边形AFEC 1MS =S △C 1D 1FE - S △MD 1A = ( t -4+t )·2- ( 2t -7 )·( 2t -7)=- t 2+ t -④当5<t≤6时,重叠部分为梯形AFEBS =S 梯形AFEB = ( 6-t +7-t)·2=-2t +13(3)①当点P 为直角顶点时作QO ⊥AD 于O ,则∠GPH +∠QPO =90°∵∠GPH +∠PGH =90°,∴∠PGH =∠QPO又∵PG =PQ ,∠GHP =∠POQ =90°∴△GHP ≌△POQ ,∴HP =OQ =2,PO =OQ =1∴BQ =HO =3②当点Q 为直角顶点时同①可证△BQG ≌△OQP ,∴BQ =OQ =2③当点G 为直角顶点时同①可证△BQG ≌△HGP ,∴BG =HP =2GH =2BQ∵BG +GH =BH ,∴2BQ +BQ =2,∴BQ =∴在直线BC 上存在点Q ,使△PGQ 为等腰直角三角形,线段BQ 的长为3,2,28.(江苏模拟)如图1,直线l :y =-x +3分别交x 轴、y 轴于B 、A 两点,等腰Rt △CDE 的斜边C D 在x 轴上,且C D =6.若直线l 以每秒3个单位的速度向上匀速运动,同时点C 从(6,0)开始以每秒2个单位的速度向右匀速运动(如图2),设运动后直线l 分别交x 轴、y 轴于N 、M 两点,以OM 、ON 为边作如图所示的矩形OMPN .设运动时间为t 秒.(1)运动t 秒后点E 坐标为______________,点N 坐标为______________(用含t 的代数式表示);(2)设矩形OMPN 与运动后的△CDE 的重叠部分面积为S ,求S 与t 的函数关系式,并写出相应的t 的取值范围;(3)若直线l 和△CDE 运动后,直线l 上存在点Q 使∠OQC =90°,则当在线段MN 上符111A B C DH P O QG A B C DH P O G (Q )A B C DH P G Q合条件的点Q 有且只有两个时,求t 的取值范围;(4)连接PC 、PE ,当△PCE 是等腰三角形时,直接写出t 的值.解:(1)E (9+2t ,3),N (4+4t ,0)(2)运动t 秒时,ON =4+4t ,OC =6+2t ,OD =12+2t 当点N 与点C 重合时,4+4t =6+2t ,得t =1当点E 在边PN 上时,4+4t =9+2t ,得t =2.5当点N 与点D 重合时,4+4t =12+2t ,得t =4①当1<t≤2.5时,重叠部分为等腰Rt △CFN CN =FN =4+4t -(6+2t)=2t -2∴S =(2t -2 )2=2t 2-4t +2②当2.5<t<4时,重叠部分为四边形CEGN ND =12+2t -(4+4t)=8-2t∴S =S △CDE-S △NGD=×6×3-(8-2t)2=-2t 2+16t -23③当t ≥4时,重叠部分为△CDE ∴S =×6×3=9(3)①当直线l 过点C ,即C 、N 重合时,则线段MN 上只存在一点Q 使∠OQC =90°由(2)知,此时t =1②以OC 为直径作⊙O ′,当直线l 切⊙O ′ 于点Q 时,则线段MN 上只存在一点Q 使∠OQC =90°OO ′=O ′Q =OC =3+tO ′N =ON -OO ′=4+4t -(3+t)=1+3t 由=sin ∠O ′NQ =sin ∠MNO =得=,解得t =3所以当在线段MN 上符合条件的点Q 有且只有两个时,t 的取值范围是1<t<3(4)t =,t =,t =,t =1提示:∵P (4+4t ,3+3t ),C (6+2t ,0),E (9+2t ,3∴PC 2=(2t -2)2+(3+3t)2PE 2=(2t -5)2+(3t)2,CE 2=18若PC =PE ,则(2t -2)2+(3+3t)2=(2t -5)2+(3t)2解得t =若PC =CE ,则(2t -2)2+(3+3t)2=18解得t =(舍去负值)若PE =CE ,则(2t -5)2+(3t)2=18解得t =1或t =29.(江苏模拟)如图,抛物线y =ax2+bx +c A 、B (A 在B 的左侧),连接AC 、BC ,得等边△ABC .点的速度向点A 运动,同时点Q 从点C 出发,以每秒个单位的速度向y 轴负方向运动,连接PQ 交射线BC 于点D ,当点P 到达点A 时,点Q 停止运动.设运动时间为t 秒.(1)求抛物线的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数关系式;(3)以点P 为圆心,PB 为半径的圆与射线BC 交于点E ,试说明:在点P 运动的过程中,线段DE 的长是一定值,并求出该定值.解:(1)∵抛物线y =ax2+bx +c 的顶点为C (0,-)∴抛物线的对称轴是y 轴,∴b =0可设抛物线的解析式为y =ax2-∵△ABC 是等边三角形,且CO ⊥AB ,CO =∴AO =1,∴A (-1,0)把A (-1,0)代入y =ax 2-,得a =∴抛物线的解析式为y =x2-(2)当0<t<1时,OP =1-t ,CQ =t ∴S =CQ ·OP =·t ·(1-t)=- t2+t 当1<t<2,OP =t -1,CQ =t ∴S =CQ ·OP =·t ·(t -1)= t2-t(3)连接PE ,过D 作DH ⊥y 轴于H ,设DH =a ①当0<t<1时∵PB =PE ,∠PBE =60°∴△PBE 为等边三角形∴BE =PB =t ∵△QDH ∽△QPO ∴=,即=∴a =,∴DC =1-t∴DE =CB -EB -DC =2-t -(1-t)=1②当1<t<2时同理,△QDH ∽△QPO ,得=∴=∴a =,∴DC =t -1∴DE =DC +CE =t -1+(2-t)=1综上所述,在点P 运动的过程中,线段DE 的长是定值230.(河北)如图,点A (-5,0),B (-3,045°,CD ∥AB ,∠CDA =90°.点P 从点Q (4,0度运动,运动时间为t 秒.(1)求点C 的坐标;(2)当∠BCP =15°,求t 的值;(3)以点P为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 解:(1)∵∠BCO =∠CBO =45°,∴OC =OB =3又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3)(2)当点P 在点B 右侧时,如图2若∠BCP =15°,得∠PCO =30°故OP =OC ·tan30°=此时t =4+当点P 在点B 左侧时,如图3由∠BCP =15°,得∠PCO =60°故OP =OC ·tan60°=3此时t =4+3∴t 的值为4+或4+3(3)由题意知,若⊙P 与四边形ABCD 的边相切,有以下三种情况:①当⊙P 与BC 相切于点C 时,有∠BCP =90°从而∠OCP =45°,得到OP =3,此时t =1②当⊙P 与CD 相切于点C 时,有PC ⊥CD 即点P 与点O 重合,此时t =4③当⊙P 与AD 相切时,由题意,∠DAO =90°∴点A 为切点,如图4PC 2=P A 2=(9-t)2,PO 2=(t -4)2于是(9-t)2=(t -4)2+32,解得:t =5.6∴t 的值为1或4或5.631.(河北模拟)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =6.点P 从点A 出发沿AB 以每秒2个单位长的速度向点B 匀速运动;点Q 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动.运动过程中DE 保持垂直平分PQ ,且交PQ 于点D ,交折线PB -BC 于点E .点P 、Q 同时出发,当点P 到达点B 时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒.(1)当t =______________秒,直线DE 经过点B ;当t =______________秒,直线DE 经过点A ;(2)四边形DPBE 能否成为直角梯形?若能,求t 的值;若不能,请说明理由;(3)当t 为何值时,点E 是BC 的中点?(4)以E 为圆心,EC 长为半径的圆能否与AB 、AC 、PQ 同时相切?若能,直接写出t 的值;若不能,请说明理由.解:(1);2提示:在Rt △ABC 中,∠C =90°,AB =10,AC =6∴BC == =8当直线DE 经过点B 时,连接QB ,则PB =QB ∴(10-2t)2=t2+82,解得t =(舍去)或t =当直线DE 经过点A 时,AP =AQ ∴2t =6-t ,即t =2(2)①当DE ∥PB 时,四边形DPBE 是直角梯形BQ ADCPEBQ ADCP (E )此时∠APQ =90°,由△AQP ∽△ABC ,得=即=,解得t =②当PQ ∥BC 时,四边形DPBE 是直角梯形此时∠AQP =90°,由△APQ ∽△ABC ,得=即=,解得t =(3)连接QE 、PE ,作EG ⊥PB 于G ,则QE =PE ∵QE 2=t2+42PE 2=PG 2+EG 2=(10-2t -×4)2+(×4)2∴t2+42=(10-2t -×4)2+(×4)2解得t =(舍去)或t =(4)不能设⊙E 与AB 相切于F 点,连接EF 、EP 、EQ 则EC =EF ,EQ =EP ,∠ECQ =∠EFP =90°∴△ECQ ≌△EFP ,∴QC =PF∴∠C =90°,∴⊙E 与AC 相切于C 点∴AC =AF ,∴AQ =AP 又AD =AD ,DQ =DP∴△ADQ ≌△ADP ,∴∠ADQ =∠ADP =90°又∠QDE =90°,∴A 、D 、E 三点在同一直线上由(1)知,此时t =2,AQ =6-t =4∵AB =10,AC =6,∴sin B ===设EC =EF =x ,则EB ==x ∴EC +EB =BC ,∴x +x =8∴x =3,∴EC =EF =3∴AE ===3易知△ADQ ∽△ACE ,∴=∴=,∴AD =∴ED =AE -AD =3-==而EC =3=,∴ED >EC ∴此时⊙E 与PQ 相离∴⊙E 不能与AB 、AC 、PQ 同时相切32.(山东青岛)如图,在Rt △ABC 中,∠C =90º,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t<4).解答下列问题:(1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在B 、E 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE :S 五边形PQBCD=1 :29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.A BC备用图EDAB C DBQ ADC P EBQAD CPEBQ ADCEPGBQ ADC PEF1①Rt△ABC C90ºAC6BC8-+×12当t=2时,PM=(4-2)=,ME=(4-2)=EQ=5-2×2=1,MQ=ME+EQ=+1=PQ==∵PQ·h=,∴h=×=33.(山东烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P 从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G.当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H B B解:(1)A (1,4)由题意,可设抛物线解析式为y =a (x -1)2+4∵抛物线过点C (3,0)∴0=a (3-1)2+4,∴a =-1∴抛物线的解析式为y =-(x -1)2+4即y =-x2+2x +3(2)∵A (1,4),C (3,0)∴可求直线AC 的解析式为y =-2x +6P (1,4-t ) 将y =4-t 代入y =-2x +6中,解得点E 的横坐标为x =1+∴点G 的横坐标为1+,代入抛物线的解析式中,可求点G 的纵坐标为4-∴GE =( 4- )-( 4-t )=t -又点A 到GE 的距离为 ,C 到GE 的距离为2-即S △ACG =S △AEG + S △CEG = EG · + EG ( 2- )= ·2( t - )=- ( t -2)2+1当t =2时,S △ACG 的最大值为1(3)t =或t =20-8提示:∵A (1,4),C (3,0),∴AB =4,BC =2∴AC = =2,∴cos ∠BAC = = =∵PE ⊥AB ,AP =t ,∴AE = =t ∴CE =2-t若EQ =CQ ,则在矩形ABCD 内存在点H ,使四边形CQEH 为菱形过点Q 作QN ⊥EC 于N ,则CE =2CN在Rt △QNC 中,CN =CQ ·cos ∠ACD =CQ ·cos ∠BAC =t ∴2- t = t ,解得t =若CE =CQ ,则在矩形ABCD 的AD 边上存在点H ,使四边形CQHE 为菱形∴2-t =t ,解得t =20-834.(山东模拟)把Rt △ABC 和Rt △DEF 按图1摆放(点C 与点B 、C (E )、F 在同一条直线上.∠BAC =∠DEF =90°,∠ABC =45°,BC ==8.如图2,△DEF 从图1的位置出发,以1个单位/秒的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△DEF 的顶点F 出发,以3个单位/秒的速度沿FD 向点D 匀速移动.当点P 移动到点D 时,P 点停止移动,△DEF 也随之停止移动.DE 与AC 相交于点Q ,连接BQ 、PQ ,设移动时间为t (s ).(1)设△BQE 的面积为y ,求y 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)当t 为何值时,三角形DPQ 为等腰三角形?(3)是否存在某一时刻t ,使P 、Q 、B 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(E )AD图1A D图2PQ解:(1)∵∠ACB =45°,∠DEF =90°,∴∠EQC =45°∴EC =EQ =t ,∴BE =9-t ∴y =BE ·EQ =(9-t)t 即y =- t2+t (0<t≤)(2)在Rt △DEF 中,∵∠DEF =90°,DE =6,EF =8∴DF ===10①当DQ =DP 时,则6-t =10-3t ,解得t =2②当PQ =PD 时,过P 作PG ⊥DQ 于G 则DH =HQ =(6-t)∵HP ∥EF ,∴△DHP ∽△DEF ∴=,即 = ,解得t =③当QP =QD 时,过Q 作QH ⊥DP 于H 则DH =HP = ( 10-3t)可得△DHQ ∽△DEF ,∴ =即 = ,解得t =(3)假设存在某一时刻t ,使P 、Q 、B 三点在同一条直线上过P 作PK ⊥BF 于K ,则△PKF ∽△DEF ∴ = = ,即 = =∴PK = t ,KF =t∵P 、Q 、B 三点共线,∴△BQE ∽△BPK ∴ = ,即 = ,解得t =即当t =秒时,P 、Q 、B 三点在同一条直线上35.(山东模拟)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于D ,且BD =8cm .点M 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时直线PQ 由点B 出发沿BA 方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于P ,交BC 于Q ,连接PM ,设运动时间为t (s ).(1)当四边形PQCM 是等腰梯形时,求t 的值;(2)当点M 在线段PC 的垂直平分线上时,求t 的值;(3)当t 为何值时,①△PQM 是等腰三角形;②△PQM 是直角三角形;(4)是否存在时刻t ,使以PM 为直径的圆与BC 相切?若存在,求出t 的值;若不存在,请说明理由.AD P QABD EFPQC G ABD E FHQCPAD PQ解:(1)作PE⊥AC于E,作QF⊥AC于F 若四边形PQCM是等腰梯形,则ME=CF 易知四边形PQFE是矩形,∴EF=PQ∴PQ∥AC,∴△PBQ∽△ABC∴AB=AC,∴PQ=PB=t,∴EF=t∴AB=10,BD=8,∴AD==6易证△APE∽△ABD,∴=即=,∴AE=6-t∴ME=AE-AM=6-t-2t=6-tCF=AC-(AE+EF)=10-(6-t+t)=4-t由ME=CF,得6-t=4-t,解得t=∴当t=s时,四边形PQCM是等腰梯形(2)若点M在线段PC的垂直平分线上,则MP=MC 作MG⊥AB于G,则△AMG∽△ABD∴==,∴==∴AG=t,MG=t∴PG=10-t-t=10-t在Rt△GPM中,MP2=(t)2+(10-t)2=t2-44t+100又∵MC2=(10-2t)2=4t2-40t+100由MP=MC,得t2-44t+100=4t2-40t+100解得t1=,t2=0(舍去)∴当t=s时,点M在线段PC的垂直平分线上(3)①若PQ=PM,则t2=t2-44t+100即8t2-55t+125=0△=(-55) 2-4×8×125=-975<0,方程无实数解若MP=MQ,则点M在线段PQ的垂直平分线上作PE⊥AC于E,∴EM=PQ=t由(1)知,AE=6-t∵AE+EM=AM,∴6-t+t=2t解得t=若PQ=MQ,作PE⊥AC于E,作QF⊥AC于F由(1)知,QF=PE∴△APE∽△ABD,∴=即=,∴QF=PE=8-t又FM=AM-(AE+EF)=2t-(6-t+t)=t-6∴MQ2=(8-t)2+(t-6)2=t2-32t+100由PQ=MQ,得t2=t2-32t+100解得t1=,t2=10(舍去)∴当t=s或t=s时,△PQM是等腰三角形②若∠MPQ=90°,则AM=6-t∴2t=6-t,∴t=若∠PMQ=90°,则PM2+QM2=PQ2∴t2-44t+100+t2-32t+100=t2即12t2-95t+250=0△=(-55) 2-4×8×125=-2975<0,方程无实数解若∠PQM=90°,作PE⊥AC于E则AE=6-t,EM=PQ=t∵AE+EM=AM,∴6-t+t=2tEACFBDPQMAC BDPQMGEAC BDPQMEAC BDPQMFAC BDPQMEAC BDPQM∴t=∴当t=s或t=s时,△PQM是直角三角形(4)设PM的中点为N,分别过P、N、M作BC的垂线,垂足为G、K、H易证△PBG∽△BCD,△MCH∽△BCD∴=,=∵AC=10,AD=6,∴DC=4∴BC==4∴=,=∴PG=t,MH=(10-2t)∴NK=(PG+MH)=(10-t)若以PM为直径的圆与BC相切,则PM=2NK∴PM2=4NK2∴t2-44t+100=(10-t)2解得t1=,t2=∴当t=s或t=s时,以PM为直径的圆与BC相切36.(内蒙古包头、乌兰察布)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P、Q分别从点A和点B同时出发,其中点P以l cm/秒的速度沿AC向终点C运动;点Q以1.25cm/秒的速度沿BC向终点C运动.过点P 作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(3)当t为何值时,△EDQ为直角三角形.解:(1)能.∵点P的速度为l cm/秒,点Q的速度为1.25cm/秒,t=1秒∴AP=1,BQ=1.25∴QD=BC-CD-BQ=5-3-1.25=0.75∵PE∥BC,∴△APE∽△ACD∴=,即=∴PE=0.75,∴PE=QD∴四边形EQDP是平行四边形(2)∵AC=4,BC=5,AP=t,BQ=1.25t∴CP=4-t,CQ=5-1.25t∴=,==∴=,∴PQ∥AB(3)①当∠EQD=90°时易证△EDQ∽△ADC,∴=A图1图1AC BDPQMG HKNA图1图1A图1图1显然点Q 在点D 右侧,DQ =1.25t -2,EQ =PC =4-t ∴=,解得t =2.5②当∠DEQ =90°时易证△DEQ ∽△DCA ,∴=∵PE ∥BC ,∴△APE ∽△ACD ,∴=∵AC =4,CD =3,∴AD =5∴=,∴AE =1.25t ,DE =5-1.25t 显然点Q 在点D 右侧,DQ =1.25t -2∴=,解得t =3.1∴当t =2.5秒或t =3.1秒时,△EDQ 为直角三角形37.(内蒙古呼伦贝尔)如图①,在平面直角坐标系内,Rt △ABC ≌Rt △FED ,点C 、D 与原点O 重合,点A 、F 在y 轴上重合,∠B =∠E =30°,AC =FD =.△FED 不动,△ABC 沿直线BE 以每秒1个单位的速度向右平移,直到点B 与点E 重合为止.设平移时间为x (秒),平移过程中AB 与EF 的交点为M .(1)求出图①中点B 的坐标;(2)如图②,当x =4秒时,求出过F 、M 、A 三点的抛物线的解析式;此抛物线上有一动点P ,以点P 为圆心,以2为半径的⊙P 在运动过程中是否存在与y 轴相切的情况,若存在,直接写出P 点的坐标;若不存在,请说明理由;(3)设移动x 秒后两个三角形重叠部分的面积为S ,求出整个运动过程中S 与x 的函数关系式.解:(1)如图①,在Rt △ABC 中,AC =,∠B =30°∴BC =AC =3,∴B (-3,0)(2)如图②,∵x =4,∴A (4,),B (1,0)过M 作MH ⊥BE 于H由题意,OE =BC =3,∴BE =2∵∠B =∠E ,∴MB =ME∴BH =BE =1,∴OH =2,MH =∴M (2,)设抛物线的解析式为y =ax2+bx +c ,把F 、M 、A 三点坐标代入 解得∴抛物线的解析式为y =x2-x +P 1(2,)或P 2(-2,3)提示:若半径为2的⊙P 与y 轴相切,那么点P 的横坐标为2或-2A图1图1当x =2时,y =x2-x +=当x =-2时,y =x2-x +=3∴存在符合条件的点P ,坐标为P 1(2,)或P 2(-2,3)(3)当点B 、O 重合时,x =3,所以整个运动过程可分为两个阶段:①当0≤x<3时,如图③BO =3-x ,CD =x ,OG =CH =BO = ( 3-x)FG =- ( 3-x )=x∴S =S 梯形FDCH -S △FGM= [ + ( 3-x )]·x -·x ··x=- x2+x②当3≤x ≤6时,如图④,BE =3-( x -3)=6-x∴S =S △BME = ( 6-x )· ( 6-x )·= x2-x +3综上所述,S 与x 的函数关系式为:S =38.(哈尔滨模拟)如图,在平面直角坐标系中,Ox 轴正半轴上,且OA =4,AB =2,将△OAB 沿某条直线翻折,使OA 与y 轴正半轴的OC 重合.点B 的对应点为点D ,连接AD 交OB 于点E .(1)求AD 所在直线的解析式:(2)连接BD ,若动点M 从点A 出发,以每秒2个单位的速度沿射线AO 运动,线段AM 的垂直平分线交直线AD 于点N ,交直线BD 于点Q .设线段QN 的长为y (y ≠0),点M 的运动时间为t 秒,求y 与t 之问的函数关系式(直接写出自变量t 的取值范围);(3)在(2)的条件下,连接MN ,当t 为何值时,直线MN 与过D 、E 、O 三点的圆相切,解:(1)由题意,△OAB ≌△OCD ∴OC =OA =4,CD =AB =2∴D (2,4)设直线AD 的解析式为y =kx +b ,把A (4,0),D (2,4)代入 解得∴y =-2x +8(2)由B (4,2),D (2,4),可得直线BD 的解析式为y =-x +6∵直线NQ 垂直平分线段AM∴NH ⊥AM ,AH =MH =AM =×2t =t备用图B D OC M H G BDE M∴OH =4-t ,∴H (4-t ,0)∴点Q 、N 的横坐标为为4-t∴QH =-(4-t)+6=t +2,NH =-2(4-t)+8=2t 当0<t<2时,点Q 在点N 上方y =QN =t +2-2t =-t +2当t>2时,点Q 在点N 下方y =QN =2t -(t +2)=t -2(3)过点D 作DF ⊥OA 于F ,则CD ∥OF ,CD =OF =2∴OA =4,∴AF =OF =2∴DF ⊥OA ,∴OD =AD ,∠ODC =∠DOF =∠DAF ∴△OAB ∴△OCD ,∴∠COD =∠AOB∴∠COD +∠AOD =90°,∴∠OED =∠AOB +∠OAD =90°∴OD 为经过D 、E 、O 三点的圆的直径,OD 的中点O ′ 为圆心在Rt △OCD 中,OD ==2tan ∠COD ==,tan ∠ODC ==2∵NH 垂直平分线段AM ,∴∠NMA =∠NAM∴∠DOA =∠NAM ,∠NMA =∠DOA ,∴MN ∥OD设直线MN 与⊙O ′ 相切于G 点,连接O ′G ,作GK ⊥OA 于K ,MI ⊥则∠OO ′G =∠O ′GM =90°∵MI ⊥OD ,∴四边形O ′IMG 为矩形∴IM =O ′G =,MG =O ′I∴OI =,OM =,∴MG =O ′I =∴KG =1,MK =,∴OK =3,∴G (3,1)∴OM +AM =OA ,∴+2t =4,∴t =同理可求当t =时,切点G (-1,3)∴当t =或t =时,直线MN 与过D 、E 、O 1,3)39.(哈尔滨模拟)如图,在平面直角坐标系中,直线y =x +b 与x 轴交于点A ,与正比例函数y =-x 的图象交于点B ,过B 点作BC ⊥y 轴,点C 为垂足,C (0,8).(1)求直线AB 的解析式;(2)动点M 从点A 出发沿线段AO 以每秒1个单位的速度向终点O 匀速移动,过点M 作x 轴的垂线交折线A -B -O 于点P .设M 点移动的时间为t 秒,线段BP 的长为d ,求d 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,动点Q 同时从原点O 出发,以每秒1个单位的速度沿折线O -C -B 向点B 移动,当动点M 停止移动时,点Q 同时停止移动.当t 为何值时,△BPQ 是等腰三角形?备用图备用图解:(1)∵BC⊥y轴,点C为垂足,C(0,8)∴点B的纵坐标为8∴y=-x,当y=8时,x=-6,∴B(-6,8)把(-6,8)代入y=x+b,得8=-6+b,∴b=14 Array∴直线AB的解析式为y=x+14(2)由题意得AM=t∴直线AB:y=x+14交x轴于点A∴A(-14,0),∴OA=14过点B作BD⊥x轴于点D∴B(-6,8),∴BD=8,OD=6∴AD=14-6=8,∴AB==810∴∠BAD45°cos∠DOB∵BP = ( t -8 ),BK = ( 14-t )∴( t -8 )= ( 14-t ),解得t =综上,当t =2或t =10或t = 或t =时,△BPQ 是等腰三角形40.(哈尔滨模拟)如图,直线y = x +12分别与x 轴、y 轴交于点A 、B ,直线BC 交x 轴于点C ,且AB =AC .(1)求直线BC 的解析式;(2)点P 从点C 出发沿线段CO 以每秒1个单位的速度向点O 运动,过点P 作y 轴的平行线,分别交直线BC 、直线AB 于点Q 、M ,过点Q 作QN ⊥AB 于点N .设点P 的运动时间为t (秒),线段MN 的长为d ,求d 与t 的函数关系式,并直接写出自变量t 的取值范围;(3)若经过A 、N 、Q 三点的圆与直线BC 交于另一点K ,当t 为何值时,KQ : AQ = :10?解:(1)∵直线y = x +12分别与x∴A (-9,0),B (0,12),∴OA =9,OB =12∴AB = =15,∴sin ∠BAO = =∵AB =AC ,∴AC =15,∴C (6,0)设直线BC 的解析式为y =kx +b∴ 解得∴直线BC 的解析式为y =-2x +12(2)由题意,PC =t ,∴OP =6-t∴点P 的横坐标为6-t∴PM = ( 6-t )+12,PQ =-2( 6-t )+12∴MQ =PM -PQ =20- t∵∠AMP +∠MAP =∠AMP +∠MQN =90°∴∠MQN =∠MAP =∠BAO∴sin ∠MQN =sin ∠BAO = ∴MN =MQ ·sin ∠MQN = ( 20- t )=16- t∴d =16- t (0≤t <6)(3)连接AK 、AQ∵∠ANQ =90°,∴AQ 为经过A 、N 、Q 三点的圆的直径∴∠AKQ =90°∵OB =12,OC =6,∴BC = =6由S △ABC = AC ·OB = BC ·AK ,得AK =6∵KQ : AQ = :10,∴设KQ =m ,则AQ =m在Rt△AKQ中,AK2+KQ2=AQ2∴(6)2+m2=(m)2,m=2∴AQ=m=10∵tan∠BCO==2,∴PQ=PC·tan∠BCO=2t 在Rt△AQP中,AP2+PQ2=AQ2∴(15-t)2+(2t)2=(10)2解得t1=1,t2=5∴当t=1或t=5时,KQ:AQ=:10。

2014全国各地中考数学压轴题集锦答案(一)

2014全国各地中考数学压轴题集锦答案(一)

2014全国各地中考数学压轴题集锦答案(一)D②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A(1,2)∴⎩⎨⎧c =2a +3+c =2 解得⎩⎨⎧a =-1c =0∴抛物线y 1的解析式为y 1=-x2+3x x AyO B C P F ED Q GN M xA yO B C PF ED Q GN M H令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a 可得△ODP ∽△OAH ,∴DPOP=AHOH=2∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a ) ∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=79∴OP 的长为79②设直线AC 的解析式为y =kx +b∴⎩⎨⎧2=k +b 0=6k +b 解得k =2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +12 5由题意,OP =t ,PF =2t ,QC =2t ,GQ =45t 当EF 与MN 重合时,则OF +CN =6 O P N Q C xyD AEF M GO P N Q CxyD AE F MG∴3t +2t +4 5 t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6 ∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6∴t +2t +4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6 ∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使OP N QCxyD A EF MGO P NQC xyDA EF MGMQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎨⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-1 3x2+ 13x +4(2)连接DQ ,依题意知AP =t ∵抛物线y =-1 3x2+ 13x +4与y 轴交于点C∴C (0,4)又A (-3,0,B (4,0)xA y OCB D P Q可得AC=5,BC=42,AB=7∵BD=BC,∴AD=AB-BD=7-42∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP∵BD=BC,∴∠DCB=∠CDB∴∠CDQ=∠DCB,∴DQ∥BC∴△ADQ∽△ABC,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP=42-327,∴AP=AD+DP=177∴线段PQ被CD垂直平分时,t的值为17 7(3)设抛物线y=-13x2+13x+4的对称轴x=12与x轴交于点E由于点A、B关于对称轴x=12对称,连接BQ交对称轴于点M则MQ+MA=MQ+MB,即MQ+MA=BQ当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO xAyOCB EQ Mx=∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小4.(北京模拟)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB、AB边交于点E、F.点P与直线l 同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=_________秒时,点P与点E重合;当t =_________秒时,点P 与点F 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点P ′落在EF 上,点F 的对应点为F ′,当EF ′⊥AB 时,求t 的值;(3)作点P 关于直线EF 的对称点Q ,在运动过程中,若形成的四边形PEQF 为菱形,求t 的值;(4)在整个运动过程中,设△PEF 的面积为S ,直接写出S 关于t 的函数关系式及S 的最大值.解:(1)3;4.5提示:在Rt △ABC 中,∠C =90°,AC =6,BC =8∴AB =6 2+8 2=10,∴sin B =ACAB = 35,cos B =BC A P l FEBCA备用图BC Al F E (P)BC AB=45,tan B=ACBC=34当点P与点E重合时,点P在CB边上,CP=CE∵AC=6,点P在AC、CB边上运动的速度分别为每秒3、4个单位∴点P在AC边上运动的时间为2秒,CP=4(t -2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-43t在Rt△BEF中,BEBF=cos B BCAlFE(P)∴8-4 3t5( t -4 )= 4 5,解得t =4.5 (2)由题意,∠PEF =∠MEN∵EF ∥AC ,∠C =90°,∴∠BEF =90°,∠CPE =∠PEF∵EN ⊥AB ,∴∠B =∠MEN∴∠CPE =∠B ,∴tan ∠CPE =tan B ∵tan ∠CPE =CECP,tan B =ACBC=3 4∴CE CP=3 4 ,∴CP = 4 3CE∵AP =3t (0<t<2),CE =43t ,∴CP =6-3t∴6-3t =4 3 ×4 3 t ,解得t =5443(3)连接PQ 交EF 于O∵P 、Q 关于直线EF 对称,∴EF 垂直平分PQ 若四边形PEQF 为菱形,则OE =OF =12EF①当点P 在AC 边上运动时易知四边形POEC 为矩形,∴OE =PC E BO C A P l FQE BMC A P lF N∴PC=12EF∵CE=43t,∴BE=8-43t,EF=BE·tan B=34(8-43t)=6-t∴6-3t=12(6-t),解得t=65②当点P在CB边上运动时,P、E、Q三点共线,不存在四边形PEQF③当点P在BA边上运动时,则点P在点B、F 之间∵BE=8-43t,∴BF=BEcos B=54(8-43t)=10-53t∵BP=5(t-4),∴PF=BF-BP=10-53t-5(t-4)=30-20 3t∵∠POF=∠BEF=90°,∴PO∥BE,∴∠OPF =∠B在Rt△POF中,OFPF=sin BEBCA PlFQO∴12(6-t)30- 20 3t= 3 5 ,解得t =30 7∴当t =6 5 或t = 307时,四边形PEQF 为菱形(4)S =⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧-2 3t2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)8 3t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒).(1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.解:(1)60°(2)∵∠A =∠B =60°,PB =PB ′ ∴△PB ′B 是等边三角形∴PB =PB ′=BB ′=2t ,BE =B ′E =t ,PE =3t 当0<t≤2时ACBD PE B AC BD 备用图AC BD PE BS=S△PB′E=12B′E·PE=12t·3t=32t2当2<t≤4时S=S△PB′E-S△FB′C=32t2-34(2t-4)2=-32t2+43t-4 3当4<t≤5时设PB′、PE分别交DC于点G、H,作GK⊥PH 于K∵△PB′B是等边三角形,∴∠B′PB=60°=∠A ∴PG∥AD,又DG∥AP∴四边形APGD是平行四边形∴PG=AD=4∵AB∥CD,∴∠GHP=∠BPH∵∠GPH=∠BPH=12∠B′PB=30°∴∠GHP=∠GPH=30°,∴PG=GH=4∴GK=12PG=2,PK=KH=PG·cos30°=2 3∴PH=2PK=4 3∴S=S△PGH =12PH·GK=12×43×2=4 3ACBDPEBFACBDPEBG HK综上得,S 与t 之间的函数关系式为: S =⎩⎪⎪⎨⎪⎪⎧3 2t2(0<t≤2)-3 2t2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB ′=90° ∵∠B ′PB =60°,∴∠DPA =30° 又∠A =60°,∴∠ADP =90° ∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB ′=90°作DM ⊥AB 于M ,DN ⊥B ′B 于N 则AM =2,DM =23,NC =3,DN =3 3 PM =|10-2-2t |=|8-2t | NB ′=|3+4-2t |=|7-2t |DP2=DM2+PM2=(23 )2+( 8-2t )2=( 8-2t)2+12 DB ′2=DN2+NB ′=(33 )2+( 7-2t )2=( 7-2t)2+27∵DP 2+DB ′ 2=B ′P2∴(8-2t )2+12+( 7-2t )2+27=( 2t)2解得t 1=15+73 2>5(舍去),t 2=15-732若∠DB ′P =90°,则DB ′2+B ′P2=DP2ACBDP E B A C BD PE BM N∴(7-2t )2+27+( 2t )2=( 8-2t)2+12解得t 1=-1(舍去),t 2=0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为直角三角形,此时t =1或t =15-73 2②若DP =B ′P ,则(8-2t )2+12=( 2t)2解得t =198若B ′D =B ′P ,则(7-2t )2+27=(2t)2解得t =197若DP =DB ′,则(8-2t )2+12=( 7-2t)2+27解得t =0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为等腰三角形,此时t =19 8 或t =1976.(北京模拟)已知二次函数y =-3 3mx2+3mx -2的图象与x 轴交于点A (23,0)、点B ,与y轴交于点C . (1)求点B 坐标;A CB DP E B AC BD PB E(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC 沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-3 3mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S的最大值.解:(1)将A(23,0)代入y=-33mx2+3mx-2得0=-33m×(23)2+3m×23-2,解得m=33∴y=-13x2+3x-2令y=0,得-13x2+3x-2=0,解得:x1=3,x2=2 3∴B (3,0)(2)①由y =-1 3x2+3x -2,令x =0,得y =-2∴C (0,-2)∵y =-1 3 x 2+3x -2=- 1 3 ( x 32 3)2+1 4∴二次函数图象的对称轴为直线x = 3 23过A ′作A ′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60°∴∠PQA =150°,∠A ′QH =60°,AQ =A ′Q =2QH∵点A ′在二次函数图象的对称轴上 ∴⎩⎨⎧OQ +QH =3 23OQ +2QH =23 解得QH =3 2∴AQ =3,CP =1∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA ′C ′落在第一象限内的图形为等腰三角形QA ′DAB CO A xP H Cy(Q )DQ=A′Q=3tA′H=AQ·sin60°=3t·32=32tS=S△A′DQ=12·3t·32t=334t2∵当0<t≤1时,S随t的增大而增大∴当t=1时,S有最大值33 4ⅱ)当1<t<2时,四边形PQA′C′落在第一象限内的图形为四边形EOQA′S四边形EOQA′=S梯形PQA′C′-S△OPQ-S△PC′E=[23-32(2-t)2]-32(2-t)2-34t2=-534t2+43t-2 3∵-534t2+43t-23=-534(8)263且1<85<2,∴当t=85时,S有最大值635∵635>334,∴S的最大值是635ABCOAxPQ HDCyABCOAxPQ HECy7.(北京模拟)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t 之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD=2(2)作AH⊥BC于H,交EG于O,DK⊥EF DEA BQ CPF G于K,PM⊥DA交DA的延长线于M ∵AD∥BC,∠A=120°,AB=AD=2 ∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=3 2∵AP=t,∴PM=3 2t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴ENAD=PEPA,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)ABDQCPE FN GS O KHM(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t =6-1,t =6 2-1,t =4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x +42交x 轴于点A ,交y 轴于点B .在线段OA 上有一动点P ,以每秒2个单位长度的速度由点O 向点A 匀速运动,以OP 为边作正方形OPQM 交y 轴于点M ,连接QA 和QB ,并从QA 和QB 的中点C 和D 向AB 作垂线,垂足分别为点F 和点E .设P 点运动的时间为t 秒,四边形CDEF 的面积为S 1,正方形OPQM 与四边形CDEF 重叠部分的面积为S 2.(1)直接写出A 点和B 点坐标及t (2)当t =1时,求S 1的值; (3)试求S 2与t 的函数关系式 (4)直接写出在整个运动过程中,点C 和点D所走过的路程之和.yP A Q xO D C FB M E解:(1)A (42,0)、B (0,42),0≤t≤4(2)过Q 作QH ⊥AB 于H∵C 、D 分别是QA 和QB 的中点 ∴CD ∥AB ,CD =1 2AB =12×42×2=4∵CF ⊥AB ,DE ⊥AB ,∴CF ∥DE ∴四边形CDEF 是平行四边形 又∵CF ⊥AB ,∴四边形CDEF 是矩形 ∵CF ⊥AB ,QH ⊥AB ,∴CF ∥QH 又∵C 是QA 中点,∴CF =12QH连接OQ∵正方形OPQM ,∴∠1=∠2,OP =PQ =QM =MO∵OA =OB ,∴PA =MB∴Rt △QPA ≌Rt △QMB ,∴QA =QB ,∠PQA =∠MQB∵QH ⊥AB ,∴∠3=∠4∴∠1+∠MQB +∠3=180°,∴O 、Q 、H 三点共线∴QH =OH -OQyPA Qx O D C F BM EH 123 4∵t =1,点P 的运动速度为每秒2个单位长度∴OP =2,∴OQ =2 又∵OA =42,∴OH =4∴QH =OH -OQ =4-2=2,∴CF =1 ∴S 1=CD ·CF =4×1=4(3)当点Q 落在AB 上时,OQ ⊥AB ,△QOA 是等腰直角三角形 ∴t =22÷2=2 当0≤t≤2时,S 2=0当点E 落在QM 上,点F 落在PQ 上时,△CFK 和△DEG 都是等腰直角三角形 过C 作CT ⊥PQ 于T则CT =1 2 AP = 1 2 ( 42-2t )= 22( 4-t) ∴CF =2CT =4-t连接OQ ,分别交AB 、CD 于N 、R 则ON =2 2 OA =22×42=4∵OP =2t ,∴OQ =2t ,∴QN =2t -4 ∴CF =12QN =t -2∴4-t =t -2,∴t =3yP A Q xO D C FB M E G H I K N R yP A Qx O DC F B M E G K N R T当2<t≤3时,重叠部分为等腰梯形GHIK△QGK 和△QHI 都是等腰直角三角形 ∵QN =2t -4,RN =CF =t -2,∴QR =t -2 ∴GK =2QR =2t -4,HI =2QN =4t -8∴S 2=1 2 (GK +HI)·RN = 12( 2t -4+4t -8 )( t -2 )=3(t-2)2当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t) ∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT =4( t -2 )- 2( 4-t)·2 2( 4-t)=-t2+12t -24综上得S 2关于t 的函数关系式为: S 2=⎩⎪⎨⎪⎧0(0≤t≤2)3(t -2 )2(2<t≤3)-t2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半y P A Q xO D C FB M E G H I KN R T9.(上海模拟)如图,正方形ABCD中,AB=5,点E是BC延长线上一点,CE=BC,连接BD.动点M从B出发,以每秒2个单位长度的速度沿BD向D运动;动点N从E出发,以每秒2个单位长度的速度沿EB向B运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t秒,过M作BD的垂线MP交BE于P.(1)当PN=2时,求运动时间t;(2)是否存在这样的t,使△MPN为等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)设△MPN与△BCD重叠部分的面积为S,直接写出S与t的函数关系式和函数的定义域.A BDNCPME解:(1)∵正方形ABCD,∴∠DBC=45°∵MP⊥DB,∴△BMP是等腰直角三角形∵BM=2t,∴BP=2BM=2t又PN=2,NE=2t当0<t<2.5时,BP+PN+NE=BE∴2t+2+2t=10,∴t=2当2.5<t<5时,BP-PN+NE=BE∴2t-2+2t=10,∴t=3(2)过M作MH⊥BC于H则△NQC∽△NMH,∴QCCN=MHHN∴QC5-2t=t10-t-2t,∴QC=5t-2t210-3t令QC=y,则y=5t-2t2 10-3t整理得2t2-(3y+5)t+10y=0∵t为实数,∴[-(3y+5)]2-4×2×10y≥0即9y2-50y+25≥0,解得y≥5(舍去)或y≤5 9∴线段QC长度的最大值为5 9(3)当0<t<2.5时ABDNCPMEQHABDPCN EMABDNCP E M∵∠MPN =∠DBC +∠BMP =45°+90°=135° ∴∠MPN 为钝角,∴MN>MP ,MN>PN若PM =PN ,则2t =10-4t解得t =57(4-2)当2.5<t<5时∵∠MNP >∠MBP =∠MPB ,∴MP>MN若MN =PN ,则∠PMN =∠MPN =45° ∴∠MNP =90°,即MN ⊥BP ∴BN =NP ,BP =2BN ∴2t =2(10-2t),解得t =10 3若PM =PN∵PN =BP -BN =BP -(BE -NE)=BP +NE -BE∴2t =2t +2t -10,解得t =57(4+2)∴当t =5 7 (4-2),t =10 3,t =57(4+2)时,△MPN 为等腰三角形(4)S =⎩⎪⎨⎪⎧8t 3-50t2+75t20-6t(0<t<2.5)5t - 252(2.5<t<5)A B DP C N M EADB PC N MEB PC N AD B N C P ME Q10.(重庆模拟)如图,已知△ABC 是等边三角形,点O 是AC 的中点,OB =12,动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在直线OB 上,取OB 的中点D ,以OD 为边在△AOB 内部作如图所示的矩形ODEF ,点E 在线段AB 上.(1)求当等边△PMN 的顶点M 运动到与点O 重合时t 的值;(2)求等边△PMN 的边长(用含t 的代数式表示);(3)设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请直接写出S 与t 的函数关系式及自变量t 的取值范围;(4)点P 在运动过程中,是否存在点M ,使得△EFM 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.AO D CBF E 备用图A O D CBPN F M E AO D CBF E 备用图解:(1)当点M 与点O 重合时 ∵△ABC 、△PMN 是等边三角形,O 为AC 中点∴∠AOP =30°,∠APO =90° ∵OB =12,∴AO =43=2AP =23t 解得t =2∴当t =2时,点M 与点O 重合 (2)由题设知∠ABM =30°,AB =83,AP =3t∴PB =83-3t ,PM =PB ·tan30°=8-t即等边△PMN 的边长为8-tA O D CBPF E (N) (M ) A O D CBP N F M E(3)S =⎩⎪⎪⎪⎨⎪⎪⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-3 2t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t∴S =S 梯形FONG=12(FG +ON)·FO=12(2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段 设PM 交EF 于点I ,则重叠部分为五边形IJONG FJ =AJ -AF =23t -23,FI =2t -2 A O D CBP N F M E G JHA O D CBPNI M E G F J∴S =S梯形FONG-S △FIJ=23t +63-12(23t -23)(2t -2)=-23t2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG∵AP =3t ,∴PE =43-3t∴IG =GE =4-t ,EK =43-3t ∴KD =23-(43-3t)=3t -23,DN =t -2 ∴S =S 梯形IMNG-S △KDN=12(4-t +8-t)·23-12(3t -23)(t -2) =-3 2t2+10 3④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3 ∴ER =2EP =23t -8 3∴RD =23-(23t -83)=103-23tMD =10-2tAO D CB P N F M E G I K A O DC BPN FM E R∴S =S △RMD=12(10-2t)(103-23t)=23t2-203t +50 3⑤当5<t≤8时,S =0(4)∵MN =BN =PN =8-t ,∴MB=16-2t ①若FM =EM ,则M 为OD 中点 ∴OM =3∵OM +MB =OB ,∴3+16-2t =12∴t =3.5②若FM =FE =6,则OM =6 2-( 23)2=2 6 ∵OM +MB =OB ,∴26+16-2t =12 ∴t =2+ 6③若EF =EM =6,点M 在OD 或DB 上则DM =6 2-( 23)2=2 6 ∴DB +DM =MB 或者DB -DM =MB∴6+26=16-2t 或6-26=16-2t ∴t =5-6或t =5+ 6综上所述,当t =3.5、2+6、5-6、5+6时,△MEF 是等腰三角形AO D CBP N F M E A O D C BP N F M E AO D CB P N FM E AO D CBP N F M E11.(浙江某校自主招生)如图,正方形OABC 的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=34x和y=-43x+253.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒53个单位的速度沿射线AO下滑,直至顶点B落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.解:(1)联立 ⎩⎪⎨⎪⎧y =3 4x y =-4 3x +25 3解得⎩⎨⎧x =4y =3∴A (4,3),∴OA =4 2+32=5∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2CB xOAyCBxO AyQP N分两种情况:①当点Q在OA上时,∵PQ≥BA>PC,∴只存在一点Q,使QC=QP作QN⊥CP于N,则CN=12CP=OQ=1∴QA=5-1=4,∴k=42=2②当点Q在OC上时,同理只存在一点Q,使CP=CQ=2∴OQ+OA=10-2=8,∴k=82=4综上所述,当t=2秒时,以所得的等腰三角形CPQ沿底边翻折,翻折后得到菱形的k值为2或4(3)①当点A运动到点O时,t=3当0<t≤3时,设O′C′交x轴于点D则tan∠DOO′=34,即DO′OO′DO′53t=34,∴DO′=5 4t∴S=12DO′·OO′=12·54t·53t=2524t2CBxOAyQPxOyABDCO②当点C 运动到x 轴上时,t =(5×4 3)÷53=4当3<t≤4时,设A ′B ′交x 轴于点E∵A ′O =5 3 t -5,∴A ′E = 3 4 A ′O =5t -154∴S =1 2 (A ′E +O ′D )·A ′O ′= 1 2 ( 5t -15 4 +5 4t)·5=50t -758③当点B 运动到x 轴上时,t =(5+5×4 3)÷53=7当4<t≤7时,设B ′C ′交x 轴于点F∵A ′E =5t -15 4,∴B ′E =5-5t -15 4=35-5t4∴B ′F =4 3 B ′E =35-5t3∴S =52-1 2 ·35-5t 4·35-5t 3 =- 25 24t2175 12t -62524综上所述,S 关于滑行时间t 的函数关系式为:xO yAB FCOExOyA B DCO ES = ⎩⎪⎪⎨⎪⎪⎧25 24t2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ?(2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围;(3)当4<t <8时,求△APE 的面积为S 的变化范围.A B D ECP Q解(1)AP=x cm,BQ=2x cm∵∠BEP=∠BEQ,BE=BE,∠PBE=∠QBE =45°∴△PBE≌△QBE,∴PB=BQ即8-x=2x,∴x=8 3∴点P出发83秒后,∠BEP=∠BEQ(2)①当0<x≤4时,点Q在BC上,作EN ⊥AB于N,EM⊥BC于M∵AD∥BC,∴AEEQ=ADBQ=82x=4x即AEEQ=4x,∴AEAQ=4x+4∴NEBQ=AEAQ,∴NE=AE·BQAQ=8xx+4∴S=12AP·NE=12x·8xx+4=4x2x+4ABDECPQNM即S =4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB于F ,交BD 于H 则AEEQ =ADHQ = 8 16-2x =4 8-x即AEEQ= 48-x,∴AEAQ= 48-x +4=412-x作EN ⊥AB 于N ,则NEFQ=AEAQ∴NE =AE ·FQFQ =3212-x∴S =1 2AP ·NE = 1 2x ·32 12-x =16x 12-x即S =16x 12-x(4<x<8)(3)当4<x<8时,由S =16x 12-x,得x =12S16+S∵4<x<8,∴4<12S16+S<8∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S)A BD ECPQNFH解得8<S<3213.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E .(1)求出经过A 、D 、C 三点的抛物线解析式; (2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由;(3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.xAyED CBF G Q P解:(1)由题意得:D (3,33)、C (9,33) 设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx把D 、C 两点坐标代入上式,得:⎩⎨⎧9a +3b =3381a +9b =33解得:a =-3 9 ,b =43 3∴抛物线的解析式为:y =3 x243x(2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形∴PC =AQ ,即6-2t =t, ∴t =2xA yED C BF G Q P当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值(3)①当点P 在DC 上,即0≤t≤3时∵DP ∥AQ ,∴△DEP ∽△AEQ ∴DEy=DPAQ=2tt=2,∴y13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB ∴AEBP=QAQB,即y12-2t =t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎨⎧2 (0≤t≤3) 12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F ′,由菱形对称性知F ′在DA 上,且DF ′=DF =1作点G 关于抛物线对称轴的对称点G ′,易求DG ′=4连接F ′G ′交DB 于点M 、交对称轴于点N ,则点M 、N 即为所求的两点xAyF D C BF G M NG HxA yED CBFGQP过F′作F′H⊥DG′于H,可得HD=12,F′H=32,HG′=9 2∴F′G′=F′H2+HG′2=21∴四边形FMNG周长最小值为F′G′+FG=21+114.(浙江模拟)如图,直线y=-x+5和直线y=kx-4交于点C(3,m),两直线分别交y轴于点A和点B,一平行于y轴的直线l从点C出发水平向左平移,速度为每秒1个单位,运动时间为t,且分别交AC、BC于点P、Q,以PQ为一边向左侧作正方形PQDE.(1)求m和k的值;(2)当t为何值时,正方形的边DE刚好在y轴上?(3)当直线l从点C出发开始运动的同时,点M也同时在线段AB上由点A向点B以每秒4个单位的速度运动,问点M从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2∴C (3,2),代入y =kx -4得k =2(2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t 当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t∵正方形PQDE ,∴PQ =PEA O C Byxl P Q D E A O C By xlPQ D E。

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)

2014 年中考数学二轮专题复习试卷:圆(时间: 120 分钟满分: 120 分 )一、选择题 (本大题共15 个小题,每小题 3 分 ,共 45 分 )1.( 2013 湖南岳阳)两圆半径分别为3 cm 和 7 cm ,当圆心距 d=10cm 时,两圆的位置关系为 ( )A. 外离B. 内切C.相交 D .外切2.( 2013 重庆)如图, P 是⊙ O 外一点, PA 是⊙ O 的切线, PO =26 cm , PA=24 cm ,则⊙ O的周长为 ( )A.18 π cmB.16π cmC.20π cmD.24π cm(第 2 题) (第 3 题) (第 4 题 )3.( 2013 浙江舟山)如图,⊙ O 的半径 OD ⊥弦 AB 于点 C ,连接 AO 并延长交⊙ O 于点 E ,连接 EC .若 AB=8, CD =2,则EC 的长为 () A. 2 15 B.8 C. 2 10 D. 2 134. ( 2013 福建厦门)如图所示,在⊙ 中,AB ∠ =30°,则∠ =( ) O AC , A BA.150 °B.75 °C.60° D.15 °5.( 2013 贵州遵义)如图,将边长为 1 cm 的等边三角形 ABC 沿直线 l 向右翻动(不滑动) ,点 B 从开始到结束,所经过路径的长度为 ( ) A. 3 cmB.(2 3 ) cm2 2 C. 4 cmD.3 cm3(第5 题 ) (第7 题 )6.( 201 3 浙江义乌)已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10cm C.8cmD.6 cm7.( 2013 四川内江)如图,半圆O 的直径AB=10 cm,弦AC=6 cm,AD平分∠BAC ,则AD的长为( )A.4 5 cmB.3 5 cmC.5 5 cmD.4 cm8.(201 3 山东青岛)直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为6,则r 的取值范围是( )A.r< 6 B.r=6 C.r> 6 D.r ≥69.如图,把⊙O1 向右平移8 个单位长度得⊙O2,两圆相交于A,B,且O1A⊥ O2A,则图中阴影部分的面积是( )A.4 π- 8B.8π- 16C.16π-16D.16π-32(第 9 题 ) (第10 题 ) (第11 题 )1 0.(2012 山东济宁) 如图,在平面直角坐标系中,点P 坐标为(-2, 3),以点O 为圆心,以O P 的长为半径画弧,交x 轴的负半轴于点A,则点A 的横坐标介于( )A. - 4 和- 3之间 B.3 和4 之间C.- 5 和- 4之间 D.4和5 之间11.( 2013 重庆)如图, P 是⊙ O 外一点, PA 是⊙ O 的切线, PO=26 cm,PA=24 cm,则⊙ O的周长为( )A.18 πcmB.16πcmC.20πcmD.24πcm12.(2012山东烟台 )如图,⊙ O1,⊙O,⊙ O2的半径均为2 cm,⊙ O3,⊙O4的半径均为1 cm,⊙ O与其他 4 个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形 O1O4O2O3的面积为 ()A.12 cm 2B.24 cm 2C.36 cm 2D.48 cm 2(第 12 题) (第 13 题) (第 14 题 )13.如图,在Rt△ ABC 中,∠ C=90 °, AC=6,BC=8, ⊙O 为△ ABC 的内切圆,点D是斜边 AB的中点,则tan ∠ ODA 的值为 ( )A. 3B. 32 3C. 3D.214.(2012 浙江宁波 )如图,用邻边长分别为a,b(a<b)的矩形硬纸板裁出以 a 为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆 .把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则 a 与 b 满足的关系式是 ( )A.b 3aB.b 5 1a2C.b 5aD.b 2a215.( 2013 湖北襄阳)如图,以AD 为直径的半圆 O 经过 Rt△ABC 斜边 AB 的两个端点,交直角边 AC 于点 E,B、E 是半圆弧的三等分点,弧BE2 的长为,则图中阴影部分的面积为 ( )3A. B. 39 9C.3 3 3D.3 3 22 2 2 3二、填空题(本大题共6 个小题,每小题3 分 ,共18 分 )16.(2012 江苏扬州)已知一个圆锥的母线长为10 cm,将侧面展开后所得扇形的圆心角是144 °,则这个圆锥的底面圆的半径是cm.17.( 2013 湖南株洲)如图, AB 是⊙ O 的直径,∠ BAC =42 °,点 D 是弦 AC 的中点,则∠ DOC的度数是度.18.( 2013 湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是 AB 为 0.8 m,则排水管内水的深度为 m.1 m,其中水面的宽19(. 2013 贵州遵义)如图,OC 是⊙ O 的半径,AB 是弦,且 OC⊥ AB,点 P在⊙ O 上,∠ APC=26 °,则∠ BOC= °.(第19 题 ) (第20 题 )20.( 2013 重庆)如图,在边长为 4 的正方形ABCD 中,以 AB 为直径的半圆与对角线交于点 E,则图中阴影部分的面积为.(结果保留π)21.( 2013 湖北孝感)用半径为10 cm,圆心角为216 °的扇形做成一个圆锥的侧面,则这个圆锥的高为cm.AC三、解答题 (本大题共 5 个小题,共57 分 )22.(本小题满分10 分 )(2013 江苏镇江)如图1, Rt△ ABC 中,∠ACB=90 °, AB=5, BC=3,点长线上, BD=3 ,过点 D 作 DE⊥ AB,与边 AC 的延长线相交于点E,以DE D 在边AB 的延为直径作⊙ O 交AE 于点F.(1)求⊙ O 的半径及圆心 O 到弦 EF 的距离;(2)连接 CD,交⊙ O 于点 G(如图 2).求证:点 G 是 CD 的中点.23.(本小题满分10 分 )(2013 广东梅州)如图,在矩形 ABCD 中, AB=2DA ,以点 A 为圆心, AB 为半径的圆弧交 DC 于点 E,交 AD 的延长线于点 F,设DA=2 .(1)求线段 EC 的长;(2)求图中阴影部分的面积.24.(本小题满分10 分 )(2012 浙江温州 )如图 ,△ABC 中,∠ACB =90 °,D 是边 AB 上一点,且∠A=2∠ DCB.E 是 BC边上的一点,以EC 为直径的⊙ O 经过点 D .(1)求证: AB 是⊙ O 的切线;(2)若 CD 的弦心距为 1,BE =EO,求 BD 的长 .25.(本小题满分12 分)( 2013 广东)如图所示,⊙ O 是 Rt△ ABC 的外接圆,∠ ABC=90°,弦 BD =BA, AB=12 ,BC=5, BE ⊥DC 交 DC 的延长线于点E.(1)求证:∠ BCA=∠ BAD ;(2)求 DE 的长;(3)求证: BE 是⊙ O 的切线 .26.(本小题满分15 分)(2012 浙江杭州 )如图, AE 切⊙ O 于点 E,AT 交⊙ O 于点 M,N,线段 OE 交 AT 于点 C, OB⊥AT 于点 B,已知∠ EAT=30 °,AE 3 3,MN 2 22.(1)求∠ COB 的度数;(2)求⊙ O 的半径 R;(3)点 F 在⊙ O 上( FME 是劣弧 ),且 EF=5 ,把△ OBC 经过平移、旋转和相似变换后,使它的两个顶点分别与点 E,F 重合 .在 EF 的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙ O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之比 .参考答案1.D 2.C 3.D 4.B 5.C 6.B7.A 8.C 9.B 10.A 11.C 12.B13.D 14.D 15.D16.4 17.48 18.0.2 19.52 20.10-π21.822.解:( 1)∵∠ ACB=90 °,AB =5, BC=3 ,由勾股定理得:AC=4,∵AB =5, BD =3,∴ AD =8,∵∠ ACB=90°, DE ⊥AD,∴∠ ACB=∠ ADE,∵∠ A=∠A,∴△ ACB∽△ ADE,BC AC ABDE AD AE3 4 5 ,DE 8 AE∴DE =6,AE=10 ,即⊙ O 的半径为3;,过O 作OQ ⊥EF于Q,则∠EQO=∠ADE=90°,∵∠ QEO=∠ AED ,∴△ EQO∽△ EDA ,EO OQ ,AE AD3OQ ,10 8∴OQ=2.4,即圆心 O 到弦 EF 的距离是2.4;(2)连接 EG,∵AE =10, AC=4,∴CE =6,∴CE =DE =6,∵DE 为直径,∴∠ EGD=90°,∴EG⊥ CD ,∴点 G 为 CD 的中点.23.解:( 1)∵在矩形ABCD 中, AB=2DA , DA =2,∴AB =AE =4,DE 2 3,∴EC =CD -DE = 4 2 3;(2)∵ sinDEA AD 1,AE 2∴∠ DEA =30°,∴∠ EAB=30°,∴图中阴影部分的面积为:S扇形FAB S DAE S扇形EAB90 42 12 330 4283.36023602 2 324.(1) 证明 : 连接 OD .∵∠ DOB=2∠ DCB ,∠A=2∠ DCB , ∴∠ A=∠DOB .又∵∠ A+∠ B=90°,∴∠ DOB+∠ B=90°,∴∠ BDO=90°,∴OD ⊥ AB,∴ AB 是⊙ O 的切线 .(2)解:过点 O 作 OM ⊥ CD 于点 M,1∵OD =OE=BE= BO,2∠BDO =90°,∴∠ DBO=30°,∠ DOB=60°.1∵∠ DCO= ∠ DOB ,2∴∠ DCO=30°,又∵ OM ⊥CD ,OM =1,∴OC=2OM =2,∴OB=4,OD =2,∴ = ·∠DBO 4 3BD OBcos 2 3.2∴BD 的长为 2 3.25.( 1)证明:在⊙ O 中,∵弦BD =BA,且圆周角∠ BCA 和∠ BAD 分别对BA 和 BD,∴∠ BCA=∠ BAD.(2)解:∵ BE⊥DC ,∴∠ E=90°.又∵∠ BAC=∠EDB ,∠ ABC=90°,∴△ ABC∽△ DEB ,AB AC .DE BD在Rt△ ABC 中,∠ ABC=90°,AB =12 ,BC=5,∴由勾股定理得 :AC=13 ,12 13 144DE, DE .12 13(3)证明:如图,连接OB,∵OA=OB,∴∠ OAB=∠ OBA. ∵BA =BD ,∴∠ OBD =∠ OBA. 又∠ BDC =∠OAB=∠OBA,∴∠ OBD=∠ BDC . ∴OB∥ DE ,∴∠ OBE=∠ DBE +∠ OBD=90°.即 BE⊥OB 于 B,所以 BE 是⊙ O 的切线 .26.解: (1)∵ AE 切⊙ O 于点 E,∴AE ⊥CE,又OB⊥ AT,∴∠ AEC=∠ CBO=90°,又∠ BCO=∠ACE,∴△ AEC∽△ OBC,又∠ A=30°,∴∠ COB=∠A=30°.(2) ∵ AE= 3 3, ∠ A=30 °,∴在 Rt△ AEC 中,tan A tan 30 EC ,AE即EC=AE·tan 30 °=3.∵OB⊥ MN ,∴ B 为 MN 的中点 ,又MN= 2 22,∴MB= 1 MN22.2连接 OM ,在△ MOB 中 ,OM=R,MB= 22,OB OM 2MB 2R2在COB 中, BOC 30 ,cos BOCOB cos 30OCBO 3 OC,2OC 2 3OB 2 3R23 3又OC ECOM R,2 3 R 222 3 R,22.22.3 ,23整理得 :R 2-115=0,+18R 即( R+23)( R -5)=0,解得 :R=-23(舍去 ) 或 R=5,∴⊙ O 的半径 R 为5.(3) 在 EF 同一侧 ,△ COB 经过平移、 旋转和相似变换后 ,这样的三角形有 6 个,如图 ,每小图2 个 ,顶点在圆上的三角形 ,如图所示 :延长 EO 交圆 O 于点 D ,连接 DF ,如图所示 ,∵ EF =5,直径 ED=10,可得出∠ FDE =30°,∴FD = 5 3,则 C △ EFD =5 105 3 15 5 3, 由 2 可得 CCOB3 3, CEFD ∶CCOB15 5 3 ∶ 33 51∶.。

2014年全国中考数学试题汇编《圆》(08)

2014年全国中考数学试题汇编《圆》(08)

全国中考数学试题汇编《圆》(08)填空题211.(2009•锦州)图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,…依此规律,当正方形边长为2时,第n个图中所有圆的面积之和S n= _________.212.(2009•崇左)如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为_________.213.(2009•齐齐哈尔)已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是_________ cm.214.(2009•肇庆)已知正六边形的边长为2,那么它的边心距是_________.215.(2009•芜湖)小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB长为,AC为科学方舟船头A到船底的距离,请你计算AC+AB=_________.(不能用三角函数表达式表示)216.(2009•荆州)若一边长为40cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为_________cm.(铁丝粗细忽略不计)217.(2010•密云县)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为_________cm(结果保留π).218.(2009•肇庆)75°的圆心所对的弧长是25πcm,则此弧所在圆的半径为_________cm.219.(2009•云南)已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为_________.220.(2009•宜昌)如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100°,则弧长是_________米(π≈3).221.(2009•台州)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A 的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为_________(结果保留π).222.(2009•泉州)已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于_________.223.(2009•宁夏)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为_________.224.(2009•辽宁)已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是_________厘米.225.(2009•江西)用直径为80cm的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是_________cm.226.(2009•伊春)如图,将一个半径为6cm,圆心角为120°的扇形薄铁皮AOB卷成圆锥AOC的侧面(接缝无重叠,无缝隙),O′为圆锥的底面圆心,则O′A=_________cm.227.(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是_________.228.(2009•抚顺)如图,已知圆锥的高AO为8cm,底面圆的直径BC长为12cm,则此圆锥的侧面展开图的圆心角为_________度.229.(2009•德城区)半径为18的圆中,120°的圆心角所对的弧长是_________.230.(2012•青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为_________(结果保留π).231.(2009•包头)如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_________(保留π).232.(2009•湘西州)一个圆的半径是4,则圆的面积是_________.(答案保留π)233.(2009•咸宁)为庆祝祖国六十华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为_________ cm2(π取3)234.(2009•梧州)一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是_________cm2.(结果保留π)235.(2009•泰安)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为_________.236.(2009•随州)如图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65cm,CO=15cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为_________cm2.237.(2009•凉山州)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为_________cm2.238.(2009•兰州)翔宇中学的铅球场如图所示,已知扇形AOB的面积是36米2,弧AB的长度为9米,那么半径OA=_________米.239.(2009•河南)如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π)_________.240.(2012•庆阳)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为_________.2009年全国中考数学试题汇编《圆》(08)参考答案与试题解析填空题211.(2009•锦州)图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,…依此规律,当正方形边长为2时,第n个图中所有圆的面积之和S n=π.第一个图中,圆的半径平方是正方形边长平方的第二个图中,所有圆的半径平方之和是正方形边长平方的212.(2009•崇左)如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.EAB===.213.(2009•齐齐哈尔)已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是(4±)cm.,C=cm=4+cm±cm214.(2009•肇庆)已知正六边形的边长为2,那么它的边心距是.×215.(2009•芜湖)小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB长为,AC为科学方舟船头A到船底的距离,请你计算AC+AB=.(不能用三角函数表达式表示)××EF=5×+DE×)BE=BEAB+2AC=5,AB=216.(2009•荆州)若一边长为40cm的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为20cm.(铁丝粗细忽略不计)×=20cm217.(2010•密云县)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为2πcm(结果保留π).×=2218.(2009•肇庆)75°的圆心所对的弧长是25πcm,则此弧所在圆的半径为60cm.l=可得.219.(2009•云南)已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为9.l=,解得220.(2009•宜昌)如图,艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8米,所对的圆心角为100°,则弧长是3米(π≈3).l=≈221.(2009•台州)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A 的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为2π(结果保留π).转过的路径长是:=2222.(2009•泉州)已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于15.223.(2009•宁夏)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为.,若底面半径是,则圆锥的高是224.(2009•辽宁)已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是5厘米.的扇形的弧长是的扇形的弧长是=10225.(2009•江西)用直径为80cm的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是20 cm.226.(2009•伊春)如图,将一个半径为6cm,圆心角为120°的扇形薄铁皮AOB卷成圆锥AOC的侧面(接缝无重叠,无缝隙),O′为圆锥的底面圆心,则O′A=2cm.的扇形的弧长是=4227.(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是12π.228.(2009•抚顺)如图,已知圆锥的高AO为8cm,底面圆的直径BC长为12cm,则此圆锥的侧面展开图的圆心角为216度.,229.(2009•德城区)半径为18的圆中,120°的圆心角所对的弧长是12π.=12230.(2012•青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为π﹣4(结果保留π).π×π231.(2009•包头)如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).+AD=22=×=232.(2009•湘西州)一个圆的半径是4,则圆的面积是16π.(答案保留π)233.(2009•咸宁)为庆祝祖国六十华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为800cm2(π取3)S=﹣=234.(2009•梧州)一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是3πcm2.(结果保留π)s=求值即可.=3s=lr235.(2009•泰安)如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9.,扇环的面积为(π236.(2009•随州)如图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65cm,CO=15cm,当AC绕点O旋转90°时,则刮雨刷AC扫过的面积为1000πcm2.=1000237.(2009•凉山州)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为4πcm2.AC=2×238.(2009•兰州)翔宇中学的铅球场如图所示,已知扇形AOB的面积是36米2,弧AB的长度为9米,那么半径OA=8米.×s=lr239.(2009•河南)如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).OF=﹣1=240.(2012•庆阳)如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为﹣3π.=3×=9;扇形的面积是=39。

2014年中考圆的专题(1)(含答案)

2014年中考圆的专题(1)(含答案)

2014年圆的专题(1)一.选择题(共1小题)1.(2013•安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()二.填空题(共1小题)2.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.三.解答题(共5小题)3.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.4.(2011•深圳模拟)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.5.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.6.(2010•贵阳)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)7.(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.2014年圆的专题(1)参考答案与试题解析一.选择题(共1小题)1.(2013•安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()CBP=二.填空题(共1小题)2.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60°.三.解答题(共5小题)3.(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.由垂径定理得:)知:4.(2011•深圳模拟)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.ME=AB MD=ABME=MD=AB=MA5.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆∴,ABOD=AB6.(2010•贵阳)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)AC=OAB=.,∴AB=2=2AD∴的长度为(∴的长度为(∴=7.(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.AC OE=的性质得到所对的圆周角减去所对的圆周角,计算即可得AC=×OE=r根据翻折的性质,,。

2014年中考汇编——圆

2014年中考汇编——圆

2014年中考汇编—圆1.(2014•安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.2.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.3.(2014•新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.4.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P 中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.5.(2014年广东汕尾,第20题11分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD•BA;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.6.(2014•武汉,第22题8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.7.(2014•襄阳,第25题10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.8.(2014•孝感,第24题10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.9.(2014•浙江湖州,第19题分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.10.(2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图)11.(2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O 为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.12.(2014•呼和浩特,第24题8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE 的外接圆的半径.13.(2014•黑龙江绥化,第22题6分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=3/5,求⊙O的直径.14.(2014•黔南州,第24题10分)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求证:tan∠E=.15.(2014•攀枝花,第23题12分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B 在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM 交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG 的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16(2014•湖北黄石,第19题7分)如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.17.(2014•河北,第25题11分)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是 1 ,当BP经过点O时,∠ABA′= 60 °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.18.(2014•上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=4 5,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE 与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.19.(2014•山东烟台,第24题8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.20.(2014•遵义26.(12分))如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC 于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.21. (2014年湖北咸宁13.(3分))如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为.22.(2014•四川南充,第24题,8分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB 于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.23.(2014•福建福州,第20题11分)如图,在△ABC中,∠B=45°,∠ACB=60°,AB32,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ABC的外接圆.(1)求BC的长;(2)求⊙O的半径.24(2014•无锡,第22题8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.。

2014年中考数学分类汇编与圆有关的压轴题-3

2014年中考数学分类汇编与圆有关的压轴题-3

2014年中考数学分类汇编——与圆有关的压轴题2014年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等.数学思想涉及:数形结合;分类讨论;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014年江苏南京,26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC 的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【分析】:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.【题2】(2014•泸州24题)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.【考点】:相似三角形的判定与性质;勾股定理;圆周角定理.【分析】:(1)求出△CDE∽△CAD,∠CDB=∠DBC得出结论.(2)连接OC,先证AD∥OC,由平行线分线段成比例性质定理求得PC=,再由割线定理PC•PD=PB•PA求得半径为4,根据勾股定理求得AC=,再证明△AFD∽△ACB,得,则可设FD=x,AF=,在Rt△AFP中,求得DF=.【解答】:(1)证明:∵DC2=CE•CA,∴=,△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PC•PD=PB•PA∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.【点评】:本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是找准对应的角和边求解.【题3】(2014•济宁21题)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.【考点】:圆的综合题.【分析】:(1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似.仿照证明过程,r易得.(2)(1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果.但求内切圆半径需首先知道三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则r1、r2、易得.【解答】:(1)如图2,连接OA、OB、OC、OD.∵S=S△AOB+S△BOC+S△COD+S△AOD=+++=,∴r=.(2)如图3,过点D作DE⊥AB于E,∵梯形ABCD为等腰梯形,∴AE===5,∴EB=AB﹣AE=21﹣5=16.在Rt△AED中,∵AD=13,AE=5,∴DE=12,∴DB==20.∵S△ABD===126,S△CDB===66,∴===.【点评】:本题考查了学生的学习、理解、创新新知识的能力,同时考查了解直角三角形及等腰梯形等相关知识.这类创新性题目已经成为新课标热衷的考点,是一道值得练习的基础题,同时要求学生在日常的学习中要注重自我学习能力的培养.【题4】(20题)如图,在△ABC中,∠B=45°,∠ACB=60°,AB32=,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ABC的外接圆.(1)求BC的长;(2)求⊙O的半径.【解析】∴BC33=+.(2)由(1)得,在R t△ACE中,∵∠EAC=30°,EC=3,∴AC=23.∵∠D=∠ACB,∠B=∠B,∴△BAC∽△BCD. ∴AB ACCB CD=,即3223CD33=+.∴DM=4.∴⊙O的半径为2.【考点】:1.锐角三角函数殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.【题5】()如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值.【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③【题6】(2014•湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P 与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d <2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】:圆的综合题.【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t 的值是解题关键.【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K 的关系.【题10】(2014年江苏徐州28) 如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】: 本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB 及∠FCE=∠ADB 是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n 年,冰川的边界线P 1P 2移动的距离为s(km),并且s 与n (n 为正整数)的关系是2575092032+-=n n s .以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3).(1)求线段P 1P 2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.已融 化 区P 1资料内容仅供您学习参考,如有不当之处,请联系改正或者删除【解答】----完整版学习资料分享----。

2014年中考数学与圆有关的题试题汇编

2014年中考数学与圆有关的题试题汇编

2014年中考数学与圆有关的题试题汇编【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O 的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】:圆的综合题.菁优网版权所有【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D 在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M 的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.【题10】(2014年江苏徐州28)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O 与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O为圆心,半径为4km圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).(1)求线段P1P2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.。

2014年全国中考数学试题汇编《圆》(09)

2014年全国中考数学试题汇编《圆》(09)

全国中考数学试题汇编《圆》(09)填空题241.(2009•广安)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽为20cm,则贴纸部分的面积为_________cm2.242.(2009•赤峰)如图,将点A(﹣,0)沿y轴正方向平移1个单位长度得到点P,连接PO,再将PO绕点O按顺时针方向旋转120°,则PO在旋转过程中扫过的扇形面积为_________.(结果保留π)243.(2009•赤峰)如图,正方形ABCD内接于⊙O,⊙O的半径为2,若分别以AB,BC,CD,DA为折痕,将劣弧,,向内对折,则图中阴影部分的面积为_________.(结果保留π)244.(2009•长春)如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为_________(结果保留π).245.(2009•锦州)将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是_________.246.(2009•浙江)如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_________.247.(2009•营口)如图,小华用一个半径为36cm,面积为324πcm2的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r=_________cm.248.(2009•西宁)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是_________cm2(结果保留π).249.(2009•铁岭)小丽想用一张半径为5cm的扇形纸片围成一个底面半径为4cm的圆锥,接缝忽略不计,则扇形纸片的面积是_________cm2.(结果用π表示)250.(2009•邵阳)如图所示的圆锥主视图是一个等边三角形,边长为2,则这个圆锥的侧面积为_________(结果保留π).251.(2009•宁德)小华为参加毕业晚会演出,准备制作一顶圆锥形纸帽,如图所示,纸帽的底面半径为9cm,母线长为30cm,制作这个纸帽至少需要纸板的面积至少为_________cm2.(结果保留π)252.(2009•南昌)一个圆锥的底面直径是80cm,母线长是90cm,则它的侧面积是_________cm2.253.(2009•龙岩)小亮测得一圆锥模型的底面半径为5cm,母线长为7cm,那么它的侧面展开图的面积是_________ cm2(结果保留三个有效数字).254.(2009•临沂)若一个圆锥的底面积是侧面积的,则该圆锥侧面展开图的圆心角度数是_________度.255.(2009•鄂州)已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于_________.256.(2009•崇左)已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为_________cm.257.(2009•常德)若一个圆锥的母线长是5cm,底面半径是3cm,则它的侧面展开图的面积是_________cm2.258.(2009•本溪)圆锥的高为4cm,底面圆直径长6cm,则该圆锥的侧面积等于_________cm2(结果保留π).259.(2006•江西)若圆柱的底面半径2cm,高为3cm,则它的侧面积是_________cm2.260.(2009•防城港)下列说法:1:圆柱体的左视图必是一个圆;2:任意一个三角形必有一个内切圆.正确说法正确的序号是_________.解答题261.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.262.(2009•泉州)已知:直线y=kx(k≠0)经过点(3,﹣4).(1)求k的值;(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.263.(2009•张家界)在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.264.(2009•湘潭)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,(1)求证:△ACE∽△CBE;(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;(3)探究:当x为何值时,tan∠D=.265.(2009•福州)如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ 四条边交点的总个数,求相应的r的取值范围.266.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=_________,且∠DON=_________度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=_________,且∠EON=_________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:_________.267.(2009•台州)如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC=BC.268.(2009•绵阳)如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.(1)判断△ABC的形状,并证明你的结论;(2)求证:;(3)若∠ABP=15°,△ABC的面积为4,求PC的长.269.(2009•永州)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.270.(2009•钦州)(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;(2)已知:如图2,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.2009年全国中考数学试题汇编《圆》(09)参考答案与试题解析填空题241.(2009•广安)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽为20cm,则贴纸部分的面积为cm2.S=﹣=cm242.(2009•赤峰)如图,将点A(﹣,0)沿y轴正方向平移1个单位长度得到点P,连接PO,再将PO绕点O按顺时针方向旋转120°,则PO在旋转过程中扫过的扇形面积为2π.(结果保留π)在旋转过程中扫过的扇形半径为s==2s=243.(2009•赤峰)如图,正方形ABCD内接于⊙O,⊙O的半径为2,若分别以AB,BC,CD,DA为折痕,将劣弧,,向内对折,则图中阴影部分的面积为16﹣4π.(结果保留π)解:由圆内接正方形的性质知,正方形的边长等于半径的22244.(2009•长春)如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为(结果保留π).S=245.(2009•锦州)将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是18π.圆锥的侧面积是×246.(2009•浙江)如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为4.,则有×=4247.(2009•营口)如图,小华用一个半径为36cm,面积为324πcm2的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r=9cm.S=×248.(2009•西宁)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是8πcm2(结果保留π).×249.(2009•铁岭)小丽想用一张半径为5cm的扇形纸片围成一个底面半径为4cm的圆锥,接缝忽略不计,则扇形纸片的面积是20πcm2.(结果用π表示)×250.(2009•邵阳)如图所示的圆锥主视图是一个等边三角形,边长为2,则这个圆锥的侧面积为2π(结果保留π).=RL=×251.(2009•宁德)小华为参加毕业晚会演出,准备制作一顶圆锥形纸帽,如图所示,纸帽的底面半径为9cm,母线长为30cm,制作这个纸帽至少需要纸板的面积至少为270πcm2.(结果保留π)252.(2009•南昌)一个圆锥的底面直径是80cm,母线长是90cm,则它的侧面积是3600πcm2.=253.(2009•龙岩)小亮测得一圆锥模型的底面半径为5cm,母线长为7cm,那么它的侧面展开图的面积是110cm2(结果保留三个有效数字).254.(2009•临沂)若一个圆锥的底面积是侧面积的,则该圆锥侧面展开图的圆心角度数是120度.根据圆锥的底面积是侧面积的l×=r=255.(2009•鄂州)已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于2:3.256.(2009•崇左)已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为8cm.==8257.(2009•常德)若一个圆锥的母线长是5cm,底面半径是3cm,则它的侧面展开图的面积是15πcm2.258.(2009•本溪)圆锥的高为4cm,底面圆直径长6cm,则该圆锥的侧面积等于15πcm2(结果保留π).×259.(2006•江西)若圆柱的底面半径2cm,高为3cm,则它的侧面积是12πcm2.260.(2009•防城港)下列说法:1:圆柱体的左视图必是一个圆;2:任意一个三角形必有一个内切圆.正确说法正确的序号是2.解答题261.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.×,262.(2009•泉州)已知:直线y=kx(k≠0)经过点(3,﹣4).(1)求k的值;(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.﹣x+m mm AB=mk=x=(OA=AB=.=∴ו=ו∴263.(2009•张家界)在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.∴x x+2(﹣C=;∴,即,OD=,坐标为(,的坐标为(﹣﹣x x+2﹣(﹣+r(﹣+r(舍去)轴相切,该圆的半径为264.(2009•湘潭)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,(1)求证:△ACE∽△CBE;(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;(3)探究:当x为何值时,tan∠D=.∴D=,即A=∴.==D=265.(2009•福州)如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ 四条边交点的总个数,求相应的r的取值范围.EH=﹣xx x+2ED=EH=;r=个时,266.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=,且∠DON=度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=,且∠EON=度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:.边形的内角,.267.(2009•台州)如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC=BC.268.(2009•绵阳)如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.(1)判断△ABC的形状,并证明你的结论;(2)求证:;(3)若∠ABP=15°,△ABC的面积为4,求PC的长.∴∴∵h=4,∴.=269.(2009•永州)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.=3由题意得:,即×=蚂蚁爬行的最短距离为270.(2009•钦州)(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;(2)已知:如图2,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.的纵坐标为,C=A=。

2014各地中考压轴题一

2014各地中考压轴题一

2014各地中考压轴题一1、(2014北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.2、(2014北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1) 分别判断函数y=x1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2, 求b 的取值范围;(3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足143≤≤t ? 3、(2014长沙)在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),22(,),…都是“梦之点”,显然“梦之点”有无数个。

(1)若点P (2,m )是反比例函数ny x=(n 为常数,n ≠0)的图像上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k,s 为常数)的图像上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数21y ax bx =++(a,b 是常数,a >0)的图像上存在两个“梦之点”A 11(,)x x ,B 22(,)x x ,且满足-2<1x <2,12x x -=2,令215748t b b =-+,试求t 的取值范围。

2014年全国中考数学试题汇编《圆》(13)

2014年全国中考数学试题汇编《圆》(13)

全国中考数学试题汇编《圆》(13)解答题361.(2009•天津)如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).362.(2009•鄂州)如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.363.(2009•淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.364.(2009•聊城)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO 并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.365.(2009•杭州)如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O 相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.366.(2009•湛江)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)367.(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.(1)求劣弧的长;(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.368.(2009•南宁)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).369.(2009•河池)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.370.(2009•河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_________周;若AB=l,则⊙O自转_________周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_________周;若∠ABC=60°,则⊙O在点B处自转_________周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转_________周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.371.(2009•佛山)已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点A1的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.372.(2009•临夏州)图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD 分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.373.(2009•朝阳)在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).374.(2014•凉山州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.375.(2009•湛江)如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)376.(2012•呼伦贝尔)如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.377.(2009•新疆)如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.378.(2009•泉州)如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合.(1)请直接写出n的值;(2)若BC=,试求线段BC在上述旋转过程中所扫过部分的面积.379.(2009•庆阳)如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).380.(2009•南宁)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).381.(2009•柳州)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).382.(2009•衡阳)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.(1)求证:AC=BD;(2)若图中阴影部分的面积是πcm2,OA=2cm,求OC的长.383.(2009•抚顺)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)384.(2009•青海)如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).385.(2009•贵阳)光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π)386.(2009•济宁)在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.387.(2009•茂名)如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C 不重合),过动点P作PD∥BA交AC于点D.(1)若△ABC与△DAP相似,则∠APD是多少度?(2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.388.(2009•怀化)如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:(1)OC⊥DE;(2)△ACD∽△CBD.389.(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:△ACH∽△AFC;(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.390.(2009•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=_________度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.2009年全国中考数学试题汇编《圆》(13)参考答案与试题解析解答题361.(2009•天津)如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).BAC=,362.(2009•鄂州)如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.时,;时,AP=363.(2009•淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.,可将的值求出.∴364.(2009•聊城)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO 并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.∴.的半径为.365.(2009•杭州)如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O 相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.:366.(2009•湛江)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,﹣2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径的长度.(结果保留π)所经过的路径是圆心角为l=π的长度为π367.(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.(1)求劣弧的长;(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.)要求劣弧OP=∴π368.(2009•南宁)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).369.(2009•河池)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.PO=4∴经过的弧长为∴∴或经过的弧长为370.(2009•河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转2周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.周.在阅读理解的(处自转处自转AB=BC==周,拓展联想:因三角形和五边形的外角和是+1;;..在三边上自转了周.自转了共自转了((371.(2009•佛山)已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点A1的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.,再表示点的坐标;OB=20)与(20的长为40=372.(2009•临夏州)图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD 分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.都是圆弧的半径,∴373.(2009•朝阳)在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).(1)画出△OAB向左平移3个单位后的△O1A1B1,写出点B1的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点B旋转到点B2时,点B经过的路线长(结果保留π).OB==5374.(2014•凉山州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.,=375.(2009•湛江)如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)A=××,=376.(2012•呼伦贝尔)如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.AC=3AC=BC=AB=×.OC=,πOCπ﹣377.(2009•新疆)如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.的长度及扇形lR=• 1.5=πl=,扇形的面积lR378.(2009•泉州)如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合.(1)请直接写出n的值;(2)若BC=,试求线段BC在上述旋转过程中所扫过部分的面积.,由(AB==AC=BC=S=379.(2009•庆阳)如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).OA=2380.(2009•南宁)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB 交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).∠×381.(2009•柳州)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).S=π(382.(2009•衡阳)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.(1)求证:AC=BD;(2)若图中阴影部分的面积是πcm2,OA=2cm,求OC的长.∵=∴383.(2009•抚顺)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)DE=EB=BD==∴384.(2009•青海)如图,一个圆锥的高为cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).)圆锥的侧面积是展开图扇形的面积,直接利用公式解题即可,圆锥的侧面积为,h=33圆锥的侧面积为=18385.(2009•贵阳)光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π))=27=9=54386.(2009•济宁)在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论..CON=(,387.(2009•茂名)如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C 不重合),过动点P作PD∥BA交AC于点D.(1)若△ABC与△DAP相似,则∠APD是多少度?(2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.x ﹣x(+1818E=)x﹣=﹣(,18E=)388.(2009•怀化)如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:(1)OC⊥DE;(2)△ACD∽△CBD.389.(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:△ACH∽△AFC;(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.∴∴)解:当OB∴==∴OE=时390.(2009•庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E=45度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.的相似比∴AP=DE=AP=AD DP=AP DF=DE=。

2014年中考数学压轴题复习⒅(含答案,共20期)

2014年中考数学压轴题复习⒅(含答案,共20期)

2014年中考数学压轴题复习⒅341.(山东省淄博市)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,过D 点作EF ∥BC 交AB 的延长线于点E ,交AC 的延长线于点F . (1)求证:EF 为⊙O 的切线; (2)若sin ∠ABC =54,CF =1,求⊙O 的半径及EF 的长.342.(山东省淄博市)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =32,P 是AC 上的一个动点. (1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长; (2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.343.(山东省淄博市)已知直角坐标系中有一点A (-4,3),点B 在x 轴上,△AOB 是等腰三角形. (1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.344.(山东省潍坊市)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC =CD . (1)求证:OC ∥BD ;(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.345.(山东省潍坊市)如图,已知正方形OABC 在直角坐标系xO y 中,点A 、C 分别在x 轴、y 轴的正半轴上,点O 在坐标原点.等腰直角三角板OEF 的直角顶点O 在原点,E 、F 分别在OA 、OC 上,且OA =4,OE =2.将三角板OEF 绕O 点逆时针旋转至OE 1F 1的位置,连结CF 1、AE 1. (1)求证:△OAE 1≌△OCF 1;A B C DA B OC D(2)若三角板OEF 绕O 点逆时针旋转一周,是否存在某一位置,使得OE ∥CF ,若存在,请求出此时E346.(山东省潍坊市)如图所示,抛物线与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).以AB为直径作⊙M ,过抛物线上一点P 作⊙M 的切线PD ,切点为D ,并与⊙M 的切线AE 相交于点E ,连结DM 并延长交⊙M 于点N ,连结AN 、AD .(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形EAMD 的面积为34,求直线PD 的函数关系式; (3)抛物线上是否存在点P ,使得四边形EAMD 的面积等于△DAN 的面积?若存在,求出点P 的坐标;若不存在,说明理由.347.(山东省东营市)如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =AD ,DE ⊥BC 于E ,F 为AB 上一点,且AF =EC ,M 是FC 中点,连结FD 、ME ,设FC 与DE 相交于点N . (1)求证:∠FDB =∠FCB ;△DFN ∽△CBD ;ME 垂直平分BD ; (2)若ME =2,求BF 的长.348.(山东省东营市)如图,在Rt △ABC 中,∠C =90°,直角边BC 与x 轴重合,其内切圆的圆心坐标为I(0,1),抛物线y =ax2+2ax +1的顶点为A .(1)判断抛物线的开口方向并说明理由;(2)求点B 的坐标(用含a 的代数式表示); (3)当a 为何值时,∠ABC =30°?349.(山东省东营市)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG . (1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE =x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.350.(山东省日照市)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA 与水平方向OC 的夹角为30°,O 、A 两点相距38米.(1)求出点A 的坐标及直线OA 的解析式;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点.351.(山东省日照市)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于E ,交BC 于D .求证: (1)D 是BC 的中点;(2)△BEC ∽△ADC ; (3)BC 2=2AB ²CE .352.(山东省日照市)如图,对称轴为直线x =21的抛物线交x 轴于A (-2,0)、B 两点,交y 轴负半轴于点C ,且S △ABC=215. (1)求抛物线的解析式;(2)若平行于x 轴的直线y =k (k <0)交该抛物线于M 、N 两点,交y 轴于点D ,且以MN 为直径的圆恰好经过坐标原点,求k 的值;(3)在(2)的条件下,连结AD ,将△AOD 绕坐标平面内的某一点旋转180°后,A 、D 的对应点A ′、D ′能否同时落在抛物线上?若能,求出A ′、D ′和旋转中心的坐标;若不能,请说明理由.A B C D E F G A B C 备用图(1) AB C 备用图(2)353.(山东省菏泽市)如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,D 是AB 中点,E 是BC 上动点(不与C 重合),⊙O 是过C 、D 、E 三点的圆. (1)求证:∠DFE =∠B ,并求EF 的最小值.(2)设BE =x ,CF =y ,求y 关于x 的函数关系式,并写出x 的取值范围. (3)求CF 的取值范围.354.(山东省菏泽市)如图1,梯形OABC 中,OA ∥BC ,∠C =90°,以AB 为直径作⊙M ,交OC 于点D 、E ,连结AD 、BD 、BE .(1)求证:△ADB ∽△ECB .(2)如图2,以梯形OABC 的顶点O 为坐标原点,顶点C 在y 轴正半轴上建立直角坐标系,抛物线y =ax2-2ax -3a 经过A 、D 两点,且顶点为B ,求抛物线的解析式.(3)在(2)的条件下,在x 轴下方的抛物线上是否存在这样的点P :过点P 做PQ ⊥x 轴于Q ,使得以P 、A 、Q 为顶点的三角形与△ADB 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.355.(山东省菏泽市)如图所示,抛物线y =ax2+bx +c 经过原点O ,与x 轴交于另一点N ,直线y =kx +4与两坐标轴分别交于A 、D 两点,与抛物线交于点B (1,m )、C (2,2)两点. (1)求直线与抛物线的解析式.(2)若抛物线在x 轴上方的部分有一动点P (x ,y ),设∠PON =α,求当△PON 的面积最大时tan α的值.图1(3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得△POA 的面积等于△PON 面积的 815?若存在,请求出点P 的坐标;若不存在,请说明理由.356.(山东省莱芜市)在Rt △ACB 中,∠C =90°,AC =3cm ,BC =4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.357.(山东省莱芜市)在□ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是_______________;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是_______________; (4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.358.(山东省莱芜市)如图,在平面直角坐标系中,已知抛物线y =ax2+bx +c 交x 轴于A (2,0),B (6,0)两点,交y 轴于点C (0,32). (1)求此抛物线的解析式; (2)若此抛物线的对称轴与直线y =2x 交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于E 、F 两点,求劣弧EF︵的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分成1 :2两部分.B H G F E O DC B A 图① H G E OD C B A 图② A B C DO E F G H 图③ A B C DO E F G H 图④F359.(山东省泰安市)如图,在△ABC 中,D 是BC 边上一点,E 是AC 边上一点,且满足AD =AB ,∠ADE =∠C .(1)求证:∠AED =∠ADC ,∠DEC =∠B ;(2)求证:AB 2=AE ²AC .360.(山东省泰安市)如图,△ABC 是等腰直角三角形,∠A =90°,点P 、Q 分别是AB 、AC 上的动点,且满足BP =AQ ,D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.AEC AQ P答案341.(1)证明:连结OD∵AD 平分∠BAC ,∴∠1=∠2 ∵OA =OD ,∴∠1=∠3 ∴∠2=∠3,∴OD ∥AC ∵AB 为⊙O 的直径,∴AC ⊥BC ∴OD ⊥BC∵EF ∥BC ,∴OD ⊥EF ∵OD 为⊙O 的半径∴EF 为⊙O 的切线 ·················································································· 3分(2)解:设OD 与BC 相交于点M ,⊙O 的半径为r ,则OB =OD =r在Rt △BOM 中,OM =OB ²sin ∠ABC =54r又∵OM =OD -MD =OD -CF =r -1r -1=54r ,∴r =5即⊙O 的半径为5 ····················································································· 6分 ∴AB =10,AC =AB ²sin ∠ABC =8,BC =22AC AB-=6AF =AC +CF =9∵EF ∥BC ,∴△AEF ∽△ABC ∴BC EF =AC AF ,即5EF =89∴EF =845································································································· 8分342.解:(1)如图(1),作DF ⊥AC 于F在Rt △ABC 中,∵AB =32,∠BAC =30°,∴BC =3,AC =3 在Rt △ACD 中,∵AD =CD ,∴DF =AF =CF =23∵BP 平分∠ABC ,∴∠PBC =30° ∴CP =BC ²tan30°=1,∴PF =21 ∴DP =22PF DF+=210 ······································································· 3分(2)(1)(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45° 又PD =BC =3,∴cos ∠PDF =PDDF =23,∴∠PDF =30°∴∠PDA =∠ADF -∠PDF =15° ································································· 5分 当P 点位置如图(3)所示时,同(2)可得∠PDF =30°∴∠PDA =∠ADF +∠PDF =75° ································································· 7分 (3)当CP =23时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上 理由如下:如图(4),在□DPBQ 中,∵BC ∥DP ,∠ACB =90°,∴DP ⊥AC 根据(1)中结论可知,DP =CP =23························································· 8分 ∴S □DPBQ=DP ²CP =49 ············································································· 10分 343.解:(1)过A 作AC ⊥x 轴,由已知得OC =4,AC =3∴OA =22AC OC+=5①当OB =OA =5时若点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0) ·········· 0.5分 若点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0) ················· 1分②当AB =OA =5时,点B 只能在x 轴的负半轴上,如图(3)此时BC =OC ,则OB =8,点B 的坐标为(-8,0) ····························· 1.5分 ③当AB =OB =5时,点B 只能在x 轴的负半轴上,如图(4) 在x 轴上取点D ,使AD =OA ,则OD =8(3)(4)(2)(1)由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA 则OA OB =OD OA ,即5OB =85解得OB =825,点B 的坐标为(-825,0) ················································ 2分(2)当AB =OA 时,抛物线过O(0,0),A (-4,3),B (-8,0)三点设抛物线的函数表达式为y =ax2+bx则⎩⎪⎨⎪⎧16a -4b =364a -8b =0 解得a =-163,b =-23∴y =-163x2-23x ························································································ 3分 当OA =OB 时,同理可得y =-43x2-415x ················································ 4分 (3)当OA =AB 时①若BP ∥OA ,如图(5)分别过A 、P 作x 轴的垂线,垂足分别为C 、E 则∠PBE =∠AOC ,∠PEB =∠ACO =90° ∴△PBE ∽△AOC ,∴BE PE =OCAC =43设BE =4m ,则PE =3m∴点P 的坐标为(4m -8,-3m ),代入y =-163x2-23x ,解得m =3 ∴P (4,-9) ································································································ 5分 S 梯形ABPO=S △ABO+S △BPO=21×OB ×(AC +PE )=21×8×(3+9)=48 ···· 5.5分 ②若OP ∥AB ,根据抛物线的对称性可得点P 的坐标为(-12,-9) ······ 6分 S 梯形AOPB=S △ABO+S △BPO=48 ··································································· 6.5分当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴 则∠PBF =∠AOC ,∠PFB =∠ACO =90° ∴△PBF ∽△AOC ,∴BF PF =OCAC =43设BF =4m ,则PF =3m(3)(4)∴点P 的坐标为(4m -5,-3m ),代入y =-43x2-415x ,解得m =3∴P (1,-29) ······························································ 7分 S 梯形ABPO=S △ABO+S △BPO=475 ····································· 8分 若OP ∥AB (图略),作PF ⊥x 轴 则∠POF =∠ABC ,∠PFO =∠ACB =90° ∴△POF ∽△ABC ,∴OF PF =BCAC=3 设点P 的坐标为(-n ,-3n ),代入y =-43x2-415x ,解得n =9∴P (-9,-27) ·························································································· 9分 S 梯形AOPB=S △ABO+S △BPO=75 ····································································· 10分344.(1)证明:∵AC =CD ,∴AC ︵=CD ︵,∴∠ABC =∠CBD又∵OC =OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBD ∴OC ∥BD ···························································4分(2)解:∵OC ∥BD ,不妨设平行线OC 与BD 间的距离为h又S △OBC=21OC ²h ,S △DBC=21BD ²h 因为BC 将四边形OBDC 分成面积相等的两个三角形,即S △OBC=S △DBC ∴OC =BD ································································································· 7分 ∴四边形OBDC 为平行四边形. 又∵OC =BD ,∴四边形OBDC 为菱形345.(1)证明:∵四边形OABC 为正方形,∴OA =OC∵三角板OEF 是等腰直角三角形,∴OE 1=OF 1又三角板OEF 绕O 点逆时针旋转至OE 1F 1的位置时,∠AOE 1=∠COF 1 ∴△OAE 1≌△OCF 1 ·················································································· 3分 (2)存在 ··········································································································· 4分∵OE ⊥OF∴过点F 与OE 平行的直线有且只有一条,并与OF 垂直,又当三角板OEF 绕O 点逆时针旋转一周时,点F 在以O 为圆心,OF 为半径的圆上······································································································· 5分∴过点F 与OF 垂直的直线必是⊙O 的切线,又点C 是圆⊙O 外一点,过点C 与⊙O 相切的直线有且只有2条,不妨设为CF 1和CF 2此时,E 点分别在E 1点和E 2点,满足CF 1∥OE 1,CF 2∥OE 2 ·············· 7分ABOC D当切点F 1在第二象限时,点E 1在第一象限, 在直角三角形CF 1O 中,OC =4,OF 1=2 cos ∠COF 1=OC OF 1=21∴∠COF 1=60°,∴∠AOE 1=60° ∴点E 1的横坐标为:x E 1=2cos60°=1 点E 1的纵坐标为:y E 1=2sin60°=3∴点E 1的坐标为(1,3) ··························· 9分 当切点F 2在第一象限时,点E 2在第四象限同理可求:点E 2的坐标为(1,-3)················································· 10分综上所述,三角板OEF 绕O 点逆时针旋转一周,存在两个位置,使得OE ∥CF ,此时点E 的坐标为E 1(1,3)或E 2(1,-3) ············································ 11分346.解:(1)因为抛物线与x 轴交于点A (-1,0)、B (3,0)两点设抛物线的函数关系式为:y =a (x +1)(x -3) ∵抛物线与y 轴交于点C (0,-3) ∴-3=a (0+1)(0-3),∴a =1所以,抛物线的函数关系式为:y =(x +1)(x -3)即y =x2-2x -3 ····························································································· 2分∵y =x2-2x -3=(x -1)2-4因此,抛物线的顶点坐标为(1,-4) ························································ 3分 (2)连结EM ,∵EA 、ED 是⊙M 的两条切线∴EA =ED ,EA ⊥AM ,ED ⊥MD ,∴△EAM ≌△EDM 又四边形EAMD 的面积为34,∴S △EAM=32,∴21AM ²AE =32 又AM =2,∴AE =32因此,点E 的坐标为E 1(-1,32)或E 2(-1,-32) ···················· 5分 当E 点在第二象限时,切点D 在第一象限 在Rt △EAM 中,tan ∠EMA =AMEA=232=3∴∠EMA =60°,∴∠DMB =60° 过切点D 作DF ⊥AB ,垂足为点F ∴MF =1,DF =3因此,切点D 的坐标为(2,3) ······························································ 6分 设直线PD 的函数关系式为y =kx +b ,将E (-1,32),D (2,3)的坐标代入得⎩⎨⎧3=2k +b 32=-k +b解得⎩⎪⎨⎪⎧k =-33b =335 所以,直线PD 的函数关系式为y =-33x +335 ···································· 7分 当E 点在第三象限时,切点D 在第四象限同理可求:切点D 的坐标为(2,-3),直线PD 的函数关系式为y =33x -335 因此,直线PD 的函数关系式为:y =-33x +335或y =33x -335 ··························································· 8分 (3)若四边形EAMD 的面积等于△DAN 的面积又S 四边形EAMD=2S △EAM,S △DAN=2S △AMD∴S △AMD=S △EAM∴E 、D 两点到x 轴的距离相等∵PD 与⊙M 相切,∴点D 与点E 在x 轴同侧 ∴切线PD 与x 轴平行此时切线PD 的函数关系式为y =2或y =-2 ···················· 9分 当y =2时,由y =x2-2x -3得,x =1±6当y =-2时,由y =x2-2x -3得,x =1±2 ········································· 11分故满足条件的点P 的位置有4个,分别是:P 1(1+6,2)、P 2(1-6,2)、 P 3(1+2,-2)、P 4(1-2,-2) ····················································· 12分347.(1)证明:∵∠ABC =90°,∴AB ⊥BC又AD ∥BC ,DE ⊥BC ,∴DE =AB =AD ∵AD ∥BC ,∠ABC =90°,∴∠A =90° ∴四边形ABED 是正方形 又AF =EC ,∴△ADF ≌△EDC ∴DF =DC ,∠ADF =∠EDC又∠ADF +∠FDE =90°,∴∠EDC +∠FDE =90° ∴∠FDC =90°,∴△DFC 是等腰直角三角形 设FC 与BD 相交于点G ,则∠DFG =∠DCF =45° ∵∠CBG =45°,∴∠DFG =∠CBG 又∠FGD =∠BGC ,∴△FDG ∽△BCG∴∠FDB =∠FCB ····················································································· 3分 ∵∠FDN =45°+∠FDB ,∠BCD =45°+∠FCB ,∴∠FDN =∠BCD又∠DFN =∠CBD =45°∴△DFN ∽△CBD ···················································································· 5分 连结DM ,则DM ⊥FC ,∠FDM =∠CDM =45° 又∠FDB =45°-∠ADF ,∠MDE =45°-∠EDC ∴∠FDB =∠MDE 又DM DF =DEDB=2,∴△DFB ∽△DME ∴∠MED =∠FBD =45°∴ME 是正方形ABED 的对角线,∴ME 垂直平分BD ··························· 8分(2)解:由△DFB ∽△DME 可知,∴FB =2ME =2 ········································ 10分348.解:(1)∵y =ax2+2ax +1,∴抛物线的对称轴为x =-1∵抛物线的顶点为A ,∴直角边AC 所在直线为对称轴 由题意,得顶点A 的坐标为(-1,1-a ) ∵y =ax2+2ax +1,当x =0时,y =1∴抛物线过I (0,1) ∴1-a >1,∴a <0∴抛物线开口向下 ············································ 12分 (2)如图,AC =1-a ,BC =OC +OB =1+OBAB =AD +BD =AE +OB =AC -EC +OB =(1-a )-1+OB =OB -a 在Rt △ABC 中,由勾股定理得AC 2+BC 2=AB 2∴(1-a ) 2+(1+OB ) 2=(OB -a ) 2,解得OB =11+-a a ∴点B 的坐标为(11+-a a ,0) ······································································· 6分 (3)∵∠ABC =30°,∴tan ∠ABC =33 又tan ∠ABC =BCAC=1111+-+-a a a =a a 212-,∴a a 212-=33∴3a2+32a -3=0∴a 1=-3,a 2=33 又∵a <0,∴a =-3即当a =-3时,∠ABC =30°································································· 10分349.解:(1)当正方形DEFG 的边GF 在BC 上时,如图(1)过点A 作BC 边上的高AM ,交DE 于N ,垂足为MADEN∵S △ABC=48,BC =12,∴AM =8∵DE ∥BC ,△ADE ∽△ABC ·············································· 1分 ∴BC DE =AMAN,而AN =AM -MN =AM -DE ∴12DE =88DE- ································································· 2分 解得 DE =524 ∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为524 ······ 3分 (2)分两种情况:①当正方形DEFG 在△ABC 的内部时,如图(2)△ABC 与正方形DEFG 重叠部分的面积为正方形DEFG 的面积 ∵DE =x ,∴y =x2(0<x ≤524) ···································· 4分②当正方形DEFG 的一部分在△ABC 的外部时,如图(3)设EF 与BC 交于点P ,DG 与BC 交于点Q ,△ABC 的高AM 交DE 于N ∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC ························ 5分 ∴BC DE =AMAN,而AN =AM -MN =AM -EP ∴12x =88EP -,解得EP =8-32x ···································· 6分 所以y =x (8-32x ),即y =-32x2+8x (524<x <12) ····· 7分 因此△ABC 与正方形DEFG 重叠部分的面积为y =⎩⎪⎨⎪⎧x2 (0<x ≤524)-32x2+8x (524<x <12) ····································· 8分当0<x ≤524时,△ABC 与正方形DEFG 重叠部分的面积的最大值为(524)2=25576当524<x <12时,∵y =-32x2+8x =-32(x -6)2+24∴当x =6时,△ABC 与正方形DEFG 重叠部分的面积的最大值为24∵24>25576所以△ABC 与正方形DEFG 重叠部分的面积的最大值为24 ··················· 10分350.解:(1)在Rt △AOC 中∵∠AOC =30 °,OA =38∴AC =OA ²sin30o =38×21=34OC =OA ²cos30o =38×23=12 A BCD E FG图(2)AB C图(3) DEF G M NQ P。

2014年中考数学压轴题精编--新疆、宁夏、山西、青海篇(试题及答案)

2014年中考数学压轴题精编--新疆、宁夏、山西、青海篇(试题及答案)

2014年中考数学压轴题精编—新疆、宁夏、山西、青海篇91.(新疆维吾尔自治区、新疆生产建设兵团)如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B 在半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且BC =OE 。

(1)求证:DB ∥CF ;(2)当OE =2时,若以O ,B ,F 为顶点的三角形与△ABC 相似,求OB 的长;(3)若OE =2,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离。

91.解:(1)证明:如图1,连接OF∵AB 切半圆O 于点F ,∴OF ⊥AB ·········· 1分 又∵BC ⊥AB ,∴BC ∥OF ∵BC =OE ,OE =OF ,∴BC =OF∴四边形OBCF 是平行四边形 ···················· 3分 ∴DB ∥CF ····················································· 4分(2)解:∵以O ,B ,F 为顶点的三角形与△ABC 相似,∠OFB =∠ABC =90°∴∠OBF =∠A 或∠BOF =∠A∵∠OBF =∠BFC ,∠BFC >∠A ,∴∠OBF >∠A∴∠OBF 与∠A 不可能是对应角 ···································································· 6分 ∴∠BOF 与∠A 是对应角,∴∠BOF =30° ∴OB =30cos OF=334 ································ 8分 (3)解:点B 移动的距离即线段BE 的长,当点A 与点F 重合时,点B 移动的距离最大,如图2∵在Rt △ABC 中,BC =OE =2,∠A =30° ∴AC =2BC =4∵四边形OBCF 是平行四边形,∴OB =AC =4 ∴BE =OB -OE =4-2=2即点B 移动的最大距离为2 ······························· 10分92.(新疆维吾尔自治区、新疆生产建设兵团)张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1)。

2014年中考数学压轴题分类汇编:与圆有关【含答案】

2014年中考数学压轴题分类汇编:与圆有关【含答案】

2014年中考数学压轴题分类汇编:与圆有关【含答案】2014年中考数学分类汇编中,与圆相关的考点包括垂径定理、圆周角定理、圆内接四边形的性质、切线性质、锐角三角函数定义、特殊角的三角函数值、相似三角形的判定和性质、勾股定理、特殊四边形性质等。

本文选取了部分省市的2014年中考题,供读者参考。

题目一是2014年江苏南京中考数学26题。

题目给出一个直角三角形ABC,AC=4cm,BC=3cm,且有一个内切圆O。

问题分为两部分:求圆的半径和当点P从点B沿边BA向点A 以1cm/s的速度匀速运动时,若⊙P与⊙O相切,求t的值。

对于第一部分,我们可以通过连接切点和圆心,设出半径,并利用圆的性质和直角三角形性质表示其中关系,得到方程,求解得到半径。

对于第二部分,我们需要分别讨论外切和内切的情况,通过表示边长之间的关系列方程,易得t的值。

解答部分中,对于第一部分,我们设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,得到四边形CEOF是正方形,进而得到半径为1cm。

对于第二部分,我们通过画图得到PG∥AC,从而得到△PBG∽△ABC,进而得到PG=1/5,BG=3/5.然后我们分别讨论外切和内切的情况,列方程解得t=4或2.作点F关于点M的对称点F',连接ME和F'F,经过M、E和F'三点的抛物线的对称轴交x轴于点Q,连接QE。

在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由。

证明:1)如图,连接PM,PN。

因为圆P与x轴和y轴相切于点M和点N,所以PM⊥MF,PN⊥ON且PM=PN。

又因为PE⊥PF,所以∠PMF=∠PNE=90°且∠NPM=90°。

由于∠NPE=∠MPF=90°-∠MPE,在△PMF和△PNE中,∠MPE相等,所以这两个三角形是全等的(ASA),因此PE=PF。

2014年全国中考数学试题汇编《圆》(12)

2014年全国中考数学试题汇编《圆》(12)

全国中考数学试题汇编《圆》(12)解答题331.(2009•西宁)已知:如图,AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E.(1)请判断DE与⊙O的位置关系,并证明;(2)连接AD,若⊙O的半径为,AD=3,求DE的长.332.(2009•武汉)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.333.(2009•乌鲁木齐)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.334.(2009•铁岭)如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.335.(2009•遂宁)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.336.(2009•随州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O与BC交于点D,过点D作AC的垂线,垂足为E.(1)证明:DE是⊙O的切线;(2)若⊙O的直径是5,BC=6,求CE的长.337.(2009•陕西)如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是圆O的切线;(2)若圆O的半径R=5,BC=8,求线段AP的长.338.(2009•钦州)已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB 交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.339.(2009•黔东南州)如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.340.(2009•攀枝花)如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.(1)求证:AC是圆O的切线;(2)求AE的长.341.(2009•南平质检)如图,已知AB是⊙O的直径,弦AC平分∠DAB,CD⊥AD于D.则CD是⊙O的切线吗?请说明理由.342.(2009•泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.343.(2009•丽水)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO 相似?若存在,求出DP的长;若不存在,请说明理由.344.(2009•仙桃)如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.(1)请探究FD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,BD=,求BC的长.345.(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.346.(2009•呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB 为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?347.(2009•贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.(1)求证:DE是⊙O的切线;(2)如果⊙O的半径是cm,ED=2cm,求AB的长.348.(2009•桂林)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.349.(2009•贵港)如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.①求y关于x的函数关系式;②当x=1时,求tan∠BAD的值.350.(2009•广安)已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.(1)求证:AC是⊙O的切线;(2)若OA=10,AD=16,求AC的长.351.(2009•恩施州)如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=,求⊙O的半径的长.352.(2009•鄂尔多斯)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CE=5,求⊙O的半径.353.(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=,求BC的长.354.(2009•赤峰)一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.(1)A,B,C,D四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由;(2)过点D作直线l∥AC,求证:l是这个圆的切线.355.(2009•朝阳)如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.求证:CD是⊙O的切线.356.(2009•本溪)如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.357.(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.358.(2009•安顺)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长.359.(2009•十堰)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP 上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.360.(2009•兰州)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)2009年全国中考数学试题汇编《圆》(12)参考答案与试题解析解答题331.(2009•西宁)已知:如图,AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E.(1)请判断DE与⊙O的位置关系,并证明;(2)连接AD,若⊙O的半径为,AD=3,求DE的长.的半径为DC=DE=332.(2009•武汉)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.ACCE=OD=OA=ABACO=333.(2009•乌鲁木齐)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积..=,,﹣334.(2009•铁岭)如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.DF=OE=OB+BE=5+=.∴∴DF=OE=OB+BE=5+∵335.(2009•遂宁)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.∴ABD=∴=4x∴.336.(2009•随州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O与BC交于点D,过点D作AC的垂线,垂足为E.(1)证明:DE是⊙O的切线;(2)若⊙O的直径是5,BC=6,求CE的长.337.(2009•陕西)如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是圆O的切线;(2)若圆O的半径R=5,BC=8,求线段AP的长.BE=∴∴∴338.(2009•钦州)已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB 交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.,进而可得;代入数据计算可得∴.∴.339.(2009•黔东南州)如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.340.(2009•攀枝花)如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.(1)求证:AC是圆O的切线;(2)求AE的长.,AE=2x=.341.(2009•南平质检)如图,已知AB是⊙O的直径,弦AC平分∠DAB,CD⊥AD于D.则CD是⊙O的切线吗?请说明理由.342.(2009•泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.BD=DH=ODH==,E=.343.(2009•丽水)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO 相似?若存在,求出DP的长;若不存在,请说明理由.BD=,.BO=BD+OD=,D=OC=×=∴.BC=D=OC==344.(2009•仙桃)如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.(1)请探究FD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,BD=,求BC的长.∴BC=.345.(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.DE=CD=.∴,即∴,k=﹣346.(2009•呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB 为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?,当边运动的时间为347.(2009•贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.(1)求证:DE是⊙O的切线;(2)如果⊙O的半径是cm,ED=2cm,求AB的长.OD=,OE=×348.(2009•桂林)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.4.5=.∴∴.DG×∴(∴(349.(2009•贵港)如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.①求y关于x的函数关系式;②当x=1时,求tan∠BAD的值..BAD=350.(2009•广安)已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.(1)求证:AC是⊙O的切线;(2)若OA=10,AD=16,求AC的长.AF==6∴.AC=351.(2009•恩施州)如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=,求⊙O的半径的长.,OA=OF∴OF=352.(2009•鄂尔多斯)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CE=5,求⊙O的半径.C=B=,的半径为C=B==OB=的半径为353.(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=,求BC的长.tanC=tanC=3×=3354.(2009•赤峰)一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.(1)A,B,C,D四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由;(2)过点D作直线l∥AC,求证:l是这个圆的切线.OB=OD=AC=OA=OC355.(2009•朝阳)如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.求证:CD是⊙O的切线.356.(2009•本溪)如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.∴∴∴357.(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.BE=cosC=ABC= AB==6∴∴的半径为.358.(2009•安顺)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长..DG=2DF=4.359.(2009•十堰)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP 上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.,360.(2009•兰州)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年09月22日压轴题圆中考真题一.解答题(共30小题)1.(2014•莆田)如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.2.(2014•菏泽)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.3.(2014•黄石)如图,A、B是圆O上的两点,∠AOB=120°,C是弧AB的中点.(1)求证:AB平分∠OAC;(2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.4.(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.5.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.6.(2014•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.7.(2014•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.8.(2014•厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.9.(2014•大庆)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.10.(2014•湖州)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.11.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.12.(2014•绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.13.(2014•无锡)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.14.(2014•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.15.(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.16.(2014•福州)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.17.(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.18.(2014•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.19.(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=_________cm时,四边形AOBD是菱形;②当DP=_________cm时,四边形AOBP是正方形.20.(2014•贵阳)如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.21.(2014•宜昌)已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.22.(2014•玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.23.(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.24.(2014•陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.25.(2014•西宁)如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.26.(2014•淮安)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.27.(2014•扬州)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.28.(2014•黔东南州)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.29.(2014•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.30.(2014•广安)如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB=,求弦DG的长.2014年09月22日压轴题圆中考真题参考答案与试题解析一.解答题(共30小题)1.(2014•莆田)如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.BD=BD=BD=BD===接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.=,AE==2 E==E==OD=k AOD==.由=AE==2 E===.∴=OC=OA=.∴=AOD==.(1)求证:AB平分∠OAC;(2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.4.(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.AF=5﹣5.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.BF=BE=AB=×AF==×1+﹣=﹣,由于CD=2CF=6,∵CD=2CF=6AE=BE=AE=BE=×OB=×==3cm8.(2014•厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.OD=的半径为(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.,∴,∵的长为:=.10.(2014•湖州)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.CE===2==82(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.M=∠12.(2014•绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.BPD=,即,∵(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.ADO==55==BC=AB=2交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.,然后由垂径定理证得,=ABC=,可求得∴,∴OA=OD=AB=5×=3==4DAE==,∵∠DBC=.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;BD=CD=5AC==8,∴=,∴BD=CD=5DAB=∠点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;ACB=,求出sinB=,AE=ABsinB=3sin45×=3ACB=,∴EC===,∴;AC=2==(1)求∠ACB的度数;中CM=BM==CM=AB=过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.∴19.(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;OP=DP=OP=DP=(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;,∴OPA=OPB=AP=3,×=×=9切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.,根据相似得出=,求出,∴=,∴=,==2DCπ2y=1212.22.(2014•玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.=,即=连接OD、OC、BE.(1)求证:OD∥BE;,∴Rt△OAD≌Rt△OED(SAS)∴∠AOD=∠EOD=∠AOE,ABE=∠==延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.,∴,∴AC=点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.由题意得=,)得=,则∠AOD=,求得∴=,∴为菱形.理由是:∵,∴AOD=,∴DH=2DF=226.(2014•淮安)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.CD=AC=ECAC AB即==2427.(2014•扬州)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.∴∠EF=,又∵,∴28.(2014•黔东南州)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.π.==π29.(2014•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.,所以;BC=∴,即,解得,∴﹣2==,∴BD××,即重叠(阴影)部分的面积为点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB=,求弦DG的长.ACB=推知ACB=ACB=ACB==.×ACB=×,∴DG=2DF=。

相关文档
最新文档