第一章 图的基本概念(5)——极图理论简介
图论讲义1图路树

7. 连通性 图中两点的连通:如果在图 G 中 u,v 两点有路相通,则称顶点 u,v 在图 G 中连通。 连通图(connected graph):图 G 中任二顶点都连通。 图的连通分支(connected branch, component):若图 G 的顶点集 V(G)可划分为若干非空子集
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
3
(8) 完全图(complete graph)
(9) 图的顶点数(图的阶)ν 、边数 ε
(10) 顶点 v 的度(degree):d(v) = 顶点 v 所关联的边的数目(环边计两次)。
(11) 图 G 的最大度: ∆(G) = max{dG (v) | v ∈V (G)}
图 G 的最小度:δ (G) = min{dG (v) | v ∈V (G)}
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
《地图学原理》复习资料

地图学原理复习资料第一章引论1、地图的定义:地图是按照一定的数学法则,将地球(或星体)表面上的空间信息,经概括综合,以可视化、数字或触摸的符号形式,缩小表达在一定载体上的图形模型,用以传输、模拟和认识客观世界的时空信息。
2、地图的基本特征:(1)严密的数学法则;(2)特定的符号系统;(3)科学的地图概括;(4)独特的传输信息的通道。
地图投影方法、比例尺和控制方向构成了地图的数学法则,它是地图制图的基础。
3、地图的构成要素:(1)数学要素(地图投影、坐标网、比例尺、控制点等);(2)地理要素①普通地图包括(水系、地貌、土质植被、居民地、交通线境界线等自然和社会经济内容)②专题地图包括(专题要素和底图要素);(3)图边要素(图名、图号、图例、接图表、图廓、分度带、比例尺、附图、坡度角、成图时间及单位、有关资料说明等)。
4、地图的功能:(1)获取认知信息功能;(2)模拟客观世界的功能;(3)传输信息功能;(4)载负信息功能;(6)感受信息功能。
5、现代地图学定义:以地学信息传输与地学可视化为手段,以区域综合制图与地图概括为核心,以地图的科学认知和分析应用为目的,研究地图的理论实质、制图技术与使用方法的综合性学科。
第二章地图的数学基础1、地球形状的三级逼近:(1)地球形状的一级逼近——大地水准面:人们设想当海洋静止时,平均海水面穿过大陆和岛屿,形成一个闭合的曲面,该面上的各点与重力方向(铅垂线)成正交,这就是大地水准面。
大地水准面所包围的球体,叫大地球体。
意义: (1. 地球形体的一级逼近:对地球形状的很好近似,其面上高出与面下缺少的相当。
(2. 起伏波动在制图学中可忽略:对大地测量和地球物理学有研究价值,但在制图业务中,均把地球当作正球体。
(3. 重力等位面:可使用仪器测得海拔高程(某点到大地水准面的高度)。
(2)地球形状的二级逼近——地球椭球体:假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体意义:地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面,用于测量计算的基准面。
数据结构-图

出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
1图的基本概念

(或若边<vi,vj>∈E,当且仅当 边<f(vi),f(vj)>∈E’),则称G与
G’同构,记作G≌G’. (同构a图 要保持b 边的“1 关联”4关系)
例如:右边所示的两个图: c
d
3
2
G=<V,E> G’=<V’,E’>
构造映射f:VaV1’ b 2 c 3 d 4
a 1 b 2 c 3 d 4
degi(a)=2 degi(b)=2 degi(c)=1 degi(d)=1
dego(a)=2 dego(b)=3 dego(c)=1 dego(d)=0
定理8-1.3 G=<V,E>是有向图, 则G的所有结点的出度之和
等于入度之和.
证明: 因为图中每条边对应一个出度和一个入度. 所以所
有结点的出度之和与所有结点的入度之和都等于有向边
如果可能,请试画出它的图. 哪些可能不是简单图?
a) (1,2,3,4,5)
b) (2,2,2,2,2)
c) (1,2,3,2,4)
2.已知无向简单图G中,有10条边,4个3度结点,其余结点的
度均小于或等于2,问G中至少有多少个结点?为什么?
1. a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4)
足够的。例如“目”的图形就是满足条件的例子。
七. 有向图结点的出度和入度:(in degree out degree)
G=<V,E>是有向图,v∈V v的出度: 从结点v射出的边数.
记作deg+(v) 或 dego(v)
a
b
c d
v的入度: 射入结点v的边数. 记作deg-(v) 或 degi(v)
电子科大 张晓军老师 图论

思考? 上述结论对无环图成立吗?
邻接矩阵的进一步推广-有向图
v1 e1 e2 e5 e3
e6 v3
v2
e4
v4
⎡0 1 0 0⎤
A
=
⎢⎢1 ⎢1
0 0
1 1
1⎥⎥ 0⎥
⎢⎣0 0 0 0⎥⎦
每一列之和 为该顶点的
入度
每一行 之和为 该顶点 的出度
推广的邻接矩阵(复合图)续。。。
1
v
2
G1
G2
u1
3 v1
u2 u3
v2
v3
G1×G2
G2[G1]=?
1u
G2[G1] ≅ G1[G2] ???
1v
2u 3u
2v
3v
n 方体 Qn
1
01
0
00
Q1
Q2
011 11
010
001
10
000
Q3
111 110
011 010
§1.3 路与图的连通性
途径 迹
1
4
58
路
67
连通图
2
3
连通分支 ω(G)
G
G’
关系,而且要求这种对应关系保持结点间的邻
接关系.对有向图同构还要求保持边的方向.
b
a
e v1
d c
v4 v5 v3 v2
(1)
(2)
(3)
(4)
a
e
c
v1
v2
v6
f
b
d
v3
v5
v4
(5)
(6)
(7)
图论及图的基本介绍

第四篇图论
什么是图论
定义
✓图论(Graph Theory)是数学的一个分支。
它以图为研究对象。
✓图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系;用点表示事物,用连接两点的线表示相应两个事物间的关系。
✓从一般意义而言,它描述了客观世界中的拓扑结构。
什么是图论
人们常称1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler)发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专著《有限图与无限图理论》,这是图论发展史上的重要的里程碑,它标志着图论将进入突飞猛进发展的新阶段。
哥尼斯堡七桥问题
18 世纪在哥尼斯堡城( 今俄罗斯加里宁格勒) 的普莱格尔河上有7 座桥,将河中的两个岛和河岸连结,如图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7 座桥,而每座桥只许通过一次,最后仍回到起始地点。
这就是著名的哥尼斯堡七桥问题。
图论的应用
计算机科学、物理学、化学、运筹学、信息论、控制论、网络通讯、社会科学以及经济管理、军事、国防、工农业生产等方面都得到广泛的应用。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专著《有限图与无限图理论》,这是图论发展史上的重要的里程碑,它标志着图论将进入突飞猛进发展的新阶段。
图论的知识体系概图
第十章图的基本概念
本章各节间的关系概图
图的基本概念在计算机科学技术相关领域的应用。
(图论)图的基本概念(课堂PPT)

图的度数的相关概念
在无向图G中, 最大度 △(G)=max{d(v)|v∈V(G)} 最小度 δ(G)=min{d(v)|v∈V(G)}
称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。 度为偶数(奇数)的顶点称为偶度(奇度)顶点。
在有向图D中, 最大出度 △+(D)=max{d+(v)|v∈V(D)} 最小出度 δ+(D)=min{d+(v)|v∈V(D)} 最大入度 △-(D)=max{d-(v)|v∈V(D)} 最小入度 δ-(D)=min{d-(v)|v∈V(D)}
元素可以重复出现的集合称为多重集合或者多重集,某元 素重复出现的次数称为该元素的重复度。 例如 在多重集合{a,a,b,b,b,c,d}中, a,b,c,d的重复度分别为2,3,1,1。
4
笛卡尔积
设A,B为任意的两个集合,称{<a,b>|a∈A∧b∈B}为A与B 的笛卡尔积,记作AXB。 笛卡尔积中的是有序对<a,b>。只有a,b相等的时候才有 (a,b)=(b,a). 也只有A=B时才有AXB=BXA。
16
图的度数举例
d(v1)=4(注意,环提供2度), △=4,δ=1, v4是悬挂顶点,e7是悬挂边。
d+(a)=4,d-(a)=1 (环e1提供出度1,提供入度1),
d(a)=4+1=5。△=5,δ=3,
△+=4 (在a点达到)
δ+=0(在b点达到)
△-=3(在b点达到)
δ-=1(在a和c点达到)
例如:在图1.1中, (a)中e5与e6是平行边, (b)中e2与e3是平行边,但e6与e7不是平行边。 (a)和(b)两个图都不是简单图。
图论知识点总结笔记

图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。
图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。
在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。
2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。
边是节点之间的连接关系,用来表示节点之间的关联性。
根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。
3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。
对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。
4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。
在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。
5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。
若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。
基于图的连通性,可以将图分为连通图和非连通图。
6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。
子图可以是原图的结构副本,也可以是原图的子集。
二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。
对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。
2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。
对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。
3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。
关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。
三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
00
1 0.8
0.6 0.4 x 0.2
如果 m(G) m(Tl ,n )
则有 m(H ) m(G)
G与H有相同度序列,由定理4:G H
又由 m(G) m(Tl ,n ) ,且由定理3,有:
H Tl ,n 所以有: G Tl ,n
13
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
4部图
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定义2 如果在一个l 部图G中,任意部Vi中的每个顶点, 和G中其它各部中的每个顶点均邻接,称G为完全l 部 图。记作:
G Kn1,n2 , ,nl , (ni Vi ,1 i l)
例如:
显然:
00
1 0.8
0.6 0.4 x 0.2
几个有趣的相关结果:
设m (n, H)表示n阶单图中不含子图H的最多边数,则:
1, m(n,
K3 )
n2
4
2, m(n, Kl 1 )
(l
1)(n 2 2l
r2)
Cr2
其中,n r(modl), 0 r l
3,
m(n, Cn
)
1
(n
1)(n 2
由此可以推出: G= G1V G2 因为 G= G1V G2和H= G2V H1有相同度序列,于是 得到G1和H1有相同度序列,所以:
GH
定理5(Turán)若G是简单图,并且不包含 Kl+1,则:
m(G) m(Tl,n )
仅当 G Tl ,n 时,有 m(G) m(Tl ,n )
11
1
0.5 n 0
注意:若G度弱于H,一定有:m(G) m(H ) 但逆不成立!例如:(1,1,4,2)与(3,3,3,3)没有度弱关系! 定理4 若n阶简单图G不包含Kl+1,则G度弱于某个完 全 l 部图 H,且若G具有与 H 相同的度序列,则:
GH
9
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
2)
4, m(n,K4Fra biblioteke)n2
4
5, m(n,
K1,3
e)
n2 4
14
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(三)、托兰定理的应用
问题:工兵排雷问题 一个小组n个人在一个平原地区执行一项排雷任务。
其中任意的两个人,若其距离不超过g米,则可用无线 电保持联系;若发生触雷意外,地雷的杀伤半径为h米。 问:在任意的两个人之间均能保持联系的条件下,平均 伤亡人数最低的可能值为多少?
0.6 0.4 x 0.2
证明:对 l 作数学归纳证明。
当 l =1时,结论显然成立; 设对 l <t 时,结论成立。考虑 l = t 时的情况。 令u ∈V(G), 且d (u) = Δ(G). 设G1= G[N(u)],则G1不含Kt, 否则,G含Kt+1,矛盾! 由归纳假设,G1度弱于某个完全t-1部图H1.
分析:(1)为保持通信,排雷工兵相互之间距离不能超过 g米。因此,他们必须分布在直径是g米的圆形区域内.
15
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(2) 若某人A触雷,则与A的距离大于h米的人将是安 全的,但究竟哪个人会发生触雷意外,事先是不知 道的,所以此问题实际上是求在任意的两个人之间 的距离不超过g米的条件下,距离大于等于h米的人 数对最多能达到多少对 。 (3) 如果有n个工兵:{x1,x2,…,xn}, 每个工兵用一个 点表示,两点连线,当且仅当他们距离大于h米.
1978年,数学家Bollobas写了一本书《极值图论》 (Extremal Graph),是关于极值图论问题的经典著作。
上世纪70年代末,极值图论已经形成了相对完整的 理论体系,但还有很多引人入胜的公开性问题没有解决, 所以,直到现在,它仍然是重要研究方向。但是,该方 向是比较困难的数学研究方向之一。
6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
取v∈V1 ,由于G 连通,对任何u∈V1∪V2 , G中有 联结u 和v的路,故d (v, u)有定义。
因为任何一条以v为起点的路交替地经过V1和V2 的点, 可知一个点u∈V2 当且仅当d (v, u)是奇数。这准则唯一地 决定了G的2部划分。
定理2: n阶完全偶图 Kn1,n2的边数m=n1n2,且有:
m
n2 4
证明:m=n1n2显然。下面证明第二结论:
m( K n1 ,n2
)
m(Knn2 ,n2
)
(n n2 )n2
n2 4
(n 2
n2 )2
n2
4
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
第一章 图的基本概念
本次课主要内容
极图理论简介
(一)、l 部图的概念与特征 (二)、托兰定理 (三)、托兰定理的应用
定理3 n阶l部图G有最多边数的充要条件是G ≌ Tl,n。 证明:首先有:m(G) m(Kn1,n2 , ) ,nl 其次,考虑:
l
f (n1, n2 , , nl ) nin j , s.t, ni n
i j
i 1
则 f 取最大值的充分必要条件为:1≦i<j ≦l,有:
ni nj 1
K1, 2, 2
l
V ni , m(G)
ni n j
i
1i j l
5
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定义3 如果在一个n个点的完全 l 部图G中有: n kl r, 0 r l V1 V2 Vr k 1
Vr1 Vr2 Vl k 则称G为n阶完全 l 几乎等部图,记为T l, n |V1| = |V2| = … = |Vl | 的完全 l 几乎等部图称为完 全 l 等部图。 定理1: 连通偶图的2部划分是唯一的。 证明 设连通偶图G的2部划分为V1∪V2 =V 。
而G的对应的顶点划分形成的 l 部图正好为T l, n 从而证明了该定理。
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(二)、托兰定理
定义4 设G和H是两个n阶图,称G度弱于H,如果 存在双射μ:V(G)→V(H),使得:
v V (G), 有:dG (v) dH ((v))
16
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
Thank You !
17
3
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课,主要介绍极值图论中的一个经典结论: 托兰定理。
(一)、l 部图的概念与特征
定义1 若简单图G的点集V有一个划分:
l
V Vi ,Vi
i 1
Vj ,i j
且所有的Vi非空,Vi内的点均不邻接,称G是一个l 部图。
又令V1=N (u) , V2=V-V1 , 用G2表示顶点集合为V2的 空图,则G度弱于G2VG1,当然度弱于G2V H1。
令H= G2V H1,则H是完全t部图。 下面证明定理的第二个结论。
10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
若G与H有相同的度序列,而H= G2V H1,所以,G 与 G1VG2有相同的度序列。
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
证明:由定理4知:G度弱于某个完全 l 部图H。于是:
m(G) m(H )
又由定理3知:
m( H ) m(Tl ,n )
所以得:
m(G) m(Tl ,n )
下面证明定理5的后一论断。
12
1
0.5 n 0
0.5
1 2 1.5 t1
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
极图属于极值图论讨论的范畴,主要研究满足某
个条件下的最大图或最小图问题。
P. Erdồs是该研究领域的杰出人物。他是数学界 的传奇人物,国际图论大师,获过Wolf数学奖。他 是20世纪最伟大的数学家之一,也是人类历史上发 表数学论文最多的数学家(1000多篇),第二名是欧拉 (837篇)。他于1996年9月20日因心脏病去世,享年 83岁,他的逝世当时惊动了整个数学界。