药物合成反应_第三章___酰化反应
酰化反应(药物合成)
(CF3CO)2O H2N CH2OH
+ CH3CH2COOH
H2N
CH2OCOCH2CH3
73%
COOH
CH3
+
H3C
C
CH3
OH
(CF3CO)2O
COOBu-t
②羧酸-磺酸混合酸酐
RCOOH + R'SO2Cl RCOCl + R'SO2Cl O R R' C O R C
O
SO2
+
R'SO2OH
R R' N CHO POCl2 Cl
R R' N CH Cl
R R'
NR''2 -H CH NRR' Cl H2O
NR''2 CHO + RR'NH2Cl
H3C H3C
N
DMF/POCl3 H3C H3C Ph N N H COOC 2H5 CH3 CHO ,1h
N
CHO
/POCl3
CHO N H COOC 2H5
CHO
二、羰基化合物的-位C-酰化
1. 活性亚甲基化合物的C-酰化
芳香化合物、杂环化合物及活泼烯烃化合物用二取代
甲酰胺及氧氯化磷处理得到醛类的反应称Vilsmeier甲酰化
反应。是芳香环的甲酰化反应最普通的方法。
ArH +
R1 R2
N C H O
POCl3
R1 + ArCHO NH R2
机理:
R R' N CHO + POCl3 H R N C OPOCl2 R' Cl NR''2Cl N CH Cl OPOCl2 NR''2 H CH NRR' Cl
药合试题库及答案
药物合成反应习题参考答案(一)第一章卤化反应1.写出下列反应的主要产物(或试剂)①②③④⑤⑥⑦⑧⑨⑩2.写出下列反应的可能产物①②③④3.写出下列反应的主要试剂及条件①②③④第二章烃化反应1. 完成下列反应①③④⑤⑥⑦⑧OH3C LDA / CH3OCH2CH2OCH3-40~0 o C, 酮过量O-Li⊕ H3C2.完成下列反应过程①②③④第三章 酰化反应1.完成下列反应①OCH 3OCH 3H 3CO +CH 3COClAlCl 3OCH 3OCH 3H 3COCOCH 3②C O 2NH OH C NHCOCHCl 2HCH 2OH +CH 3(CH 2)16COClC 6H 6C O 2N H OH C NHCOCHCl 2HCH 2OCO(CH 2)16CH 3Py③ClCH 2CONH+N SOCOOH CH 2S H 2N N NNNCH 3DCC THFN SOCOOHCH 2S N N NNCH 3SCO 2H NOCH 3ClCH 2CONHS CONH NOCH 3④CH 3CH 3(CH 2)5COClAlCl 3ClCH 2CH 2Cl, 0 o CCH 3CH 3O⑤OCH 3H 3CO H 3COH 3CO OCH 3H 3CO H 3COH 3COCHODMF/POCl 3⑥+C 6H 5N CHOPOCl 390-95 oCCHOCH 3CH 3CO C H 2C O OC 2H 5+HO140 oC 4~5hrCH 3CO C H 2C O O2.完成下列合成路线①OH OC 2H 5DMFPOCl 3OC 2H 5COClNaOH/C 2H 5BrOC 2H 5CHOOC 2H 5CONH SOH 2NCH 3CH 3CO 2NaSOCH 3CH 3CO 2Na② 以苯和丁二酸酐为起始原料合成四氢萘O OOOOH O AlCl 3Zn-Hg HCl (gas)OHO OPPAHCl (gas)Zn-Hg第四章 缩合反应1. 改错(只能改动一处)①Ph 3PCHCH 3+CHOHCH 3H HCH 3HXCH 3CH 2CH 2CCH 3O+CH 3COOC 2H 5C 3H 7H 3CCCHCOOC 2H 5XCH 3CH 2CH 2COCH 2COCH 3C 2H 5ONa③CHO+ClCH 2CO 2C 2H 5Zn +C 6H 6(C 2H 5)2OH CCHCOOC 2H 5BrCH 2CO 2C 2H 5x2. 完成下列反应式①O+NO 2CHO OH /H 2OCH 3OCH 3O 2N②OOCHCH 3H 3CHC Ph 3P=CHCH 3> 2mol③O+CH 2O (excess)Ca(OH)2H 2OOCH 2OH CH 2OHHOH 2C HOH 2C④C 6H 5CHOC H CCOOH C 2H 5C 3H 7CO 2K(C 3H 7CO)2O⑤OClCH 2CO 2CH 3CH 3ONaH 2OOH-H+OCO 2CH 3OCO 2CHO+C 6H 5CH 2CNC 6H 5H C CNC OC 2H 5O(CO 2C 2H 5)2C 2H 5ONaor C 2H 5OCO 2C 2H 5⑦(C 6H 5)3P C H 2C HCH 2OCH 2CH 2CHO CH 3C 6H 6BrNaNH 2Ph 3P=CH-CH=CH 2O CH 2CH 2CH=CH-CH=CH 2CH 3⑧H 3COOCH 3CO 2CH 3BrCH 2CO 2CH 3ZnC 6H 6(C 2H 5)2O,ref.CH 3CO 2H H 2O+H 3COCHCO 2CH 3CH 3CO 2CH 33. 完成下列合成过程 ①CCOOC 2H 5C 2H 5COOC 2H 5CH 3CH 3CH 2BrCH 2CNCH 2CO 2C 2H 5CH(CO 2C 2H 5)2C 2H 5Br/C 2H 5ONaC(CO 2C 2H 5)2C 2H 5C 2H 5ONaOC 2H 5OOC 2H 5NBSKCN1. H +/H 2O2. C 2H 5OH H 2SO 4CH 3CH 3H 2C CH 3C HCHOCH 3CH 3CH 3CHOCH 3CH 2CH(CH 3)CHOCH 3CH 3CH 3CHO H 2, Pd/CCH 3CH 2CHO NaOHCrO 2Cl 24. 填写下列各部分产物(1)H 3CCHOCH 3H 3CCHOH 3C CH 2OH H 3CCH H 3C CH 2OH OHCO 2H AB O H 3C H 3C OHOC NH 2CH 2CH 2CO 2CH 2PhCH 3H 3C CH 2OHCHCONHCH 2CH 2CO 2CH 2PhOH DH 3OCH 3H 3C CH 2OHCHCONHCH 2CH 2CO 2H OH E+ PhCH 2OHHCHO OH(2)OCOCH 3(C 2H 5)2N CH 2CH 2COCH 3CH 3CH 3ONa CH 3OH C 6H 6KOH CH 3OH/H 2O, ref.H 3O +O COCH 3COCH 3OCOCH 3Zn/BrCH 2CO 2EtH 3O +HBr KCNSOCl 2AlCl 3OHCEtO 2CCH=CHOHO 2COHLAHCN(4)N HMeCO 2EtMeHCOOH, HClor DMF/POCl 3CH 2(CO 2H)2PiperidineN HMeCO 2EtMeOHCN HMe CO 2EtMeHO 2C-HC=HC第五章 重排反应1.完成下列反应式 (1)OHOHdilute H 2SO 4O(2)CONH 2H OH HO H H OH HOH CH 2OHNaOCl / H 2OCHO HO H H OH H OH CH 2OH(3)NC 2H 5CH 3CH 2OCH 3C 6H 5Li Et 2ON C 2H 5CH 2CH 3OCH 3N ClC 6H 5Libenzene, heatN(5)N CH 2N(CH 3)3CH 3NaNH 2 / NH 3N CH 3CH 3CH 2N (CH 3)2(6)CH 3CH 3OH OH H +- H 2OCH 3OCH 3(7)OCH 3CONH 2NaOCl, NaOHOCH 3OCH 3NH 2OCH 3(8)NC EtOOC180 o CNC EtOOC(9)OOCH 3CH 3CH 3PhNEt 2reflux 2hOHOCH 3(10)CH 3NaNO 2 / H +HOCH 2NH 2CH 3OHOCH 3C(OEt)3142-147o C, 8daysCO 2C 2H 5(12)1. HCl-HOAc-Ac 2O2. H 3O +MeCO 2MeMeC CHMe 2MeN HOMeCO 2MeMeCHMe 2NH 22.完成下列合成过程 (1)OCHOO COOH OHOCNOOOONaOH H 3O(2)OCH 2OH +CH 3OC 2H 5OCH 3CHO OOCH 3OCH 3CHO ClaisenCopeOCH 3CHOH 2, Pd-C(3)CH 3C 2H 5OCH 3OCH 3+H 3CO 2COHCH 3ClaisenRearrangement2,4-O 2NC 6H 5OHTol OC 2H 5CO 2CH 3CH 3CO 2CH 3C 2H 5OCH 3CO2CH3C2H5OHCH3CH3C2H5OCH3OCH3CO2CH3C2H5CH3C2H5OHNaBH4MeOHNaBH4MeOHCO2CH3CH3C2H5OC2H5CO2CH3C2H5CH3C2H5OClaisen第六章氧化反应1.完成下列反应式①CH3NO2CrO3/Ac2OH2SO4CHONO2②CH3COOHNa2Cr2O7, H2O③CH3CH3CH3COClAlCl3CH 3COOHCH3CH3CH3COCH3 1. Br2,NaOH2. H+④HO OHMnO2CHCl3,25°CRHO OR⑤OAcOKMnO4BaOHKIO4//H2O/K2CO3/35°COOAcOOH⑥CH3NO2 OCH3CrO2Cl2CS225°CCHONO2OCH3⑦HO CH2OH(C5H5N)2CrO3CH2Cl225°CHO CHO ⑧0.5 M SeO2C2H5OH, ref.OH⑨H3CO HOOHH3PO4RTDMSO-DCCH3COOO⑩C OCH 3C OCH 3ORO ROH 2O 2, NaOH⑾H 3C H 3CH HHHClCOOOH(C 2H 5)2O 25°C H 3CH 3CHHHHO⑿HCOCH 3C 6H 5COOOHCHCl 325°CHOCOCH 32. 试以化学式表示实现下列变化的各步反应①CHOAg 2O1.SOCl 22.NH 3RCO 3Haq NaOHC 2H 5CHO C 2H 5COOH C 2H 5CONH 2C 2H 5CONH 2O②HO(CH 2)6CH 3H 3CSO 2ClOHC(CH 2)5CH 3H 3CSO 2O(CH 2)6CH 3DMSO③OH1.H 2SO 42.KMnO 4CHOCHO CHOOH OHPb(OAc)4aqNaOH④OH Bu-tO Bu-tOOBu-t1. CrO 3-H 2SO 4-H 2O2.SeO 21. KOH2. HCl,第七章 还原反应1、完成下列反应 ①H 3CCHO0.25M NaBH 4H 3CCH 2OH②NO 2NH 2NH 2H 2O Pd-C /C 2H 5OHNH 2③OOH0.25M NaBH 4④CO(CH 2)2CH 2Br OCH 3OCH 3Zn-Hg.HClCH 2(CH 2)2CH 2BrOCH 3OCH 3⑤H3CCH 3CH 3H B 2H 6THF,25°CNaOHH 2OH 3CCH 3CH 3H2BHH 3CCH 3HOH CH 3H⑥OCH 3CH 3COClOCH 3CH 3CHOPd-BaSO 4/H 2⑦2PhCH 2C HCH 2+Pd/C2PhCH 2CH 2CH 3⑧OH 2 / (Ph 3P)3RhClO⑨OOPhH 2 / Pd-CAcOH , HClO 4HOOPh⑩N H 3COCNC HCH 2Al(OCH(CH 3)2)3(CH 3)2CHOHONH 3COCHN C HCH 2HO2. 改错①COOHCOOEtLAHCH 2OHCOOEtCH 2OHCH 2OH②CH 3C O COOEtZn-Hg HClCH 3CH 2COOEtCH 3CCHOOEtOH③C CH 3O C H 3C H C H 3C CH 3CH 3C CH 3OHC H 3C H C H 3C CH 3CH 3H C CH 3H C H 3C H C H 3C CH 3CH 3OH LAH3. 完成下列合成题①试由环己醇,氯乙酸,乙醇合成C 10OOH-H 2O1. O 32. Pd/C, H 2ZnCl 2/ HCl Cl(CH 2)6ClClCH 2COOHNaCNOH -C 2H 5OHCH 2(COOC 2H 5)2CH 2(COOC 2H 5)2+Cl(CH 2)6Cl C 2H 5ONa(COOC 2H 5)2CH(CH 2)6CH(COOC 2H 5)21. NaOH, H 2O 2. EtOH, H +C 2H 5OOC(CH 2)8COOC 2H 5Na, NH 3PhCH 3(CH 2)2OHO(CH 2)2O②试由O OCH 3合成O。
药物合成反应— 酰化反应
1. 羧酸为酰化剂
应用
DCC为催化剂的酰化反应 DCC:增强羧酸的酰化能力
2. 羧酸酯为酰化剂(酯的氨解反应)
应用 1)羧酸甲酯、乙酯的应用
2)活性酯的应用
3)在实际药物合成中的应用
3. 酸酐为酰化剂 机理
4. 酰氯为酰化剂 机理
应用 缚酸剂:(1)有机碱
三乙胺、吡啶等有机碱可中和反应中产生的HCl; 以吡啶、N,N-二甲氨基吡啶类为缚酸剂时,在中和产生的酸的同 时,还可以与酰氯生成络合物,起催化作用。
酰化反应
Acylation Reaction
第一节 概述
案例——神秘的阿司匹林(Aspirin)
➢ 镇痛 ➢ 解热 ➢ 消炎 ➢ 抗风湿 ➢ 对血小板聚集有抑制作用
O
COOH
CH3C
H+
+
O
OH
CH3C
O
被酰化物
酰化试剂
COOH
+
O CCH3 O
O CH3C OH
酰化反应:在有机物分子结构中的C、N、O或S等原子
(有机酸)对甲苯磺酸、萘磺酸
作用形式:与羧酸的羰基形成烊盐,增强羰基碳原子的正电性
Lewis酸 BF3、AlCl3、FeCl3、TiCl4 作用形式:与羧酸的羰基O形成络合物,增强羰基碳原子的正电性
副反应少\收率高\条件温和
DCC (P54)——良好的酯化缩合剂
作用形式:增强羧酸的活性 特点:条件温和、收率高、立体选择性强、价格贵
上导入酰基的反应。
1. 酰基是某些药物重要的药效基团; 2. 也是药物合成中官能团转换的重要合成手段; 3. 在涉及-OH、氨基等基团的保护时,将其酰化也是一种常见 的保护方法。
药物合成反应第三章讲解
• 脱除方法:
• 50%氨-甲醇溶液:氨解,时间长,苯甲酰基脱除 • 氢氧化钠-吡啶:酰氨基较稳定 • Bu3SnOMe在二氯乙烷中或三氟化硼-乙醚在湿乙腈中:选择性地脱
除葡萄糖差向异构体羟基上的乙酰基 • DBU或甲氧基镁:苯甲酰基和乙酰基共存时,选择性地脱除乙酰基 • 碳酸钾-甲醇水溶液:仲醇及烯丙醇(100% ) • 氰化钾-乙醇:对酸、碱敏感的物质
O HO C OEt
碳酸乙酯
RCOOH
O Cl S Cl
RCOOH
O Cl P Cl
Cl
RCOOH
O
O
R C O C Cl
O
O
R C O S Cl
O
R CO
O
P Cl
Cl
• 3.1.3 酰卤作酰化剂
无水有机溶剂
RCO2H + SOCl2
RCOCl + SO2 + HCl
去酸剂 RCOCl + R'OH
叔醇的酯化:SN1机理
主要影响因素
• 底物的结构:底物为醇或酚,亲核物种为羟基氧原子。
当氧原子电子云密度降低时反应活性会降低,由此可知, 与烷基醇相比酚及烯丙醇的酰化会困难一些,而难以酰化 的底物就需要较强的酰化剂,比如酚的酰化一般要用酸酐 或酰卤。空间障碍也是一个较大的影响因素,如仲醇的反 应速率低于伯醇,而叔醇在酸催化下会形成碳正离子,所 以叔醇的酯化一般是单分子亲核取代(SN1)机理。
• 酰化剂:在一定的反应条件下,酰化活性顺序一般为
酰卤(Br>Cl)>酸酐>酯>酸>酰胺,这一顺序实际上与离 去基团的离去能力一致。
• 催化剂:
• 3.1.1 羧酸为酰化剂 • 3.1.2 羧酸酯为酰化剂 • 3.1.3 酸酐为酰化剂 • 3.1.4 酰氯为酰化剂 • 3.1.5 酰胺为酰化剂 • 3.1.6 乙烯酮为酰化剂
《药物合成反应》-闻韧主编第三章酰化反应-知识点总结
#2.11打卡# 完成学习目标第三章酰化反应Acylation Reaction1 定义:有机物分子中O、N、C原子上导入酰基的反应.2 分类:根据接受酰基原子的不同可分为:氧酰化、氮酰化、碳酰化3 用途:药物本身有酰基活性化合物的必要官能团结构修饰和前体药物羟基、胺基等基团的保护。
酰化机理:加成-消除机理加成阶段反应是否易于进行决定于羰基的活性:若L的电子效应是吸电子的,不仅有利于亲核试剂的进攻,而且使中间体稳定;若是给电子的作用相反。
根据上述的反应机理可以看出,作为被酰化物质来讲,无疑其亲核性越强越容易被酰化。
具有不同结构的被酰化物的亲核能力一般规律为;RCH2->R—NH->R—O->R—NH2>R—OH。
在消除阶段反应是否易于进行主要取决于L的离去倾向:L-碱性越强,越不容易离去,Cl- 是很弱的碱,-OCOR的碱性较强些,OH-、OR-是相当强的碱,NH2-是更强的碱。
RCOCl>(RCO)2O>RCOOH 、RCOOR′ >RCONH2>RCONR2′R: R为吸电子基团利于进行反应;R为给电子基团不利于反应R的体积若庞大,则亲核试剂对羰基的进攻有位阻,不利于反应进行酸碱催化碱催化作用是可以使较弱的亲核试剂H-Nu转化成亲核性较强的亲核试剂Nu-,从而加速反应。
酸催化的作用是它可以使羰基质子化,转化成羰基碳上带有更大正电性、更容易受亲核试剂进攻的基团,从而加速反应进行。
氧原子的酰化反应是一类形成羧酸酯的反应,是羧酸和醇的酯化反应,是羧酸衍生物的醇解反应醇的结构对酰化反应的影响伯醇(苄醇、烯丙醇除外)>仲醇>叔醇1) 羧酸为酰化剂:提高收率:(1)增加反应物浓度(2)不断蒸出反应产物之一(3)共沸除水、添加脱水剂或分子筛除水。
(无水CuSO4,无水Al2(SO4)3,(CF3CO)2O,DCC。
)加快反应速率:(1)提高温度(2)催化剂(降低活化能)催化剂(1)质子酸催化法: 无机酸:浓硫酸,氯化氢气体,有机酸:苯磺酸,对甲苯磺酸等。
药物合成反应第三章酰化反应
在有机合成中的应用
1
酰化反应是有机合成中的一种重要反应类型,可 用于合成各种具有特定结构的化合物。
2
酰化反应可以用于合成羧酸、酯、酰胺等有机化 合物,这些化合物在化学工业、农药、染料等领 域具有广泛的应用。
3
酰化反应在有机合成中还常用于合成复杂化合物 和天然产物的全合成。
在材料科学中的应用
酰化反应在材料科学中也有一定的应用,主要用于合成高分子材料和功能材料。
药物合成反应第三章 酰化反应
目录
CONTENTS
• 酰化反应概述 • 常用酰化试剂 • 酰化反应的应用 • 酰化反应的实验操作与注意事项 • 案例分析
01 酰化反应概述
定义与重要性
定义
酰化反应是一种有机化学反应,涉及 醇或酚与羧酸或其衍生物在催化剂的 作用下,通过酯化或酰胺化形成酯或 酰胺的过程。
羧酸酯
总结词
羧酸酯是一种酰化试剂,可以通过羧酸 与醇的酯化反应制备,其在药物合成中 应用广泛。
VS
详细描述
羧酸酯是羧酸与醇通过酯化反应生成的化 合物,其结构中包含一个羰基和一个酯基 。在酰化反应中,羧酸酯可以与醇或酚反 应生成相应的酯或酚酯,广泛应用于药物 合成中。由于羧酸酯的反应活性较低,通 常需要在酸性或碱性条件下进行反应。
羧酸酯的合成与性质
总结词
羧酸酯的合成通常采用羧酸与醇在酸性或碱性条件下进行酯化反应得到,其性质主要取 决于酯基和羰基的结构。
详细描述
羧酸酯的合成通常采用羧酸与醇在酸性或碱性条件下进行酯化反应得到。在酸性条件下, 羧酸与醇反应生成酯和水;在碱性条件下,羧酸与醇反应生成酯和盐。羧酸酯的性质主 要取决于酯基和羰基的结构,如取代基的性质、空间位阻等都会影响羧酸酯的反应活性。
药物合成反应第三章酰化反应
•③催化剂 •i提高羧酸反应活性
•(a)质子酸催化法: 浓硫酸,氯化氢气体,磺酸等
O H+ OH RCOH RCOH
H
OH RCOH
H
C H 2C O O H T sO H /PhH
O H
△,
O
H
O
H
•(b)Lewis酸催化法: (AlCl3, SnCl4,FeCl3,等)
A lC l3
O
A lC l3
O
+C
CH 3
CH 3
+O
C
CH 3
CH 3
CH 3
CH 3
CH 3
CH 3
属于SN1机理
CH3OH
CH 3
OH
C-
O
+
CH3 CH 3
-H+
CH 3
O
C- O C H 3 CH 3
CH 3
CH 3
78%
仅有少量空阻大的羧酸按此反应机理进行
(3)影响因素
① 醇结构影响
•醇的结构对酰化反应的影响 •立体影响因素:伯醇>仲醇>叔醇、烯丙醇 •叔碳正离子倾向与水反应而逆转
• (4)应用特点 • 单一酸酐应用有限,一般使用混合酸酐
• i 羧酸-三氟乙酸混合酸酐(适用于立体位组 较大的羧酸的酯化,临时制备)
OO
( C F 3 C O ) 2 O + R C O O H F 3 CCOCR+ C F 3 C O O H
羧 酸 - 三 氟 乙 酸 混 合 酸 酐 的 制 备
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
该反应机理也 从同位素方法 中得到了证明
药物合成反应酰化反应
( C H 2 ) n
INX + H O ( C H 2 ) n C O O H△ ,7 .5 - 8 h
CO IN O
C H 3
C H 3
n ( H 2 C ) C O +
No O
C H 3
c.羧酸三硝基苯酯
Cl-TNB
O O2N RCO
NO2
O2N
O
O2N
R''OH+R-C-OH+Cl
NO2
O2N
(1)H+ 催化
O
RC H
O RC
O
O RC
O H RC
O
O
O
RCO H + RC
(2)Lewis酸催化
O R C
O
RC O
A lC l3
OO
RC+ R C O A lC l3
(3)吡啶碱催化
3、影响因素
(1)酸酐结构的影响 羰基α 位有吸电子基,亲电性增强
(2)催化剂的影响 酸催化 碱催化 三氟甲磺酸盐催化
二、羧酸酯为酰化剂
1、反应通式
酰化剂:各种脂肪族和芳香族的羧酸酯 被酰化物:伯、仲、叔醇 催化剂:质子酸、醇钠 溶剂:醇类、醚类、卤代烃类等
2、反应机理
(1)酸催化机理:增强羧酸酯的活性
O R ''O H+RCO HR '
R '' O H
O CH OR '
HR
O
O
R '' H OCR ' -H + R '' OCR '
如何提高收率:
(1)增加反应物浓度 (2)不断蒸出反应产物之一 (3)水添A加l2脱(S水O4剂)3,或(分CF子3C筛O除)2O水,。D(CC无。水)CuSO4,无
第三章酰化反应-药物合成反应gcz
O
+
H
R C O R'
RCOOR'
+
H
H
H
H
NCN
O
17
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
CH3 OH
O+
CH3
H3C
OH
HO
酰化能力弱,因为可形成分子内氢键
DCC/Et2O R.T.20min
H3C
CH3 O O CH3
OH
CH2OH
OO
+
COOH DCC/DMAP
25℃
O
I
O
CH2 O C
+
C12H25OH
TsOH Xylene
HO
OH
HO
OH
OH
OH
OH n-C11H23
OH CO2H
C3H7-n
TsOH
CH2Cl2 24 h
n-C11H23
OO
n-C3H7 OH
14
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
(2) Lewis酸催化法: (AlCl3、SnCl4、FeCl3、BF3等)
HO
OH H O
OH
OH CO2H
H+-resin HO MeOH, 2h
OH H O
OH
OH CO2Me
AcHN
AcHN
OH
OH
16
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
( 4 ) D C C 二 环 己 基 碳 二 亚 胺 R-N=C=N-R (Dicyclohexylcarbodiimide)
药物合成反应复习资料
第一章绪论1、药物合成反应中反应类型有哪些?①按有机分子的结构变换方式分:新基团的导入反应;取代基的转化反应;有机分子的骨架。
②按反应机制分:极性反应(a。
亲核试剂、b.亲电试剂);自由基反应;协同反应2、药物合成反应主要研究对象:化学合成药物3、化学品的安全使用说明书——MSDS4、原子经济性反应:“原子经济性"是指在化学品合成过程中,合成方法和工艺被设计成能把反应过程中使用的所有原料尽可能多的转化到最终产物中。
5、三废:废气、废水、废渣第二章硝化反应1、混酸硝化试剂的特点有哪些?①硝化能力强;②氧化性较纯硝酸小;③对设备的腐蚀性小2、硝化试剂的活泼中间离子为:硝酰正离子NO2○,+3、桑德迈尔反应定义及应用定义:在氯化亚铜或溴化铜的存在下,重氮基被氮或溴置换的反应;重氮基被氰基置换:将重氮盐与氰化亚铜的配合物在水介质中作用,可以使重氮基被氰基置换,该反应也称Sandmeyer反应。
应用:CuX+Ar-N2X Ar—X+N2 (X:Cl,Br,—CN)4、常用的重氮化试剂一般是由盐酸、硫酸、过氯酸和氟硼酸等无机酸与亚硝酸钠作用产生.5、硝化反应定义:指向有机分子结构中引入硝基(—NO2)的反应过程,广义的硝化反应包括生产(C-NO2、N-NO2和O—NO2)反应。
6、重氮化反应定义:含有伯氨基的有机化合物在无机酸的存在下与亚硝酸钠作用生成重氮盐的反应。
7、硝化剂:单一硝酸、硝酸和各种质子酸、有机酸、酸酐及各种Lewis酸的混合物。
8、生成硝基烷烃的难易顺序:卤代烃中卤素被取代的顺序:9、DMF:DMSO:10、常用的重氮化试剂有哪些? NaNO2+HCl/H2SO4第三章卤化反应1、Ph上取代基对卤化反应的影响①催化剂的影响;②芳环结构的影响;③反应温度的影响;④卤化剂的影响;⑤反应溶剂影响2、醇与HCl 发生卤置换反应活性顺序醇羟基的活性顺序:叔(苄基、烯丙基)醇>仲醇>伯醇氢卤酸的活性顺序:HI >HBr >HCL3、NBS 的应用(N —溴代丁二酸亚胺) ①N-卤代酰胺与不饱和烃的卤取代反应机制:RCH 2CH=CH 2+NBSRCHBrCH=CH 2本反应属自由基型反应,可在光照下引发自由基②N-卤代酰胺与不饱和烃的加成反应:在质子酸(醋酸、溴氢酸、高氯酸)的 催化下,N —卤代酰胺与烯烃加成易制备—卤代醇的重要方法。
药物合成反应 (第三版 闻韧) 课后答案Chapter 3 Acylation Reaction
O
O
O
CHO OH (4)
CN O N Ph CN O N Ph N
OH
H (5) N
H3C
CH3
O (6)
N
N
N CO2CH3 CO2CH3
O CO2CH3
H3CO (7) H3CO NHCOCH3
H3CO H3CO N CH3
H3CO H3CO N CH2
《药物合成反应》 (第三版) 闻韧主编
习题及答案
第三章 酰化反应习题及答案
1. 根据以下指定原料、试剂和反应条件,写出其合成反应的主要产物
OH O O
(2) C17H35COOC2H5 + (COOC2H5)2 C2H5ONa heat C2H5OH
(1)
+ Cl
O Cl
Et3N/CH2Cl2
OH (4) OH O (5) S
CH2OH O (6) OH H OH H OH NHAc
O + NaOH Cl Cl
+
POCl3 Ph N CH3 H
H CH COCl 3 CHCl3
(7) HO
O O (8) +
AC2O/Py
NaH/PhH C2H5O OC2H5
(3)
HO N H
O
O
O N H OH
Org. Synth., 2006, 83: 97.
(4)
O O
(5)
S CHO CH2OAc O OAc OAc H H Cl NHAc H
(6)
(7)
AcO
(8)
O CO2Et
第三章-酰化反应
② 醇结构的影响
i. 立体效应
与醇羟基相连的取代基体积越大,越不利于酰 化反应,反之,与醇羟基相连的取代基体积越 小,越有利于酰化反应。 立体影响因素:甲醇>伯醇>仲醇>叔醇、烯丙醇、苄醇
叔醇、烯丙醇、苄醇在酸性条件下容易脱去羟基,形成碳正离子。
C OH H C OH2 -H2O C
ii. 电子效应的影响
苯环上有给电子基团时,增加酰化反应的活性 苯环上有吸电子基团时,减小酰化反应的活性
立体效应:邻、对位的取代基影响较大
(4)应用特点 ① 酰氯为酰化剂 常用NaOH, Na2CO3, AcONa, Et3N, Py 等碱作为缚酸剂或催化剂
≤10℃
② 酸酐为酰化剂
HO OH H2SO4 r. t.
R1OH
+
RCOOH
RCOOR1 + H
② Lewis酸催化
O R C O R C O BF3 或AlCl3 R C O R C O 或 R C O O BF3 R C O BF3 O O R C
R1OH
+ RCOOBF3 RCOOR1 + H
③吡啶类碱催化Biblioteka (3) 影响因素① 酸酐结构的影响
羰基的α位有吸电子基团,亲电性增强
+ Ac2O
AcO
OAc
COOH H3C CH3 + H3C
OH CH3 (CF CO) O /PhH 3 2 r. t.
CH3 COO CH3
H3 C
H3 C
第三节 氮原子上的酰化反应
活性:伯氨>仲胺;脂肪胺>芳胺;无位阻的胺>有位阻的胺
一、脂肪胺的N-酰化反应
1. 羧酸为酰化剂
药物合成反应(第三版_闻韧)第三章 酰化反应
Organic Reactions for Drug Synthesis
例:抗胆碱药溴美喷酯(宁胃适)的合成
O C OH
HO CH3CH2ONa N CH3
60-80℃,45min
C-OCH2CH3 +
C OH
O C-O N CH3
O CH3Br C OH C-O N CH3 · Br CH3 (77%)
n-C4H9 CH Zn 175℃
2+
R'OH
O RCOR'
n-C4H9 n-C18H37 C COOH + H3C C
CH2 CH3
n-C18H37 C
COO C
n-C7H15 n C18H37 OH/H △ ,6min
+
n-C7H15 n-C4H9 COO C18H37-n + O H3C C CH3
Organic Reactions for Drug Synthesis
叔醇的酯化:SN1机理。
Organic Reactions for Drug Synthesis
SN1
O ' R-C-L
慢
O R-OH + R'-C
O R'-C + L O 快 R'-C-OR
SN2
O ' R-OH + R-C-L O ' + L R-O--C-R H
n-C18H37 C
n-C7H15
Organic Reactions for Drug Synthesis
3、酸酐为酰化剂
•与酸和酯作酰化剂相比,酸酐的酰化活性较强, 而且酰化反应是不可逆的。 •酰化反应过程可以被酸(硫酸等质子酸以及三氟 化硼等Lewis酸)和碱(主要为醋酸钠以及三乙胺 等有机碱)所催化。 •当酸酐难于制备时,也可采用混酸酐法。常用 的混酸酐有磺酸酐、磷酸酐和碳酸酐。
药物合成反应3资料
Delepine 反应:用卤代烃与环六亚甲四胺(乌洛 托品,Methenamine)反应得季铵盐。然后水解 可得伯胺的反应。抗菌药氯霉素的一个中间体的 合成便采用了此反应:
2019/6/21
胺还可以用还原烃化方法制备。醛或酮在还原剂 存在下,与氨或伯胺、仲胺反应,使氮原子上引 进烃基的反应称为还原烃化反应。主要特点是没 有季铵盐生成。可使用的还原剂很多,有催化氢 化、金属钠加乙醇、钠汞齐和乙醇.锌粉、负氢 化物以及甲酸等,其中以催化氢化和甲酸最常采 用。
2019/6/21
3.环氧乙烷为烃化剂
环氧乙烷可以作为烃化剂与醇反应,在氧原子于上引入羟 乙基,亦称羟乙基化反应。此反应一般用酸或碱催化,反 应条件温和,速度快。酸催化属单分子亲核取代反应,而 碱催化则属双分子亲核取代反应。
2019/6/21
4.烯烃为烃化剂
醇可与烯烃双键进行加成反应生成醚,也可 理解为烯对醇的O-烃化。但对烯烃双键旁没有吸 电子基团存在时,反应不易进行。只有当双键的 α -位有羰基、氰基、酯基、羧基等存在时,才较 易发生烃化反应。例如醇在碱存在下对丙烯腈的 加成反应。
2019/6/21
常用保护羟基方法有: 1.酯化法 反应后可通过碱性水解除去。 2.苄醚法 反应完成后可在催化剂上加氢氢解除去。 3.四氢吡喃醚法 醇与二氢吡喃(DHP)在酸存在下反应即可引入 四氢吡喃基(形成四氢吡喃醚即THP)。同样在 温和的酸性条件水解,保护基被除去。 4.三芳基甲醚保护基
2019/6/21
2019/6/21
理想保护基的要求是:
①引入保护基的试剂应易得、稳定及无毒; ②保护基不带有或不引人手性中心; ③保护基在整个反应过程中是稳定的; ④保护基的引入及脱去,收率是定量的; ⑤脱保护后,保护基部分与产物容易分离。围绕 这些要求,人们在经过几十年的努力后,今天仍 不时有新的保护基团的研究工作报道,为有机合 成提供更加巧妙的手段。
药物合成习题及答案3
O O
药物合成反应
第三章 酰化反应习题参考答案
作为酰化剂的活性酐中间体在完成酰化后形成五元环状内酯(分子内能低,比较稳定) 是一种促使该酰化完成的“驱动力” 。 7.完成以下反应——选择性酰化酚羟基: 参考答案:
OH
RCOCl/NaOH/dioxane/ Bu4N HSO4
r.t., 30min
OH
药物合成反应
第三章 酰化反应习题参考答案
第三章
一、简述题
酰化反应习题参考答案
1.何谓酰化反应?常用的酰化剂是哪种类型化合物? 参考答案:在有机分子中的碳、氧、氮、硫等原子上引入酰基的反应称为酰化反应。常用的 酰化剂包括羧酸、羧酸酯、酸酐、酰氯、酰胺、烯酮等。 2. 一般 Claisen 酯缩合反应选用与羧酸酯的烷氧基相同的醇钠作为缩合催化剂, 为什么?但 对于只有一个 α-H 的羧酸酯的 Claisen 反应, 往往须选用比醇钠强的多的碱, 如 NaOH、 PhCNa 等,才能完成反应,请予解释。 参考答案: 选择与羧酸酯的烷氧基相同的醇钠主要是避免由于酯交换反应而得混合物; 对于 α位只有一个氢的酯,酯缩合反应产物β酮酸酯的α位无活性氢,不能烯醇化,从而对缩合 反应平衡的移动不利,醇钠的碱性不足以转化酯羰基烯醇化所以很难完成这类酯的 Claisen 反应。Claisen 反应机理请参阅 p157。 3.什么叫 Vesley 酯化法?Vesley 法的主要优点是什么? 参考答案:Vesley 等采用强酸型离子交换树脂加硫酸钙催化酯化反应,可加快反应速度、提 高收率。 4.简述试剂 DCC 的结构特点及主要用途。 参考答案:DCC 的全称是 dicyclohexylcarbodiimide, 结构式如下:
(95%)
5.完成以下反应: 参考答案:
药物合成导图-酰化反应
酸酐结构的影响
催化剂影响
反应溶剂的影响 反应温度的影响
羰基的α位上连有吸电子基团,亲电性增强 酸催化:用于立体位阻较大的醇 碱催化 三氟甲基磺酸盐
单一酸酐为酰化剂的酰化反应:应用较少
羧酸-三氟乙酸
羧酸-磺酸混合酸酐
混合酸酐为酰化剂的酰化反应
羧酸-磷酸混合酸酐
羧酸-多取代苯甲酸混合酸酐
其他混合酸酐
酰氯为酰化剂
酰胺为酰化剂5
酰胺的结构中N原子的供电效应,酰化能力减弱
反应通式
脂肪族、芳香族的二取代酰胺 被酰化物:伯仲叔醇 催化剂:醇钠、氨基钠、氢化钠、DBU等碱
反应机理应用特点酰基咪唑来自酰化剂的反应 PTT为酰化剂的反应
酚的O-酰化反应
反应通式
反应机理:各类酰化剂对酚O原子的亲电反应机理
影响因素
酰化剂的影响 酚的结构的影响
反应通式 反应机理 影响因素 应用特点
酰化剂:脂肪族、芳香族的酰氯 被酰化物:伯仲叔醇 催化剂:Lewis酸、有机碱 溶剂:醚类、卤代烃
吡啶类碱催化 路易斯酸催化
酰卤结构的影响:脂肪族酰氯活性强于芳酰氯 催化剂:吡啶类碱可以中和反应产生的HCl 溶剂与温度
选择性酰化
仲醇的酰化 叔醇的酰化
1,2-二醇的酰化反应 非1,2-二醇的酰化反应
羧酸酯的结构 醇结构的影响 催化剂影响
R基团的影响
α位有吸电子基的酯>α位无吸电子基的酯 不饱和、芳酸酯活性略强与脂肪酸酯
R1基团的影响
R1OH的酸性越强,酯的酰化能力越强
同羧酸为酰化剂
醇中有碱性基团,宜用醇钠等碱性催化剂
硅藻土为载体的Lewis酸可选择性酰化或单酰化
适合热敏性、活性较小的羧酸;适合S较小、酸敏感、结构复杂的醇
药物合成方程式+名词解释+反应机理 石皮 石...
药物合成反应方程式第一章:卤代反应1.2.3.4.5.6.第二章:烃化反应1.盐酸普萘洛尔的合成:2.盐酸氯丙嗪的合成:构型保持构型反转4.第三章:酰化反应 1. 2. 3. 4第四章:缩合反应 1. 2. 3 4.6.7.8.9.10.11. 13.第五章:重排反应1.2.3.4.5.7.8.9. 11.12.13.14.15.17.第六章:氧化反应 一、完成下列反应: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.℃℃11.12.13.14.二、写出下列反应的主要试剂和反应条件:1.2. 3.4.5.6.7.8.9.第七章:还原反应 一、完成下列反应: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.二、写出下列反应的化学试剂和反应条件: 1.2.3.4.5. 其他:1.在利尿药氯噻酮的中间体对氯苯甲酸的制备中,为什么1mol的邻苯二甲酸酐要用2.4mol的AlCl3为催化剂?若傅克酰化反应中用酰氯为酰化剂,催化剂AlCl3的用量如何?反应结束后,产物如何从反应中分离?2.下列两种甾醇以鉻酸氧化时,哪一种速度快,为什么?药物合成名词解释1.Adams’ catalyst (Adams催化剂):将氯铂酸铵与硝酸钠混合均匀后灼热熔融,氧化过程中有大量二氧化氮放出,经洗涤等处理后即得二氧化铂催化剂。
2.Arndt-E istert reaction (Arndt-E istert重排):Arndt-Eistert等用酰氯与重氮甲烷反应得α-重氮酮,再经Wollf重排,生成比原酰氯多一个碳的羧酸,该反应环称Arndt-Eistert反应。
3.Baeyer-Villiger oxidation (Baeyer-Villiger氧化反应):在酸催化下,醛或酮与过氧酸作用,在烃基与羰基之间插入氧生成酯的反应称为Baeyer-V illiger氧化重排。
4.Beckmann rearrangement (Beckmann重排):醛肟或酮肟在酸性催化剂作用下重排成取代酰胺的反应称Beckmann重排。
第三章 酰化反应
O C O CH2CH2N(C2H5)2 + C2H5OH
(3)反应条件
水容易使酯水解,因此反应需要在无水条件下进 行,还要防止其他酯类在乙醇中重结晶。例:抗胆碱 药溴美喷酯(宁胃适)的合成
HO C OH CH3 COOCH2CH3 + N CH3CH2ONa 60-80℃,45min
C OH
COO N CH3
攻,而且使中间体稳定;若是给电子的作用相反。
根据上述的反应机理可以看出,作为被酰化物质 ( 醇 ) ,
其亲核性越强越容易被酰化。具有不同结构的被酰化物的 亲核能力一般规律为; RCH2 - > R-NH- > R-O - > R-NH2 >R-OH。(难酯化的醇需AlCl3催化)
在消除阶段
反应是否易于进行主要取决于 L的离去倾向。L—碱性 越强,越不容易离去, Cl— 是很弱的碱,—OCOR的碱性 较强些,OH— 、OR—是相当强的碱,NH2—是更强的碱。
O ROH + R' C L R' O C OR + HL
醇的结构对酰化反应的影响 伯醇(苄醇、烯丙醇除外)>仲醇>叔醇
一 、醇的氧酰化 (一) 酰氯为酰化剂
RCOCl + R'OH
RCOOR' + HCl
酰氯常用于空间位阻大的醇,如叔醇的酰化:
(CH3)3COH + C6H5CH=CHCOCl (CH3)3COOCHCH=CHC6H5
醇的结构对酰化反应的影响 立体影响因素:伯醇>仲醇>叔醇、烯丙醇 叔碳正离子倾向与水反应而逆转
电子效应的影响
羟基a位吸电子基团通过诱导效应降低O上电子云
密度,使亲核能力降低
苄醇、烯丙醇由于p-p共轭,使活性降低
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②羧酸的结构:亲电试剂
R带吸电子基团-利于进行反应;R带给电子不利 于反应
R的体积若庞大,则亲核试剂对羰基的进攻有位 阻,不利于反应进行
羰基的a位连有不饱和基和芳基,除诱导效应外, 还有共轭效应,使酸性增强
③催化剂 i提高羧酸反应活性
(a)质子酸催化法: 浓硫酸,氯化氢气体,磺酸等
O
H+
R的影响:立体位阻大,酰化困难
2. 亲核反应机理 极性反转-a氰醇衍生物T,1976,32,1943
二、自由基反应机理 产物复杂,应用有限
第二节 氧原子的酰化反应
O ROH + R' C L
O R' C
是一类形成羧酸酯的反应 是羧酸的酯化反应 是羧酸衍生物的醇解反应
OR + HL
+OH CH3C-OH HOC2H5
按加成-消除机 制进行反应,是 酰氧键断裂
加成
OH CH3-C-OH
HO+ C2H5
质子转移
四面体正离子
OH CH3-C-O+ H2
OC2H5
-H2O 消除
+OH
-H+
CH3C-OC2H5
O CH3C-OC2H5
*2 碳正离子机理
OH
H+
(CH3)3C-OH
+OH R-C-OC(CH3)3
O 羧酸酯 * C O R
酸酐 酰胺
O C
O C
O
O
C NH2 ,
O 酰卤 * C X
O C NR2
乙烯酮 CH2=C=O
第一节 酰化反应机理
一、电子反应机理 1.亲电反应机理 1)单分子历程-酰卤、酸酐
2)双分子历程
酰化速率与酰化剂和被酰化物浓度均有关系,为 动力学二级反应。
3)酰化剂的强弱顺序
(2)反应机理
① 酸催化机理:-增强羧酸酯的活性
O R''OH + R C OH R'
O R'' HO C R ' - H+
R'' OH
H O
O
C
H O
R'
R
R'' O C R '
② 碱催化机理 增强醇的活性
Z的电负性越大,离去能力越强,其酰化能力越强。 判断方法为:HZ的Ka越大或Pka越小,酸性越强
4)被酰化物的活性
亲核能力越强,越容易酰化,可以根据被酰化物 R-YH碱性来衡量
RNH2>ROH>RH
R的影响:在O,N酰化中,R=Ar时,活性下降, 故RNH2>ArNH2及ROH>ArOH
N C N (CH2)2 N O
DCC 催化作用下易于形成酰基碳正离子
H3CO
CH3 COOH +
OH
H2C HO CH
CH3
DCC/Et2O R.T.20min
酰化能力弱,因为可形成分子内氢键
H3CO
CH3
OH
C
O
OH
CH3
COO CH
H2C
H3CO
CH3 OH
例:
CH2OH
OO
+
COOH DCC/DMAP O 25℃
第三章 酰化反应
Acylation Reaction
概述
1 定义:有机物分子中O、N、C原子上导入酰基的
反应
O
O
酰基:
R C L + Nu-H
R C Nu +
O 酰化剂
被酰化物 O
R C LL: 酰化剂
X+,
被OCN酰Ou-R化H, 物OH,
RC OR', NHR
Nu: R'O(O), R''NH(N), Ar(C)
(CH3)3CO+ H2 -H2O (CH3)3C+
O=C-R
属于SN1机理
-H+
O
R-C-OC(CH3)3
按SN1机理进
行反应,是烷
氧键断裂
* 3oROH按此反应机理进行酯化。 * 由于R3C+易与碱性较强的水结合,不易与羧酸结合,
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
该反应机理也 从同位素方法 中得到了证明
I
O
CH2 O C
O
I
96%
ii 用来提高醇的反应活性
偶氮二羧酸酯法(DEAD) ——活化醇制备羧酸酯
Mitsunobu reaction.
反应机理:
(4)应用特点
① 伯醇酯的制备
② 仲醇酯的制备
薄荷醇
③ 叔醇酯的制备
2.羧酸酯为酰化剂 (1)反应通式 酯交换法
R2、R1要求?
Nu + HL
L: X, OCOR, OH, OR', NHR
Nu: R'O(O), R''NH(N), Ar(C)
2 分类:
根据接受酰基原子的不同可分为:
பைடு நூலகம்
氧酰化、氮酰化、碳酰化
3 意义:
药物本身有酰基 合成手段
H N
O O
O O NO2
硝苯地平
常用的酰化试剂
O 羧酸 * C OH
一、醇的氧酰化
1) 羧酸为酰化剂
R-OH + R'COOH
提高收率:
R'COOR + H2O
(1)增加反应物浓度
(2)不断蒸出反应产物之一
(3)添加脱水剂或分子筛除水。
加快反应速率: (1)提高温度
(2)催化剂(降低活化能)
酯化反应的机理
*1 加成-消除机理
双分子反应一 步活化能较高
O
H+
CH3C-OH
O
CH3C-O18H + (CH3)3COH
O18
CH3C-OC(CH3)3 + H2O
*3 酰基正离子机理
O
O
+
C-OH
C-OH2
CH3
CH3 H2SO4(浓) CH3
CH3
O
+C CH3
CH3
+O
C
CH3
CH3
CH3
CH3
CH3
CH3
属于SN1机理
CH3OH
CH3
OH
C-O+ CCHH33 -H+
R C OH
H
OH R C OH
OH R C OH
H
CH2COOH TsOH/PhH
OH
△,
O
H
O
H
•(b)Lewis酸催化法: (AlCl3, SnCl4,FeCl3,等)
O R C OH
AlCl3
AlCl3 O 配位键(增加C的正电性)
R C OH
例
HO
OH CH3(CH2)3COOH
100℃
HO
O O C(CH2)3CH3
+ H2O
CH=CH-COOH
BF3/Et2O
+ CH3OH
CH=CH-COOCH3
COOH
对甲苯磺酸
TsOH
+ C12H25OH Xylene
HO
OH
OH
COOC12H25
HO
OH
OH
(c) DCC 二环己基碳二亚胺
R-N=C=N-R
CH3-N=C=N-C(CH3)3 CH3CH2-N=C=N-(CH2)3-NEt2 (CH3)2CH-N=C=N-CH(CH3)2
CH3
O
C-OCH3 CH3
CH3
CH3 78%
仅有少量空间位阻大的羧酸按此反应机理进行
(3)影响因素
① 醇结构影响:亲核试剂
醇的结构对酰化反应的影响 立体影响因素:伯醇>仲醇>叔醇、烯丙醇 叔碳正离子倾向与水反应而逆转
电子效应的影响 羟基a位吸电子基团通过诱导效应降低O上电
子云密度,使亲核能力降低 苄醇、烯丙醇由于p-p共轭,使活性降低