旋风分离器时间步长的计算

合集下载

旋风分离器计算程序

旋风分离器计算程序
旋风 分离
备注
6A.1示例中的计算值,HOFFMAN等2001年的实验数据,使用时将此 SHEET整体COPY成一个副本,进行计算
尺寸参数
(m)
计算结果
50切割粒径
8.07
微米
D
外径
D
0.075
总效率
26%
内径
Dx
0.030
粒径
效率 进口组成
出口
放料口直径
Dd
0.060
微米
eff
%
1
0%
13.50%
Vin Theta
Co alpha Rm Vzw
Ar Vow Vocs Vom ReR Vx
53.333 m/s 0.533333333 -
0.004 0.576 0.024 m 13.588 m/s 0.029 m^2 67.86 m/s 18.53 m/s 35.46 m/s 5695.8 56.62 m/s
Din50 D50 CC0>0=L0. C0<10.1
8.000 MU 8.07 mu
0.00578 kg/kg 0.01541 kg/kg 0.00578 kg/kg
迭代计算程序 相对粗糙度 插值得桶体摩擦系数 预计总效率 升气管弗劳德数 总摩擦系数
Ks/R fair eff Frx f
内旋涡旋转速度计算值 #NAME? #NAME?
0.000
b
进料口宽度
b
0.020
2
0%
16.50%
0.000
进料口高度
a
0.038
3
1%
14.00%
0.001
4
3%
9.00%

旋风分离器计算程序--Muschelknautz模型方法

旋风分离器计算程序--Muschelknautz模型方法
25.000 MU 5.057 mu
0.00543 kg/kg 0.00543 kg/kg 0.00523 kg/kg
迭代计算程序 ReR初值 相对粗糙度 查表得桶体摩擦系统 预计总效率 升气管弗劳德数 总摩擦系数 内旋涡旋转速度计算值
ReR0 Ks/R
fair eff Frx f
V0cs
压降计算 分离器中损失 旋转涡核与升气管损失 加速压力损失 总压力损失
Vin Theta
Co alpha Rm Vzw
Ar Vow Vocs Vom ReR Vx
Din50 D50 CC0>0=L0. C0<10.1
24.482 m/s 0.3 -
0.160 0.741 0.150 m 3.105 m/s 2.506 m^2 14.000 m/s 18.000 m/s 15.875 m/s 3570.324 17.038 m/s
Rho_p
1800 kg/m^3
90 100%
0.37%
0.004
堆积密度度
Rho_b
900 kg/m^3
100 100%
0.09%
0.001
>100
0
-
1.00
0.92
Muschelknautz Modeld Rin
入口速度 T因子 颗粒/气体 (m/m) 入口收缩系数 几何平均半径 器壁表面轴向速度 摩擦阻力总面积 器壁表面切向速度 内旋涡旋转速度 气体平均旋转速度 旋风分离器ReR 升气管中气流速度 分离效率 进口中位径 切割粒径 极限浓度
40 100%
14.65%
0.147
操作参数
50 100%
8.24%
0.082

旋风分离器计算结果

旋风分离器计算结果

旋风分离器计算结果标准化工作室编码[XX968T-XX89628-XJ668-XT689N]旋风除尘器性能的模拟计算一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。

图1 旋风分离器几何形状及尺寸(正视图)旋风分离器的空间视图如图2所示。

图2 旋风分离器空间视图二、旋风分离器数值仿真中的网格划分仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。

图3 数值仿真时旋风分离器的网格划分(空间)图4为从空间不同角度所观测到的旋风分离器空间网格。

图4 旋风分离器空间网格空间视图本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。

三、对旋风分离器的数值模拟仿真采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。

以下是计算结果的后处理显示结果。

由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。

图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。

可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图6 L=2.3m、D=1.5m、长宽比1:1,入口速度15m/s时烟尘空间分布四、计算结果计算中,首先确定几何尺寸L,按照给定的两种烟尘颗粒,分别对L=2.3m、L=1.8m、L=1.3m、L=0.8m四种情况进行对比计算,对比计算结果为L=2.3m、L=1.3m时除尘效率较高。

旋风分离器除尘器的数值模拟及分析

旋风分离器除尘器的数值模拟及分析

将已划分好的网格导入 Fluent 中进行模
用 时 间 平 均 的 方 法, 若 系 统 烟 气 入 口 平 均 流
图 4 颗粒轨迹
— 65 —
区域供热 2021. 2 期
此时随着灰 尘 颗 粒 反 弹 加 重 和 气 流 的 湍 流 速
度增加等原因反而造成分离效率下降。
3. 2 温度
分离效率受除 尘 器 内 温 度 的 影 响。 将 温
模拟气 流 在 旋 风 分 离 器 内 部 的 强 旋 湍 流 运
次网格划分的总数,为 保 证 计 算 精 度,实 施 网
旋 风 分 离 器 内 颗 粒 相 的 运 动, 选 取 颗 粒 随 机
为 0. 5 mm,总网 格 数 72 435 个,接 着 增 拟
— 63 —
区域供热 2021. 2 期
切向进入,在圆筒壁 内 做 旋 转 向 下 的 运 动,通
过惯性将 大 颗 粒 分 离 至 圆 筒 壁 上, 然 后 进 入
下部除尘斗。 用于分离 5 至 10 μm 或更大的
灰尘颗粒的分离器,特 别 地,更 大 的 灰 尘 颗 粒
的分离器被用作流化 床 反 应 器 的 内 部 分 离 装
0 引言
离除尘器就是重要 的 组 成 部 分 之 一。 在 灰 尘
我国的公用事业燃煤锅炉和工业锅炉
较 多 的 工 厂 中, 如 果 使 用 旋 风 分 离 除 尘 器 作
主 要 以 煤 为 原 料 ,由 于 包 括 流 化 床 在 内 的 一
为 第 一 级 除 尘 器, 然 后 安 装 配 备 其 他 除 尘 器
受多种因素的影响,如 温 度、颗 粒 大 小 和 入 口
流速。
如 图 1 所 示 ,当 含 有 尘 埃 的 气 流 从 进 口

旋风分离器计算

旋风分离器计算

进口中位径
Dd
迭代计算程序 ReR初值 相对粗糙度 查表得桶体摩擦系统 预计总效率 升气管弗劳德数 总摩擦系数 内旋涡旋转速度计算值
ReR0 Ks/R fair eff Frx f V0cs
936.111 0.00046 0.0058 0.950 10.566 0.007 18.6005
m/s
Rin
旋风分离器计算程序--Muschelknautz模型方法
Refer to 6A.1 Hoffmann etc, 2001 experiment data 尺寸参数 D 外径 内径 放料口直径 进料口宽度 进料口高度 总高 锥体高度 空间高度 升气管底与进料口高差 进气平均半径 空气密度 空气粘度 器壁粗糙度 Ht 操作参数 V0cone Dcone Hc 空气体积流量 颗粒浓度 粉尘真密度 堆积密度度 Q C Rho_p Rho_b 144 4.50E-03 2730 1365 D Dx Dd b a Ht Hc Hi Hg Rin (m) 0.200 0.075 0.075 0.040 0.100
压降计算 分离器中损失 旋转涡核与升气管损失 加速压力损失 总压力损失
dP_body dP_x dP_acc Total
197.601 691.529 0.000 889.130
pa pa pa pa
Hi
m^3/hr kg/m^3 kg/m^3 kg/m^3
1.676 99% 效率 eff 7% 71% 95% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
微米 进口组成 % 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 2.00% 3.00% 10.00% 15.00% 20.00% 15.00% 10.00% 9.00% 4.00% 2.00% 1.00% 1.00% 1.00 25 微米 出口 0.001 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.020 0.030 0.100 0.150 0.200 0.150 0.100 0.090 0.040 0.020 0.010 0.010 0.99

旋风分离器的工艺计算

旋风分离器的工艺计算

旋风分离器的工艺计算》:*目录一.前言 ............................................................................................................. 错误!未定义书签。

应用范围及特点....................................................................................... 错误!未定义书签。

分离原理................................................................................................... 错误!未定义书签。

分离方法................................................................................................... 错误!未定义书签。

)性能指标 ................................................................................................. 错误!未定义书签。

二.旋风分离器的工艺计算.............................................................................. 错误!未定义书签。

旋风分离器直径的计算........................................................................... 错误!未定义书签。

由已知求出的直径做验算....................................................................... 错误!未定义书签。

旋风分离器计算

旋风分离器计算

作成作成::时间时间::2009.5.14一、問題提出PHLIPS FC9262/01這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。

二、計算過程1.選擇工作狀況選擇工作狀況::根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。

吸塵器旋風分離器選擇Bryan_Wang已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。

再在這個直線上求得吸入功率H*Q最高點(求導數得)。

求解過程不再詳述。

求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。

一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。

按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。

D0=50mmb=12.5mma=25mmde=25mmh0=20mmh=75mmH-h=100mmD2=12.5mm計算α約為11度一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s.計算入口面積為S=3.125e-4平方米。

則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。

进气粒径分布1030581001903757501500201010102016113顆粒密度ρp=2700kg/m3進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s按照以下公式計算顆粒分級效率:平均粒徑(μm)比重(%)計算結果為d(m)1E-053E-056E-051E-042E-044E-048E-040.0023E-071E-075E-08ηi 111111110.91140.6750.5校核分割粒徑校核分割粒徑x x 5050::按照以下公式計算:計算得知在所有平均粒徑計算得到的分級效率都為100%,而分級效率為50%的粒徑為0.05微米。

旋风分离器的工艺计算

旋风分离器的工艺计算

旋风分离器的工艺计算目录一.前言 (3)1.1应用范围及特点 (3)1.2分离原理 (3)1.3分离方法 (4)1.4性能指标 (4)二.旋风分离器的工艺计算 (4)2.1旋风分离器直径的计算 (5)2.2由已知求出的直径做验算 (5)2.2.1计算气体流速 (5)2.2.2计算旋风分离器的压力损失 (5)2.2.3旋风分离器的工作范围 (6)2.3进出气管径计算 (6)三.旋风分离器的性能参数 (6)3.1分离性能 (6)3.1.1临界粒径d pc (7)3.1.2分离效率 (8)3.2旋风分离器的压强降 (8)四.旋风分离器的形状设计 (9)五.入口管道设计 (10)六.尘粒排出设计 (10)七.算例(以天然气作为需要分离气体) (11)7.1工作原理 (11)7.2基本计算公式 (12)7.3算例 (13)八.影响旋风分离器效率的因素 (15)8.1气体进口速度 (15)8.2气液密度差 (15)8.3旋转半径 (15)参考文献 (15)旋风分离器的工艺计算摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。

现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。

这篇文章主要是讨论旋风分离器工艺计算。

旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。

在本篇文章中,主要是对旋风分离器进行工艺计算。

关键字:旋风分离器、工艺计算一.前言旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。

它是利用旋转气流产生的离心力将尘粒从气流中分离出来。

旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。

旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。

旋风分离器计算计算

旋风分离器计算计算

数量:6
3×160m^3补糖罐、1×120m^3补料罐 旋风分离器工艺设计
大罐排气空气流量 旋风进口设计流速
高度系数 宽度系数
D H b L1 L2 L0 D1 D2
2.5 m^3/S 18 m/s
0.5 圆整 0.22 1.26263 1.2 m
0.6 600mm 0.264 2600m
1.92 1900mm 3 3000mm
120m^3发酵大罐阻沫器参数
大罐排气空气流量 1.4 旋风进口设计流/S m/s
圆整
进口管道直径 0.273 0.273
L1
1.2 1200mm
L2
0.8 800mm
L0
0.6 600mm
D1
0.25 DN250
D2
0.125 DN125
0.66 600mm 0.6 DN600 0.3 DN300
数量:2
3×20m^3补油罐、3×20m^3补醇罐、1 ×20m^3补小料罐旋风分离器工艺设计
大罐排气空气流量 旋风进口设计流速
高度系数 宽度系数
D H b L1 L2 L0 D1 D2
0.83333 20 0.5 0.22 0.37879 0.31 0.1364 0.992 1.55 0.341 0.31 0.155
m^3/S m/s
圆整
0.62 m 310mm 140mm 1000mm 1600mm 340mm DN300 DN150
数量:2
二、阻 沫器工 艺计算
500m^3发酵大罐阻沫器工艺设计
L0
D1
L1
D
L
大罐排气空气流量 旋风进口设计流速
高度系数 宽度系数
D
进口管道直径

旋风除尘器原理介绍及计算

旋风除尘器原理介绍及计算
(3)扩散式旋风除尘器
它是一种具有呈倒锥体形状的锥体, 并在锥体的 底部装有反射屏的旋风除尘器. 反射屏可防止上升气 流卷起粉尘, 从而提高除尘效率。
4、按旋风除尘器进口形式:
5、按旋风除尘器排灰装置:
2、按除尘效率和处理风量分:
高效旋风除尘器
筒体直径较小(<900mm),效率高: >95%。K=6~13.5
高流量旋风除尘器 通用旋风除尘器
直 径 较 大 ( 1.2~3.6m ) , 处 理 流 量 大 。 除 尘 效 率 : 50~80% 。 K<3
K=4~6,除尘效率:80~90%
相对截面比(K): 筒体截面面积和进气口截面面积之比。
g gL
2
沉降室内的气流速度 V 要根据尘粒的密度和粒
径确定,一般为0.3~2m/s。
多层沉降室
1.锥形阀;2.清灰孔;3.隔板
3.2 旋风除尘器
一、工作原理 二、旋风除尘器特点 三、旋风除尘器的性能指标 四、影响旋风除尘器性能的因素 五、旋风除尘器的类型 六、旋风除尘器的设计
一、工作原理:
外涡旋到达锥体底部转而沿轴心向上旋 转,最后经排出管排出。这股向上旋转 的气流称为内涡旋(内涡流)。
带着细尘粒一部分气流沿外壁面旋转向上,到 达顶部后,再沿排出管旋转向下,从排出管排 出。这股旋转向上的气流称为上涡旋。
3、旋风除尘器原理示意图
二、旋风除尘器特点:
结构简单、占地面积小,投资低,操作维 修方便,压力损失中等,动力消耗不大, 可用于各种材料制造,能用于高温、高压 及腐蚀性气体,并可回收干颗粒物。
筒体高度H
排气管伸入筒体的深度
排灰口
1、进口速度u↑: dc50↓, η ↑, Δ P↑, 但u过大二 次扬尘增加, 一般u=12~25m/s .

旋风分离器的工艺计算

旋风分离器的工艺计算

旋风分离器的工艺计算目录一.前言 (3)1.1应用范围及特点 (3)1.2分离原理 (3)1.3分离方法 (4)1.4性能指标 (4)二.旋风分离器的工艺计算 (4)2.1旋风分离器直径的计算 (5)2.2由已知求出的直径做验算 (5)2.2.1计算气体流速 (5)2.2.2计算旋风分离器的压力损失 (5)2.2.3旋风分离器的工作范围 (6)2.3进出气管径计算 (6)三.旋风分离器的性能参数 (6)3.1分离性能 (6)3.1.1临界粒径d pc (7)3.1.2分离效率 (8)3.2旋风分离器的压强降 (8)四.旋风分离器的形状设计 (9)五.入口管道设计 (10)六.尘粒排出设计 (10)七.算例(以天然气作为需要分离气体) (11)7.1工作原理 (11)7.2基本计算公式 (12)7.3算例 (13)八.影响旋风分离器效率的因素 (15)8.1气体进口速度 (15)8.2气液密度差 (15)8.3旋转半径 (15)参考文献 (15)旋风分离器的工艺计算摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。

现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。

这篇文章主要是讨论旋风分离器工艺计算。

旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。

在本篇文章中,主要是对旋风分离器进行工艺计算。

关键字:旋风分离器、工艺计算一.前言旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。

它是利用旋转气流产生的离心力将尘粒从气流中分离出来。

旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。

旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。

气溶胶力学旋风除尘器计算公式

气溶胶力学旋风除尘器计算公式

旋风除尘器图4-4 旋风除尘器图4—5考虑一位于点(r,θ)处的流体微元,如图4—5所示,在不考虑阻力的情况下,只有正压力作用在微元上,流动是二维的,单位厚度微元的质量为:ρrdrdθdm=而粒子的加速度为:r va 2=则 dp rd r v rdrd θθρ=⋅2收集效率公式为⎥⎦⎤⎢⎣⎡--=-=ϕπηθn v v N N r 2exp 1101 (1)极限粒径p d dc ≤= (2)径向速度rv d v p p r2218θμρ= (3)p p rd rv v 5.115.05.02)152(μρρθ= (4) 切向速度21ln()Qv v ra r r θ== (5)n=h/a (6)φ=b/r 2 (7)r 2为筒体的半径式(2)是收集效率公式的应用条件, 计算旋风器的收集效率时,对小于极限粒径的粒子径向运动速度v r 按式(3)计算,对大于极限粒径的粒子运动速度v r 按(4)计算,这样,对任何粒径的粒子,均可按式(1)计算收集效率。

例.已知D=120mm ,进口切线速度v θ=15m/s,n=2.5,φ=0.40,μ=1.8x10-5Pas; ρp =2500kg/m 3; ρp =1.2kg/ m 3。

计算旋风器的收集效率。

解:由式(1)计算的分级效率见图4-8中曲线3,而图4-8中的实线为实测曲线。

由图4-8可知,对于细小粒子,实际效率高于理论效率;对于较大粒子,实际效率低于理论效率。

前者是由于细小粒子发生凝并的缘故,后者是由于大粒子的回跳,降低了收集的效率。

旋风除尘器的主要几何尺寸对其阻力影响很大,正确选择旋风器的主要尺寸,可以大大降低阻力从而减小能量消耗。

要做到正确选择,必须首先搞清楚旋风器的主要几何尺寸与其阻力之间的内在规律。

旋风除尘器内部气流的运动是比较复杂的,目前我们还不能准确地从理论上推导出描述旋风器阻力的公式,因而不得不采用半经验的方法来加以解决。

图 4-8 旋风器的分级效率旋风除尘器的阻力与其进口速度之间的关系可用下式描述:△P=ξv 2ρ/2 (8)式中 ζ——阻力系数;ρ——空气的密度。

旋风分离器分离效率测定

旋风分离器分离效率测定

旋风分离器分离效率测定[适用对象] 制药工程专业[实验学时] 4学时一、实验目的掌握旋风分离器粒级效率、总效率的测定方法,并明确两者之间的关系。

二、实验原理旋风分离器对颗粒的平均分离效果为总效率,对某一粒径颗粒的分离效果为粒级效率。

测定出被截留下来的颗粒质量与进入分离器的全部颗粒的质量之比极为分离效率。

粒级一般指的是颗粒尺寸的一个范围,本实验粒级由振荡筛而确定其范围。

三、仪器设备鼓风机、旋风分离器、袋滤器、振荡筛、天平、必要的容器(分别装盛由分离器截留、袋滤器截留的颗粒,也装盛由振荡筛分级后的各部分颗粒,大致每组需要10个)四、相关知识点本课程知识点:袋滤器,旋风分离器性能,鼓风机,振荡筛。

其他课程知识点:天平测量,药筛分级。

五、实验步骤(一)实验准备1、熟悉旋风分离器总效率、粒级效率的意义和计算公式。

2、熟悉药筛分级标准。

3、熟悉天平测量质量方法。

4、准备好实验记录纸,将需要记录的数据先列好表格。

(二)实验过程1、检测整个管路系统接口处是否接合牢固,对接合不牢固部位重新扎紧。

打开管路装粉槽入口,向其中装入经碾磨的干燥面粉。

2、启动鼓风机,并运行一刻钟左右。

停机,将袋滤器不再鼓胀后,将袋滤器、旋风分离器底部出口的接粉容器内粉末分别取出,用两个不同的容器装盛,并在天平中测定出各自的总质量,记录数据。

3、先将袋滤器接收的粉末加入振荡筛,启动振荡筛,进行分级,将每一级的粉末取出后,分别称量其质量并记录。

4、对旋风分离器底部出口的接粉容器所接收的粉末作与上一步相同的处理。

5、停机,停止实验。

打扫旋风分离器、振荡筛,将其中所留下的颗粒予以清除。

打扫实验室,将设备、容器归位。

六、实验报告要求1、实验原理、实验过程概述。

2、所用仪表、设备的安装位置和作用。

3、原始实验数据表格。

4、实验数据计算过程,以表格形式归纳各粒级的分离效率,绘制出粒径-粒级效率曲线。

5、出实验结论。

七、思考题本实验中,以袋滤器所扑集的颗粒代表所有未被分离器扑集的所有颗粒,是否完全符合情况?为什么?八、实验成绩评定办法主要评分点:原理描述(10分)、实验流程(10分)、调试过程(15分)、数据记录(10分)、解决问题的能力(15分)、资料搜集(10分)、实验结果(15分)、实验效果(15分)。

旋风分离器旋风长度的分析计算

旋风分离器旋风长度的分析计算

旋风分离器旋风长度的分析计算高翠芝;孙国刚;董瑞倩【摘要】认为当分离器外旋流中损耗的能量(即外旋流向内旋流传递的总能量)与内旋流旋转能量达到平衡,即内外旋流之间能量的传递达到稳定状态时,旋转气流到达旋涡尾端位置.由此,采用分离器内压降定量表征能量的损耗,推导得到旋风长度的计算公式.考察了排气管直径、入口尺寸、排气管插入深度、入口浓度、分离器长度、排尘口直径等因素对旋风长度的影响.将该公式计算结果与实验测量值进行对比,结果表明,该公式能较好地反映各因素对旋风长度的影响趋势,且数值差别较小.该公式通过旋风分离器能量传递的特性推导,具有明确的物理意义,适用性较强.%It was suggested that when the energy lost in the outer vortex (the overall energy transferred from outer vortex to inner vortex) and the rotation energy of the inner vortex reached equilibrium, the energy transfer between the inner and outer vortex reached a stable, and the vortex end could be obtained. Then, a calculation equation of the vortex length was obtained based on the analysis of the energy lost in the cyclone. The effects of the inlet dimension, vortex finder diameter, vortex finder length, cylinder length, dust outlet diameter, inlet concentration on the vortex length were investigated. In addition, the calculated and the measured vortex lengths were also compared. The results indicated that the equation could predict the effect tendency of the factors to vortex length, and the accuracy was generally satisfactory. The equation obtained through the investigation of the energy transfer possessed certain physics principlewith strong adaptability.【期刊名称】《石油学报(石油加工)》【年(卷),期】2012(028)001【总页数】5页(P94-98)【关键词】旋风分离器;旋风长度;压降【作者】高翠芝;孙国刚;董瑞倩【作者单位】中国石油大学重质油国家重点实验室,北京 102249;中国石油大学重质油国家重点实验室,北京 102249;中国石油大学重质油国家重点实验室,北京102249【正文语种】中文【中图分类】TQ051.8旋风分离器内流场为双涡旋转流动,内旋涡通常会在分离器本体的某一位置结束,称为旋涡“端点”或“尾端”,而排气管下口到旋涡尾端的距离定义为自然旋风长[1]。

旋风分离器计算模型

旋风分离器计算模型
Rm = D Dx ⋅ = 2 2 5 2 .2 × = 1.658 2 2 m
⎤ )⎥ ⎥ ⎥ ⎦
器壁表面轴向速度 0.9 ∙ 245000 = 5.57 m/s 5 3600 ∙ π ∙ 4 − 1.658 出风管(内筒)弗劳德数: 245000 F = = 3.86 π ∙ 2.2 2.2 3600 ∙ 4 ∙ 2 ∙ 9.8 ∙ 2 V = 雷诺准数初始值: Re 5 0.60 ∙ 5.57 ∙ 2 1.658 = ∙ = 30797 2.865 ∙ 10 15.7
效率% 0.1 0.5 2.5 4.3 6.9 14.9 18.0 20.0 15.0 6.0 4.0 2.0 94.2
讨论: 1)效率与内筒直经和深度的关系
为什么内筒高度增加后,效率反而下降呢?
2)压损与内筒直经和深度的关系
为什么内筒高度增加后,压损反而下降呢?
2. Leith 和 Licht 旋风筒模型
1.8、 内旋涡旋转速度 Vocs
V 其中: = V D ∙D m/s
1+
f∙A ∙V
Vow —— 器壁表面切向速度,m/s f —— 总摩擦系数 Ar —— 摩擦阻力总面积,m2
Q 2 ∙ 3600
D ∙ D
1.9、 50%切割粒径 d50
d = 10 ∙ 18 ∙ μ ∙ 0.9 ∙ 1 Q ∙ 3600 2 ∙ π ∙ (ρ − ρ ) ∙ V ∙H μm
1.11、 气体平均旋转速度 Vom
V = V ∙V m/s
Vow —— 器壁表面切向速度,m/s Vocs —— 内旋涡旋转速度,m/s
1.12、 旋风分离器雷诺数 ReR
Re = V H ∙μ ∙ 1+ V R ∙R ∙V ∙ρ

旋风分离器计算结果

旋风分离器计算结果

旋风除尘器性能的模拟计算一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。

图1 旋风分离器几何形状及尺寸(正视图)旋风分离器的空间视图如图2所示。

图2 旋风分离器空间视图二、旋风分离器数值仿真中的网格划分仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。

图3 数值仿真时旋风分离器的网格划分(空间)图4为从空间不同角度所观测到的旋风分离器空间网格。

图4 旋风分离器空间网格空间视图本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。

三、对旋风分离器的数值模拟仿真采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。

以下是计算结果的后处理显示结果。

由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。

图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。

可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)图6 L=2.3m、D=1.5m、长宽比1:1,入口速度15m/s时烟尘空间分布四、计算结果计算中,首先确定几何尺寸L,按照给定的两种烟尘颗粒,分别对L=2.3m、L=1.8m、L=1.3m、L=0.8m四种情况进行对比计算,对比计算结果为L=2.3m、L=1.3m时除尘效率较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档