lingo解决肥料贮存问题
运用lingo解决问题的例子
运用lingo解决问题的例子
以下是一个运用LINGO解决实际问题的例子:
问题描述:
某公司生产A、B两种产品,已知生产1单位A产品需要3单位原料1和2单位原料2,同时产生2单位废料;生产1单位B产品需要4单位原料1和2单位原料2,同时产生3单位废料。
该公司有10单位原料1和8单位原料2,同时最多可以产生10单位废料。
请为公司制定一个生产计划,使得A、B两种产品的产量最大。
模型建立:
1. 设x1为A产品的产量,x2为B产品的产量。
2. 设原料1的消耗为3x1 + 4x2,原料2的消耗为2x1 + 2x2,废料产生为2x1 + 3x2。
3. 原料1的限制条件为3x1 + 4x2 <= 10,原料2的限制条件为2x1 +
2x2 <= 8,废料的限制条件为2x1 + 3x2 <= 10。
4. 目标函数为max x1 + x2,即最大化A、B两种产品的产量之和。
LINGO代码:
SETS:
I / 1 /;
J / 1,2 /;
K / I,J /;
PARAMETERS:
C(K) / 3I + 4J, 2I + 2J, 2I + 3J /; D(I) / 10 /;
E(I) / 8 /;
F(I) / 10 /;
VARIABLES:
X(K) / >=0 /;
MAXIMIZE Z: X(1) + X(2); SUBJECT TO:
3X(1) + 4X(2) <= D(1);
2X(1) + 2X(2) <= E(1);
2X(1) + 3X(2) <= F(1); ENDSETS
END。
线性规划问题及Lingo求解
1、某钢管零卖商从钢管厂进货。
将钢管按客户需求切割后出厂,从厂进货时得到原料钢管厂都19米。
(1)现有一客户需50根4米,20根6米,15根8米,如何下料才能最省?(2)若零售商采用不同切割方法太多,将会导致生产过程复杂化,从而增加生产和管理成本,所以零售商采用不同切割方法不超过3种,此外,该客户除许(1 )中三种钢管还需10根5米钢管。
如何下料最省?答:(1)分析问题:问题的目标就是如何下料最省,考虑到一根钢管如何进行切割才会使用料最省。
可以想到以下的方案。
假设19米的钢管有无限多,下面给出此问题的建模过程。
建模:根据题意,由一根钢管切割出要求( 1 )的共有七种方案,如上表所示。
现设:有x1根钢管按方案一进行切割,有x2根钢管按方案二进行切割有x3根钢管按方案三进行切割,有x4根钢管按方案四进行切割,有x5根钢管按方案五进行切割,有x6根钢管按方案六进行切割,有x7根钢管按方案七进行切割。
目标函数:若以切割后剩余总量最少为目标则:min( 3x1+x2+3x3+x4+3x5+3x6+x7 )若以原料钢管总根数最少为目标则:min( x1+x2+x3+x4+x5+x6+x7)约束条件:切割出是4米的钢管数目:4x1+x4+x5+2x6+3x7>=50切割出是6米的钢管数目:3x2+x4+2x5+x7>=20切割出是8米的钢管数目:2x3+x4+x6>=15综合上述分析可得如下线性规划模型:min Z=3x1+x2+3x3+x4+3x5+3x6+x7s.t.厂4x1+x4+x5+2x6+3x7>=503x2+x4+2x5+x7>=20<2x3+x4+x6>=15Xj>=0,j=1,2,3 (7)运用LINGO进行运算得出以下结果:Global optimal solution found at iteration:Objective value: 26.66667「iabl e Value Reduced Cost X1 0.000000 1.666667 X2 0.000000 1.000000 X3 0.000000 1.666667 X4 15.00000 0.000000 X5 0.000000 2.666667 X6 0.000000 1.666667 X711.666670.000000Row Slack or Surplus Dual Price1 26.66667 -1.0000002 0.000000 -0.3333333 36.666667 0.000000 40.000000-0.6666667结果用15根钢管按方案四进行切割,有 12根钢管按方案七进行切割。
存贮论模型LINGO方法
优化建模
11 . 2 经济订购批量存贮模型(EOQ)
11 . 2 .1基本的经济订购批量存贮模型(EOQ) 模型定义: 不允许缺货、货物生产 (或补充)的时间 很短(通常近似为0). 经济订购批量存贮模型(EOQ)有以下假设: ( l ) 短缺费为无穷,即 Cs=∞, ( 2 ) 当存贮降到零后,可以立即得到补充; ( 3 ) 需求是连续的、均匀的; ( 4 ) 每次的订货量不变,订购费不变; ( 5 ) 单位存贮费不变。 在一个周期内,最大的存贮量为Q,最小的存贮 量为0,且需求的连续均匀的,因此在一个周期内, 其平均存贮量为Q/2,存贮费用为CpQ/2.
( 5 ) wi(i =1,2,…,m)表示第 i 种物品的单位库存占用.
优化建模
1 具有资金约束的 EOQ 模型 对于第i ( i = 1 , 2 , … ,m)种物品,当每次订货 的订货量为Qi 时,年总平均费用为
C D Di 1 TCi C PiQi 2 Qi
每种物品的单价为Ci,每次的订货量为Qi,则CiQi 是该种物品占用的资金. 因此,资金约束为
优化建模
优化建模
例 11 . 3
物资 i
1 2 3 4
年需求量 单价Ci 存贮费Cpi 单位占用库容wi Di ( 元/件) ( 元/(件 · (米 3 /件) 年))
600 900 2400 12000 300 1000 500 500 60 200 100 100 1.0 1.5 0.5 2.0
存贮论模型的基本概念 输入(供应)
储存
输出(需求)
优化建模
1 存贮模型的基本要素 ( l ) 需求率: 单位时间内对某种物品的需求量, 用D表示. ( 3 ) 订货间隔期: 两次订货之间的时间间隔, 用T表示.
Lingo的典型应用举例
下料问题 配料问题 选址问题 指派问题 投资问题 装箱问题
下料问题
例1:圆钢原材料每根长5.5m,现需要A,B,C三 种圆钢材料,长度分别为3.00根试安排下料方 式,使所需圆钢原材料的总数最少.
解:假设切割时没有损耗,一根长5.5m的圆钢截 出A,B,C三种材料的切割方式有哪些?所有可能 的下料方式见下表:
最优调运方案 最优调运方案 工地 运 量 料场A 料场B 合计 1 3 0 5 2 0 5 5 3 4 0 4 4 7 0 7 5 6 0 6 6 0 11 11 合计 20 16 36
指派问题
设有n项工作需分配给n个人去做,每人做一 项,由于各人的工作效率不同,因而完成 同一项工作所需时间也就不同,设人员i完 成工作j所需时间为 cij (称为效率矩阵),问如 何分配工作,使完成所有工作所用的总时 间最少?这类问题称为指派问题,也称最 优匹配问题,它是一类重要的组合优化问 题.
求解结果为目标函数最优值(总吨.千米数)为: 136.2275,调匀方案见下表:
最优调运方案 最优调运方案 工地 运 量 料场A 料场B 合计 1 1.25 1.25 3 2 8.75 0.75 5 3 0.5 4.75 4 4 5.75 5 7 5 3 6.5 6 6 7.25 7.75 11 合计 16 20 36
每周最低需求
a 解:用 xi表示6种蔬菜的份数, i表示蔬菜单价, bj cij 表示每周最低营养需求, 表示第i种蔬菜的 第j种养分含量,建立如下整数规划模型:
min z = ∑ ai xi
i =1 6
6 ∑ cij xi ≥ b j , j = 1, 2,L ,5 i =1 6 s.t. ∑ xi = 14 i =1 x2 ≤ 3, x4 ≤ 2 1 ≤ xi ≤ 4, i = 1,3,5, 6
LINGO软件求解优化问题(2)作业
基本 集合 派生 集合
计算机学院 张亚玲
data: c41 , c42 , c51 , c52 , c61 , c62 a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75; 需求点的位置 d=3,5,4,7,6,11; e=20,20; 供需量 x,y=5,1,2,7; enddata
西安科技大学
例3 选址问题
目标:吨公里
min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));
min
2 2 1/ 2 c [( x a ) ( y b ) ] ij j i j i j 1 i 1
2
6
sets: demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets
段
计算机学院 张亚玲
结果:总吨公里数为136.2
西安科技大学
作业练习
例1 选址问题——进一步讨论
(2)改建两个新料场
需要确定新料场位置(xj,yj)和运量cij ,使总吨公里数最小。
计算机学院 张亚玲
西安科技大学
作业练习
2、使用集合循环函数求解
max aij ( xi y j )
i 1 j 1 10 5
计算机学院 张亚玲
用lingo求解线性规划问题
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
基于LINGO的优化算法在运筹管理中的应用
基于LINGO的优化算法在运筹管理中的应用优化算法作为一种高效的数据处理方法,已经被广泛应用于各行各业。
在运筹管理领域中,基于LINGO的优化算法已经成为了一种不可替代的分析工具。
在实际应用中,我们可以通过LINGO优化算法,有效地优化生产流程、物流配送、供应链管理等方面的问题,使得整个企业的经营效益得到明显提升。
一、LINGO优化算法的基本原理LINGO是一种专业的优化算法语言,其主要目的是快速地解决复杂的优化问题。
LINGO主要利用线性规划、整数规划、非线性规划等方法,通过数学模型来优化决策问题。
基于LINGO的优化算法的基本原理就是通过建立数学模型,将现实问题转换成为数学问题。
将整个问题转换成一个标准的数学形式后,LINGO可以更加高效地运用各类优化算法将其求解。
这种方法可以大大提高解决问题的准确性和效率。
二、LINGO优化算法在企业生产流程优化中的应用生产流程是企业生产过程中最为核心的环节,一般来讲,生产流程中存在许多可以优化的环节。
例如,生产调度问题、零部件的优化选配、库存管理等。
这些问题的优化都可以运用基于LINGO的优化算法进行求解。
例如,对于生产调度问题,我们可以通过LINGO建立一个优化模型,考虑生产过程中的资源利用率、时间效率等因素,系统地推导出生产调度的最优方案。
通过模型计算结果,我们可以得到最适合企业生产排程的生产方案,并在实践中应用。
三、LINGO优化算法在物流配送中的应用物流配送是企业供应链管理中非常重要的一环。
通过LINGO优化算法,我们可以对物流配送过程中的问题进行求解。
例如,考虑如何优化物流线路、改善配送效率、降低运输成本等。
对于物流配送中的问题,我们可以运用LINGO算法建立一个数学模型,通过模拟尝试,优化各环节,获得最合理的运输方案,进一步优化企业运营成本,并为企业提高利润效益。
四、LINGO优化算法在供应链管理中的应用供应链管理是现代企业运营活动中不可缺少的环节。
lingo教程(有样例)
Lingo 模型Lingo 是较好的最优化建模工具(详细使用说明见Lingo模型参考),Lingo 模型由两部分组成:(一) 目标(objective):最优化目标。
(二)限制条件(constraint). (下载网址:)1.我的食谱由四种食品组成:,果仁巧克力,冰淇淋,可乐,奶酪.一块果仁巧克力价格为50 美分,一杯冰淇淋价格为20美分, 一瓶可乐价格为30美分, 一快奶酪价格为80美分.我每天的营养最低需求: 500 卡路里,6 盎司巧克力,10 盎司〔讲评〕师:该问题的目标是什么?生:食谱中饮食的成本最低师:限制条件?生:满足每天卡路里,巧克力,糖,脂肪的最低需求师:选择哪些变量?生:果仁巧克力,冰淇淋,可乐,奶酪的数量( 参考模型:lingo-LP1.lg4)讨论:如果巧克力冰淇淋的价格变为原来的两倍,食谱将如何改动?练习:1.1.你决意生产两种糖果:硬糖和软糖,糖果仅由糖,坚果,和巧克力制成.你现在有100盎司糖,20盎司坚果,30盎司巧克力.软糖须含有至少20%的坚果.硬糖须含有至少10%的坚果和10%的巧克力.一盎司的软糖售价为25美分, 一盎司的硬糖售价为20美分. 试安排生产计划( 参考模型:lingo-LP1-1.lg4)1.2.某公司生产 A, B, C 三种产品,售价分别为: A, $10;B,$56;C,$100.生产一单位A,需1小时的劳力; 生产一单位 B,需2小时的劳力加上2单位的A; 生产一单位 C,需3小时的劳力加上1单位的B.现有40小时的劳力, 试安排生产计划.( 参考模型:lingo-LP1-2.lg4)2.Donovan公司生产一种电子产品.已知明年四季度的需求(须按时交货):季度1,4000件; 季度2,2000件; 季度3,3000件; 季度4,10000件;公司员工每年有一个季度休假,每个员工年薪为$30,000,每季度最多可生产500件产品.每个季度末公司须为每件存货付存储费$30.公司现有600件产品,如何安排明年的生产?〔讲评〕师:该问题的目标是什么?生:员工年薪与存储费总和最低师:限制条件?生:每季度初的库存与该季度生产量的和须满足该季度的需求师:如何表示员工总数?生甲:各季度上班的员工x(1),x(2),x(3),x(4)总和生乙:甲的总和是员工总数的3倍,因为每个员工工作3个季度。
lingo用法
Lingo 是一种专门用于线性规划和整数规划的建模和求解语言。
它提供了一种简洁的方式来描述数学模型,并使用线性规划算法求解这些模型。
下面是Lingo 的一些基本用法示例:
1. 变量定义:
- 定义实数变量:`X = 0.5;`
- 定义整数变量:`INT_VAR Y;`
2. 目标函数定义:
- 最小化目标函数:`MIN = 2*X + 3*Y;`
- 最大化目标函数:`MAX = -X + 4*Y;`
3. 约束条件定义:
- 等式约束:`EQUATION C1: X + Y = 10;`
- 不等式约束:`INEQUATION C2: X >= 5;`
- 范围约束:`5 <= Y <= 20;`
4. 求解模型:
- 使用默认求解器求解:`SOLVE;`
- 指定求解器和参数:`SOLVE WITH LP_METHOD=3;` 以上是Lingo 的一些基本用法示例,实际上,Lingo 还提供了更多的功能和语法,用于描述更复杂的数学模型和问题。
它可以处理
线性规划、整数规划、混合整数规划等多种类型的问题,并提供了丰富的优化算法和工具来求解这些问题。
实验1用LINGO求解线性规划问题
实验用LINDO或LINGO求解线性规划问题实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINDO或LINGO 求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.问题1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.LINDO输入语句:max 2x1+3x2stx1+2x2<=84x1<=164x2<=12end在LINGO的MODEL窗口内输入如下模型:model:max=2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO的Help).改正错误以后再求解,如果语法通过,LINGO用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close关闭窗口,屏幕上出现标题为“Solution Report”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5 Objective value: 14.00000Variable Value Reduced Cost X1 4.000000 0.000000 X2 2.000000 0.000000 Row Slack or Surplus Dual Price 1 14.00000 1.000000 2 0.000000 1.500000 3 0.000000 0.1250000 4 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为124,2==x x .“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“≤”的不等式,右边减左边的差值为Slack (松弛),对于“≥”的不等式,左边减的右边差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定. 法一:打开command window ,输入range ;法二:LINGO ——options ——General Solver ——DualComputations ——Prices&Ranges , 运行一遍,然后关掉,然后lingo-----range问题2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.问题3 设有四个化肥厂供应四个地区的农用化肥,假定等量的化肥在这些地区使用效果相同.已知各化肥厂年产量(单位:吨)、各地区年需要量以及从各化肥厂到各地区单位化肥的运价如表3.2.1所示(表中运价中“—”表示不适合).试决定总的运费最节省的化肥调运方案.表3.2.1 化肥供应的平衡表与运价表问题4 某公司计划在东、西、南、北四个市区建立销售门市部,拟议中有10个位置(1,2,,10)j A j =可供选择,考虑到各地区居民的消费水平及居民居住密集度,在东区由123,,A A A 三个点至多选择两个;在西区由45,A A 两个点中至少选一个;在南区由67,A A 两个点中至少选一个;在北区由8910,,A A A 三个点中至少选两个.j A 各点的设备投资及每年可获利润情况见表3.2.2所示 (单位:万元).但投资总额不能超过72万元,问应选择哪几个销售点,可使年利润为最大?建立整数规划问题的数学模型,并用LINGO 求解.表3.2.2 四个市区的10个位置设备投资及每年利润表问题5 求解整数线性规划问题 12121212max 2535..436,0,379z x x x x s t x x x x =≤≤≥++⎧⎪+⎨⎪⎩全部为整数 思考题1.(1988年美国大学生数学建模竞赛试题)有七种规格的包装箱要装到两辆铁路平板车上去.包装箱的宽和高是一样的,但厚度(t,以厘米计)及重量(w ,以公斤计)是不同的.表3.2.4给出了每种包装箱的厚度、重量以及数量.每辆平板车有10.2米长的地方可用来装包装箱(像面包片那样),载重为40吨.由于当地货运的限制,对567,,C C C 类的包装箱的总数有一个特别的限制:这类箱子在两辆平板车上所占的总空间(厚度)不能超过302.7厘米.试把包装箱(见表3.2.4)装到平板车上去使得浪费的空间最小.。
2024版lingo解决线性规划问题的程序经典要点
资源分配问题案例
01
问题描述
资源分配问题涉及如何将有限的资源分配给不同的项目或部 门,以实现整体效益最大化的目标。
02 03
Lingo模型构建
在资源分配问题中,决策变量通常表示分配给不同项目或部 门的资源数量。目标函数可以是最大化整体效益或满足特定 目标下的资源分配,约束条件则包括资源总量的限制、项目 或部门的需求限制等。
数据处理能力
Excel在数据处理和表格计算方面 非常强大,而Lingo则更适合处理 复杂的优化问题。
求解规模
对于较小规模的线性规划问题, Excel的规划求解工具可以胜任, 但对于大规模问题,Lingo更具优 势。
扩展性
Lingo可以通过编写程序来解决各 种复杂的优化问题,而Excel则受 限于其内置的函数和工具。
对偶单纯形法
内点法
启发式算法
单纯形法是求解线性规 划问题的经典方法,它 通过迭代的方式在可行 域的顶点上寻找最优解。
对偶单纯形法是单纯形 法的一种改进,它通过 对偶问题的求解来得到 原问题的最优解,适用 于初始基可行解不易找 到的情况。
内点法是一种适用于大 规模线性规划问题的求 解方法,它通过在可行 域内部寻找最优解来避 免单纯形法在迭代过程 中可能出现的退化情况。
Lingo程序编写注意事项
变量命名规范 变量命名应具有描述性,避免使用无意 义的字符或数字组合,以提高代码可读
性和可维护性。 避免重复计算
在循环或迭代过程中,避免重复计算 相同的表达式或值,以减小计算量和
时间复杂度。
注释清晰明了 在关键代码处添加注释,解释代码功 能和实现思路,便于他人理解和修改。
Lingo软件功能与特点
功能丰富
Lingo软件提供了丰富的数学规划求解功能,包括 线性规划、非线性规划、整数规划、二次规划等。 用户可以根据实际问题需求选择合适的求解方法。
(2024年)用Lingo软件编程求解规划问题解决方案
2024/3/26
1
目录
2024/3/26
• 引言 • 规划问题建模 • Lingo软件编程实现 • 规划问题求解与分析 • 案例研究:用Lingo解决实际规划问题 • 总结与展望
2
01
引言
2024/3/26
3
规划问题概述
规划问题定义
规划问题是一类优化问题,旨在 寻找满足一系列约束条件的决策 变量最优解,使得目标函数达到 最优(最大或最小)。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
2024/3/26
29
THANKS
感谢观看
2024/3/26
30
。同时,需要注意Lingo语言的语法和规则,确保模型的正确性和可解
性。
10
03
Lingo软件编程实现
2024/3/26
11
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
束条件。
8
数学模型建立
1 2
选择合适的数学模型
根据问题的特点和目标,选择合适的数学模型, 如线性规划、整数规划、非线性规划等。
构建目标函数
根据优化目标,构建目标函数,即问题的优化标 准。
3
构建约束条件方程
lingo解库存问题(原创的)
0.5
0.7
0
0
0.3
4
A2
0.1
0.2
0
0.03
0
2
A3
0.2
0
4
0.05
0.03
0
0.07
0.1
1
LOGO
在其后的半年中,工厂的设备检修计划 (停工检修一个月)见下表:
一月 二月 三月 四月 五月 六月
A11台
A32台
A31台
A21台
A11台
A31台
LOGO
工厂在半年中的订单(必须按时交货)见下表
LOGO
甚至有人提出了零库存概念,零库存的概念, 零库存是一种特殊的库存概念,零库存的概念: 是指物料(包括原材料、半成品和产成品等)在采 购、生产、销售、配送等一个或几个经营环节中, 不以仓库存储的形式存在,而均是处于周转的状 态。并且在韩国、日本得到广泛应用,尤其是在 钢铁库存方面,并引起了宝钢、首钢的关注,决 定下大力气解决他们的库存问题。 本文针对一个具体的案例,建立了数学优化 模型,用LINGO软件将其解决。
skj为k月末第j种零部件的库存数量(k=1,2…,6,j=1,2,…,5)
s0j=80为初始库存(j=1,2,…,5)
LOGO
生产管理问题
假设每月以20天计算,有以下模型:
a
j 1
5
ij
x kj 320 nik
LOGO
代码:
model: sets: lbj/1..5/:c; yf/1..6/:; sb/1..4/:; sl1(yf,lbj):x,d,s; sl2(sb,lbj):t; sl3(sb,yf):n; endsets Data: t= 0.5 0.7 0.0 0.0 0.3 0.1 0.2 0.0 0.3 0.0 0.2 0.0 0.8 0.0 0.0 0.05 0.03 0.0 0.07 0.1;
LINGO的使用方法说明大全
LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;data:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%范围内,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).例3.8data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;enddata属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选内容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11X,Y = 1,0;endinitY=@log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级优先级运算符高级#NOT# ,-(负号)^* ,/+,-#EQ#,#NE#,#GT#,#GE#,#LT#,#LE#, #AND#,#OR#最低< ,+ ,>3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:@function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对@FOR可以是一组表达式).下面对具体的集合函数作如下解释:@FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.@MAX(集合属性的最大值):返回集合setname上的表达式的最大值.@MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.@PROD(集合元素的乘积函数):返回集合setname上的表达式的积.@SUM(集合元素的求和函数) :返回集合setname上的表达式的和.表附3-3 基本数学函数函数调用格式含义@ABS(X) 返回X的绝对值@COS(X) 返回X的余弦值(X单位是弧度)@SIN(X) 返回X的正弦值(X单位是弧度)@FLOOR(X) 返回X的整数部分@LGM(X) 返回X的伽马(Gamma)函数的自然对数值@LOG(X) 返回X的自然对数值@MOD(X,Y) 返回X对Y取模的结果@POW(X,Y) 返回X Y的值@SIGN(X) 返回X的符号值@EXP(X) 返回e X的值@SMAX(LIST) 返回一列数的最大值@SMIN(LIST) 返回一列数的最小值@SQR(X) 返回X的平方@SQRT(X) 返回X的正的平方根值@TAN(X) 返回X的正切值(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)@INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的姓名集合和一个男孩的姓名集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数@INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用@INDEX(BOYS,SUE),则此时得到的索引值是3.2)@IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#@in(B,&1):;endsets3)@wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit]内.该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)@size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值范围的附加限制,共4种:1)@bin(x)表示限制就是x为0或1;2)@bnd(L,x,U)表示限制变量x满足;3)@free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)@gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.@free取消了默认的下界为0的限制,使变量也可以取负值.@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)@pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)@pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)@peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)@pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)@pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)@pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)@phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)@ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)@pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)@psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)@psn(x)标准正态分布的分布函数在x点的取值.12)@ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)@qrand(seed)产生(0,1)区间的拟随机数.@qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行内,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.目前LINGO提供了两个金融函数.1)@fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以@fpa(I,n)得到.@fpa的计算公式为.净现值就是在一定时期内为了获得一定收益,在该时期初所支付的实际费用.2)@fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.@fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)@file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为@file(’filename’).这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中@file函数调用是如何工作的.当在模型中第一次调用@file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用@file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用@file函数.2)@text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为@text([’filename’])这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略filename,那么数据就被输出到标准输出设备(大多数情形都是屏幕).@text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.@OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在内存中传输数据,并不借助于中间文件.当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.@OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)@ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)@rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)@status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)@dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)@if(logical_condition,true_result,false_result)@if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)@warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框.。
Lingo精选题目及参考答案
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134m axx x z += .(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Maxx x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||m in4321x x x x z +++=. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x 5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+*x2+*x3+*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt f.141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/; worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略; [obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e nddata!每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略; !@for(time(i,j):@bin(f(i,j))); end设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=312 1minj iij ijL g ()3,2,121= =∑=jdgijij()2,1 31=≤∑=isgjiijmodel:sets:supply/1,2/:s;demand/1,2,3/:d;link(supply,demand):road,sd; endsetsdata:road=10 5 64 8 12;d=50 70 40;s=60 100;enddata[obj] min=@sum(link(i,j):road(i,j)*sd(i,j));@for(demand(i):@sum(supply(j):sd(j,i))=d(i)); @for(supply(i):@sum(demand(j):sd(i,j))<s(i)); end1.线性规划模型。
(交通运输)化肥运输优化模型精编
(交通运输)化肥运输优化模型(交通运输)化肥运输优化模型化肥运输优化模型姓名:罗水生学号:20094390107壹摘要化肥运输问题在实际生活中运用的非常广泛,如何达到化肥的足量供应而又使花费最低这是壹个壹直需要讨论的问题。
本文通过建立壹个数学模型的方式,把化肥运输问题这种实际问题转化为数学模型的方式进行解答。
在本文中,首先对于这个问题进行了分析假设,排除了壹些实际生活中不可避免,可是又无法预计的实际情况,然后对本题进行了分析,选择了最合适的建模方式。
接着,又进行了模型的建立,反复的论证,反驳,选定了最合适的方式,建立了个人认为最合适的模型。
最后,对模型进行解答,运算,得出结果,且带入进行检验,得出正确的答案。
关键词:化肥调拨优化线性规划运输优化问题运费最少二问题重述某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂A—7万吨,B—8万吨,C—3万吨。
有四个产粮区需要该种化肥,需要量为:甲地区—6万吨,乙地区—6万吨,丙地区—3万吨,丁地区—3万吨。
已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示:试根据之上资料制订壹个使总的运费为最少的化肥调拨方案三问题分析在本文中,主要解决的是化肥配送最优的问题。
在这里的最优即是使化肥运输的总运费花费的最少。
根据题目中所给出的条件,有三个在不同位置的化肥厂,每个化肥厂每年可供应的化肥量不同。
然而有四个产粮区需要化肥,每个产粮区每年所需要的化肥量不同,在上述问题中,所需要解决的便是求解壹个最优的运输方案,使得总运费最少。
因为每个化肥厂运输化肥到每个产粮区的运费不同。
三个化肥厂能供应本地区的化肥壹共为7+8+3=18,四个产粮区需要的化肥量为6+6+3+3=18,即三个厂能完全供应本地化肥,且且无剩余。
那么为了满足四个地区的需求,三个厂应该完全供应所有化肥。
在这个问题中,能够运用线性规划的方法。
由于每个生产化肥的厂家运输化肥到每个产粮区的价格不同,所以我们设定变量,即为第i化肥厂运往第j产粮区的化肥量(其中i=1,2,3 ;j=1,2,3,4),i中的1,2,3表示A、B、C 化肥厂,j中的1,2,3,4表示甲、乙、丙、丁产粮区。
化肥运输数学模型课程报告
摘要在如今的生活中,客户是上帝,客户满意了,公司才有利益,公司有利益了才有更多的回报给客户,从而使客户更满意,这是相辅相成的道理。
运输费用最低化是我们在现代社会经常会遇到的一个问题。
在社会的经济生产活动中,企业与客户都会想方设法合理调拨资源、降低运输费用,实现双方利益最大化,完成资源优化配置。
本文以使物流运费成本最低为研究对象,在供应量,需求量和单位运费都已确定的情况下,可用线性规划方法来解决运输中的组织调拨问题。
在本文中,我们主要解决的是化肥配送最优的问题,即是使我们花费的总运费最少。
我们运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。
根据题目中所给出的各约束条件,三个厂区的所在位置、每年可供应的化肥量不同,每个产粮区每年所需要的化肥量及运费也不同。
针对题目中所给信息,三个厂每年可提供的化肥完全被四个产粮区接纳,并且无剩余。
同时,四个产粮区地区的需求都得到了满足。
基于这两个条件,我们建立了在满足各产粮区化肥需求情况下使用总运费最少的模型,并按需求给出了最优调拨策略。
然后通过LINGO对模型进行求解得:最优转运费为100关键字:化肥调拨优化线性规划运输优化问题总运费最少符合实际一、问题重述运输功能是整个现代物流七大基本功能之一,占有很重要的地位,运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。
通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益,影响运输成本的因素是多样化、综合性的,这就要求对运输成本的分析要采用系统的观点,进行综合分析。
由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身,也涉及供应链的整个物流流程。
要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。
一般来讲,降低运输成本的方法有五种,即减少运输环节、合理选择运输工具、制定最优运输计划、注意运输方式和提高货物装载量。
运筹学课程设计-Matlab和Lingo求解生产存储问题之比较
运筹学课程设计-Matlab和Lingo求解生产存储问题之比较CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY课程名称: 运筹学题目:Matlab和Lingo求解生产存储问题之比较学生姓名:学号:班级: 数学1402所在院部: 数学与统计学院指导教师:2016 年月《运筹学》课程设计指导任务书课程名称:《运筹学》课程设计学分数:2开课系(部)、教研室:数学与计算科学学院,运筹与概率统计教研室执笔人编写时间:2014年11月一、设计目的《运筹学》是数学与应用数学专业的必修课程之一,具有很强的理论性和实际应用性。
通过课程设计,可以使学生较系统地掌握运筹学的理论和计算方法,培养学生综合利用所学的理论知识分析解决实际问题的能力、利用和查阅资料的能力、独立工作的能力以及计算机应用能力。
二、课题内容1. 掌握运筹学的基本知识,了解数学建模的基本过程;2. 掌握运用运筹学基本知识解决实际问题的基本方法;3. 查阅相关资料,了解有关问题的背景知识;4. 撰写一篇论文。
三、课题要求1. 通过对本课题的研究,以期使学生运用运筹学基本知识,解决实际问题的能力得到较大提高;2. 课题的程序设计可以使用各种编程工具完成;3. 实际问题的数学模型的假设要合理,问题分析和模型正确,模型的计算结果准确程度要高;4. 论文正文篇幅不少于3000字;5. 提交的所有材料必须符合《长沙理工大学课程设计管理规定》(长理工大教[2009]48号)的要求.四、课题完成后应提交材料的要求1. 课程设计(论文)按以下排列顺序装订成册(1) 封面(统一到学校教材中心领取,并详细填写)(2) 任务书(3) 中文摘要(4) 英文摘要(5) 目录(6) 正文(7) 参考文献(8) 附件(源程序打印件)(9) 课程设计成绩评定表2. 装订成册的论文装入资料袋资料袋统一到学校教材中心领取,并详细填写。
五、主要参考文献[1] 胡运权(运筹学教程(第4版)[M](北京:清华大学出版社,2012:1-460.[2] 韩中庚(实用运筹学模型、方法与计算[M](北京:清华大学出版社,2007:1-232.[3] 姜启源,谢金星,叶俊编(数学模型(第三版)[M](北京:高等教育出版社,2005:1-202.[4] 刘琼荪,何中市(数学实验(第一版)[M](北京:高等教育出版社,2004.01:1-247.[5] 张明辉,王学辉等编著(MATLAB6.1最新应用详解[M](北京:中国水利水电出版社,2001:1-180.六、参考日程课程设计(论文)是运筹学课程的实践教学环节,独立安排,总学时2周,在运筹学课程结束后集中进行,具体时间按照学校的教学安排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表 1 废料销售的净收入 销售量 5月 0 100 200 300 400 500 600 700 800 0 1 2 3 净收入(103 美元) 6月 0 2 3 4 4 4 4 7月 0 2 3 4 5 6 8 9 9 8月 0 1 2 4 6 7
表 2 肥料贮存的月费用 销售量 5月 0 100 200 300 400 500 1 3 4 5 7 8 净收入(103 美元) 6月 1 2 2 3 4 4 7月 2 3 3 4 5 5 8月 2 3 3 4 5 5
4
X1∈ (0,….,300) X2∈ (0,….,600) X3∈(0,….,800) X4∈ (0,….,500)
• 式中:Bt表示第t月的销售收入;Ct表示第t月的贮存收入
三、Lingo求解过程
MODEL: SETS: month/may,june,july,august/:sale,store,produce; saleamount/1. .9/:amountforsale; storeamount/1. .6/:amountforstore; monthsale(month,saleamount):income,LINKS1; monthstore(month,storeamount):fare,LINKS2; ENDSETS DATA: produce=500 400 300 300; amountforsale=0 100 200 300 400 500 600 700 800; amountforstore=0 100 200 300 400 500; income=0 1 2 3 0 0 0 0 0 023444400 023456899 0 1 2 4 6 7 0 0 0; fare=1 3 4 5 7 8 122344 233455 2 3 3 4 5 5; ENDDATA
I1=500 X1
I2=400 X2
I3=300 X3
I4=300 X4
S1=0 1
S2=S1+ 2 500-X1 r1(S1, X1 ) r2(S2,X2 )
S3=S2+ 3 400-X2 r3(S3,X3 )
S4=S3+ 4 300-X3 r4(S4,X4 )
0=S4+ 300-X4
maxZ=∑ ( B t − C t ) t =1 S1-S2+X1=500 S3-S2+X2=400 S4-S3+X3=300 -S4+X4=300 St<=500
• • • • • • • • • •
MAX = @SUM(monthsale(I,J):income(I,J)*LINKS1(I,J)*amountforsale(J)) - @SUM(monthstore(I,J):fare(I,J)*LINKS2(I,J)*amountforstore(J)); @FOR(month(I):sale(I)= @SUM(saleamount(J):amountforsale(J)*LINKS1(I,J))); @FOR(month(I):store(I)= @SUM(storeamount(J):amountforstore(J)*LINKS2(I,J))); @FOR(month(I)|I#LE#3:store(I+1)-store(I)-produce(I)+sale(I)=0); sale(4)-store(4)=produce(4); @FOR(month(I):@SUM(saleamount(J):LINKS1(I,J))=1); @FOR(month(I):@SUM(storeamount(J):LINKS2(I,J))=1); @FOR(monthsale:@BIN(LINKS1)); @FOR(monthstore:@BIN(LINKS2));
利用lingo解决肥料贮存问题
指导教师:雒兴刚 制作人:齐鹏 学号:1001460
• • • •
一、问题背景 二、分析问题 三、Lingo求解过程 四、运行结果
一、问题背景
• 一个公司决定在5~8月间混合肥料。根据对当地的有机 物原料的分析,能在5、6、7、8月一次生产500t、400t、 300t和300t混合肥料。然而这期间并不是每月的产品都 在市场上完全销售。通过市场分析,每月出售肥料能 得到的净收入如下表1。在这4个月内最大销售分别是 300t,600t,800t和500t。由于预期销售与生产量不匹 配,决定建议贮存设施以贮存多与肥料,在以后需求 量最高时出售。贮存肥料需要的费用见表2。贮存设施 的容量不大于500t。现在的问题是每月应该出售和贮 存多少肥料才能获得最大利润。
四、运行结果
谢 谢