华中科技大学2001年数学分析考研试题

合集下载

2001考研数二真题及解析

2001考研数二真题及解析

2001 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 1x →= (2) 设函数()y f x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(0,1)处的法线方程为 . (3)()32222sin cos xx xdx ππ-+=⎰(4) 过点1,02⎛⎫⎪⎝⎭且满足关系式'arcsin 1y x =的曲线方程为 . (5) 设方程123111111112a x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦有无穷多个解,则a = . 二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]{}()f f f x 等于 ( )(A)0 (B)1 (C)1,1,0,1,x x ⎧≤⎪⎨>⎪⎩ (D)0,1,()1,1,x f x x ⎧≤⎪=⎨>⎪⎩(2) 设当0x →时,2(1cos )ln(1)x x -+是比sin nx x 高阶的无穷小,sin nx x 是比()21x e -高阶的无穷小,则正整数n 等于 ( )(A)1 (B)2 (C)3 (D)4 (3) 曲线22(1)(3)y x x =--的拐点个数为 ( )(A)0. (B)1. (C)2. (D)3(4)已知函数()f x 在区间(1,1)δδ-+内具有二阶导数,'()f x 严格单调减少,且(1)'(1)1,f f ==则 ( )(A)在(1,1)δ-和(1,1)δ+内均有()f x x <. (B)在(1,1)δ-和(1,1)δ+内均有()f x x >.(C)在(1,1)δ-内,()f x x <.在(1,1)δ+内,()f x x >. (D)在(1,1)δ-内,()f x x >.在(1,1)δ+内,()f x x <. (5)设函数()f x 在定义域内可导,()y f x =的图形如右图所示,则导函数()y f x '= 的图形为 ( )三、(本题满分6分)求22.(21)1dxxx ++⎰四、(本题满分7分)求极限sin sin sin lim sin x t xt x t x -→⎛⎫⎪⎝⎭,记此极限为()f x ,求函数()f x 的间断点并指出其类型.五、(本题满分7分)设()x ρρ=是抛物线y x =上任一点(,)(1)M x y x ≥处的曲率半径,()s s x =是该抛物线上介于点(1,1)A 与M 之间的弧长,计算2223d d ds ds ρρρ⎛⎫- ⎪⎝⎭的值.(在直角坐标系下曲率公式为322"(1')y K y =+)六、(本题满分7分)设函数()f x 在[0,)+∞上可导,(0)0f =,且其反函数为()g x .若()20()f x x g t dt x e =⎰,求()f x . 七、(本题满分7分)设函数(),()f x g x 满足()(),()2()xf xg x g x e f x ''==-,且(0)0,(0)2f g ==,求20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰八、(本题满分9分)设L 是一条平面曲线,其上任意一点(,)P x y (0)x >到坐标原点的距离,恒等于该点处的切线在y 轴上的的截距,且L 经过点1,0.2⎛⎫ ⎪⎝⎭(1) 试求曲线L 的方程(2) 求L 位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围图形面积最小.九、(本题满分7分)一个半球体状的雪堆,其体积融化的速率与半球面面积S 成正比,比例常数0K >.假设在融化过程中雪堆始终保持半球体状,已知半径为0r 的雪堆在开始融化的3小时内,融化了其体积的78,问雪堆全部融化需要多少小时?十、(本题满分8分)设()f x 在区间[,](0)a a a ->上具有二阶连续导数,00f =(), (1) 写出()f x 的带拉格朗日余项的一阶麦克劳林公式; (2) 证明在[,]a a -上至少存在一点η,使3()3().aaa f f x dx η-''=⎰十一、(本题满分6分)已知矩阵100011110,101.111110A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且矩阵X 满足,AXA BXB AXB BXA E +=++其中E 是3阶单位阵,求X .十二、(本题满分6分)设124,,,ααα为线性方程组0AX =的一个基础解系,112223,,t t βααβαα=+=+334441,,t t βααβαα=+=+试问实数t 满足什么关系时,1234,,,ββββ也为0AX =的一个基础解系.2001 年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】6-【详解】21lim2x x x →+-1x →=1x →=131x x x→--+=121x x →-=1x →=-lim 2===6=-(2)【答案】 x −2y +2=0.【详解】在等式2cos()1x y e xy e +-=-两边对x 求导, 其中y 视为x 的函数,得()()22sin()0x y e x y xy xy +''++=,即2(2')sin()(')0x y e y xy y xy +⋅++⋅+=将x =0, y =1代入上式, 得(2')0e y ⋅+=,即'(0) 2.y =- 故所求法线方程斜率12k -=-12=,根据点斜式法线方程为:11,2y x -= 即 x −2y +2=0.(3)【答案】8π 【分析】根据区域对称性与被积函数的奇偶性:设()f x 在有界闭区域[],a a -上连续,则有()()()()()02,0a a aaaf x dx f x dx f x f x dx f x --⎧= ⎪⎨⎪= ⎩⎰⎰⎰为偶函数,为奇函数, 【详解】由题设知()32222sin cos xx xdx ππ-+⎰32222222cos sin cos x xdx x xdx ππππ--=+⎰⎰在区间[,]22ππ-上,32cos x x 是奇函数,22sin cos x x 是偶函数,故3222cos 0x xdx ππ-=⎰,22222202sin cos 2sin cos x xdx x xdx πππ-=⎰⎰,所以,原式32222222cos sin cos x xdx x xdx ππππ--=+⎰⎰22202sin cos x xdx π=⎰2201sin 22xdx π=⎰201(1cos 4)4x dx π=-⎰ 220011cos 44416x xd x ππ=-⎰2011sin 44216x ππ=⋅-08π=-.8π=(4)【答案】1arcsin .2y x x =- 【详解】方法1:因为()arcsin 'arcsin y x y x '=+,所以原方程'arcsin 1y x +=可改写为 ()arcsin 1,y x '=两边直接积分,得 arcsin .y x x c =+ 又由1()02y =代入上式,有 10arcsin 2x c ⋅=+,解得1.2c =- 故所求曲线方程为 1arcsin .2y x x =-方法2:将原方程写成一阶线性方程的标准形式1'.arcsin y y x+=由一阶线性微分方程()()dyP x y Q x dx+=通解公式: ()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()1arcsin P x Q x x==,代入上式得:1arcsin y eC e dx x -⎡⎤=+⎢⎥⎢⎥⎣⎦⎰ 11arcsin arcsin arcsin arcsin 1arcsin d x d x x x e C e dx x -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰lnarcsin lnarcsin 1arcsin x x e C e dx x -⎡⎤=+⎢⎥⎣⎦⎰1arcsin arcsin arcsin x C dx x x ⎡⎤=+⎢⎥⎣⎦⎰arcsin arcsin C x x x =+ 又由1()0,2y =解得1.2C =- 故曲线方程为:1arcsin .2y x x =-(5)【答案】 -2【详解】方法1:利用初等行变换化增广矩阵为阶梯形,有111111112a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦1121,3111111aa a -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行互换 21121(-1),(-)01132301112a a a a a aa -⎡⎤⎢⎥--⎢⎥⎢⎥--+⎣⎦行的倍分别加到,行 11223011300(1)(2)2(2)a a a a a a -⎡⎤⎢⎥--⎢⎥⎢⎥-++⎣⎦行加到行 由非齐次线性方程组有无穷多解的充要条件:设A 是m n ⨯矩阵,方程组Ax b =有无穷多解()()r A r A n ⇔==<. 可见,只有当a =−2 时才有秩()()23r A r A ==<,对应方程组有无穷多个解.方法2: 设A 是m n ⨯矩阵,方程组Ax b =有无穷多解()()r A r A n ⇔=<,则方程组123111111112a x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦有无穷多解()()3r A r A ⇔=<. 从而有0A =,即111111a A a a=2222,311111a a a a a+++行分别加到行1111211211a a a a ++行提出()()1111(1)201023001a a a ⨯-+--行分别()加到,行10201a a a -+-1+1=(-1)()2(2)(1)0,a a =+-=则,12a a ==-或.当1a =时,1111111111111(1)23000011120003A ⎡⎤⎡⎤⎢⎥⎢⎥=⨯-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦行分别加到,行 可见()1()2,r A r A =≠=原方程组无解.当2a =-时,有211112111122A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦11221312112111--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,行互换 11222103332111--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦行行1122103330333--⎡⎤⎢⎥⨯-⎢⎥⎢⎥--⎣⎦行2加到3行 112203330000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦3行+2行11222(3)01110000--⎡⎤⎢⎥÷---⎢⎥⎢⎥⎣⎦行 可知,()()23,r A r A ==<故当2a =-时,原方程组有无穷多解.二、选择题 (1)【答案】(B)【详解】因为1,1()0,1x f x x ⎧≤⎪=⎨>⎪⎩,所以在整个定义域内()0()1f x f x ==或,所以()1f x ≤,于是[]()1f f x =,从而[]{}()()11f f f x f ==(2)【答案】(B)【详解】根据高阶无穷小的定义:如果lim0βα=,就说β是比α高阶的无穷小,由题设当0x →时,2(1cos )ln(1)x x -+是比sin n x x 高阶的无穷小,所以20(1cos )ln(1)0lim sin n x x x x x →-+=22012lim nx x x x x →⋅ ⋅等价3012limn x x x → 等价301lim 2n x x -→= 从而n 应满足2n ≤;又由sin nx x 是比2(1)x e -高阶的无穷小,所以根据高阶无穷小的定义有:2sin 0lim 1nx x x x e →=-20lim nx x x x →⋅ 等价10lim n x x -→=,从而n 应满足2n ≥ 综上,故正整数2n =,故选(B)(3)【答案】(C)【详解】22(1)(3)y x x =--,所以 y '222(1)(3)2(1)(3)x x x x =--+--4(1)(2)(3)x x x =---y ''[]4(2)(3)(1)(3)(1)(2)x x x x x x =--+--+--2224564332x x x x x x ⎡⎤=-++-++-+⎣⎦2431211x x ⎡⎤=-+⎣⎦y '''[]4612x =-()242x =-令0y ''=,即2312110x x -+=,因为判别式:∆224124311b ac =-=-⋅⋅120=>,所以0y ''=有两个不相等的实根,且()2y ''23212211=⋅-⋅+10=-≠,所以两个实根不为2,因此在使0y ''=这两点处,三阶导数0y '''≠,(一般地,若()00f x ''=,且()00f x '''≠,则点()()0,x f x 一定是曲线()y f x =的拐点),因此曲线有两个拐点,故选(C)或根据y ''2431211x x ⎡⎤=-+⎣⎦是一条抛物线,且与x 轴有两个不相同的交点,所以在两个交点的左右y ''符号不相同,满足拐点的定义,因此选(C)(4)【答案】(A)【详解】方法1:令()()F x f x x =-,则()()1F x f x ''=-()()1f x f ''=-由于'()f x 严格单调减少,因此当(1,1)x δ∈-时,()()1f x f ''>,则()F x '()()1f x f ''=-0>;当(1,1)x δ∈+时,()()1f x f ''<,则()F x '()()1f x f ''=-0<,且在1x =处()()1(1)10F f f '''=-=,根据判定极值的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知()F x 在1x =处取极大值,即在在(1,1)δ-和(1,1)δ+内均有()()10F x F <=,也即()f x x <. 故选(A)方法2:排除法,取()21()2x f x x -=-+,则()()21123f x x x '=--+=-+,()20f x ''=-<,所以满足题设在区间(1,1)δδ-+内具有二阶导数,'()f x 严格单调减少,且(1)'(1)1,f f ==当1x <时或1x >时,均有()f x ()212x x -=-+x <,因此可以排除(B)、(C)、(D),选(A)(5) 【答案】(D)【详解】从题设图形可见,在y 轴的左侧,曲线()y f x =是 严格单调增加的,因此当0x <时,一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,由此可排除(A),(C);又()y f x =的图形在y 轴右侧靠近y 轴部分是单调增,所以在这一段内一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,进一步可排除(B),故正确答案为(D).三【详解】作积分变量变换,令tan ,x u =则2sec ,dx udu =原式222sec (2tan 1)tan 1uduu u =++⎰ 22sec (2tan 1)sec uduu u =+⎰ 2(2tan 1)cos duu u =+⎰222sin (1)cos cos du u u u =+⎰()222cos 2sin cos cos udu u u u =+⎰ 22cos 2sin cos udu u u =+⎰2cos sin 1udu u =+⎰2sin sin 1d uu =+⎰arctan(sin )u C=+C +四【分析】应先求出()f x 的表达式,再讨论它的间断点,首先明确间断点的类型分为两大类:第一类间断点和第二类间断点,第一类间断点又可分为:可去间断点(左右极限存在且相等的间断点)和跳跃间断点(左右极限存在但不相等的间断点);第二类间断点又可分为:无穷间断点(有一个极限为无穷的间断点)和振荡间断点(极限值在某个区间变动无限多次).【详解】由 ()f x =sin sin sin lim sin xt xt x t x -→⎛⎫⎪⎝⎭sin sin sin ln sin lim xt x t x t xe-⎛⎫ ⎪⎝⎭→=sin ln sin sin sin lim x t t x x t xe⎛⎫⎪-⎝⎭→=又 sin limln sin sin sin t xx t t x x →⎛⎫= ⎪-⎝⎭sin lim ln 11sin sin sin t x x t t x x →⎛⎫+- ⎪-⎝⎭sin sin limln 1sin sin sin t xx t x t x x →-⎛⎫=+ ⎪-⎝⎭sin sin lim sin sin sin t x x t x t x x →-⎛⎫= ⎪-⎝⎭limsin t xx x →=sin xx= 所以 ()f x sin ln sin sin sin lim x t t x x t x e⎛⎫⎪-⎝⎭→=sin limln sin sin sin t x x t t x x e→⎛⎫⎪-⎝⎭=sin xxe=由()f x sin x xe =的表达式,可以看出自变量x 应满足sin 0x ≠,从而,0,1,2,x k k π≠ =±±当0x →时,sin 0lim ()lim x xx x f x e→→=0lim1sin x xxee →==e =,所以0x =为()f x 的第一类间断点(左右极限相等,又进一步可知是可去间断点);对于非零整数k ,sin lim ()lim x xx k x k f x eππ--→→=limsin x k xxeπ-→=sin 0x → ∞,故,1,2,x k k π= =±±为()f x 的第二类间断点(无穷间断点)五【解答】由y ,有'y y ''== 抛物线在点(,)M x y 处的曲率半径3221(1')()"y x K y ρρ+===3221⎡⎤+⎢⎥=3211⎡⎤+⎢⎥=321(41).2x =+ 若已知平面曲线AM 的显式表示为()y f x =()a xb ≤≤,则弧长为as =⎰,其中()f x 在[],a b 有连续的导数.根据上述结论,所以抛物线上AM 的弧长()s sx =1=⎰1=⎰1=⎰ 故 d d dxds dsdxρρ=3211(41)2x '⎡⎤+⎢⎥⎣⎦='⎛⎫ ⎪⎝⎭⎰1213(41)4x ⋅+⋅=2(41)x=+=221()d d d ds ds dx ds dx ρρ=⋅11d dx =⋅'⎛⎫⎪⎝⎭⎰===因此 2223()d d ds ds ρρρ-()(32213142x =⋅+()91436x x =+-9=六【详解】()f x 的反函数是()g x ,根据反函数的性质有(())g f x x =,()20()f x x g t dt x e =⎰两边对x 求导,有()()()20()f x x g t dt x e ''=⎰()2()2x x g f x f x x e xe '⇒=+⎡⎤⎣⎦又(())g f x x =,所以2()2x x xf x x e xe '=+()2x x f x xe e '⇒=+, (0,)x ∈+∞两边积分()()2x x f x dx xe e dx '=+⎰⎰()2x x f x xe dx e dx ⇒=+⎰⎰()2x x f x xde e ⇒=+⎰()2x x x f x xe e dx e ⇒ -+⎰分部()2x x x f x xe e e C ⇒=-++()x x f x xe e C ⇒=++.由于题设()f x 在[0,)+∞上可导,所以在0x =处连续,故()()00lim ()lim 10x xx x f f x xe e C C ++→→==++=+=, 所以1C =-,于是()1x x f x xe e =+-, [0,)x ∈+∞七【详解】由()(),()2()x f x g x g x e f x ''==-,得()()2()x f x g x e f x '''==-,即()()2x f x f x e ''+=此为二阶常系数线性非齐次方程,且右端呈()xm P x e λ型(其中()2,1m P x λ= =),对应的齐次方程为()()0f x f x ''+=,特征方程为210r +=,对应的特征值为r i =±,于是齐次方程的通解为:12cos sin y C x C x =+, 因为1λ=r ≠,所以设特解为*x y ae =(a 为实数),()*xy ae''=,代入()()2x f x f x e ''+=,2x x x ae ae e +=,所以2a a +=,即1a =,从而特解*xy e =,非齐次方程的通解为()12cos sin xf x C x C x e =++,又(0)0f =,所以,()0120cos0sin00f C C e =++=110C ⇒+=11C ⇒=-又,()12sin cos xf x C x C x e '=-++(),0(0)2fg '==,所以,()0120sin0cos0f C C e '=-++21C =+2=21C ⇒=,所以原方程的解为:()sin cos xf x x x e =-+以下计算积分,有两个方法: 方法1:20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰()20()1()(1)g x x f x dx x π+-=+⎰ ()20()1()()()(1)f x x f x f x g x dx x π'+-' = +⎰0()1f x dx x π'⎡⎤=⎢⎥+⎣⎦⎰0()1f x d x π=+⎰0()1f x x π=+()(0)110f f ππ=-++sin cos (0)1e f ππππ-+=-+11e ππ+=+ 方法2:20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰200()()1(1)g x f x dx dx x x ππ=-++⎰⎰ 00()1()11g x dx f x dx x x ππ'⎛⎫=+ ⎪++⎝⎭⎰⎰00()1()11g x dx f x d x x ππ=+++⎰⎰ 000()()()111g x f x f x dx dx x x xπππ' +-+++⎰⎰分部()000()()()()111g x f x g x g x f x dx dx x x xπππ' = +-+++⎰⎰ 0()1f x x π=+()(0)110f f ππ=-++sin cos (0)1e f ππππ-+=-+11e ππ+=+八【详解】(1)设曲线L 过点(,)P x y 的切线方程为()Y y y X x '-=-,令0X =,则Y xy y '=-+,即它在y 轴上的截距为xy y '-+,根据两点()()00,,,x y x y 距离公式d =,所以原点到点(,)P x y ,由题设(,)P x y (0)x >到坐标原点的距离恒等于该点处的切线在y 轴上的截距,所以:xy y '-+= (0)x >,即yy x '=, (0)x >此为一阶齐次方程,按规范方法解之,命y ux =,则dyu xdu dx=+,代入,方程变为: du u x u dx +=⇒du x dx=dx x =-积分得dxx=-⎰(ln ln u cx⇒=-C u x ⇒+把yu x=代入上式,得y C x x +=y C ⇒+=. 由题设曲线经过点1,02⎛⎫⎪⎝⎭,代入得0C +=,则12C =,故所求方程为:12y +=,即21.4y x =- (2) 由(1)知214y x =-,则2y x '=-,点21(,),4P x y P x x ⎛⎫=- ⎪⎝⎭,所以在点P 处的切线方程为:()2124Y x x X x ⎛⎫--=--⎪⎝⎭,分别令0X =,0Y =,解得在y 轴,x 轴上的截距分别为214x +和128x x+. 此切线与两坐标轴围成的三角形面积为:()A x 21112284x x x ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭()22141,064x x x=+ > 由于该曲线在第一象限中与两坐标轴所围成的面积为定值,记0S ,于是题中所要求的面积为:()()0S x A x S =-()220141,64x S x=+- 求最值点时与0S 无关,以下按微分学的办法求最值点.()S x '()22014164x S x '⎛⎫=+- ⎪⎝⎭()()222228414164x x x x ⋅+-+= ()()222228414164x x x x x ⋅+-+=()()2224112164x x x +-=令()0S x '=得x ==当0x <<时,()0S x '<;当x >时,()0S x '>, 根据极值存在的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知:x =是()S x 在0x >处的唯一极小值点,即最小值点, 于是所求切线方程为:214Y X ⎛⎫ ⎪--= ⎪⎝⎭⎝⎭⎝⎭,即133Y X =-+九【详解】方法1:半球形雪堆在时刻t 时设其半径为r ,则半球体积323V r π=,侧面积22S r π=. 由题设体积融化的速率与半球面面积S 成正比,知:dVkS dt=-, 由于r 是t 的函数,323dV d r dt dt π⎛⎫= ⎪⎝⎭22dr r dt π=,代入上式,得:22dr r kS dt π=-,即2222drr k r dtππ=-⋅,从而dr kdt =-,00t r r ==. 积分得r kt c =-+,把00t r r ==代入,得0c r =,所以0r kt r =-+.又半径为0r 的雪堆在开始融化的3小时内,融化了其体积的78,即00037188t VV V V ==-=,其中0V 表示0t =时的V . 以V 的公式代入上式,为33330212383t t t V r r ππ=====⋅将0r kt r =-+代入上式,两边约去23π,得:()330018kt r r -+=,即0012kt r r -+= 从而求得:016k r =,于是0r kt r =-+0001166t r t r r ⎛⎫=-+=- ⎪⎝⎭,当6t =时0r =,雪融化完.方法2:半球形雪堆在时刻t 时设其半径为r ,则半球体积323V r π=,侧面积22S r π=,联立323V r π=,22S r π=消去r ,得:S =由题设体积融化的速率与半球面面积S 成正比,知:dVkS dt=-,从而推知00t dVV V dt==- =分离变量23dV V=-,积分:133V c =-+,把00t V V ==代入,1303c V =,所以,1133033V V =-.又由00037188t VV V V ==-=,代入上式1133003332V V =-得k =故 133V 1303V =-1303V =113300132V V t =-.命0V =,解得:6t =,即雪堆全部融化需6小时.十【应用定理】闭区间上连续函数的介值定理:设()f x 在[],a b 上连续,()()f a f b ≠,则对()()f a f b 与之间的任何数η,必存在c (a c b <<),使得()f c η=.【详解】(1)麦克劳林公式其实就是泰勒公式中,把函数在零点展开.()f x 的拉格朗日余项一阶麦克劳林公式为:221()()(0)(0)()(0)22f f x f f x f x f x x ξξ''''''=++=+, 其中ξ位于0和x 为端点的开区间内,[],x a a ∈-.(2)方法1:将()f x 从a -到a 积分21()(0)().2aaaaaaf x dx f xdx f x dx ξ---'''=+⎰⎰⎰ 而2(0)(0)(0)02aaa a ax f xdx f xdx f a--'''==⨯=-⎰⎰从而有21()().2aa aaf x dx f x dx ξ--''=⎰⎰ 因()f x ''在[],a a -上连续,故有()f x ''在[],a a -上存在最大值M ,最小值m (由闭区间上的连续函数必有最大值和最小值),即[,][,]min (),max (),a a a a m f x M f x --''''==易得 (),[,].m f x M x a a ''≤≤∈-因此3322111()(),22233aa a a a a a x Ma f x dx f x dx M x dx M a ξ---''=≤==-⎰⎰⎰同理223111()().223aa a aa a f x dx f x dx m x dx ma ξ---''=≥=⎰⎰⎰ 因此 33()aam f x dx M a -≤≤⎰.由连续函数介值定理知,存在[],a a η∈-,使33()()aaf f x dx a η-''=⎰,即3()3()aaa f f x dx η-''=⎰.方法2 :观察要证的式子,做变限函数:()()xxF x f t dt -=⎰,易得(0)0F =,()()()F x f x f x '=+-(变限积分求导)()()()()()()F x f x f x f x f x '''''=+-=-- ()()()()()()F x f x f x f x f x ''''''''''=--=+-则有 (0)(0)(0)000F f f '=+-=+=(0)(0)(0)(0)(0)0F f f f f ''''''=--=-=将它展开成2阶带拉格朗日余项麦克劳林公式:2311()(0)(0)(0)()23!F x F F x F x F x ξ''''''=+++ 331100()(()())66F x f f x ξξξ'''''''=++=+-其中(0,)x ξ∈,[],x a a ∈-由于()f x ''在[],a a -上连续,则由连续函数介值定理,存在[],ηξξ∈-,使1()(()())2f f f ηξξ''''''=+- (因为[]1(()())(),,2f f f x x a a ξξ''''''+-∈∈-) 于是有,存在(),a a η∈-,使3331111()00()(()())()6323F x F x f f x f x ξξξη'''''''''=++=⨯+-=把x a =代入()F x 有:31()()3F a f a η''=,即3()()3a a a f x dx f η-''=⎰ (),a a η∈-即 3()3()aaa f f x dx η-''=⎰(),a a η∈-十一【详解】题设的关系式AXA BXB AXB BXA E +=++⇒AXA BXB AXB BXA E +--=⇒()()AXA AXB BXB BXA E -+-=⇒()()AX A B BX B A E -+-= ⇒()()AX A B BX A B E ---=⇒()()AX BX A B E --=即 ()().A B X A B E --=其中, A B -100011110101111110⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭111011001--⎛⎫ ⎪=- ⎪ ⎪⎝⎭因为 1111101A B ---=-1111(1)1+-=-10=≠,故由n 阶矩阵A 可逆的充要条件0A ≠,知矩阵A B -可逆,用初等行变换求()1A B --:111100(,)011010001001A E E --⎛⎫ ⎪-=- ⎪ ⎪⎝⎭1101013010011001001-⎛⎫⎪⎪ ⎪⎝⎭行分别加到1,2行 100112010011001001⎛⎫ ⎪⎪ ⎪⎝⎭2行加到1行故而 ()1112011,001A B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭于是,等式()()A B X A B E --=两边左、右乘 ()1A B -- 可得()21X A B -⎡⎤=-⎣⎦112112011011001001⎛⎫⎛⎫ ⎪⎪=⎪⎪ ⎪⎪⎝⎭⎝⎭125012.001⎛⎫ ⎪= ⎪ ⎪⎝⎭十二【详解】由题设知,12,,,s βββ均为12,,,s ααα的线性组合,齐次方程组当有非零解时,解向量的任意组合仍是该齐次方程组的解向量,所以12,,,s βββ均为0Ax =的解. 下面证明12,,,s βββ线性无关. 设 11220s s k k k βββ+++= ()*把11122,t t βαα=+21223,t t βαα=+121,,s s t t βαα=+代入整理得,()()()1121211222110s s s s t k t k t k t k t k t k ααα-++++++=由12,,,s ααα为线性方程组0Ax =的一个基础解系,知12,,,s ααα线性无关,由线性无关的定义,知()*中其系数全为零,即112211221100 0s s s t k t k t k t k t k t k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ 其系数行列式122121210000000000t t t t t t t t 122211321211211100000000000(1)ss s t t t t t t t t t t t +--*+-()1121111(1)ss s s t tt t -+-⎛⎫=+- ⎪⎝⎭112(1)s s st t +=+- (*()变换:把原行列式第i 行乘以21t t -加到第1i +行,其中1,, 1.i s =-)由齐次线性方程组只有零解得充要条件,可见,当12(1)0,s st t +-≠,即12(),s s t t ≠-即当s为偶数,12;t t ≠±当s 为奇数,12t t ≠时,上述方程组只有零解120,s k k k ====因此向量组12,,,s βββ线性无关,故当12122,21,s n t t s n t t =≠±⎧⎨=+≠⎩时,12,,,s βββ也是方程组0Ax =的基础解系.。

华中科技大学数学分析部分考研真题PDF

华中科技大学数学分析部分考研真题PDF
a a
b
x
5.设 f n ( x)( n = 1,2,...) 是区间 [a, b] 上的连续函数,当 n → +∞ 时, f n ( x) 在 [a, b] 上 一致收敛于函数 f ( x ) ,每个 f n ( x) 在 [a, b] 上均有零点,证明: f ( x) 在 [a, b] 上 至少有一个零点.
上一致收敛于 f ( x). 证明:至少存在一点 x0 ∈ [a, b], 使得 f ( x0 ) ≥ 0. 二.2005 年数学分析真题
eA − eA 1.设 an > 0 ( n = 1,2,...), ∑ an = 1, An = ∑ ak , 求极限 lim e . n →∞ A − Ae n =1 k =1 n n −1
∞ n
n n −1
2.设 f ( x) 在区间 [0,1] 上有二阶连续导数,f (0) = f (1) = 0, f ′( x) ≤
8 8 , f ′′( x) ≤ , 试给出 5 5
f ( x ) (0 ≤ x ≤ 1) 的一个估计.
3. 设 f ( x ) 在区间 [0,∞ ) 上可微且恒大于零, f (0) = 1,
2.设 f (t ) 为连续函数,证明: 3.设反常积分
1

b
a
dy ∫ ( y − x) n f ( x) dx =
a x →∞
y
1 b (b − x ) n +1 f ( x ) dx. ∫ a n +1
∞ 0


0
f ( x) dx 绝对收敛且 lim f ( x ) = 0, 证明 ∫ f 2 ( x) dx 收敛. x df ( x) 存在且有限,证明: dx

2001考研数学二真题及答案解析

2001考研数学二真题及答案解析

x→1
(2)【答案】 x−2y+2=0.
【详解】在等式 e2x+ y − cos(xy) = e −1 两边对x求导, 其中 y 视为 x 的函数,得
e2x+y (2x + y)′ + sin(xy) ( xy)′ = 0 ,即 e2x+y ⋅ (2 + y ') + sin(xy) ⋅ ( y + xy ') =0
= f (1) f= '(1) 1, 则
()
(A)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) < x .

(B)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) > x .
(C)在 (1− δ ,1) 内, f (x) < x .在 (1,1+ δ ) 内, f (x) > x .
又由 y(1) = 0, 解得 C = − 1 . 故曲线方程为: y arcsin x= x − 1 .
2
2
2
(5)【答案】 -2 【详解】方法1:利用初等行变换化增广矩阵为阶梯形,有
a 1 1 1
1 1 a −2
A = 1 a 1 1
1 a
1
−2
1, 3行 互换
1 a
a 1
1 1
1
1
1 1 a −2
求 f (x) .
七、(本题满分 7 分)

设函数 f (x), g(x) 满足 f ′(= x) g(x), g′(= x) 2ex − f (x) ,且= f (0) 0= , g(0) 2 ,
∫ 求

华中科技大学历年考研真题

华中科技大学历年考研真题

华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。

华中科技大学历年考研真题

华中科技大学历年考研真题

华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。

2001-数一真题、标准答案及解析

2001-数一真题、标准答案及解析

形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2

2001年考研数学一试题及完全解析(Word版)

2001年考研数学一试题及完全解析(Word版)

yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y'=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=-+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于 12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P Xn Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考‎研数学一试题‎答案与解析一、(1)【分析】 由通解的形式‎可知特征方程‎的两个根是12,1r r i =±,从而得知特征‎方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程‎为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgra‎d r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra ‎d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分‎不是二重积分‎的累次积分,因为10y -≤≤时12y -≤.由此看出二次‎积分是二重积‎0211(,)ydy f x y dx --⎰⎰分的一个累次‎积分,它与原式只差‎一个符号.先把此累次积‎分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的‎内外层积分限‎可确定积分区‎域D :10,12y y x -≤≤-≤≤.见图.现可交换积分‎次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没‎A 有给出,因此用伴随矩‎阵、用初等行变换‎求逆的路均堵‎塞.应当考虑用定‎义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫‎不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可‎偏导的关系.由(,)f x y 在(0,0)存在两个偏导‎数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在‎(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数‎方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切‎(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续‎()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界‎()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征‎A 值是4,0,0,0.又因是实对称‎A 矩阵,A 必能相似对角‎化,所以与对角矩‎A 阵B 相似.作为实对称矩‎阵,当A B 时,知与有相同的‎A B 特征值,从而二次型与‎T x Ax T x Bx 有相同的正负‎惯性指数,因此A 与B 合同.所以本题应当‎选(A ).注意,实对称矩阵合‎同时,它们不一定相‎似,但相似时一定‎合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值‎不同,故A 与B 不相似,但它们的正惯‎性指数均为2‎,负惯性指数均‎为0.所以A 与B 合同.(5)【分析】 解本题的关键‎是明确和的关‎XY系:X Y n +=,即Y n X =-,在此基础上利‎用性质:相关系数的绝‎XY ρ对值等于1的‎充要条件是随‎机变量与之间‎XY存在线性关系‎,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系‎数的定义式有‎(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求‎导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成‎arctan x 幂级数,然后约去因子‎x ,再乘上并化简‎21x +即可. 直接将展开办‎arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分‎在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在‎收敛区间端点‎1x =±成立.现将②式两边同乘以‎21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时‎0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公‎式来计算.记为平面上所‎S2x y z ++=L为围部分.由L的定向,按右手法则取‎S 上侧,S 的单位法向量‎1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克‎斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面‎积分化为二重‎积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面‎D S xy 上的投影区域‎||||1x y +≤(图).由关于轴的对‎D ,x y 称性及被积函‎数的奇偶性得‎()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中‎值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义‎'()f x θ''(0)f .由题(1)中的式子先解‎出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的‎t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状‎如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换‎:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的‎积分顺序求三‎重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微‎分方程与初始‎条件. (3)体积减少的速‎度是dVdt-,它与侧面积成‎正比(比例系数0.9),即将与的表达‎0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130‎厘米的雪堆全‎部融化所需时‎间为100小‎时. 九、【解】由于是线性组‎(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次‎线性方程组解‎的性质知均为‎(1,2)i i s β= 0Ax =的解.从是的基础解‎12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线‎12,,s βββ 性无关的条件‎.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关‎12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列‎式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关‎12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量‎11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服‎从正态分布2(2,2)N μσ.因此可以将它‎们看作是取自‎总体的一个容‎2(2,2)N μσ量为的简单随‎n 机样本.其样本均值为‎21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是‎总体方差的无‎偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

数学二解析2001

数学二解析2001

2001年数学(二)真题解析一、填空题(1)【答案】72T【解】方法一i . 丿3 —工—%/ ] + g lim X-*l x 2 x 一 21. %/3 — x — V 1 ~F lim —----——--------x->i (jc + 2) (jc 一1)lim --------------- ]------ ----Li (x + 2)(丿3 — 工 + 丿1 + 工)2(1 ―工)x 一 1方法二lim = lim -4-7工~* 1 x + 工一2工一1 + 111x 2 x 一 2 a /3 — x 2 丿]+ 匚(2)【答案】夕=*工+1.【解】e 2x+y — cos xy = e — 1两边对x 求导得严•+ sin xy •夕+熄) = 0,将X =0,y = 1代入得字I = — 2 ,ckr 丨 z=o则法线方程为夕一1 = *(久一0),即夕=*広+ 1-(3)【答案】 v-O【解】方法一sin 2 x cos 2 x dx — 2 sin 2 x cos 2 x dr4 J 。

,三=2 I 2 sin 2 j; • (1 一 sin 2 jc )dz = 2(12 — I 4 )2” (z 3 + sin 2 jc )cosx dx =方法二(x 3 + sin 2 )cos 2jc dj?=2 sin 2 x cos 2 jc dj? J 0丄72 sin 2 d(2工)=*sin 2x djro2 J 0 o(4)【答案】j/arcsin x = x【解】方法一丄由 j/arcsin x H — …一 =19得(jyarcsin x Y = 19解得 j/arcsin x = x + C 9J \ — 2因为曲线经过点(j,0),所以C=-y,故所求曲线为jarcsin x =x ----.方法二jy'arcsin x ~\-------------= 1 化为 y' ~\—,… ------------y =-----\-----,71-x 2 Jl —/arcsin z arcsln 工f d~r _ f 1 丄解得夕=([——?——e +C )e =(工 +c )・ ———\J arcsin x / arcsin x 因为曲线经过点(y,o ),所以C=-y,1x 2故所求曲线为—丄arcsin x因为r (A ) y^r (A ),所以方程组无解;(5)【答案】—2.a11【解】由题意得1a 1=(a + 2) (a 一 1 )2=0,解得 a = — 2 ,或 a = 1,11a /I 111 \I 1111 \当a =1时,才=b11100—3 ,\i11—2丿'o0 '当 a = — 2 时,A =_2111 \1-2111-2—2)因为r (A )=r (A )=2 V 3,所以a = —2时方程组有无数个解.二、选择题(6)【答案】(E ).【解】y[y (z )] = ]'9丨心)丨€1,丨心)丨>1,而 I /(J7 ) | ^ 1 (一°°<工 <+ °°),故 /[/(J : )] = 1 ,从而 f)]} =1,应选(E ).(7)【答案】(E ).1 2【解】(1 — cos x )ln ( 1 + z 2)〜—x 4 , x sin 工”〜x n+i , e" — 1 ~ j ?2 , 由题意得2 < n+l<4,解得n =2,应选(E ).(8)【答案】(C ).【解】<‘ = C ; • 2(工一3)2+© • 2(工一1) • 2(工一 3) +C ; • 2(工一I )?,令夕"=4 (3工 $ — 12_z + 11) = 0,得工 16+V336 — 4^3工2当工<C X 1时当久1 •< X X 2时j/'<0,当鼻 > 工2时j/‘>0,故曲线有两个拐 点,应选(C ).(9) 【答案】(A ).【解】 由拉格朗日中值定理得/(工)一/(1)= /'(£)(工一1),其中e 介于1与工之间,当工 6 (1-^,1)时 HVWV 1,再由 f'(x )单调递减得 > /(I ) =1,于是 y z ($)(— 1)<工一1,即 y (x )•— 1<久一1,或 f (兀)<工;当工e (1,1十厂 时1 vw <工,再由单调递减得1 =y'(i )>/"(£),于是 — 1) <工一1,即/•(#) — 1 V# — 1,或/(工)<工,应选(A ).(10) 【答案】(D ).【解】 从题设图形可见,在夕轴的左侧,曲线夕=/■&)是严格单调增加的,因此当工<0时,一定有于'(工)〉0,对应夕=于'(工)的图形必在工轴的上方,由此可排除(A ),(C ); 又的图形在y 轴右侧有三个零点,因此由罗尔中值定理可知,其导函数y=f\x )的图形在y 轴右侧一定有两个零点,进一步可排除(E ).应选(D ).三、解答题(11)【解】djr(2jc 12 + 1)丿兴 + ]1(]___\ 2 3_(1 + j//2 ) 2 ' 4工丿 (4jc + 1) 2Z )= 肿一 I = ~~2'sec 21(2tan 2i + 1 )sec tdtr cos tJ 2sinS + cosL弓豐將=arctan(sin/)+C=arctan .- + C.Jx 2 + 1(12) 【解】f(x ) =Sin "B ,nr = lim [(1 + $1叮一 sm ”)t-~x 'sin x / L 、 sin x /fCx)的间断点为工=kit (k e z),由lim/(j?) = e 得工=0为/(j :)的可去间断点;•z —*0由f (n — Q) — + °°,/(7r + 0) = 0得工=7T 为第二类间断点,同理工=kn(k 6 Z 且怡H0)为第二类间断点.(13) 【解】“=士,『=—— ,2 V j c 4工』工4«zdp _ dp / dj? ds ds / dr131••4( 4 工 +1)2--------------- ---------=6 J~x , 丿4无+ ]2 J~x6d 2 p d ( 6 \/~t ) /dj?2 \[x 6& $ ds/dx g + 1+ 12则^兽-伴)(4h +l)72一;… 一 — 36 无=9.J 4 无 + ](14)【解】gCt)dt x 2e 两边求导,得g[_f (j? )]/,(jc ) = (jc 2 +2工)『9 即) = (e + 2)e° 9积分得 /(^) = (h +1)『+ C9由 /(O) = 0 得 C = — 1,故/'(z ) = («z + 1)『一1.(15)【解】 由 g"Q ) = 2e J 一厂(2 )得 g 〃(H ) + g(z ) = 2e J ,解得 g (工)=C] cos x + C 2 sin x + e r ・ 由 g (0)=2 得 Ci = 1 ;由 g'(0) = 2 — /(0) = 2 得 C 2 = 19从而 g (jc ) = cos x + sin jr + e * 9 于是 fCx)= sin jc — cos 无 + e° ,rg(H )1 + zg (工)/(j ?)_1+乂 (1 + )2dj : +/(j : )d土)J 0g&) 1, fCx )i+7d " +TT7lo _Jg (#)1 +Ax_/(7T )_e n + 1= i + tt = 7t + r(16)r 解】(i )丨 op |=好 +$2,切线方程为Y —y =j/(X —乂),令X = 0,则切线在y 轴上的截距为Y = y — xy',由题意得y — xy' = Jx 2 + j^2,整理得字=2 — /1 + (―),dr jc \ \戈丿令u =—,则"+ z 学 =u — \/1 + z/2,变量分离得 d ----=——工 山 丿1 + / 工______ ______ 「积分得 ln(“ + \/m 2 + 1 ) = In C — In x ,即"+ a /m 2 + 1 = 一,x 再由 -“ + vV +1 =咅得“=*岸-咅),或$=*9 -青),因为曲线经过点(*,0),所以C=y,故所求曲线为夕=土一工2.(H)曲线汁* —在第一象限与两坐标轴所围成的面积为设切点为P1X 22) 9切线为y —=一 2a (jc 一 a ) 9令夕=0得z =二 + #;令工=0得,=++/oa z 4切线与L 及两个坐标轴围成的位于第一象限的面积为4a112 5Sa • 4a令s'++斜4a 2T + fl24a 24)=°得「古所求的切线方程为丿—(土―召),整理得(17)[解】 设/时刻雪堆的半径为r(Z ),r(0) =r 0,v 2 3 Q 9 2 dV 2 "V = —nr , o = Z7tr 9 -7— = Z7ir • —3 dt dtdV" d 厂由题意得不=TS,整理得不=T,解得")=f+c°,由厂(0)=厂 ° 得 C =r Q= —kt +r 09再由 r (3) = #•得怡=¥•,故 r ⑺=----t + r 0 ,Z令r (?) =0得t =6,故雪堆全部融化需要6小时.(18) ( I )【解】/(^)的带拉格朗日余项的一阶麦克劳林公式为/(J?) = /(0) + /''(0)工 + I ;£)乂2= /,(0)jf + [『力2,其中£介于0与工之间.(II )【证明】/(j : ) =/,(0)j' +食,)工2两边在[—a ,a ]上积分得[/(jc)dj- = _1_[ /7,($)2d:r ,J —au J —a因为f'\x )在[—a ,a ]上连续,所以f'\x )在[—a ,a ]上取到最小值m 和最大值M,由W */"(£)広2 C yMjr 2 得扌a 3 C yj 厂(£)工'dr < y-a 3 ,m ra m 3 f a即百^3 W /(工)clr W —a 3 9或 Tzz — /(j : )djc M ,3 J —a 3 a J —a由介值定理,存在少E [—a,a],使得/'"(可)=弓[/'(工)山,a J —a故 a "/■"(”)=3〕/ ( jc ) d j ?.(19)【解】 由 AXA +BXB =AXB + BXA + E 得(A -B)XCA -B) =E,解得 X = [(A -B)2]"1 ,/I — 1 — 1而A - B = 0 1 一 1'o 0 1/!-1一1\J 1(AB)2=01-11 0'001丿'0I 1_ 2-110°\I 1由01-2010 -* 0'0100J'0-1-1I 1-2一1\1-1=01-201/'o 01 100125\10012|得0100/]25\X =-012 •、00J(20)【解】0] ,p 2,“3,04为AX =0的基础解系的充分必要条件是01 ,庆,/h ,力线性无关,1t0100t '而(01 902 9 03,04)=(。

2001-数二真题、标准答案及解析

2001-数二真题、标准答案及解析

(A)1.
(B)2.
(C)3.
(D)4. 【】
【答】 应选(B).
【详解] 由题设,知
( ) (1− cos x) ln 1+ x2
lim
x→0
x sin xn
= lim x→0
1 x2 ⋅ x2 2
x ⋅ xn
=
1 lim
2 x→0
1 xn−3
=
1 lim x3−n 2 x→0
= 0.
n应满足 n ≤ 2;
求 f (x).
【详解】 等式两边对 x 求导得
g ⎡⎣ f ( x)⎤⎦ f ' ( x) = 2xex + x2ex

g ⎡⎣ f ( x)⎤⎦ = x,

xf ' ( x) = 2xex + x2ex .
当 x ≠ 0 时,有
f ' ( x) = 2ex + xex
积分得
f ( x) = ( x +1) ex + C
抛物线上介于点
A(1,1) 与
M
之间的弧长,计算 3ρ
d2ρ ds2

⎛ ⎜⎝
dρ ds
⎞2 ⎟⎠
的值.(在直角坐标系下曲
y ''
率公式为 K =

3
( ) 1+ y'2 2
【详解】 y' = 1 , y'' = − 1 ,
2x
4 x3
抛物线在点 M ( x, y)( x ≥ 1) 处三维曲率半径
3
【】
于是
f ⎡⎣ f ( x)⎤⎦ = 1,
{ } 从而 f f ⎡⎣( x)⎤⎦ = 1.

2001年考研数学试题详解及评分参考

2001年考研数学试题详解及评分参考
郝海龙:考研数学复习大全·配套光盘·2001 年数学试题详解及评分参考
2001 年全国硕士研究生入学统一考试 数学试题详解及评分参考
数 学(一)
一、填空题:(本题共 5 小题,每小题 3 分,满分 15 分) (1) 设 y = e (C1 sin x + C2 cos x) ( C1 , C2 为任意常数)为某二阶常系数线性齐次微分方
-1
(B) 0
(C)
1 2
(D) 1
【答】 应选 (A). 【解法一】 因 X + Y = n ,故 Y = n - X . 由于相关系数 r X ,Y 的绝对值等于 1 的充要条 件是 X 与 Y 之间存在线性关系,即 Y = a + bX (其中 a, b 是常数) ,且当 b > 0 时,
r X ,Y = 1 ;当 b < 0 时, r X ,Y = -1 . 因此 r x , y = -1 ,故选 (A).
æ1 ç1 (4) 设 A = ç ç1 ç è1
1 1 1 1
1 1 1 1
1ö æ4 ÷ ç0 1÷ ,B = ç ç0 1÷ ÷ ç 1ø è0
0 0 0 0
0 0 0 0
0ö 0÷ ÷ ,则 A 与 B 0÷ ÷ 0ø
(C) 不合同但相似 (D) 不合同且不相似
(A) 合同且相似 【答】 应选 (A).
【解法二】 根据相关系数的定义, 有 r x, y =
C ov( X , Y ) . 由于 DY = D ( n - X ) = DX , DX × DY - DX Cov( X , Y ) = Cov( X , n - X ) = -Cov( X , X ) = - DX ,因此 r x , y = = -1 . DX

2001考研数学真题+答案

2001考研数学真题+答案

1 2
.
(2) 设函数 f ( x, y ) 在点 (0, 0) 附近有定义,且 f x (0,0) 3, f y (0,0) 1 ,则 (A) dz |(0,0) 3dx dy (B) 曲面 z f ( x, y ) 在点 (0, 0, f (0, 0)) 的法向量为 {3,1,1} (C) 曲线
1
1 ( A 2E) 2
(5) 设随机变量 X 的方差为 2, 则根据切比雪夫不等式有估计 P{ X E( X ) 2} 二、选择题:(本题共 5 小题,每小题 3 分,满分 15 分) (1) 设函数 f ( x) 在定义域内可导, y f ( x ) 的图形如右图所示, 则导函数 y f ( x ) 的图形为 (D)
x 0
1 . 2
……1 分
证法一:(1) 任给非零 x ( 1,1) ,由拉格朗日中值定理得
f ( x) f (0) xf ( ( x) x) (0 ( x) 1) . 因为 f ( x ) 在 ( 1,1) 内连续且 f ( x) 0 ,所以 f ( x ) 在 ( 1,1) 内不变号.
x
……2 分 ……4 分 ……6 分
1 2 x e arctan e x e x arctan e x C . 2
注:答案中缺任意常数 C 扣 1 分. 四、(本题满分 6 分) 设函数 z f ( x, y ) 在点 (1,1) 处可微, 且 求
f x
2,
(C)
z f x, y 在点(0,0, f (0,0))的切向量为 {1, 0,3} y 0
(D) 曲线
z f x, y 在点(0,0, f (0,0))的切向量为 {3, 0,1} y 0

2001考研数一真题答案及详细解析

2001考研数一真题答案及详细解析

一、填空题(1)【答案】220y y y '''-+=.【详解】因为二阶常系数线性齐次微分方程0y py qy '''++=的通解为12(sin cos )x y e c x c x αββ=+时,则特征方程20r pr q ++=对应的两个根为一对共轭复根:1,2i λαβ=±,所以根据题设12(sin cos )xy e c x c x =+(12,c c 为任意常数)为某二阶常系数线性齐次微分方程的通解,知:1,1αβ==,特征根为1,2λi αβ=±1,i =±从而对应的特征方程为:()()2(1)(1)220,i i λλλλ-+--=-+=于是所求二阶常系数线性齐次微分方程为220y y y '''-+=.(2)【答案】2.3【分析】若(),,r x y z 具有连续的一阶偏导数,梯度gr adr 在直角坐标中的计算公式为:r r r gradr i j k x y z∂∂∂=++∂∂∂设()()()(),,,,,,,,A x y z P x y z i Q x y z j R x y z k =++,其中,,P Q R 具有一阶连续偏导数,散度d ivA 在直角坐标中的计算公式为:P Q R divA x y z∂∂∂=++∂∂∂若(),,r x y z 具有二阶连续偏导数,则在直角坐标中有计算公式:222222()r r rdiv gradr x y z∂∂∂=++∂∂∂【详解】本题实际上是计算222222r r rx y z∂∂∂++∂∂∂r x ∂∂222x y z x ∂++=∂22222xx y z=++222x x y z =++xr=2001年全国硕士研究生入学统一考试数学一试题解析22r x ∂∂x x r ∂⎛⎫= ⎪∂⎝⎭2rr xx r∂-∂=2x r x r x r x r r -∂ = ∂223r x r -=类似可得r y y r ∂=∂,22r y ∂∂223r y r -=;r z z r ∂=∂,22r z ∂∂223r z r -=根据定义有()div gradr 222222r r r x y z ∂∂∂=++∂∂∂222222333r x r y r z r r r ---=++222233r x y z r ---=2233r r r-=232r r =2r =2222x y z =++于是(1,2,2)()|div gradr -()2221,2,22x y z -=++2222231(2)2==+-+(3)【答案】211(,).xdx f x y dy -⎰⎰【详解】由题设二次积分的限,画出对应的积分区域,如图阴影部分.但在10y -≤≤内,21y ≥-,题设的二次积分并不是(,)f x y 在某区域上的二重积分,因此,应先将题设给的二次积分变形为:1021211(,)(,),yydy f x y dx dy f x y dx ----=-⎰⎰⎰⎰其中{}(,)10,12,D x y y y x =-≤≤-≤≤再由图所示,又可将D 改写为{}(,)12,10,D x y x x y =≤≤-≤≤于是112(,)ydy f x y dx --⎰⎰211(,)ydy f x y dx --=-⎰⎰2011(,)xdx f x y dy-=-⎰⎰211(,).xdx f x y dy -=⎰⎰(4)【答案】1(2).2A E +【详解】要求()A E -的逆,应努力把题中所给条件化成()A EB E -=的形式.由题设240A A E +-=⇒222A A E E +-=⇒()()22A E A E E-+=Oxyx+y=1x=21即()()12,2A E A E E -⋅+=故()()1122A E A E --=+.(5)【答案】12【分析】切比雪夫不等式:{}2()()D X P X E X εε-≥≤【详解】根据切比雪夫不等式有{}22()21()2222D X P XE X -≥≤==二、选择题(1)【答案】(D)【详解】从题设图形可见,在y 轴的左侧,曲线()y f x =是严格单调增加的,因此当0x <时,一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,由此可排除(A),(C);又()y f x =的图形在y 轴右侧靠近y 轴部分是单调增,所以在这一段内一定有'()0f x >,对应()y f x '=图形必在x 轴的上方,进一步可排除(B),故正确答案为(D).(2)【答案】(C)【详解】题目仅设函数(,)f x y 在点(0,0)附近有定义及''(0,0)3,(0,0)1,x y f f ==未设(,)f x y 在点(0,0)可微,也没设(,)z f x y =,所以谈不上dz ,因此可立即排除(A);令(,,)(,)F x y z z f x y =-,则有''''',,1x x y y z F f F f F =-=-=.因此过点(0,0,(0,0))f 的法向量为{}''',,x y z F F F ±={}'',,1x y f f ±--=±{−3,−1,1},可排除(B);曲线(,)z f x y y =⎧⎨=⎩可表示为参数形式:0,(,0)x x y z f x =⎧⎪=⎨⎪=⎩点(0,0,(0,0))f 的切向量为{}{}'1,0,(0,0)1,0,3x f ±=±.故正确选项为(C).(3)【答案】(B)【详解】方法1:因为001()()lim (1)1lim lim ln(1)ln(1)h h h x x f x f x xf e e x h x x x →→→--==⋅--0()ln(1)limx f x x x x x x → -- ⋅- ()()00()0()lim 0limx x f x f f x f x x →→-=- =0 -()0f '=可见,若()f x 在点0x =可导,则极限01lim(1)h h f e h→-一定存在;反过来也成立.方法2:排除法:举反例说明(A),(C),(D)说明不成立.比如,()f x x =,在0x =处不可导,但2220001cos 11cos lim (1cos )lim lim h h h h h f h h h h →→→---==22012sin 2lim h h h →⎛⎫ ⎪⎝⎭=2201112sin lim 22h h h h h →⎛⎫ ⎪⎝⎭ 12=,故排除(A)2200sin 1lim (sin )lim h h h h f h h h h→→--=30sin lim h h h h h →-=⋅其中,30sin limh h h h →-30sin lim h h h h →-=201cos lim 3h h h →- 洛22012sin 2lim 3h h h →⎛⎫ ⎪⎝⎭=22012lim 3h hh → 等16=根据有界量与无穷小的乘积为无穷小,所以3sinhlim0h h h h→-⋅=.故排除(C).又如1,0()0,0x f x x ≠⎧=⎨=⎩在0x =处不可导,但[]00111lim (2)()lim0h h f h f h h h →→--==存在,进一步可排除(D).(4)【答案】(A)【详解】方法1:因为A 是实对称矩阵,必相似于对角阵Λ.1111111111111111E A λλλλλ---------=--------44442,3,41111111111111λλλλλλλ----------------行分别加到行111111111(4)111141111λλλλλ--------------行提出公因子()11111000(4)000000λλλλ-行分别加到2,3,4行34λλ=-()=0得A 的特征值为:12344,0,λλλλ====故必存在正交矩阵Q ,使得14000000000000000T Q AQ Q AQ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦因此,A B 与相似.由两矩阵合同的充要条件:实对称矩阵A B 与合同的充要条件是A B 与相似.因此,A B 与也合同.即A B 与既合同且相似.应选(A).方法2:因为A 是实对称矩阵,故A 必相似于一对角阵Λ.又由相似矩阵有相同的特征值,相同的秩,知A 与Λ有相同的秩,故()()1,r r A Λ==即Λ对角线上有3个元素为零.因此,1230λλλ===是A 的特征值.求另一个特征值,由特征值的和等于矩阵主对角线元素之和,知444114.iii i i a λλ=====∑∑故,44λ=.即A 有特征值40λλ==和(三重根),和对角阵B 的特征值完全一致,故A ,B 相似.又由两矩阵合同的充要条件:实对称矩阵A B 与合同的充要条件是A B 与相似.知A ,B 合同.(5)【答案】A【详解】掷硬币结果不是正面向上就是反面向上,所以X Y n +=,从而Y n X =-,故()DY D n X DX=-=由方差的定义:22()DX EX EX =-,所以[]22()()()DY D n X E n X E n X =-=---222(2)()E n nX X n EX =-+--222222()n nEX EX n nEX EX =-+-+-22()EX EX DX =-=)由协方差的性质:c ov(,)0X c =(c 为常数);c ov(,)cov(,)aX bY ab X Y =1212cov(,)cov(,)cov(,)X X Y X Y X Y +=+)所以c ov(,)cov(,)cov(,)cov(,)0X Y X n X X n X X DX DX=-=-=-=-由相关系数的定义,得c ov(,)(,)1X Y DX X Y DX DYDX DXρ-===-三【详解】2a rctan x x e dx e⎰2a rctan x x e e dx -=⎰()21arctan 22x xe e d x -=--⎰()21arctan 2x x e d e -=-⎰()221arctan arctan 2x x x xe e e d e ----⎰分部2221arctan 2(1)x x xx x de e e e e -⎛⎫=-- ⎪+⎝⎭⎰222111arctan 21x x x x x e e de ee -⎛⎫⎛⎫=---⎪ ⎪+⎝⎭⎝⎭⎰22211arctan 21x x x x x x e e e de de e --⎛⎫=--+ ⎪+⎝⎭⎰⎰()21arctan arctan 2xx x x e e e e C --=-+++四【详解】由题设,()d x dx ϕ[](,(,))df x f x x dx=()12(,(,))(,(,))(,)f x f x x f x f x x f x x '''=+1212(,(,))(,(,))(,)(,)f x f x x f x f x x f x x f x x ⎡⎤''''=++⎣⎦这里1f f x ∂'=∂,2ff y∂'=∂,所以1()x d x dx ϕ={}12121(,(,))(,(,))(,)(,)x f x f x x f x f x x f x x f x x =⎡⎤''''=++⎣⎦1212(1,1)(1,1)(1,1)(1,1)f f f f ⎡⎤''''=++⎣⎦[]2323=+⋅+17=又(1,1)1,f =()(,(,))x f x f x x ϕ=,所以(1)(1,(1,1))f f ϕ=(1,1)1(1,1)f f = 1,=所以3211()()3()x x d d x x x dxdx ϕϕϕ==⎡⎤=⎢⎥⎣⎦21()3(1)x d x dx ϕϕ==1()(1)1,173117x d x dx ϕϕ= == ⋅⋅51=五【详解】首先将a rctan x 展开.因为()a rctan 'x =2211(1),(1,1)1n n n x x x ∞==-∈-+∑故()0arctan arctan 0arctan 'xx x dx =+⎰2000(1)xn n n x dx ∞=⎛⎫=+- ⎪⎝⎭∑⎰22100(1)(1)21n xnnn n n x dx x n ∞∞+==-=-=+∑∑⎰,()1,1x ∈-于是21()arctan x f x x x +=22101(1)21n n n x x x n ∞+=+-=+∑220(1)(1)21n n n x x n ∞=-=++∑22200(1)(1)2121n n n n n n x x n n ∞∞+==--=+++∑∑()()011210210(1)(1)(1)20121211n n n n n n x x x n n +-∞∞+==---=++⋅+++-∑∑12211(1)(1)12121n n n n n n x x n n -∞∞==--=+++-∑∑2211(1)(1)12121n n n nn n x xn n ∞∞==--=+-+-∑∑21111(1)2121nn n x n n ∞=⎛⎫=+-- ⎪+-⎝⎭∑221(1)2114n n n x n ∞=-=+-∑,()1,1,0x x ∈-≠又0lim ()x f x →2201(1)2lim 114n n x n x n ∞→=⎛⎫-=+ ⎪-⎝⎭∑1=,且(0)1f =,所以()f x 在0x =处连续,从而0x =时,()f x 221(1)2114n n n x n ∞=-=+-∑也成立.进而()f x 221(1)2114n nn x n∞=-=+-∑,(1,1)x ∈-,又在1x =±处级数22211(1)2(1)21414n n n n n x n n ∞∞==--=--∑∑收敛,2111lim ()lim arctan x x x f x x x --→→+=2111lim lim arctanx x xx x --→→+=⋅242ππ=⋅=()1f =,2111lim ()lim arctan x x x f x x x ++→-→-+=2111lim lim arctan x x xx x ++→-→-+=⋅()2142f ππ⎛⎫=-⋅-==- ⎪⎝⎭,所以()f x 在1x =处左连续,在1x =-处右连续,所以等式可扩大到1x =±,从而221(1)2()114n n n f x x n ∞=-=+-∑,[]1,1x ∈-,变形得221(1)()1142n n n f x x n∞=--=-∑因此21(1)14n n n ∞=--∑221(1)114n n n n ∞=-=⋅-∑[]1(1)12f =-1122π⎡⎤=⋅-⎢⎥⎣⎦1.42π=-六【详解】方法1:用斯托克斯公式之后化成第一型曲面积分计算.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧,(曲线的正向与曲面的侧的方向符合右手法则)D 为S 在x oy 坐标面上的投影,{(,)| 1 }D x y x y =+={}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++在2x y z ++=中,左右两边关于x 求偏导,得10x z '+=,得1x z '=-.在2x y z ++=中,左右两边关于y 求偏导,得10y z '+=,得1y z '=-.代入上式得{}111cos ,cos ,cos ,,333αβγ⎧⎫=⎨⎬⎩⎭为S 指定侧方向的单位法向量,由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰Sdy dz dzdx dxdy x y z P Q R∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdx dxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰将题中的空间曲线积分化为第二类曲面积分,而对于第二类曲面积分,一般的解答方法是将它先化为第一类曲面积分,进而化为二重积分进行计算.把111,,cos cos cos dS dydz dS dzdx dS dxdy αβλ===代入上式,I [](24)cos (26)cos (22)cos Sy z z x x y dSαβγ=--+--+--⎰⎰[]1(24)(26)(22)3Sy z z x x y dS =--+--+--⎰⎰[]18463S x y z dS =---⎰⎰2(423)3Sx y z dS =-++⎰⎰按第一型曲面积分的算法,将S 投影到x oy ,记为σ.d S 与它在x oy 平面上的投影d σ的关系是2211cos x y dS d z z d σσγ''==++故3dS d σ=,将2x y z ++=代入2(423)3S I x y z dS =-++⎰⎰2[423(2)](3)3Sx y x y d σ=-++--⎰⎰2(6)Dx y d σ=--+⎰⎰由于D 关于y 轴对称,利用区域的对称性,因为区域关于y 轴对称,被积函数是关于x 的奇函数,所以0Dxd σ=⎰⎰.D 关于x 轴对称,利用区域的对称性,因为区域关于x 轴对称,被积函数是关于y 的奇函数,故0Dyd σ=⎰⎰,所以2(6)DI x y d σ=--+⎰⎰2212DDDxd yd d σσσ=-+-⎰⎰⎰⎰⎰⎰12Ddxdy=-⎰⎰12D =-⋅的面积(由二重积分的几何意义知,Ddxdy ⎰⎰即D 的面积)其中,D 为1x y +≤,D 的面积141122=⋅⋅⋅=,所以12224.I =-⋅=-方法2:转换投影法.用斯托克斯公式,取平面2x y z ++=被L 所围成的部分为S ,按斯托克斯公式的规定,它的方向向上(曲线的正向与曲面的侧的方向符合右手法则),S 在x oy 平面上的投影域记为{(,)| 1 }D x y x y =+=.由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰ Sdy dz dzdx dxdy x y z P Q R ∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdxdxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰由111,,cos cos cos dS dydz dS dzdx dS dxdy αβλ===,及{}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++知11cos cos dS dydz dxdy αλ==,11cos cos dS dzdx dxdy βλ==,故22221cos 1cos 1xx yx x yz z z dydz dxdy dxdy z dxdy z z αλ'-''++'===-''++22221cos 1cos 1yx yy x yz z z dzdx dxdy dxdy z dxdy z z βλ'-''++'===-''++因为S 为2z x y =--,式子左右两端分别关于,x y 求偏导,1,1,z zx y∂∂=-=-∂∂于是(24)(26)(26)SI y z dydz z x dzdx x y dxdy=--+--+--⎰⎰{}24,26,26,,1S z z y z z x x y dxdyx y ⎧⎫∂∂=------⋅--⎨⎬∂∂⎩⎭⎰⎰2(423)2(6)SDx y z dxdy x y dxdy=-++=--+⎰⎰⎰⎰因为区域D 关于y 轴对称,被积函数是关于x 的奇函数,所以0Dxd σ=⎰⎰.类似的,因为区域D 关于x 轴对称,被积函数是关于y 的奇函数,故0Dyd σ=⎰⎰,所以2(6)DI x y d σ=--+⎰⎰2212DDDxd yd d σσσ=-+-⎰⎰⎰⎰⎰⎰12Ddxdy=-⎰⎰12D =-⋅的面积(由二重积分的几何意义知,Ddxdy ⎰⎰即D 的面积)D 为1x y +≤,D 的面积141122=⋅⋅⋅=,所以12224.I =-⋅=-方法3:降维法.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧(曲线的正向与曲面的侧的方向符合右手法则),D 为S 在x oy 坐标面上的投影,{(,)| 1 }D x y x y =+=把2x y z ++=代入I 中,1L 为L 在x oy 平面上投影,逆时针.1222222((2))(2(2))(3)()L I y x y dx x y x dy x y dx dy =---+---+---⎰ 12222(42444)(324888)L y x xy x y dx y x xy x y dy =--++-+-+--+⎰ 12222(324888)(42444)[]L y x xy x y y x xy x y dxdy x y ∂-+--+∂--++--∂∂⎰ 格林公式2(6)24Dx y dxdy =--+=-⎰⎰方法4:用斯托克斯公式后用第二型曲面积分逐个投影法.记S 为平面2x y z ++=上由L 所围成的有界部分的上侧,(曲线的正向与曲面的侧的方向符合右手法则){}221cos ,cos ,cos {,,1}1x y x yz z z zαβγ''=--''++在2x y z ++=中,左右两边关于x 求偏导,得10x z '+=,得1x z '=-.在2x y z ++=中,左右两边关于y 求偏导,得10y z '+=,得1y z '=-.代入上式得{}111cos ,cos ,cos ,,333αβγ⎧⎫=⎨⎬⎩⎭为S 指定侧方向的单位法向量,由斯托克斯公式得I 222222()(2)(3)Ly z dx z x dy x y dz=-+-+-⎰ Sdy dz dzdx dxdy x y z P Q R∂∂∂=∂∂∂⎰⎰22222223Sdydzdzdx dxdy x y z y z z x x y ∂∂∂=∂∂∂---⎰⎰(24)(26)(22)Sy z dydz z x dzdx x y dxdy=--+--+--⎰⎰用逐个投影法,先计算1(24),SI y z dydz =--⎰⎰其中{}(,)|21yz D y z y z y =--+≤为S 在y oz 平面上的投影,分别令0,0,20,20y y y z y z ≥≤--≥--≤,可得到y z D 的4条边界线的方程:右:23y z +=;上:3z =;左:21y z +=;下:1z =.于是13(3)2111(1)22(2)16z z I dz y z dy --=-+=-⎰⎰再计算2(26)SI z x dzdx =--⎰⎰,其中{}(,)|21xzD x z x x z =+--≤为S 在xoz 平面上的投影,分别令0,0,20,20x x x z x z ≥≤--≥--≤,可得到x z D 的4条边界线的方程:右:23y z +=;上:3z =;左:21y z +=;下:1z =.于是13(3)321211(1)22(3)(6)8z z I dz z x dx z dz --=-+=-=-⎰⎰⎰再计算3(22)D I x y dxdy =--⎰⎰,其中{}(,)|1xyDx y x y =+≤为S 在xoy 平面上的投影,因为区域关于y 轴和x 轴均对称,被积函数是关于x 和y 都是奇函数,于是32()0SI x y dxdy =-+=⎰⎰故12324.I I I I =++=-方法5:参数式法.L 是平面2x y z ++=与柱面1x y +=的交线,是由4条直线段构成的封闭折线,将题中要求的空间曲线积分分成四部分来求.当0,0x y ≥≥时,1:1,2L y x z x y =-=--,则,dy dx dz dx =-=-,x 从1到0.以x 为参数,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(2)][2(2)]()[3(1)]()x x y dx x y x dx x x dx =----+----+---22[(1)1(2)(1)]x x dx=--+--则1222222()(2)(3)L y z dx z x dy x y dz-+-+-⎰221(1)1(2)(1)x x dx ⎡⎤=--+--⎣⎦⎰7.3=当0,0x y ≤≥,2:1,12L y x z x =+=-,则,2dy dx dz dx ==-,x 从0到1-于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(12)][2(12)][3(1)](2)x x dx x x dx x x dx =+--+--+-+-(24)x dx=+所以212222220()(2)(3)(24)3L y z dx z x dy x y dz x dx --+-+-=+=-⎰⎰ 当0,0x y ≤≤,3:1,3L y x z =-=,则,0dy dx dz =-=,x 从1-到0,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)3][23]()[3(1)]0x dx x dx x x =--+⋅--+--⋅2(2226)x x dx=+-所以32222222179()(2)(3)(2226)3L y z dx z x dy x y dz x x dx --+-+-=+-=-⎰⎰ 当0,0x y ≥≤,4:1,32L y x z x =-=-,则,2dy dx dz dx ==-,x 从0到1,于是222222()(2)(3)y z dx z x dy x y dz-+-+-222222[(1)(32)][2(32)][3(1)](2)x x dx x x dx x x dx =---+--+---(1812)x dx=-+所以412222220()(2)(3)(1812) 3.L y z dx z x dy x y dz x dx -+-+-=-+=⎰⎰ 所以123424.LL L L L I ==+++=-⎰⎰⎰⎰⎰ 七【分析】拉格朗日中值定理:如果()f x 满足在闭区间[],a b 上连续,在开区间(),a b 内可导,则至少存在一点(),a b ξ∈,使等式()()()()f b f a f b a ξ'-=-成立【详解】(1)因为()y f x =在(1,1)-内具有二阶连续导数,所以一阶导数存在,由拉格朗日中值定理得,任给非零(1,1)x ∈-,存在()x θ∈(0,1),()(1,1)x x θ⋅∈-,使[]()(0)'()f x f xf x x θ=+⋅,(0()1)x θ<<成立.因为()f x ''在(1,1)-内连续且"()0,f x ≠所以()f x ''在(1,1)-内不变号,不妨设"()0,f x >则()f x '在(1,1)-内严格单调且增加,故()x θ唯一.(2)方法1:由(1)知[]()(0)'()f x f xf x x θ=+⋅,(0()1)x θ<<于是有[]'()()(0)xf x x f x f θ=-,即[]()(0)'()f x f f x x xθ-=所以[]2'()'(0)()(0)'(0)f x x f f x f f xxx θ---=上式两边取极限,再根据导数定义,得左端=[]0'()'(0)limx f x x f x θ→-[]0'()'(0)lim ()()x f x x f x x x θθθ→-=[]0'()'(0)limlim ()()x x f x x f x x xθθθ→→-=0"(0)lim ()x f x θ→=右端=20()(0)'(0)limx f x f f x x →--0'()'(0)lim2x f x f x →- 洛01'()'(0)lim 20x f x f x →-=-1"(0)2f 导数定义左边=右边,即01"(0)lim ()"(0)2x f x f θ→=,故01lim ().2x x θ→=方法2:由泰勒公式得()21()(0)'(0)"(),02f x f f x f x x ξξ=++ ∈,再与(1)中的[]()(0)'()(0()1)f x f xf x x x θθ=+<<比较,所以[]21'()()(0)'(0)"(),2xf x x f x f f x f x θξ=-=+约去x ,有[]1'()'(0)"(),2f x x f f x θξ=+凑成[]'()'(0)1()"(),()2f x x f x f x xθθξθ-=由于[]0'()'(0)lim "(0)()x f x x f f x xθθ→-=,00lim "()lim "()"(0)x f x f f ξξ→→==所以01"(0)lim ()"(0)2x f x f θ→=故01lim ().2x x θ→=八【详解】222222()1()0()()2x y z h t x y h t h t +=-≥⇒+≤,所以侧面在x oy 面上的投影为:()2221,:()2D x y x y h t ⎧⎫=+≤⎨⎬⎩⎭记V 为雪堆体积,S 为雪堆的侧面积,则由体积公式V (),Df x y dxdy =⎰⎰Dzdxdy =⎰⎰222()()()D x y h t dxdy h t ⎡⎤+=-⎢⎥⎣⎦⎰⎰化为极坐标,令c os ,sin x r y r θθ= =,()0,022h t r πθ≤≤≤≤V ()22202()()h t r d h t rdr h t πθ⎛⎫=- ⎪⎝⎭⎰⎰()22022()()h tr h t rdr h t π⎛⎫=- ⎪⎝⎭⎰()()22222()()h t h t r h t rdr rdr h t π⎛⎫=--⎪ ⎪⎝⎭⎰⎰()()24222()22()h t h t r r h t h t π⎛⎫ ⎪=-⎪⎪⎝⎭33()()248h t h t π⎛⎫=- ⎪⎝⎭3()4h t π=再由侧面积公式:()()22''1x y DS f f dxdy =++⎰⎰()()221xy Dz z dxdy''=++⎰⎰22441()()Dx y dxdy h t h t ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎰⎰22216()1()D x y dxdy h t +=+⎰⎰化为极坐标,令c os ,sin x r y r θθ= =,()0,022h t r πθ≤≤≤≤S =()()22220161h t r d rdr h t πθ+⎰⎰()()22201621h t r rdr h t π=+⎰()()22220161h t r dr h t π=+⎰()()()()22222201616116h t h t r r d h t h t π=+⎰()()()32222202161163h t h t r h t π⎛⎫=⋅⋅+ ⎪ ⎪⎝⎭()()()32232228211163h t h t h t π⎡⎤⎛⎫⎢⎥=⋅⋅+- ⎪ ⎪⎢⎥⎝⎭⎢⎥⎣⎦()()22271163h t π=⋅⋅-213()12h t π=由题意知0.9(),dVS t dt =-将上述()V t 和()S t 代入,得32()13()40.912dh t h t dt ππ=-⋅223()13()()0.9412dh t h t h t dt ππ⇒=-⋅() 1.3dh t dt ⇒=-积分解得13()10h t t C =-+由()0130h =,得130C =.所以13()130.10h t t =-+令()0h t →,即13130010t -+→100t ⇒→因此高度为130厘米的雪堆全部融化所需要时间为100小时.九【详解】由题设知,12,,,s βββ 均为12,,,s ααα 的线性组合,齐次方程组当有非零解时,解向量的任意组合仍是该齐次方程组的解向量,所以12,,,s βββ 均为0Ax =的解.下面证明12,,,s βββ 线性无关.设11220s s k k k βββ+++= ()*把11122,t t βαα=+21223,t t βαα=+121,,s s t t βαα=+ 代入整理得,()()()1121211222110s s s s t k t k t k t k t k t k ααα-++++++= 由12,,,s ααα 为线性方程组0Ax =的一个基础解系,知12,,,s ααα 线性无关,由线性无关的定义,知()*中其系数全为零,即112211221100 0s s s t k t k t k t k t k t k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ 其系数行列式122121210000000000t t t t t t t t122211321211211100000000000(1)ss s t t t t t t t t t t t +--*+-()1121111(1)ss s s t tt t -+-⎛⎫=+- ⎪⎝⎭112(1)s s s t t +=+-(*()变换:把原行列式第i 行乘以21t t -加到第1i +行,其中1,, 1.i s =- )由齐次线性方程组只有零解得充要条件,可见,当12(1)0,sst t +-≠,即12(),sst t ≠-即当s 为偶数,12;t t ≠±当s 为奇数,12t t ≠时,上述方程组只有零解120,s k k k ==== 因此向量组12,,,s βββ 线性无关,故当12122,21,s n t t s n t t =≠±⎧⎨=+≠⎩时,12,,,s βββ 也是方程组0A x =的基础解系.十【详解】(1)方法1:求B ,使1A PBP -=成立,等式两边右乘P ,即AP PB =成立.由题设知,AP ()2,,A x Ax A x =()23,,Ax A x A x =,又3232A x Ax A x =-,故有AP ()22,,32Ax A x Ax A x =-()2000,,103012x Ax A x ⎛⎫⎪= ⎪ ⎪-⎝⎭000103012P ⎛⎫⎪= ⎪⎪-⎝⎭即如果取000103012B ⎛⎫⎪= ⎪ ⎪-⎝⎭,此时的B 满足1A PBP -=,即为所求.方法2:由题设条件()2,,P x Ax A x =是可逆矩阵,由可逆的定义,知有1P -使11PP P P --=()()121112,,,,P x Ax A x P x P Ax P A x ----==E =100010001⎛⎫ ⎪= ⎪⎪⎝⎭即有11121000,1,0001P x P Ax P A x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题设条件,3232A x Ax A x =-,有()131232P A x P Ax A x --=-11232P Ax P A x --=-00312001⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭032⎛⎫⎪= ⎪ ⎪-⎝⎭由1A PBP -=,得1B P AP -=()12,,P A x Ax A x -=()123,,P Ax A x A x -=()11213,,P Ax P A x P A x ---=000103012⎛⎫⎪= ⎪⎪-⎝⎭(2)由(1)及矩阵相似的定义知,A 与B 相似.由矩阵相似的性质:若A B ,则()()f A f B ,则A E +与A E -也相似.又由相似矩阵的行列式相等,得100113011A E B E ⎡⎤⎢⎥+=+=⎢⎥⎢⎥-⎣⎦1001(1)0132011⎡⎤⨯-⎢⎥⎢⎥⎢⎥-⎣⎦行加到行1113(1)11+=--4=-十一【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .在此题中,每位乘客在中途下车看成是一次实验,每个人下车是独立的,有n 个人相当于做了n 次独立重复实验,把乘客下车看成实验成功,不下车看成实验失败,而且每次实验成功的概率都为p ,则问题(1)成为n 重伯努利实验中有m 次成功.【详解】(1)求在发车时有n 个乘客的条件下,中途有m 人下车的概率,相当于求条件概率{}|P Y m X n ==,由题设知,此条件概率服从二项分布,因此根据二项分布的分布律有:{}|(1),0,0,1,2m mn m n P Y m X n C P P m n n -===-≤≤=(2)求二维随机变量(,)X Y 的概率分布,其实就是求{},P X n Y m ==,利用乘法公式,有{}{}{},|P X n Y m P Y m X n P X n ======又X 服从参数(0)λλ>的泊松分布,由泊松分布的分布律有{}!nP X n en λλ-==故{}{}{},|(1)!m mn mn neP X n Y m P Y m X n P X n C P P n λλ--=======-⋅,其中0,0,1,2m n n ≤≤=十二【详解】记121111,n n i n i i i X X X X n n +====∑∑,则()1212X X X =+,即122X X X =+且1111nin i i i E Xnu E X E X u n nn ==⎛⎫==== ⎪⎝⎭∑∑,211n n i i E X E X u n +=⎛⎫== ⎪⎝⎭∑因此()()()221211()2nn i n i i n i i i E Y E X X XE X X X X ++==⎡⎤⎧⎫⎡⎤=+-=-+-⎨⎬⎢⎥⎣⎦⎣⎦⎩⎭∑∑()()()()22112212n i i n i n i i E X X X X XX X X ++=⎧⎫⎡⎤=-+--+-⎨⎬⎢⎥⎣⎦⎩⎭∑()()()()2211221112n n ni i n i n i i i i E X X E X X X X E X X ++===⎡⎤⎧⎫⎡⎤⎡⎤=-+--+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎣⎦∑∑∑因为样本方差()221111n i i S X X n =⎡⎤=-⎢⎥-⎣⎦∑是总体方差的无偏估计,则22ES σ=,即()2221111ni i ES E X X n σ=⎡⎤=-=⎢⎥-⎣⎦∑所以()2211(1)ni i E X X n σ=⎡⎤-=-⎢⎥⎣⎦∑,同理()2221(1)nn i i E X X n σ+=⎡⎤-=-⎢⎥⎣⎦∑而()()()()12121122n n i n i i n ii i E X X X X E X X XX ++==⎧⎫⎧⎫⎡⎤⎡⎤--=--⎨⎬⎨⎬⎣⎦⎣⎦⎩⎭⎩⎭∑∑()()1212ni n ii E X X XX +=⎡⎤=--⎣⎦∑()21121ni n i i n i i E X X X X X X X X ++==--+∑()21121ni n i i n i i EX X EX X E X X E X X ++==--+∑由于122,,,(2)n X X X n ≥ 相互独立同分布,则2i X X 与,1n i X X +与,12X X 与也独立(1,2i n = ).而由独立随机变量期望的性质(若随机变量,X Y 独立,且,E X EY 都存在,则E XY EXEY =),所以2i n i i n i EX X EX EX u ++==,222i i EX X EX E X u ==211n i n i E X X E X EX u ++==,21212E X X E X E X u ==故有()()121n i n i i E X X XX +=⎧⎫⎡⎤--⎨⎬⎣⎦⎩⎭∑()21121ni n i i n i i EX X EX X E X X E X X ++==--+∑()22221ni u u u u ==--+=∑即()()()()221122111()2n n n i i n i n i i i i E Y E X X E X X X X E X X ++===⎡⎤⎧⎫⎡⎤⎡⎤=-+--+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎣⎦∑∑∑()()()2221121n n n σσσ=-+-=-。

2001考研数学一试题及答案解析

2001考研数学一试题及答案解析

2001考研数学一试题及答案解析2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)设12(sin cos )xy eC x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程の通解,则该方程为_____________.(2)设222z y x r ++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分の积分次序:--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________. (5)设随机变量X の方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数)(x f 在定义域内可导,)(x f y =则)(x f y '=の图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A )(0,0)|3z d dx dy =+.(B ) 曲面),(y x f z =在(0,0,(0,0))f 处の法向量为{3,1,1}.(C ) 曲线??==0),(y y x f z 在(0,0,(0,0))f 处の切向量为{1,0,3}.(D ) 曲线?==0),(y y x f z 在(0,0,(0,0))f 处の切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导の充要条件为(A ) 201lim (1cosh)h f h →-存在.(B ) 01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设111140011110000,,1111000011110000A B==则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上の次数, 则X 和Y の相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx2arctan .四、(本题满分6分)设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,(1,1)|2f x ?=?,(1,1)|3fy=?,()(,x f x ?= (,))f x x .求13)(=x x dxd ?.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +?≠?=?将)(x f 展开成x の幂级数,并求级数∑∞=--1241)1(n nn の和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=?,其中L 是平面2=++z y x 与柱面1=+y x の交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内の任一0x ≠,存在惟一の)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立; (2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)の雪堆在融化过程,其侧面满足方程) ()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少の速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)の雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =の一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =の一个基础解系.十、(本题满分8分)已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)の泊松分布,每位乘客在中途下车の概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车の人数,求:(1)在发车时有n 个乘客の条件下,中途有m 人下车の概率; (2)二维随机变量(,)X Y の概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(の数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】由通解の形式可知特征方程の两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】先求grad r .grad r=,,,,r r r x y z x y z r r r=?. 再求 div grad r=()()()x y zx r y r z r++=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】这个二次积分不是二重积分の累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --??是二重积分の一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=?.由累次积分の内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=?.(4)【分析】矩阵A の元素没有给出,因此用伴随矩阵、用初等行变换求逆の路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-?=. 按定义知11()(2)2A E A E --=+.(5)【分析】根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】当0x <时,()f x 单调增'()0f x ?≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ?:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】我们逐一分析.关于(A ),涉及可微与可偏导の关系.由(,)f x y 在(0,0)存在两个偏导数?(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ±-=±,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线の参数方程为,0,(,0),x t y z f t =??=??=?它在点(0,0,(0,0))f 处の切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】当(0)0f =时,'0()(0)limx f x f x →=?00()()lim lim x x f x f x x x→+→-?=?.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim 1cos 2h h t f h h f t f h t h h h h t→→→+---=?=--,由此可知201lim (1cos )h f h h→-? ? '(0)f + ?. 若()f x 在0x =可导?(A )成立,反之若(A )成立?'(0)f + ??'(0)f ?.如()||f x x =满足(A ),但'(0)f 不?.关于(D ):若()f x 在0x =可导,?''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ?(D )成立.反之(D )成立0lim((2)())0h f h f h →?-=?()f x 在0x =连续,?()f x 在0x =可导.如21,0()0,0x x f x x +≠?=?=?满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不?.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=?=?-(当它们都?时).注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ??(C )成立.反之若(C )成立?0()lim t f t t →(即 '(0)f ?).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不?. 因此,只能选(B ).(4)【分析】由43||40E A λλλ-=-=,知矩阵A の特征值是4,0,0,0.又因A 是实对称矩阵,A必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同の特征值,从而二次型T x Ax 与T x Bx 有相同の正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ??=与1003B ??=, 它们の特征值不同,故A 与B 不相似,但它们の正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】解本题の关键是明确X 和Y の关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρの绝对值等于1の充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数の定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+??=2221(arctan )21x x x xx xde de e e e e---++??=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】先求(1)(1,(1,1))(1,1)1f f f ?===. 求 32''1()|3(1)(1)3(1)x d x dx===,归结为求'(1)?.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dx=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ?=++. 注意'1(1,1)(1,1)2f f x ?==?,'2(1,1)(1,1)3f f y==?. 因此'(1)23(23)17=++=,31()|31751x d x dx==?=.五、【分析与求解】关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑??,[1,1]x ∈-. ②因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121nnn xn n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f nππ∞=-?=-=?-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L の定向,按右手法则S 取上侧,S の单位法向量(cos ,cos ,cos )n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ=---??=[(24(26(22Sy z z x x y dS --+--+--??=(423)(2)(6)S Sx y z dS x y z x y dS ++++=+-利用. 于是==按第一类曲面积分化为二重积分得(62(6)D DI x y x y dxdy =+-=-+-??, 其中D 围S 在xy 平面上の投影区域||||1x y +≤(图).由D 关于,x y 轴の对称性及被积函数の奇偶性得 ()0Dx y dxdy -=??21224DI dxdy =-=-=-??.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ?∈-,0,(0,1)x θ≠?∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f の定义.由题(1)中の式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---?=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆の体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.44,()()z x z yx h t y h t ??=-=-??.()xyxyD D S t dxdy ==??.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤. ?2(03()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==+=用先二后一の积分顺序求三重积分()()()h t D x V t dz dxdy =?,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=?. (2)按题意列出微分方程与初始条件.体积减少の速度是dV dt -,它与侧面积成正比(比例系数0.9),即0.9dVS dt=- 将()V t 与()S t の表达式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米の雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =の解,所以根据齐次线性方程组解の性质知(1,2)i i s β=均为0Ax =の解.从12,,s ααα是0Ax =の基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关の条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=??+=??+=+=?(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ??=??-??,所以000103012B ??=-??.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Ym X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--?-≤≤=十二、【解】易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσの一个容量为n の简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n i i X X X Y n n +=+-=--∑. 因样本方差是总体方差の无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。

2001考研数四真题及解析

2001考研数四真题及解析

2001 年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量,K 是资本投入量,而,A αβ,均为大于零的参数,则当1Q =时K 关于L 的弹性为(2) 设(2)xz ef x y -=--,且当0y =时,2z x =,则zx∂∂= (3) 设行列式30402222075322D =--,则第四行各元素余子式之和的值为(4) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (5) 设随机变量X Y 和的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设()f x 的导数在x a =处连续,又'()lim1,x af x x a→=--则 ( ) (A) x a =是()f x 的极小值点. (B) x a =是()f x 的极大值点. (C)(,())a f a 是曲线()y f x =的拐点.(D) x a =不是()f x 的极值点, (,())a f a 也不是曲线()y f x =的拐点.(2) 设0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则()g x 在区间(0,2)内 ( ) (A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于 ( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 对任意二事件A B 和,与A B B ⋃=不等价的是 ( )(A)A B ⊂ (B)B A ⊂ (C)AB =∅ (D)AB =∅(5) 将一枚硬币重复掷n 次,以X Y 和分别表示正面向上和反面向上的次数,则X Y 和的相关系数等于 ( )(A) -1 (B) 0 (C)12(D) 1 三 、(本题满分6分)设(,,)u f x y z =有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定:2xye xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6分)已知()f x 在(,)-∞+∞内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=---求c 的值.五 、(本题满分6分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线,1y x y ==-及1x =围成的平面区域.六、(本题满分7分)某商品进价为a (元/件),根据以往经验,当销售价为b (元/件)时,销售量为c 件(,,a b c 均为正常数,且43b a ≥),市场调查表明,销售价每下降10%,销售量可增加40%,现决定一次性降价.试问,当销售价定为多少时,可获得最大利润?并求出最大利润.七、(本题满分6分)设()f x 在区间[0,1]上连续,在(0,1)内可导,且满足21130(1)3()x f xef x dx -=⎰证明: 至少存在(0,1)ξ∈, 使得'() 2().f f ξξξ= 八、(本题满分6分)设函数()f x 在(0,)+∞内连续,5(1),2f =且对所有,(0,)x t ∈+∞,满足条件 111()()(),xtxt f u du t f u du x f u du =+⎰⎰⎰求()f x . 九、(本题满分9分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX β=有解但不唯一,试求: (1) a 的值; (2) 正交矩阵Q ,使TQ AQ 为对角矩阵. 十、(本题满分8分)设12(,,)(1,2,,;)T i r i i in a a a i r r n α==<是n 维实向量,且12,,r ααα线性无关.已知12(,,,)T n b b b β=是线性方程组111122121122221220,0,0n n n nr rn n a x a x a x a x a x a x arx a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的非零解向量.试判断向量组12,,,r αααβ的线性相关性.十一、(本题满分8分)一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. ((2)0.977Φ=,其中()x Φ是标准正态分布函数).十二、(本题满分8 分)设随机变量X Y 和的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量U X Y =+的方差.2001 年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】αβ-【使用概念】设()y f x =在x 处可导,且()0f x ≠,则函数y 关于x 的弹性在x 处的值为()()Ey x x y f x Ex y f x ''== 【详解】由Q AL K αβ=,当1Q =时,即1AL K αβ=,有1,K A Lαββ--=于是K 关于L 的弹性为:EK EL LK K'=11d A L L dLA Lαββαββ----⎛⎫ ⎪ ⎪⎝⎭=111A L L A Lαββαββααββ------=⋅=-(2)【答案】22(2)xy x x y ee ----+【详解】由题设y =0时,2,z x =知2x (0)xef x -=--()x e f x -=-,即:2()x f x e x -=-,从而 (2)2(2)(2)x y f x y e x y ---=--,于是 (2)xz e f x y -=--(2)2(2)x x y e e x y ---⎡⎤=---⎣⎦(2)2(2)x x y e e x y ---=-+- 故z x ∂∂(2)2(2)x x y e e x y x---∂⎡⎤=-+-⎣⎦∂ (2)2(2)x x y e e x y ---=-++-22(2)x y x x y e e --=--+(3)【答案】-28【详解】方法1: 用4j M j =( 1,2,3,4) 表示第四行各元素的余子式,由余子式的概念,有41040222700M =-12221(1)470+--按行展开56,=-42340222000M =23343(1)00+-按列展开0,=43300222070M =-11221(1)370+--按第行展开42,=44304222070M =-32343(1)(7)22+-⨯-按第行展开14=-故M 41+M 42+M 43+M 44 =(-56)+0+42+(-14)=−28.方法2:用ij A (j =1,2,3,4) 表示第四行各元素的代数余子式, 由于444(1),jj j A M +=-于是M 41 +M 42 +M 43 +M 44 =−A 41 +A 42−A 43 +A 443040222228.07001111==----(4) 【答案】-3 【详解】方法1:由初等变换(既可作初等行变换,也可作初等列变换).不改变矩阵的秩,故对A 进行初等变换111111111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11111001(1)2,3,410101001kk k k k k k ⎡⎤⎢⎥--⎢⎥⨯-⎢⎥--⎢⎥--⎣⎦行分别加到行 311101002,3,400100001k k k k +⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦列分别加到1列 可见只有当k =−3时,r (A )=3.故k =−3.方法2:由题设r (A )=3,故应有四阶矩阵行列式0A =.由111111111111k kA kk=11111001(1)2,3,41010101k k k k k kk --⨯-----行分别加到行311101002,3,4001001k k k k +---列分别加到1列3(3)(1)0,k k =+-=解得 k =1或k = −3. 当k =1时,1111111111111111A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦111100001(1)23400000000⎡⎤⎢⎥⎢⎥⨯-⎢⎥⎢⎥⎣⎦行分别加到,,行 可知,此时r (A )=1,不符合题意,因此一定有k =−3.(5)【答案】112【所用概念】(i) 切比雪夫不等式为:{}2()()D X P X E X εε-≥≤(ii) 期望和方差的性质:()E X Y EX EY ±=±,()2cov(,)D X Y DX X Y DY ±=±+ (iii)相关系数的定义:(,)X Y ρ=【详解】把X Y -看成是一个新的随机变量,则需要求出其期望和方差. 故 ()220E X Y EX EY -=-=-=cov(,)(,0.51X Y X Y ρ===()2cov(,)12143D X Y DX X Y DY -=-+=-⨯+=所以由切比雪夫不等式:{}{}2()316()663612D X Y P X Y P X YE X Y --≥=---≥≤==二、选择题(1)【答案】 [ B] 【详解】 方法1:由'()lim1,x af x x a→=--知lim '()x af x →()'()limx af x x a x a→=⋅--()'()lim lim x a x a f x x a x a →→=⋅--10=-⋅0=又函数()f x 的导数在x a =处连续,根据函数在某点连续的定义,左极限等于右极限等于函数在这一点的值,所以()0f a '=,于是有'()'()'()"()limlim 1,x ax a f x f a f x f a x ax a →→-===--- 即()0f a '=,()10f a ''=-<,根据判定极值的第二充分条件:设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,当0()0f x ''<时,函数()f x 在0x 处取得极大值. 知x a =是()f x 的极大值点,因此,正确选项为(B). 方法2:由'()lim1,x af x x a→=--及极限保号性定理:如果()0lim x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <),知存在x a =的去心邻域,在此去心邻域内'()0f x x a<-.于是推知,在此去心邻域内当x a <时()0f x '>;当x a >时()0.f x '<又由条件知()f x 在x a =处连续,由判定极值的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知()f a 为()f x 的极大值. 因此,选 (B).(2)【答案】(D)【详解】应先写出g (x )的表达式.当01x ≤<时, 21()(1)2f x x =+,有 ()g x ()0x f u du =⎰201(1)2x u du =+⎰3001162x x u u =+311,62x x =+当12x ≤≤时, 1()(1)3f x x =-,有0()()x g x f u du =⎰101()()x f u du f u du =+⎰⎰120111(1)(1)23x u du u du =++-⎰⎰1132010111116263x x u u u u =++-()221136x =+-即 ()3211,0162()211,1236x x x g x x x ⎧+≤<⎪⎪=⎨⎪+-≤≤⎪⎩因为 311112lim ()lim 623x x g x x x --→→⎛⎫=+= ⎪⎝⎭,()211212lim ()lim 1363x x g x x ++→→⎛⎫=+-= ⎪⎝⎭, 且 ()2212(1)11363g =+-=, 所以由函数连续的定义,知()g x 在点1x =处连续,所以()g x 在区间[0,2]内连续,选(D).同样,可以验证(A)、(B)不正确,01x <<时,321111()06222g x x x x '⎛⎫'=+=+> ⎪⎝⎭,单调增,所以(B)递减错;同理可以验证当12x <<时,()()2211()110363g x x x '⎛⎫'=+-=-> ⎪⎝⎭,单调增,所以()()()02g g x g ≤≤,即()506g x ≤≤与选项(A)无界矛盾.(3)【答案】 (C)【详解】由所给矩阵,A B 观察,将A 的2,3列互换,再将A 的1,4列互换,可得B . 根据初等矩阵变换的性质,知将A 的2,3列互换相当于在矩阵A 的右侧乘以23E ,将A 的1,4列互换相当于在矩阵A 的右侧乘以14E ,即2314AE E B =,其中2310000010********E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,140001010000101000E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由题设条件知114223,P E P E ==,因此21B AP P =.由于对初等矩阵ij E 有,1ij ij E E -=,故111122,P P P P --==.因此,由21B AP P =,及逆矩阵的运算规律,有()111111211212B AP P P P A PP A ------===.(4)【答案】D【详解】 A B B ⋃=等价于A B ⊂或B A ⊂,也就说明A B 与没有公共部分,即AB φ=.故A B B ⋃=与(A)、(B)、(C)都等价.如果(D)AB φ=,成立即B A φ-=,就有A B ⊃与A B B ⋃=不等价.(5) 【答案】A【详解】 掷硬币结果不是正面向上就是反面向上,所以X Y n +=,从而Y n X =-, 故 ()DY D n X DX =-=由方差的定义:22()DX EX EX =-, 所以[]22()()()DY D n X E n X E n X =-=---222(2)()E n nX X n EX =-+--222222()n nEX EX n nEX EX =-+-+-22()EX EX DX =-=)由协方差的性质:cov(,)0X c = (c 为常数);cov(,)cov(,)aX bY ab X Y =1212cov(,)cov(,)cov(,)X X Y X Y X Y +=+)所以 cov(,)cov(,)cov(,)cov(,)0X Y X n X X n X X DX DX =-=-=-=- 由相关系数的定义,得 (,)1X Yρ===-三【变限积分求导公式】()[()][()]()f x x ag t dt g f x f x ''=⎰【详解】 根据复合函数求导公式,有.du f f dy f dz dx x y dx z dx∂∂∂=++∂∂∂ (*) 在2xye xy -=两边分别对x 求导,得()()0,xy dy dye y xy x dx dx+-+= 即.dy y dx x =- 在0sin x z xt e dt t-=⎰两边分别对x 求导,得 sin()(1),xx z dze x z dx-=⋅-- 即()1.sin()x dz e x z dx x z -=-- 将其代入(*)式,得du dx f f dy f dz x y dx z dx ∂∂∂=++∂∂∂()1.sin()x f y f e x z f x x y x z z⎛⎫∂∂-∂=-+- ⎪∂∂-∂⎝⎭四 【详解】因为1lim(1)xx e x→∞+=lim()x x x c x c →∞+-2lim()xx x c c x c→∞-+=- (把x c +写成2x c c -+)222lim()x c cx c x cx x c c x c-⋅-→∞-+=- (把x 写成22x c cx c x c -⋅-) 222lim (1)cx x cx ccx c x c --→∞⎡⎤=+⎢⎥-⎣⎦(利用幂函数的性质()mnm n aa =)222ln (1)lim cxx c x cc c x c x e--⎡⎤⎢⎥+-⎢⎥⎣⎦→∞= (利用对数性质ln ()()f x ef x =)222ln (1)lim x c c cx c x c x c x e-⎡⎤⎢⎥+--⎢⎥⎣⎦→∞= (利用对数性质()ln ()()ln ()g x f x g x f x =)222limln (1)x cc x cx c x c x c e-→∞⎡⎤⎢⎥+--⎢⎥⎣⎦= (利用x y e =函数的连续性,lim ()()lim x f x f x x ee →∞→∞=)222limlim ln (1)x c c x x cx c x c x c e-→∞→∞⎡⎤⎢⎥⋅+--⎢⎥⎣⎦=(当各部分极限均存在时,lim ()()lim ()lim ()x x x f x g x f x g x →∞→∞→∞⋅=⋅)222limln lim (1)x c c x x cx c x c x c e -→∞→∞⎡⎤⎢⎥⋅+--⎢⎥⎣⎦= (利用ln y x =函数的连续性,lim[ln ()]ln[lim ()]x x f x f x →∞→∞=)2ln c e e ⋅= (利用1lim(1)x x e x→∞+=)2c e = (ln 1e =)又因为()f x 在(),-∞+∞内可导,故在闭区间[1,]x x -上连续,在开区间(1,)x x -内可导,那么又由拉格朗日中值定理,有()(1)()[(1)](),1f x f x f x x f x x ξξξ''--=--=-<<左右两边同时求极限,于是lim[()(1)]lim '()x x f x f x f e ξ→∞→∞--==,因为1x x ξ-<<,x 趋于无穷大时,ξ也趋向于无穷大由题意,lim()lim[()(1)],x x x x c f x f x x c →∞→∞+=--- 从而2c e e =,故12c =五 【详解】 积分区域如图所示,可以写成11,1y y x -≤≤≤≤222211()()22[1],x y x y DDDy xedxdy ydxdy xyedxdy +++=+⎰⎰⎰⎰⎰⎰其中,111112(1);3y Dydxdy dy ydx y y dy --==-=-⎰⎰⎰⎰⎰ 221()2x y Dxyedxdy +⎰⎰22111()21x y yydy xedx +-=⎰⎰22111()2211()2x y yydy ed x +-=⎰⎰ 22111()22211[()]2x y yydy ed x y +-=+⎰⎰2211(1)21()y ye e dy +-=-⎰2211(1)2211()2y y e e dy +-=-⎰22111(1)222111122y y e dy e dy +--=-⎰⎰ 22111(1)2221111[(1)]22y y ed ye dy +--=+-⎰⎰22111(1)21112y y e e +--=-0=于是221()22[1]3x y Dy xedxdy ++=-⎰⎰六【详解】设p 表示降价后的销售价,销售价下降的部分可记作b p -,x 表示由此而产生的增加的销售量,销售价下降10%,即下降0.1b ,销售量增加40%,即增加0.4c ,那么0.4,0.1x c b p b =- 则 ,4bp b x c=- 令()L x 为总利润,从而()()()()()4bL x p a c x b x a c x c=-+=--+ 上式左右两端分别对x 求导,得()L x '()()()()44b b b x a c x b x a c x c c ''=--++--+3,24b x b ac =-+- 令()0,L x '=得唯一驻点(即,使得一阶导数值为零的点)0(34).2b a c x b-=由问题的实际意义或0()02bL x c''=-<(极值判定的第二充分条件),可知0x 为极大值点,也是最大值点,故定价为4b p b x c =-(34)42b b a c b c b -=-⋅31()82b b a =--51()82b a =+元 时获得最大利润,为0()L x ()()p a c x =-+(34)()[]42b b a c b x a c c b -=--+2(54)()16cb a b=-元七【详解】将要证的式子()2()f f ξξξ'=中的ξ换成x ,即要证方程()2()f x xf x '= (1)在区间(0,1)内存在根. 用罗尔定理去证. 为此,先构造辅助函数. 用“微分方程法”,将(1)看成是一个微分方程,分离变量,得()2()df x xdx f x = 式子左右两端积分,利用1ln dx x C x =+⎰及111nn x dx x C n +=++⎰,得 ()2()df x xdx f x =⎰⎰⇒21ln ()f x x C =+⇒21ln ()ln x C f x e +=⇒21()x C f x e += 去掉绝对值符号,得2211()x C C x f x ee e +=±=±⋅,记1C C e =±,则2()x f x Ce =,即2()x f x e C -=,由21130(1)3()x f e f x dx -=⎰,及积分中值定理(如果函数()f x 在闭区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一个点ξ,使得()()()()baf x dx f b a a b ξξ=-≤≤⎰), 知至少存在一点1(0,)[0,1]3η∈⊂使得2211130(1)3()(),x f ef x dx e f ηη--==⎰令2()()x x f x e ϕ-=,()x ϕ在[],1η上连续,在(),1η内可导,且22111(1)(1)()()()f e e f e e f ηηϕηηϕη----====,由罗尔中值定理知,至少存在一点(,1)(0,1)ξη∈⊂,使得()0ϕξ'= 又22()()(2)()x x x f x e x f x e ϕ--''=+-,即有 22()(2)()0f e f e ξξξξξ--'+-=即 ()2()f f ξξξ'=八【详解】因为()f x 连续,所以题中的每一个积分均可导,(如果()f x 在区间[,]a b 上连续,则积分上限的函数()xaf t dt ⎰在[,]a b 上可导,且()()()xad f t dt f x x f x dx '==⎰). 等式的每一项都是x 的可导函数,于是等式两边对x 求导,得1()()()(),tf xt xt tf x f u du '=+⎰即 1()()(),ttf xt tf x f u du =+⎰①在①式中,令1x =,则1()(1)(),ttf t tf f u du =+⎰由5(1)2f =,得 15()(),2t tf t t f u du =+⎰ ②则,1()5()2tf u duf t t=+⎰是(0,)+∞内的可导函数. ②式两边对t 求导,得15()()()(())2t t f t tf t t f u du ''''+=+⎰利用1()n n x nx -'=及()()xa d f t dt f x dx=⎰ 5()()(),2f t tf t f t '+=+ 即 5().2f t t'=上式两边求积分,得5().2f t dt dt t'=⎰⎰利用函数积分和求导之间的关系()()f x dx f x C '=+⎰,以及1ln dx x C x=+⎰5()ln .2f t t C =+由5(1),2f =在上式中令1t =,5(1)ln1.2f C =+得5.2C =于是 5()(ln 1).2f x x =+九【详解】(1) 线性方程组AX β=有解但不唯一,即有无穷多解()()3r A r A n ⇔=<=,将增广矩阵作初等行变换,得111111112a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦21112131()01100112a a a a a aa ⎡⎤⎢⎥-----⎢⎥⎢⎥----⎣⎦行行,行行倍 11123011000(1)(2)2a a a a a a ⎡⎤⎢⎥--⎢⎥⎢⎥--+-+⎣⎦行加到行()因为方程组AX β=有解但不唯一,所以()()3r A r A =<,故a =−2.(2) 由(1),有112121211A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由112121211E A λλλλ---=-+---122,312111λλλλλ-+---列加到列 1121121111λλλ-+---提出列公因子1121(1)2,303303λλλ-⨯-+--行分别加到行(3)(3)0λλλ=+-=故A 的特征值为1230,3,3λλλ==-=.当10λ=时,112(0)121211E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦1121(1),20332,3033--⎡⎤-⎢⎥-⎢⎥⎢⎥-⎣⎦行的倍分别加到行1122033000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦行加到3行于是得方程组(0)0E A x -=的同解方程组为1232320330x x x x x +-=⎧⎨-=⎩ 可见,(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取21x =,解得对应的特征向量为1(1,1,1)Tξ=.当13λ=时,()2123151212E A -⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭1511,2212212--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦行互换 151212000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦3行-2行151********--⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦1行加到行 于是得方程组(3)0E A x -=的同解方程组为12325090x x x x -+-=⎧⎨=⎩ 可见,(3)2r E A -=,可知基础解系的个数为(3)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得对应的特征向量为2(1,0,1)Tξ=-.当13λ=-时,()4123111214E A --⎛⎫ ⎪--=--- ⎪ ⎪--⎝⎭11112412214---⎛⎫⎪-- ⎪ ⎪--⎝⎭,行互换 1111(4),2036036---⎛⎫- ⎪ ⎪ ⎪--⎝⎭行倍倍分别加到2,3行1112036000---⎛⎫⎪⎪ ⎪⎝⎭行加到3行 于是得方程组(3)0E A x --=的同解方程组为123230360x x x x x ---=⎧⎨+=⎩ 可见,(3)2r E A --=,可知基础解系的个数为(3)321n r E A ---=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得对应的特征向量为3(1,2,1)Tξ=--.由于A 是实对称矩阵,其不同特征值的特征向量相互正交,故这三个不同特征值的特征向量相互正交,之需将123,,ξξξ单位化,3121231231111,0,2.111ξξξβββξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎥⎥======-⎢⎥⎥⎥⎢⎥⎥⎥-⎣⎦⎦⎦其中,123ξξξ=====令[]123,,0Q βββ== 则有 1300030.000T Q AQ Q AQ -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦十【详解】方法1:用线性无关的定义证明设有一组数12,,,r k k k k 使得11220,r r k k k k αααβ++++= (*)因为12(,,)T n b b b β=是线性方程组111122121122221122...0,...0,...0,n n n nr r rn n a x a x a x a x a x a x a x a x a x ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 的非零解向量,故有11210,1,2,,.i i in n a b a b a b i r +++==因此,由题设条件12(,,)(1,2,,;)T i i i in a a a i r r n α==<,可得0,(1,2,)T i i r αβ==,也即0,(1,2,)T i i r βα==.(*)式两边左乘Tβ,得11220,T T T T r r k k k k βαβαβαββ++++=将0,(1,2,)Ti i r βα==代入上式,可得0T k ββ=.又由已知,0β≠,得0Tββ≠,故k =0. 将k =0代入(*)式,得110,r r k k αα++=由于向量组12,,r ααα线性无关,所以由线性无关的定义,可知120.r k k k ====即 120.r k k k k =====因此向量组12,,,r αααβ线性无关.方法2:用反证法题设条件向量组12,,r ααα线性无关,若向量组12,,,r αααβ线性相关,则β可由12,,r ααα线性表出(且表示法唯一),设为1122()r rk k k βααα=+++*因为12(,,)T n b b b β=是线性方程组的非零解向量,故有11210,1,2,,.i i in n a b a b a b i r +++==因此,由题设条件12(,,)(1,2,,;)T i i i in a a a i r r n α==<,可得0,(1,2,),T i i r αβ==也即0,(1,2,)T i i r βα==.(*)式两边左乘Tβ,得1122T T T T r r k k k βββαβαβα=+++将0,(1,2,)Ti i r βα==代入上式,可得0T ββ=.这和0β≠,0Tββ>矛盾,故β不能用12,,r ααα线性表出,与假设矛盾,从而有向量组12,,,r αααβ线性无关.十一【应用定理】(i) 期望的性质:()E X Y EX EY +=+;独立随机变量方差的性质:若随机变量X Y 和独立,则()D X Y DX DY +=+(ii) 列维-林德伯格中心极限定理:设随机变量12,,,,n X X X 相互独立同分布,方差存在,记22(0)u σσ<<+∞与分别是它们共同的期望与方差,则对任意实数x ,恒有1lim )()ni n i P X nu x x →∞=⎫-≤=Φ⎬⎭∑(通俗的说:独立同分布的随机变量,其期望方差存在,则只要随机变量足够的多,这些随机变量的和以正态分布为极限分布)(iii) 正态分布标准化:若2~(,)Z N u σ,则~(0,1)Z uN σ-【详解】设(1,2,)i X i n =是装运的第i 箱的重量(单位:千克), n 是所求箱数. 由题设可以将1,,i n X X X 视为独立同分布的随机变量,而n 箱的总重量12n n S X X X =+++是独立同分布随机变量之和.由题设,有()5i E X ==(单位:千克) 所以 1212()()50n n n E S E X X X EX EX EX n =+++=+++= 1212()()25n n n D S D X X X DX DX DX n =+++=+++=则根据列维—林德柏格中心极限定理,知n S 近似服从正态分布(50,25)N n n ,箱数n 根据下述条件确定{}5000n P S P ≤=≤ (将n S 标准化)0.977(2)≈Φ>=Φ由此得2,> 从而98.0199n <, 即最多可以装98箱.十二【详解】方法1:三角形区域为{(,)|01,01,1G x y x y x y =≤≤≤≤+≥因X Y 和在G 上服从均匀分布则随机变量X 和Y 的联合密度为:2,(,),(,)0,(,),x y G f x y x y G ∈⎧=⎨∉⎩若若(二维均匀分布的密度为其总面积的倒数)随机变量函数(,)Z g X Y =期望的计算公式:[](,)(,)(,)E g X Y g x y f x y dxdy +∞+∞-∞-∞=⎰⎰其中(,)f x y 是二维连续型随机变量的联合密度函数,则()()(,)()(,)D EU E X Y x y f x y dxdy x y f x y dxdy +∞+∞-∞-∞=+=+=+⎰⎰⎰⎰阴影111201042()(2)3ydy x y dx y y dy -=+=+=⎰⎰⎰ 2222()()(,)()(,)D EU E X Y x y f x y dxdy x y f x y dxdy +∞+∞-∞-∞=+=+=+⎰⎰⎰⎰阴影1112230102112()(22)36ydy x y dx y y y dy -=+=++=⎰⎰⎰ 故 2221141()6318DU EU EU ⎛⎫=-=-= ⎪⎝⎭方法2:【分析】由方差的性质()2cov()D X Y DX X Y DY +=+++,故需要求出DX ,cov()X Y +,DY ;由协方差的定义cov(,)X Y EXY EXEY =-和方差的定义22()DX EX EX =-和,故需要求出EX ,EY ;由期望的定义()EX xf x dx +∞-∞=⎰,故需要求出边缘概率密度函数()f x ;边缘密度函数的定义为()(,)X f x f x y dy +∞-∞=⎰.【详解】三角形区域为{}(,)|01,01,1G x y x y x y =≤≤≤≤+≥因X Y 和在G 上服从均匀分布则随机变量X 和Y 的联合密度为:2,(,),(,)0,(,),x y G f x y x y G ∈⎧=⎨∉⎩若若 (二维均匀分布的密度为其总面积分之一)以X ()f x 表示X 的概率密度,则当0x ≤或1x ≥时,X ()0f x =(因为在这两部分,联合概率密度为0);当01x <<时,有1X 1()()22.xf x f x y dy dy x +∞-∞-===⎰⎰,因此 112230021()2;()2;32E X x dx E X x dx ====⎰⎰[]22141()()().2918D XE X E X =-=-=同理 21(),().318E Y D Y ==下面求X Y 和的协方差.1115()22;12xGE XY xydxdy xdx ydy -===⎰⎰⎰⎰所以 541(,)()()().12936C o v X Y E X Y E X E Y =-=-=- 于是 ()()()()2(,)D U D X Y D X D Y Cov X Y =+=++1121.18183618=+-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年硕士研究生入学考试试题
考试科目:数学分析
1.
求1sin )1lim (2)
n n n n arcctg n →∞++. 2. 设关于(,)u v 的函数,x y 决定于方程组(,(,))0((,),)0f x y u g x v y ϕψ=⎧⎨
=⎩,,,,f g ϕψ连续可微,
1221y x f g f g ϕψ≠,求
x u ∂∂,y u ∂∂其中1f 表示f 对第一个自变量的偏导数,212,,f g g 类似.
3. 设(),()f x g x 在[,]a b 上连续,证明:存在(,)a b ξ∈使得
()()()b a f g x d x g f x d x ξξξξ=⎰⎰.
4. 求平面2x y z ++=与曲面222221x y z ++=(,,0)x y z >之间的最短距离.
5. 设
()f x 在[,]a b 上有2阶连续导数,证明: "2()()[()()]()()()b b a a
f x dx b a f a f b x a b x f x dx =-+---⎰⎰. 6. 设()()x P y e x
g x =-+,()x Q e g y =+已知2
2Pdx Qdy e τ+=⎰,()g x 连续可微求L Pdx Qdy +⎰其中τ是从点(0,0)到点(2,2)的直线段,L 是沿222x y y +=从点(0,0)
到点(0,2)的路径.
7. 设,,f g h 连续可微,S 是球面2221
x y z ++=之内侧,求22[()][()](,)S
f z xy dydz
g z x y dzdx
h x y dxdy -+-+⎰⎰. 8. 将函数1()n n f x nx ∞
==∑展开为
1x x
+的幂级数,并指出展开式的收敛域. 9. 将函数()sin f x x =在[0,]2π上展开为余弦级数并求级数211
41n n ∞
=-∑之和.
10. 设[,]a b 上的连续函数序列{()}n f x 一致收敛于()f x ,每个()n f x 在[,]a b 上有零点,证明:()f x 在[,]a b 上必有零点.。

相关文档
最新文档