2019届高考数学必修2模拟习题七
2019年高三二模数学(理科)(含答案)
2019年高三二模数学(理科)一、选择题(本大题共12小题,共60分)1.计算=()A. B. i C. D. 12.已知集合A={x∈N|x≤6},B={x∈R|x2-4x>0},则A∩B=()A. 5,B.C. D. 或3.已知{a n}为等差数列,且a7-2a4=-1,a3=0,则公差d=()A. B. C. D. 24.如图所示,半径为1的圆O是正方形MNPQ的内切圆.将一颗豆子随机地扔到正方形MNPQ内,用A表示事件“豆子落在扇形OEF(阴影部分)内”,则P(A)=()A. B. C. D.5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A. B. C.D.6.执行如图所示的程序框图,则输出的k=()A. 7B. 8C. 9D. 107.已知函数f(x)=,则y=f(x)的图象大致为()A. B.C. D.8.为了得到函数的图象,可以将函数y=cos2x的图象()A. 向左平移个单位B. 向右平移个单位C. 向右平移个单位D. 向左平移个单位9.已知变量x,y满足约束条件若目标函数的最小值为2,则的最小值为A. B. C. D.10.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,则该三棱锥外接球的表面积为()A. B. C. D.11.在的展开式中的x3的系数为()A. 210B.C.D. 28012.函数f(x)=的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20分)13.点P从(-1,0)出发,沿单位圆顺时针方向运动弧长到达Q点,则Q点坐标为______.14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线与直线x+4y=0垂直,则实数a= ______ .15.已知数列{a n}中,a1=3,a2=7.当n∈N*时,a n+2是乘积a n•a n+1的个位数,则a2019=______.16.已知F是双曲线的右焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为______.三、解答题(本大题共6小题,共72.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.18、某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.(1)求图中的值;(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).(参考公式:,其中n=a+b+c+d)19、在平行四边形中,,.将沿折起,使得平面平面,如图.(1)求证:;(2)若为中点,求直线与平面所成角的正弦值.20、在平面直角坐标系xOy中,已知椭圆的焦距为2,离心率为,椭圆的右顶点为A.求该椭圆的方程;过点作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.21、已知函数f(x)=4x2+-a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.22、已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】解:=.故选:B.直接利用复数代数形式的乘除运算化简,再由虚数单位i的运算性质求值.本题考查复数代数形式的乘除运算,考查计算能力,是基础题.2.【答案】B【解析】【分析】本题考查了集合的化简与运算问题,以及一元二次不等式的解法,是基础题目.化简集合A、B,再根据交集的定义求出A∩B.【解答】解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2-4x>0}={x∈R|x<0或x>4},∴A∩B={5,6}.故选B.3.【答案】B【解析】【分析】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求解即可.【解答】解:设等差数列{a n}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,即,解得d=-, 故选B . 4.【答案】C【解析】解:由图可知:正方形的边长为2, S 阴==,S 正=2×2=4,则P (A )===,故选:C .由扇形的面积得:S 阴==,由几何概型中的面积型得:则P (A )===,得解.本题考查了扇形的面积及几何概型中的面积型,属简单题. 5.【答案】D【解析】解:若a >1,则由log a b >1得log a b >log a a ,即b >a >1,此时b-a >0,b >1,即(b-1)(b-a )>0,若0<a <1,则由log a b >1得log a b >log a a ,即b <a <1,此时b-a <0,b <1,即(b-1)(b-a )>0, 综上(b-1)(b-a )>0, 故选:D .根据对数的运算性质,结合a >1或0<a <1进行判断即可.本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础. 6.【答案】C【解析】解:∵=-,∴s=++…+=1…+-=1-,由S≥得1-≥得≤,即k+1≥10,则k≥9,故选:C.由程序框图结合数列的裂项法进行求解即可.本题主要考查程序框图的应用,根据数列求和以及裂项法是解决本题的关键.7.【答案】A【解析】解:令g(x)=x-lnx-1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选:A.利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.8.【答案】B【解析】解:由题意y=cos2x=sin(2x+),函数y=sin(2x+)的图象经过向右平移,得到函数y=sin[2(x-)+]=sin (2x-)的图象,故选:B.先根据诱导公式进行化简y=cos2x为正弦函数的类型,再由左加右减上加下减的原则可确定平移的方案.本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减,注意x的系数的应用,以及诱导公式的应用.9.【答案】A【解析】【分析】本题考查了简单线性规划问题和基本不等式的应用求最值,关键是求出a+b=2,对所求变形为基本不等式的形式求最小值.【解答】解:约束条件对应的区域如图:目标函数z=ax+by(a>0,b>0)经过点C(1,1)时取最小值为2,所以a+b=2,则+=(+)(a+b)=(4+)≥2+=2+;当且仅当a=b,并且a+b=2时等号成立;故选A.10.【答案】C【解析】解:将该三棱锥补成正方体,如图所示;根据题意,2R=,解得R=;∴该三棱锥外接球的表面积为=4πR2=4π•=27π.S球故选:C.把该三棱锥补成正方体,则正方体的对角线是外接球的直径,求出半径,计算它的表面积.本题考查了几何体的外接球表面积的应用问题,是基础题.11.【答案】C【解析】【分析】本题主要考查二项式定理的应用,二项展开式的通项公式,体现了分类讨论与转化的数学思想,属于基础题.由于的表示7个因式(1-x2+)的乘积,分类讨论求得展开式中的x3的系数.【解答】解:由于的表示7个因式(1-x2+)的乘积,在这7个因式中,有2个取-x2,有一个取,其余的因式都取1,即可得到含x3的项;或者在这7个因式中,有3个取-x2,有3个取,剩余的一个因式取1,即可得到含x3的项;故含x3的项为××2×-××23=210-1120=-910.故选C.12.【答案】D【解析】【分析】作出函数的图象,根据图象的平移得出a的范围.本题考查了图象的平移和根据图象解决实际问题,是数型结合思想的应用,应熟练掌握.【解答】解:画出函数f(x)=的图象如图:与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则可使log2x图象左移大于1个单位即可,得出a>1;若使log2x图象右移,则由log2(1+a)=-2,解得a=-,∴a的范围为a>1或a≤-,故选:D.13.【答案】(-,)【解析】解:如图所示,点P沿单位圆顺时针方向运动弧长到达Q点,则∠xOQ=,∴Q点坐标为(cos,sin),即(-,).故答案为:.根据题意画出图形,结合图形求出点Q的坐标.本题考查了单位圆与三角函数的定义和应用问题,是基础题.14.【答案】1【解析】【分析】本题考查导数的几何意义,属于基础题.【解答】解:由f(x)=ax3+x+1,得f′(x)=3ax2+1,∴f′(1)=3a+1,即f(x)在x=1处的切线的斜率为3a+1,∵f(x)在x=1处的切线与直线x+4y=0垂直,∴3a+1=4,即a=1.故答案为1.15.【答案】1【解析】解:由题意得,数列{a n}中,a1=3,a2=7,当n≥2时,a n+1是积a n a n-1的个位数;则a3=1,依此类推,a4=7,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,数列{a n}是以周期T=6的周期数列,则a2019=a3+336×6=a3=1;故答案为:1.根据题意可得:由数列的递推公式可得a4=7,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,据此可得到数列的一个周期为6,进而可得a2019=a3+336×6=a3,即可得答案.本题考查数列的递推公式以及数列的周期,关键是分析数列{a n}的周期,属于基础题.16.【答案】5【解析】解:∵F是双曲线的右焦点,A(1,4),P是双曲线右支上的动点∴而|PA|+|PF|≥|AF|=5当且仅当A、P、F′三点共线时等号成立.故答案为:5.根据PA|+|PF|≥|AF|=5求得答案.本题考查了三点共线,距离公式,属于基础题17.【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知2cos C(a cos B+b cos A)=c,利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin[π-(A+B)]=sin C,∴2cos C sinC=sin C,∴cos C=,∵C为三角形ABC的内角,∴C=;(Ⅱ)由余弦定理得7=a2+b2-2ab•,∴(a+b)2-3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2-18=7,∴a+b=5或a+b=-5(舍去)∴△ABC的周长为5+.【解析】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变换,熟练掌握定理及公式是解本题的关键.(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出C的度数;(Ⅱ)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.18.【答案】解:(Ⅰ)由频率分布直方图各小长方形面积总和为1,可知(2a+0.020+0.030+0.040)×10=1,解得a=0.005;(Ⅱ)由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25,所以晋级成功的人数为100×0.25=25(人),填表如下:根据上表数据代入公式可得,所以有超过85%的把握认为“晋级成功”与性别有关;(Ⅲ)由频率分布直方图知晋级失败的频率为1-0.25=0.75,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以X可视为服从二项分布,即,,故,,,,,所以X的分布列为数学期望为,或().【解析】(Ⅰ)由频率和为1,列出方程求a的值;(Ⅱ)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(Ⅲ)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量X服从二项分布,计算对应的概率值,写出分布列,计算数学期望;本题考查了频率分布直方图与独立性检验和离散型随机变量的分布列、数学期望的应用问题,是中档题.19.【答案】(I)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD;(II)解:过点B在平面BCD内作BE⊥BD,如图,由(I)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD,以B为坐标原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,依题意得:B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),,则,设平面MBC的法向量,则,即,取z0=1,得平面MBC的一个法向量,设直线AD与平面MBC所成角为θ,则,即直线AD与平面MBC所成角的正弦值为.【解析】本题考查面面垂直的性质及线面垂直的判定与性质,同时考查利用空间向量求线面角.(I)利用面面垂直的性质得AB⊥平面BCD,从而AB⊥CD;(II)建立如图所示的空间直角坐标系,求出平面MBC的法向量,设直线AD与平面MBC所成角为θ,利用线面角的计算公式即可得出.20.【答案】解:(1)由题意可知:椭圆+=l(a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2-c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x-)-,则,整理得:(2k2+1)x2-(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)-2k-2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1-)-]x2+[k(x2-)-]x1=2kx1x2-(k+)(x1+x2)=-,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.【解析】本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2-c2=1,即可求得椭圆的方程;(2)则直线PQ的方程:y=k(x-)-,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.21.【答案】解:(1)函数f(x)=4x2+-a,则y=xf(x)=4x3+1-ax的导数为y′=12x2-a,由题意可得12-a=0,解得a=12,即有f(x)=4x2+-12,f′(x)=8x-,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,-7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x-1),即为y=7x-14;(2)由f(x)=4x2+-a,导数f′(x)=8x-,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3-a,由f(x)有两个零点,可得3-a=0,即a=3,零点分别为-1,.令t=g(x),即有f(t)=0,可得t=-1或,则f(x)=-1-b或f(x)=-b,由题意可得f(x)=-1-b或f(x)=-b都有3个实数解,则-1-b>0,且-b>0,即b<-1且b<,可得b<-1,即有a+b<2.则a+b的范围是(-∞,2).【解析】(1)求得函数y=xf(x)的导数,由极值的概念可得a=12,求出f(x)的导数,可得切线的斜率和切点,运用点斜式方程可得切线的方程;(2)求出f(x)的导数和单调区间,以及极值,由零点个数为2,可得a=3,作出y=f(x)的图象,令t=g(x),由题意可得t=-1或t=,即f(x)=-1-b或f(x)=-b都有3个实数解,由图象可得-1-b>0,且-b>0,即可得到所求a+b的范围.本题考查导数的运用:求切线方程和单调区间、极值,考查函数零点问题的解法,注意运用换元法和数形结合的思想方法,考查运算能力,属于中档题.22.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。
2019年高考模拟数学试卷(2)及答案
2019年高考模拟数学试卷(2)一、选择题(本大题共18小题,每小题3分,共54分)1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2}D .{x |0<x <1}2.函数y =2-x +ln(x -1)的定义域为( ) A .(1,2] B .[1,2] C .(-∞,1) D .[2,+∞)3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 表示的平面区域是( )4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是( ) A .|a |=|b | B .a ·b =1 C .(a +b )⊥bD .a ∥b5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若α∥γ,β∥γ,则α∥β C .若α⊥β,m ∥α,则m ⊥β D .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 6.不等式x +3>|2x -1|的解集为( ) A.⎝⎛⎭⎫-4,23 B.⎝⎛⎭⎫-23,4 C .(-∞,4)D.⎝⎛⎭⎫-23,+∞ 7.命题p :x ∈R 且满足sin 2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于( )A .-725 B.725 C .-925 D.9259.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40D .(x -1)2+y 2=2010.已知a <0,-1<b <0,则下列结论正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab >ab 2>aD .ab 2>ab >a11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是( )A .(1+2)cm 2B .(3+2)cm 2C .(4+2)cm 2D .(5+2)cm 212.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( ) A.63 B.233 C.433 D.26313.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为( ) A .[-2,2) B .[1,5) C .[1,2)D .[-2,5)14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于( )A.312B.632 C .63D.127215.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .20016.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a的取值范围是( ) A .[-1,1) B .[0,2] C .[-2,2)D .[-1,2)17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是( )A .[2,+∞)B .[3,+∞)C .[2,+∞)D.⎣⎢⎡⎭⎪⎫5+12,+∞18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为( ) A.32B. 2C. 3 D .2 二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________. 20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 017=________. 21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________.22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________. 三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n . 24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.2019年高考模拟数学试卷(2)答案一、选择题(本大题共18小题,每小题3分,共54分)1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}答案 D解析 利用数轴可求得A ∩B ={x |0<x <1},故选D. 2.函数y =2-x +ln(x -1)的定义域为( ) A .(1,2] B .[1,2] C .(-∞,1) D .[2,+∞) 答案 A解析 由⎩⎪⎨⎪⎧2-x ≥0,x -1>0,得1<x ≤2,即函数的定义域为(1,2].故选A.3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 表示的平面区域是( )答案 C解析 由不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x可知不等式组表示的平面区域为x +y =2的下方,直线y =x的上方,故选C.4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是( ) A .|a |=|b | B .a ·b =1 C .(a +b )⊥b D .a ∥b答案 C解析 因为|a |=2,|b |=1,故A 错误; a ·b =-1,故B 错误;(a +b )·b =(1,0)·(0,1)=0,故C 正确; a ,b 不平行,故D 错误.故选C.5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若α∥γ,β∥γ,则α∥β C .若α⊥β,m ∥α,则m ⊥β D .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 答案 B解析 对于选项A ,若m ,n ⊂β,m ∩n =P ,α∥β,则m ∥α,n ∥α,此时m 与n 不平行,故A 错;对于选项B ,由平面平行的传递性可知B 正确;对于选项C ,当α⊥β,α∩β=l ,m ∥l ,m ⊄α时,有m ∥α, 此时m ∥β或m ⊂β,故C 错;对于选项D ,位于两个互相垂直的平面内的两条直线位置关系不确定,故D 错.故选B. 6.不等式x +3>|2x -1|的解集为( ) A.⎝⎛⎭⎫-4,23 B.⎝⎛⎭⎫-23,4 C .(-∞,4) D.⎝⎛⎭⎫-23,+∞ 答案 B解析 不等式x +3>|2x -1|等价于-(x +3)<2x -1<x +3, 由此解得-23<x <4,故选B.7.命题p :x ∈R 且满足sin 2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由sin 2x =1,得2x =π2+2k π,k ∈Z ,即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z ,所以p 是q 的充要条件,故选C.8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于( )A .-725 B.725 C .-925 D.925答案 B解析 ∵A ,B ∈(0,π),∴sin A =45,sin B =35,∴sin(A -B )=sin A cos B -cos A sin B =725.9.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( ) A .(x -2)2+y 2=13 B .(x +2)2+y 2=17 C .(x +1)2+y 2=40 D .(x -1)2+y 2=20答案 D解析 设圆C 的圆心坐标为(m,0),则由|CA |=|CB |,得(m -5)2+4=(m +1)2+16,解得m =1,圆的半径为25,所以其方程为(x -1)2+y 2=20,故选D. 10.已知a <0,-1<b <0,则下列结论正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab >ab 2>a D .ab 2>ab >a 答案 C解析 由题意得ab -ab 2=ab (1-b )>0, 所以ab >ab 2,ab 2-a =a (b +1)(b -1)>0, 所以ab 2>a ,故选C.11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是( )A .(1+2)cm 2B .(3+2)cm 2C .(4+2)cm 2D .(5+2)cm 2答案 C解析 由三视图可知该几何体的直观图如图所示,所以侧面积为(4+2)cm 2.故选C.12.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433 D.263答案 C解析 由题意得x 1+x 2=4a ,x 1x 2=3a 2, 则x 1+x 2+a x 1x 2=4a +13a ,因为a >0,所以4a +13a ≥433,当且仅当a =36时等号成立. 所以x 1+x 2+a x 1x 2的最小值是433,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为( ) A .[-2,2) B .[1,5) C .[1,2) D .[-2,5)答案 C解析 函数y =f ()f (x )+a 有四个零点, 则f ()f (x )+a =0有四个解,则方程f (x )+a =-1与f (x )+a =2各有两个解,作出函数f (x )的图象(图略)可得⎩⎪⎨⎪⎧-3<-a -1≤1,-3<2-a ≤1,解得⎩⎪⎨⎪⎧-2≤a <2,1≤a <5,所以1≤a <2.故选C.14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于( )A.312B.632 C .63 D.1272答案 B解析 由题意得S 6=S 3(1+q 3)=72×(1+23)=632,故选B.15.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100 D .200 答案 C解析 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100,故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a的取值范围是( ) A .[-1,1) B .[0,2] C .[-2,2) D .[-1,2)答案 D解析 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2),故选D.17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是( )A .[2,+∞)B .[3,+∞)C .[2,+∞) D.⎣⎢⎡⎭⎪⎫5+12,+∞答案 C解析 设P (x 0,y 0),则PF 1—→·PF 2—→=(-c -x 0)(c -x 0)+y 20=x 20+y 20-c 2, 所以x 20+y 20-c 2=-12c 2. 又x 20a 2-y 20b2=1,所以x 20=a 2⎝⎛⎭⎫1+y 20b 2, 所以a 2⎝⎛⎭⎫1+y 20b 2+y 20-c 2=-12c 2, 整理得c 2y 20b 2=c 22-a 2,所以c 22-a 2≥0,所以c ≥2a ,e ≥2,故选C.18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为( ) A.32 B. 2 C.3 D .2 答案 A解析 P 在对角线AC 1上,Q 在底面ABCD 上,PQ 取最小值时P 在平面ABCD 上的射影落在AC 上,将△AB 1C 1沿AC 1翻折到△AB 1′C 1,使平面AB 1′C 1与平面ACC 1在同一平面内,B 1P =B 1′P , 所以(B 1′P +PQ )min 为B 1′到AC 的距离B 1′Q .由题意知,△ACC 1和△AB 1′C 1为有一个角为30°的直角三角形,∠B 1′AC =60°,AB 1′=3, 所以B 1′Q =3·sin 60°=32.二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________. 答案 ±24(-2,0) 解析 由y 2=-1m 2x ,得准线方程为x =14m 2,∴14m 2=2,∴m 2=18, 即m =±24,∴y 2=-8x , ∴焦点坐标为(-2,0).20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 017=________. 答案 -1 007解析 由a 1=1,a n +1=(-1)n (a n +1), 可得a 2=-2,a 3=-1,a 4=0,a 5=1, 该数列是周期为4的循环数列,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 1=504×(-2)+1=-1 007.21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________. 答案 2解析 由a =(-5,5),b =(-3,4),则a -b =(-2,1),(a -b )·b =(-2)×(-3)+1×4=10,|b |=9+16=5,则a -b 在b 方向上的投影为(a -b ) ·b |b |=105=2. 22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________.答案 3解析 因为函数f (x )=x 2+px -q =⎝⎛⎭⎫x +p 22-p 24-q 的值域为[-1,+∞),所以-p 24-q =-1,即p 2+4q =4.因为不等式f (x )<s 的解集为(t ,t +4),所以方程x 2+px -q -s =0的两根为x 1=t ,x 2=t +4,则x 2-x 1=(x 1+x 2)2-4x 1x 2=(-p )2-4(-q -s ) =p 2+4q +4s =4+4s =4,解得s =3.三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n . 解 (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2.所以a n =2·2n -1=2n (n ∈N *).(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32. 解得⎩⎪⎨⎪⎧b 1=-16,d =12. 所以b n =-16+12(n -1)=12n -28.所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n (n ∈N *).24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解 (1)当P 点在x 轴上时,P (2,0),P A :y =±22(x -2). 联立⎩⎨⎧ y =±22(x -2),x 2a 2+y 2=1,化简得⎝⎛⎭⎫1a 2+12x 2-2x +1=0,由Δ=0,解得a 2=2,所以椭圆的方程为x 22+y 2=1. (2)设切线方程为y =kx +m ,P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2-2=0, 化简得(1+2k 2)x 2+4kmx +2m 2-2=0,由Δ=0,解得m 2=2k 2+1,且x 1=-2km 1+2k 2,y 1=m 1+2k 2,y 0=2k +m , 则|PO |=y 20+4,直线PO 的方程为y =y 02x ,则点A 到直线PO 的距离d =|y 0x 1-2y 1|y 20+4, 设△POA 的面积为S ,则S =12|PO |·d =12|y 0x 1-2y 1| =12⎪⎪⎪⎪⎪⎪(2k +m )-2km 1+2k 2-2m 1+2k 2 =⎪⎪⎪⎪⎪⎪1+2k 2+km 1+2k 2m =|k +m |. 当m =2k 2+1时,S =|k +1+2k 2|.(S -k )2=1+2k 2,则k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0,解得S ≥22,当S =22时k =-22. 同理当m =-2k 2+1时,可得S ≥22, 当S =22时k =22. 所以△POA 面积的最小值为22.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1).(1)若f (0)≤1,求a 的取值范围;(2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数. 解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,0≤1,显然成立;当a >0时,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12. 综上所述,a 的取值范围是⎝⎛⎦⎤-∞,12. (2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a . 对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上, 所以f (x )在(-∞,a )上单调递减.综上所述,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2. ①当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2, 令f (x )+4x =0,即f (x )=-4x(x >0), 因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而g (x )=-4x在(0,2)上单调递增,所以g (x )<g (2)=-2, 所以y =f (x )与g (x )=-4x在(0,2)上无交点; 当x ≥2时,f (x )=x 2-3x =-4x,即x 3-3x 2+4=0, 所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0,因为x ≥2,所以x =2,综上当a =2时,f (x )+4x有一个零点x =2.②当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而g (x )=-4x在(0,a )上单调递增, 当x =a 时,g (x )=-4a ,下面比较f (a )=a -a 2与-4a的大小, 因为a -a 2-⎝⎛⎭⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0, 所以f (a )=a -a 2<-4a. 结合图象不难得到当a >2时,y =f (x )与g (x )=-4x有两个交点.综上所述,当a =2时,f (x )+4x在区间(0,+∞)内有一个零点x =2; 当a >2时,f (x )+4x在区间(0,+∞)内有两个零点.。
2019届高三数学二模试题(含解析)
2019高考数学二模试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁U B)= .2.若复数z的共轭复数满足,则复数z的虚部是.3.双曲线的准线方程是.4.某校共有学生1800人,现从中随机抽取一个50人的样本,以估计该校学生的身体状况,测得样本身高小于195cm的频率分布直方图如图,由此估计该校身高不小于175的人数是.5.命题“∀x>2,都有x2>2”的否定是.6.如图中流程图的运行结果是.7.口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,则取出的两个小球上所标数字之积为4的概率是.8.已知等差数列{a n}的前n项和为S n,a4=10,S4=28,数列的前n项和为T n,则T2017= .9.将函数y=sinxcosx的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,则实数m的最小值为.10.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则= .11.已知直线l1:x﹣2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x﹣2y+F=0交于A、C两点,其中A(﹣1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是.12.已知四面体ABCD的底面BCD是边长为2的等边三角形,AB=AC=3,则当棱AD长为时,四面体ABCD的体积最大.13.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x﹣1)+g(x﹣1)=2x,则函数f(x)= .14.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x﹣a)2+(y﹣b)2=x2+b2=a2+y2,则的最大值为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.已知△ABC的外接圆半径为1,角A,B,C的对应边分别为a,b,c,若sinB=acosC.,(1)求的值;(2)若M为边BC的中点,,求角B的大小.16.如图,在三棱柱ABC﹣A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1.17.已知椭圆C:的离心率为,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1(1)求椭圆C的方程;(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.18.数列{a n}满足,n=1,2,3,….(1)求a3,a4,并求数列{a n}的通项公式;(2)设b n=,记F(m,n)=,求证:m<n,F(m,n)<4对任意的;(3)设S k=a1+a3+a5+…+a2k﹣1,T k=a2+a4+a6+…+a2k,W k=,求使W k>1的所有k的值,并说明理由.19.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:)20.已知函数(e为自然对数的底数,m∈R).(1)求函数f(x)的单调区间和极值;(2)当时,求证:∀x>0,f(x)<x2lnx恒成立;(3)讨论关于x的方程|lnx|=f(x)的根的个数,并证明你的结论.2017年高考熟中模拟卷B.选修4-2:矩阵与变换21.已知矩阵M对应的变换将点(﹣5,﹣7)变换为(2,1),其逆矩阵M﹣1有特征值﹣1,对应的一个特征向量为,求矩阵M.C.选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,取相同的单位长度,建立极坐标系,已知曲线C1的参数方程为,(,α为参数),曲线C2的极坐标方程为,求曲线C1与曲线C2的交点的直角坐标.【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.23.在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯n关时,转n次,当次转得数字之和大于n2时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍.假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.(1)求某人参加一次游戏,恰好获得10欧元的概率;(2)某人参加一次游戏,获得奖金X欧元,求X的概率分布和数学期望.24.(1)证明:;(2)证明:;(3)证明:.2017年江苏省苏州市常熟中学高考数学二模试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁U B)= {2,3,4} .【考点】1H:交、并、补集的混合运算.【分析】根据集合的基本运算进行求解即可.【解答】解:A={x|0<x<5,x∈U}={1,2,3,4},B={x|x≤1,X∈U},则∁U B={x|x>1,X∈U}={2,3,4,5,…},则A∩(∁U B)={2,3,4},故答案为:{2,3,4}2.若复数z的共轭复数满足,则复数z的虚部是 3 .【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数与虚部的定义即可得出.【解答】解:∵,∴﹣i••i=﹣i(3+4i),∴=4﹣3i.∴z=4+3i.∴复数z的虚部是3.故答案为:3.3.双曲线的准线方程是y=.【考点】KC:双曲线的简单性质.【分析】直接利用双曲线方程求解双曲线的准线方程即可.【解答】解:双曲线,可得a=1,b=,c=2,双曲线的准线方程为:y=±.故答案为:y=.4.某校共有学生1800人,现从中随机抽取一个50人的样本,以估计该校学生的身体状况,测得样本身高小于195cm的频率分布直方图如图,由此估计该校身高不小于175的人数是288 .【考点】B8:频率分布直方图.【分析】由频率分布直方图得样本身高不小于175cm的频率,由此能估计该校身高不小于175cm 的人数.【解答】解:由频率分布直方图得样本身高不小于175cm的频率为:(0.012+0.004)×10=0.16,∴估计该校身高不小于175cm的人数是:1800×0.16=288.故答案为:288.5.命题“∀x>2,都有x2>2”的否定是∃x0>2,x02≤2 .【考点】2J:命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:命题“∀x>2,x2>2”是全称命题,其否定是:∃x0>2,x02≤2.故答案为:∃x0>2,x02≤2.6.如图中流程图的运行结果是 6 .【考点】EF:程序框图.【分析】根据程序框图进行模拟计算即可.【解答】解:第一次,S=1,i=2,S>10不成立,第二次,S=1+2=3,i=3,S>10不成立,第三次,S=3+3=6,i=4,S>10不成立第四次,S=6+4=10,i=5,S>10不成立第五次,S=10+5=15,i=6,S>10成立,输出i=6,故答案为:67.口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,则取出的两个小球上所标数字之积为4的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,再由列举法求出取出的两个小球上所标数字之积包含的基本事件个数,由此能求出取出的两个小球上所标数字之积为4的概率.【解答】解:∵口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,基本事件总数n=,取出的两个小球上所标数字之积包含的基本事件有:(1,4),(1,4),(2,2),共3个,∴取出的两个小球上所标数字之积为4的概率p=.故答案为:.8.已知等差数列{a n}的前n项和为S n,a4=10,S4=28,数列的前n项和为T n,则T2017= .【考点】8E:数列的求和.【分析】利用已知条件求出等差数列的前n项和,化简所求的通项公式,然后求和即可.【解答】解:等差数列{a n}的前n项和为S n,a4=10,S4=28,可得a1+a4=14,解得a1=4,10=4+3d,解得d=2,S n=4n+=n2+3n,==,T n=+…+=,则T2017==.故答案为:.9.将函数y=sinxcosx的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,则实数m的最小值为.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】首先化简被平移函数的解析式,得到对称轴的表达式以及函数的图象的对称轴,利用对称轴重合得到m的值.【解答】解:将函数y=sinxcosx=sin2x的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,即2(x﹣m)=k,得到x=,k∈Z;,得到x=,k1∈Z;由题意x==,k,k1∈Z所以实数m的最小值为;故答案为:.10.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则= ﹣18 .【考点】9V:向量在几何中的应用.【分析】建立坐标系,设∠ADC=α,求出各点坐标,代入向量的数量积运算公式计算即可.【解答】解:以BC为x轴,以BC的中垂线为y轴建立平面直角坐标系,设∠ADC=α,则A(6cosα,6sinα),E(3cosα,3sinα),C(3,0),B(﹣3,0),设F(a,b),则,解得a=4cosα+1,b=4sinα,∴=(﹣3﹣6cosα,﹣6sinα),=(4cosα﹣2,4sinα),∴=(﹣3﹣6cosα)(4cosα﹣2)﹣24sin2α=﹣24cos2α+6﹣24sin2α=6﹣24=﹣18.故答案为:﹣18.11.已知直线l1:x﹣2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x﹣2y+F=0交于A、C两点,其中A(﹣1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是.【考点】J9:直线与圆的位置关系.【分析】由已知求出tanα,得到直线l2的斜率,进一步求得方程,由A在圆上求得F,得到圆的方程,求出圆心坐标和半径,利用垂径定理求得|AC|的长度,然后结合圆与直线的位置关系图象,将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC 的垂直平分线时,四边形ABCD的面积最大.【解答】解:直线l1:x﹣2y=0的倾斜角为α,则tanα=,∴直线l2的斜率k=tan2α=.则直线l2的方程为y﹣0=(x+1),即4x﹣3y+4=0.又A(﹣1,0)在圆上,∴(﹣1)2﹣2+F=0,得F=1,∴圆的方程为x2+y2+2x﹣2y+1=0,化为标准方程:(x+1)2+(y﹣1)2=1,圆心(﹣1,1),半径r=1.直线l2与圆M相交于A,C两点,由点到直线的距离公式得弦心距d=,由勾股定理得半弦长=,弦长|AC|=2×=.又B,D两点在圆上,并且位于直线l2的两侧,四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,如图所示,当BD为弦AC的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD的面积最大,最大面积为:S=|AC|×|BE|+|AC|×|DE|=|AC|×|BD|=××2=,故答案为:.12.已知四面体ABCD的底面BCD是边长为2的等边三角形,AB=AC=3,则当棱AD长为时,四面体ABCD的体积最大.【考点】LF:棱柱、棱锥、棱台的体积.【分析】当体积最大时,平面ABC与底面BCD垂足,利用勾股定理计算AD.【解答】解:取BC的中点E,连结AE,DE,∵AB=AC,BD=CD,∴BC⊥AE,BC⊥DE,∴∠AED为二面角A﹣BC﹣D的平面角,∴A到平面BCD的距离d=AE•sin∠AED,显然当∠AED=90°时,四面体体积最大.此时,AE==2,DE==,∴AD==.故答案为:.13.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x﹣1)+g(x﹣1)=2x,则函数f(x)= 2x﹣2﹣x.【考点】3L:函数奇偶性的性质.【分析】根据题意,由于f(x﹣1)+g(x﹣1)=2x,则f(x)+g(x)=2x+1,同理可得f(﹣x)+g(﹣x)=2﹣x+1,利用函数的奇偶性可得﹣f(x)+g(x)=2﹣x+1,②,联立①②可得f(x)=(2x+1﹣2﹣x+1),对其变形可得答案.【解答】解:根据题意,f(x﹣1)+g(x﹣1)=2x,则f(x)+g(x)=2x+1,①,进而有f(﹣x)+g(﹣x)=2﹣x+1,又由函数f(x),g(x)是定义在R上的一个奇函数和偶函数,则有f(﹣x)+g(﹣x)=﹣f(x)+g(x),即有﹣f(x)+g(x)=2﹣x+1,②,联立①②可得:f(x)=(2x+1﹣2﹣x+1)=2x﹣2﹣x,即f(x)=2x﹣2﹣x,故答案为:2x﹣2﹣x14.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x﹣a)2+(y﹣b)2=x2+b2=a2+y2,则的最大值为.【考点】R3:不等式的基本性质.【分析】设A(0,b),B(x,0),C(a,b﹣y),由x﹣a)2+(y﹣b)2=x2+b2=a2+y2得△ABC为等边△,设△ABC边长为m,∠OAB=θ,(0)过C作CH⊥x轴与H,则∠ACH=θ﹣,a=mcos(),b=mcosθ即可求解.【解答】解:如图设A(0,b),B(x,0),C(a,b﹣y)∵(x﹣a)2+(y﹣b)2=x2+b2=a2+y2∴△ABC为等边△,设△ABC边长为m,∠OAB=θ,(0)过C作CH⊥x轴与H,则∠ACH=θ﹣,∴b=mcosθ∴∴当θ=0时,故答案为:二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.已知△ABC的外接圆半径为1,角A,B,C的对应边分别为a,b,c,若sinB=acosC.,(1)求的值;(2)若M为边BC的中点,,求角B的大小.【考点】HT:三角形中的几何计算.【分析】(1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,⇒sinAcosC﹣cosAsinCsin(A﹣C)=0,即可得a=c,即可.(2)由得⇔⇒⇒b=,即可得cosB=.【解答】解:(1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,∴sinB=acosC变形为:sin(A+C)=2sinAcosC⇒sinAcosC﹣cosAsinC=0sin(A﹣C)=0,∵A﹣C∈(﹣π,π),∴A﹣C=0,∴a=c,∴的值为1(2)∵M为边BC的中点,∴∴⇔又∵,a=c∴⇒⇒b=∴cosB=,∵B∈(0,π),∴角B的大小为.16.如图,在三棱柱ABC﹣A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1.【考点】LY:平面与平面垂直的判定.【分析】(1)连结AB1交A1B于E,连结DE,由AC1∥平面A1BD可得AC1∥DE,由E为AB1的中点即可得出D是B1C1的中点;(2)证明A1B⊥平面AB1C1,得出A1B⊥B1C1,再结合B1C1⊥BB1得出B1C1⊥平面A1ABB1,于是平面A1ABB1⊥平面C1CBB1.【解答】证明:(1)连结AB1交A1B于E,连结DE.∵AC1∥平面A1BD,AC1⊂平面AB1C1,平面AB1C1∩平面A1BD=DE,∴AC1∥DE,∵侧面A1ABB1是菱形,∴E是AB1的中点,∴D是B1C1的中点.(2)∵侧面A1ABB1是菱形,∴AB1⊥A1B,又A1B⊥AC1,AB1∩AC1=A,AB1⊂平面AB1C1,AC1⊂平面AB1C1,∴A1B⊥平面AB1C1,又B1C1⊂平面AB1C1,∴A1B⊥B1C1,∵侧面C1CBB1是矩形,∴B1C1⊥BB1,又BB1∩A1B=B,BB1⊂平面A1ABB1,A1B⊂平面A1ABB1,∴B1C1⊥平面A1ABB1.∵B1C1⊂平面C1CBB1,∴平面A1ABB1⊥平面C1CBB1.17.已知椭圆C:的离心率为,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1(1)求椭圆C的方程;(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由题意c=1,根据椭圆的离心率,即可求得a的值,b2=a2﹣c2=1,即可求得椭圆方程;(2)根据椭圆的准线方程,即可求得AM的方程,代入椭圆方程,利用韦达定理即可求得A1及B1,k1==﹣3k,存在λ=﹣3,使得k1=λk恒成立.【解答】解:(1)由椭圆的焦距2c=2,则c=1,双曲线的离心率e==,则a=,则b2=a2﹣c2=1,∴椭圆的标准方程:;(2)设A(x0,y0),则2y02=2﹣y02,则B(﹣x0,﹣y0),k=,右准线方程x=2,则M(2,0),直线AM的方程为y=(x﹣2),,整理得:(x0﹣2)2x2+2y02(x﹣2)2﹣2(x0﹣2)2=0,该方程两个根为x0,,∴x0•===•x0,则=, =(﹣2)=,则A1(,),同理可得B1(,﹣),则k1==﹣3k,即存在λ=﹣3,使得k1=λk恒成立.18.数列{a n}满足,n=1,2,3,….(1)求a3,a4,并求数列{a n}的通项公式;(2)设b n=,记F(m,n)=,求证:m<n,F(m,n)<4对任意的;(3)设S k=a1+a3+a5+…+a2k﹣1,T k=a2+a4+a6+…+a2k,W k=,求使W k>1的所有k的值,并说明理由.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)a3=a1+4=4,a4=2a2=4.当n=2k,k∈N*时,a2k+2=2a2k,可得数列{a2k}是首项与公比都为2的等比数列.当n=2k﹣1,k∈N*时,a2k+1=a2k﹣1+4,∴数列{a2k﹣1}是首项为0,公差为4的等差数列.利用等差数列与等比数列的通项公式即可得出.(2)b n==,设数列{b n}的前n项和为A n,利用错位相减法可得A n=4﹣<4.根据b n≥0,可得F(m,n)≤A n,F(m,n)<4.(3)S k=a1+a3+a5+…+a2k﹣1=2k(k﹣1),T k=a2+a4+a6+…+a2k=2k+1﹣2.W k==,对k分类讨论即可得出.【解答】(1)解:a3=a1+4=4,a4=2a2=4.当n=2k,k∈N*时,a2k+2=2a2k,∴数列{a2k}是首项与公比都为2的等比数列.∴.即n=2k,k∈N*时,a n=.当n=2k﹣1,k∈N*时,a2k+1=a2k﹣1+4,∴数列{a2k﹣1}是首项为0,公差为4的等差数列.∴a2k﹣1=4(k﹣1).即n=2k﹣1,k∈N*时,a n=2n﹣2.综上可得:a3=4,a4=4.a n=,k∈N*.(2)证明:b n==,设数列{b n}的前n项和为A n,则A n=0+1+++…+,A n=++…++,∴=1++…+﹣=﹣,∴A n=4﹣<4.∵b n≥0,∴F(m,n)≤A n,故对任意的m<n,F(m,n)<4.(3)解:S k=a1+a3+a5+…+a2k﹣1==2k(k﹣1),T k=a2+a4+a6+…+a2k==2k+1﹣2.W k==,∴W1=0,W2=1,W3=>1,W4=>1,W5=>1,W6=<1.k≥6时,W k+1﹣W k=﹣=<0,∴当k≥6时,W k+1<W k.∴当k≥6时,W k+1≤W6<1.综上可得:使W k>1的所有k的值为3,4,5.19.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:)【考点】7G:基本不等式在最值问题中的应用.【分析】(1)用总收入减去来回两次的运行成本和冷藏成本即可;(2)利用基本不等式得出W的最大值,令其最大值大于或等于零解出x,再验证车速是否符合条件即可;(3)利用导数判断W的最大值函数的单调性,即可得出W的最大值,再验证车速即可.【解答】解:(1)汽车来回一次的运行成本为×1300v2×+×v2×=v,冷藏成本为10x×=,∴W=100x﹣v﹣.(2)∵v+≥2=5•,∴W≤100x﹣5•,当且仅当v=即v=40•时取等号.令100x﹣5•≥0,得2≥,解得x≥,当x=时,v=40•=20∈(0,80],∴每次至少进货千克,才可能使销售后不会亏本.(3)由(2)可知W≤100x﹣5•=5(2x﹣•),x∈[,1000],设f(x)=2x﹣•,则f′(x)=2﹣(•+)=2﹣(+),∵x∈[,1000],∴ =∈[,2],∵函数y=x+在[,2]上单调递增,∴当=2时, +取得最大值,∴f′(x)≥2﹣>0,∴f(x)在[,1000]上单调递增,∴当x=1000时,f(x)取得最大值f已知函数(e为自然对数的底数,m∈R).(1)求函数f(x)的单调区间和极值;(2)当时,求证:∀x>0,f(x)<x2lnx恒成立;(3)讨论关于x的方程|lnx|=f(x)的根的个数,并证明你的结论.【考点】6D:利用导数研究函数的极值;52:函数零点的判定定理;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值;(2)设g(x)=x2lnx,求出函数的导数,根据函数的单调性证明即可;(3)设F(x)=f(x)﹣|lnx|,通过讨论m的范围,求出函数的单调区间,根据单调性判断函数的零点即方程根的个数.【解答】解:(1)f′(x)=,由f′(x)=0得x=1,x<1时,f′(x)>0,x>1时,f′(x)<0,∴f(x)在(﹣∞,1]递增,在递减,在[,+∞)递增,当且仅当x=时,g(x)min=﹣;∴f(x)≤﹣≤g(x),两等号不同时取,故∀x>0,f(x)<x2lnx恒成立;(3)设F(x)=f(x)﹣|lnx|,∴F(x)=f(x)﹣lnx,x≥1,∵f(x),﹣lnx都在递增,∴F(x)在(0,1]递增,∵F(1)=+m,∴m≤﹣时,∀0<x<1,F(x)<F(1)≤0,∴F(x)在(0,1)无零点,当m>﹣时,F(1)>0,∀0<x<1,F(x)<<+m+lnx,显然∈(0,1),∴F()<+m+ln=0,∵F(x)的图象不间断,∴F(x)在(0,1)恰有1个零点,综上,m=﹣时,方程|lnx|=f(x)恰有1个实根,m<﹣时,方程|lnx|=f(x)无实根,m>﹣时,方程|lnx|=f(x)有2个不同的实根.2017年高考熟中模拟卷B.选修4-2:矩阵与变换21.已知矩阵M对应的变换将点(﹣5,﹣7)变换为(2,1),其逆矩阵M﹣1有特征值﹣1,对应的一个特征向量为,求矩阵M.【考点】OU:特征向量的意义.【分析】根据矩阵的变换求得M=,利用矩阵的特征向量及特征值的关系,利用矩阵的乘法,即可求得M的逆矩阵,即可求得矩阵M.【解答】解:由题意可知:M=,M﹣1=,∴M﹣1=,设M﹣1=,则=,=,则,解得:,则M﹣1=,det(M﹣1)=﹣20+18=﹣2,则M=.∴矩阵M=.C.选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,取相同的单位长度,建立极坐标系,已知曲线C1的参数方程为,(,α为参数),曲线C2的极坐标方程为,求曲线C1与曲线C2的交点的直角坐标.【考点】Q4:简单曲线的极坐标方程.【分析】求出曲线C1的普通方程和曲线C2的直角坐标方程,两方程联立,能求出曲线C1与曲线C2的交点的直角坐标.【解答】解:∵曲线C1的参数方程为,(,α为参数),∴曲线C1的普通方程为y=1﹣2x2,x∈,∵曲线C2的极坐标方程为,∴曲线C2的直角坐标方程为y=﹣,两方程联立:,得2﹣x﹣=0,解得,,∵x∈,∴,y=﹣,∴曲线C1与曲线C2的交点的直角坐标为().【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.23.在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯n关时,转n次,当次转得数字之和大于n2时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍.假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.(1)求某人参加一次游戏,恰好获得10欧元的概率;(2)某人参加一次游戏,获得奖金X欧元,求X的概率分布和数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)记“某人参加一次游戏,恰好获得10欧元”为事件A,由题意他只闯过了第一关,没有过第二关,由此求出所求的概率;(2)根据题意知X的所有可能取值,计算对应的概率,写出随机变量X的概率分布,计算数学期望值.【解答】解:(1)记“某人参加一次游戏,恰好获得10欧元”为事件A,由题意知,他只闯过了第一关,没有过第二关,因此,他第一关转得了2、3、4中的一个,第二关转得了(1,1),(1,2),(1,3),(2,1),(2,2)中的一个,∴所求的概率为P(A)=×(5×)=;(2)根据题意,X的所有可能取值为0,10,20,40;计算P(X=0)=,P(X=10)=,P(X=20)=××=,P(X=40)=××=,∴X的概率分布为:数学期望为:E(X)=0×+10×+20×+40×=.24.(1)证明:;(2)证明:;(3)证明:.【考点】D5:组合及组合数公式.【分析】(1)利用组合数的计算公式可得:(k+1)=(k+1)•=.(2)由(1)可得: =,左边==(﹣1)k+1=,即可证明.(3)==+.由(2)可知:==.设f(n)=,则f(1)=1, =f(n﹣1).可得f(n)﹣f(n﹣1)=.利用累加求和方法即可得出.【解答】证明:(1)(k+1)=(k+1)•==(n+1).(2)由(1)可得: =,∴左边==(﹣1)k+1== =右边.∴.(3)==+由(2)可知: ==.设f(n)=,则f(1)=1,=f(n﹣1).∴f(n)﹣f(n﹣1)=.∴n≥2时,f(n)=f(1)+f(2)﹣f(1)+…+f(n)﹣f(n﹣1)=1++…+.n=1时也成立.∴f(n)=1++…+.n∈N*.即:.。
2019年高考数学模拟试题2版带有答案
1 V= (S1+ S1 S2 +S2) h
3
其中 S1、 S2 表示台体的上、下底面积,
V= 4 πR3
3
其中 R 表示球的半径
h 表示棱台的高 .
选择题部分 (共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目
要求的 .
1.( 原创题 ) 已知集合 P
bn . 3 2n
【命题意图】 本题考查数列的概念及通项公式的求解,前
n 项求和问题,同时考查转化与化归、整体思想
的能力 .
21.( 原创题 ) (本题满分 15 分)已知抛物线高三数C学:试y题2 卷第8 x 的5焦页点,共为 6F页,过 F 作直线 l 与抛物线 C 交于 A, B 两点,分别过 A, B 作抛物线 C 的切线,交 y 轴于 M , N 两点,且两切线相交于点 E .
11.
12.
13.
14.
15.
16.
17.
18.(本小题满分 14 分)
高三数学答题卷第 1 页,共 4 页
19.(本小题满分 15 分)
D1
A1
A B1
B
C1 D
C
20.(本小题满分 15 分)
ቤተ መጻሕፍቲ ባይዱ
高三数学答题卷第 2 页,共 4 页
21.(本小题满分 15 分)
22.(本小题满分 15 分)
高三数学答题卷第 3 页,共 4 页
x ym
区域的面积为 1 ,则 m 6
A. 13 6
B. 13 3
C. 3
D. 6
【命题意图】 本题主要考查数形结合的思想,以及综合运用函数思想解题的能力
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)(2021年整理)
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)(word版可编辑修改)的全部内容。
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]某空间几何体的三视图如图所示,正视图是底边长为3的等腰三角形,侧视图是直角边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称 B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫ ⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .B .1CD .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( ) AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数"的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=,b αγ=,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S是n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式; (2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为22,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R .(1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足2x =,(t 为参数). (1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4—5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =,∴集合A B 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0,则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =,则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=, 若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B .6.【答案】A【解析】由三视图可知,该几何体是圆锥的一部分,正视图是底边长为3的等腰三角形, 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A . 7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误; 周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫ ⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C . 10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA ,OB 共线, 即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点:对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在;对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到13sin sin 2S ab C C =⨯⇒= ∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=,b αγ=,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e 'y x=,曲线2y mx =的导数为2y mx '=,由e 2mx x=,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12. 三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=,将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2)219565. 【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥, 又∵23DP =,2AP =,60PAD ∠=︒, 由sin sin PD PA PAD PDA =∠∠,可得1sin 2PDA ∠=,∴30PDA ∠=︒,90APD ∠=︒,即DP AP ⊥, ∵AB AP A =,∴DP ⊥平面PAB , ∵DP ⊂平面PCD ,∴平面PAB ⊥平面PCD ;(2)以点A 为坐标原点,AD 所在的直线为y 轴,AB 所在的直线为z 轴, 如图所示,建立空间直角坐标系,其中()0,0,0A ,()0,0,1B ,()0,4,3C ,()0,4,0D ,()3,1,0P . 从而()0,4,1BD =-,()3,1,0AP =,()3,3,3PC =-,设PM PC λ=,从而得)33,31,3M λλλ+,()33,31,31BM λλλ=+-, 设平面MBD 的法向量为(),,x y z =n ,若直线PA ∥平面MBD ,满足000BM BD AP ⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩n n n,即)()()131310400x y z y z y λλλ-+++-=-=⎨+=, 得14λ=,取)3,12=--n ,且()3,1,1BP =-, 直线BP 与平面MBD所成角的正弦值等于3sin 156BP BPθ⋅-===⋅n n 20.【答案】(1)2212x y +=;(2)直线l 过定点()2,0.【解析】(1)由题意可知,抛物线2C 的准线方程为1x =, 又椭圆1C ,∴点⎛⎝⎭在椭圆上,∴221112a b +=,① 又c e a ==,∴222212a b e a -==,∴222a b =,②,由①②联立,解得22a =,21b =,∴椭圆1C 的标准方程为2212x y +=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增.(2)由()23ln f x x ax x =+-,()123f x x a x'=+-,则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-,又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根, 不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<, 当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=, 即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1)222x y a -=,3212x t y ==+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432.【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =+得112y t =+,∴直线l 的参数方程为3212x ty =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数).(2)将212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()2221230t t a +-+-=,依题意知()()2221830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数, ∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()1221t t +=-,∴2PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2019年高考考前适应性训练七数学必修2试题二
2019年高考考前适应性训练七数学必修2试题二单选题(共5道)1、设l是直线,α,β是两个不同的平面,则下列判断正确的是()A若l∥α,l∥β,则α∥βB若α⊥β,l∥α,则l⊥βC若α⊥β,l⊥α,则l⊥βD若l⊥α,l⊥β,则α∥β2、已知α、β、γ是平面,a、b是直线,且α∩β=a,α⊥γ,β⊥γ,b⊂γ,则()Aa∥bBa⊥bCa与b相交D不能确定a与b的关系3、过原点且倾斜角为60°的直线与圆:x2+y2-4y=0的位置关系是()A相切B相交C相离D无法确定4、已知△ABC的三个顶点为A(3,3,2),B(4,﹣3,7),C(0,5,1),则BC边上的中线长为[]A2B3C4D55、一个表面涂为红色的棱长是4cm的正方体,将其分割成若干个棱长为1cm 的小正方体,则只有一面是红色的小正方体个数为()A8B16C24D32填空题(共5道)6、一个正方体的各定点均在同一球的球面上,若该球的体积为4π,则该正方体的表面积为()。
7、在三棱锥P-ABC中,PA⊥平面ABC且PA=2,△ABC是边长为的等边三角形,则三棱锥P-ABC外接球的表面积为______.8、若1∩α=A,l与b相交或异面,则b与α的位置关系为______.9、已知直线平面,直线平面,给出下列命题:①,则;②若,则;③若,则;④若,则.其中正确命题的序号是()10、如图是一个几何体的本视图,则该几何体的表面积是______.-------------------------------------1-答案:tc解:若l∥α,l∥β,则α∥β或α,β相交,即A不正确;若α⊥β,l∥α,则l⊥β不一定成立,即B不正确;若l⊥α,α⊥β,则l⊂β或l∥β,即C不正确;当一条直线垂直与两个平面时,这两个平面之间的关系是平行的,即D正确.故选:D.2-答案:tc解:∵α∩β=a,α⊥γ,β⊥γ,∴a⊥γ,∵b⊂γ,∴a⊥b,故选:B.3-答案:B4-答案:B5-答案:C------------------------------------- 1-答案:242-答案:8π解:根据已知中底面△ABC是边长为的正三角形,PA⊥底面ABC,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球∵△ABC是边长为的正三角形,∴△ABC的外接圆半径r=1,球心到△ABC的外接圆圆心的距离d=1故球的半径R=故三棱锥P-ABC外接球的表面积S=4πR2=8π故答案为:8π.3-答案:相交、平行或异面解:∵1∩α=A,l与b相交或异面,∴b与α的位置关系为相交、平行或异面.故答案为:相交、平行或异面.4-答案:①③5-答案:28+12解:由三视图可知该几何体为上部是一平放的直三棱柱.底面三角形为等腰三角形,底边长为2,腰长为2;棱柱长为6.S底面==4S侧面=cl=6×(4+2)=24+12所以表面积是28+12.故答案为:28+12.。
2019年高考模拟检测考试理科数学(二)及答案
第1页(共8页) 第2页(共8页)2019年高考模拟检测考试理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{A x y ==,{}2320B x x x =+-<,R 表示实数集,则下列结论正确的是( ) A .A B ⊆B .R B A ⊇ðC .A B ⊆R ðD .B A ⊆R ð2.复数z 满足()1i i z +=,则在复平面内复数z 所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( ) A .35 B .36 C .45 D .544.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( ) A .34B .23C .12D .135.设0534a ⎛⎫= ⎪⎝⎭.,0443b ⎛⎫= ⎪⎝⎭.,()334log log 4c =,则( )A .a c b <<B .c b a <<C .c a b <<D .a b c <<6.一个几何体的三视图如图所示,则这个几何体的体积等于( )A .90B .72C .68D .607.执行如图所示的程序框图,若输入5n =,4A =,1x =-,则输出的A 的值为( )A .2-B .1-C .2D .38.把函数()2sin cos f x x x x =的图象向左平移ϕ(0ϕ>)个单位,得到一个偶函数,则ϕ的最小值为( ) ABCD9.已知抛物线2:4C x y =的焦点为F,定点()A .若射线FA 与抛物线C 相交于点M (点M在F 、A 中间),与抛物线C 的准线交于点,则FM MN =( )A .14B .13C .12D .2310.已知ABC △中,,1AB AC ==,点P 是AB 边上的动点,点Q 是AC 边上的动点, 则BQ CP ⋅的最小值为( ) A .4-B .2-C .1-D .011.函数()1log 2xa f x x ⎛⎫=- ⎪⎝⎭,0a >,1a ≠.若该函数的两个零点为1x ,2x ,则( )A .121x x >B .121x x =C .121x x <D .无法判定此卷只装订不密封班级 姓名 准考证号 考场号 座位号。
2019年新课标V数学必修2模拟习题七
2019年新课标V数学必修2模拟习题七单选题(共5道)1、已知m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ则α∥β③若m∥α,n∥β,m∥n则α∥β④若m⊥α,m∥β,则α⊥β其中真命题是()A①和②B①和③C③和④D①和④2、已知三棱柱ABC-A1B1C1的底面是锐角三角形,则存在过点A的平面()A与直线BC和直线A1B1都平行B与直线BC和直线A1B1都垂直C与直线BC平行且直线A1B1垂直D与直线BC和直线A1B1所成角相等3、直线a,b是不同的直线,平面α,β是不同的平面,下列命题正确的是()A直线a∥平面α,直线b⊂平面α,则直线a∥bB直线a∥平面α,直线b∥平面α,则直线a∥bC直线a∥直线b,直线a⊄平面α,直线b⊂平面α,则直线a∥平面αD直线a∥直线b,且直线a⊂平面α,直线b⊂平面β,则直线α∥β4、n是两条不同的直线,α、β、γ是三个不同的平面,下列四个命题中,正确命题的序号是()①若m∥α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m⊥α,n∥α,则m⊥n;④若α⊥γ,β⊥γ,则α∥β.A①②B②③C③④D①④5、一个表面涂为红色的棱长是4cm的正方体,将其分割成若干个棱长为1cm 的小正方体,则只有一面是红色的小正方体个数为()A8B16C24D32填空题(共5道)6、设正四面体的棱长为,是棱上的任意一点,且到面的距离分别为,则___.7、设正四面体的棱长为,是棱上的任意一点,且到面的距离分别为,则___.8、已知是球面上三点,且,若球心到平面的距离为,则该球的表面积为__________.9、已知一个球的体积为,则此球的表面积为.10、已知实数满足,那么的最小值为------------------------------------- 1-答案:D2-答案:tc解:对于A,过点A与直线A1B1平行的平面经过B,与直线BC相交,不正确;对于B,过点A与直线BC垂直的平面存在,则CB⊥AB,与底面是锐角三角形矛盾,不正确对于C,过点A与直线BC平行且直线A1B1垂直,则CB⊥AB,与底面是锐角三角形矛盾,不正确;对于D,存在过点A与BC中点的平面,与直线BC和直线AB所成角相等,∴与直线BC和直线A1B1所成角相等,正确.故选:D.3-答案:tc解:A选项不正确,线面平行,面中的线不一定平行于这条直线;B选项不正确,平行于同一个平面的两条直线其位置关系可以是平行、相交、异面;C选项正确,此是线面平行的判定定理;D选项不正确,两个平面中存在两条直线对应平行,两平面可能是相交的,故不对.故选C4-答案:B5-答案:C-------------------------------------1-答案:试题分析:根据题意,由于正四面体的棱长为,各个面的面积为,高为,那么可知底面积乘以高的三分之一即为四面体的体积,也等于从点P出发的两个棱锥的体积和且底面积相同,因此可知高为点评:主要是考查了等体积法的运用,属于基础题。
【高考模拟】2019理科数学试卷(七)及答案解析
2019年普通高等学校招生全国统一考试模拟卷理科数学(七)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,2,3,4U =,若{}1,3A =,{}3B =,则()()U UA B 痧等于( )A .{}1,2B .{}1,4C .{}2,3D .{}2,42.已知复数z 满足()34i 34i z +=-,z 的共轭复数,则z =( ) A .1B .2C .3D .43.如果数据1x ,2x ,…,n x 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )A .2,8xB .252,8x +C D 4.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为( ) A .9B .10C .11D .125.已知0.41.9a =,0.4log 1.9b =, 1.90.4c =,则( ) A .a b c >>B .b c a >>C .a c b >>D .c a b >>6.如图,在圆心角为直角的扇形OAB 区域中,M ,N 分别为OA ,OB 的中点,在M ,N 两点处各有一个通信基站,其信号的覆盖范围分别为以OA ,OB 为直径的圆,在扇形OAB 内随机取一点,则能够同时收到两个基站信号的概率是( )A B C D 7.某几何体的三视图如图所示,则此几何体的体积为( )A .23B .1C .43 D .838.已知函数()20172017log x f x =+)20173x x -+-+,则关于x 的不等式()()126f x f x -+>的解集为( ) A .(),1-∞B .()1,+∞C .()1,2D .()1,49.在如图所示的程序框图中,若输入的2s =,输出的2018s >,则判断框内可以填入的条件是( )开始输入x结束是否输出s 2s s =1i =1i i =+A .9i >B .10i ≤C .10i ≥D .11i ≥10.已知关于x 的方区间[)0,2π上有两个根12,x x ,且m 的取值范围是() A .()B .(⎤⎦C .⎡⎣D .[)0,111.已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()()()e 23x f x x f x '=++(e 是自然对数的底数),()01f =,若不等式()0f x k-<的解集中恰有两个整数,则实数k 的取值范围是( )ABC D 12.已知椭圆2215y x +=与抛物线2x ay =有相同的焦点F,O 为原点,点P 是抛物线准线上一动点,点A 在抛物线上,且4AF =,则PA PO +的最小值为( ) A.B .C .D .第Ⅱ卷本卷包括必考题和选考题两部分。
2019届河南省普通高等学校高中招生全国统一考试模拟(二)数学(理)试题
2019届河南省普通高等学校高中招生全国统一考试模拟(二)数学(理)试题★祝考试顺利★ 注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i z a a =+∈R 的共轭复数为z ,满足1z =,则复数z =( ) A .2i +B .2i -C .1i +D .i2.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B 的真子集的个数为( )A .3B .4C .7D .83.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( )A .2B C .D .44. 已知袋子内有6个球,其中3个红球,3个白球,从中不放回地依次抽取2个球,那么在已知第一次抽到红球的条件下,第二次也抽到红球的概率是( ) A. 21B. 53C. 52D. 515.设a =sin xdx π⎰,则6(的展开式中常数项是( ) A .160 B .-160 C .-20 D .206.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( ) A .24,33⎡⎤-⎢⎥⎣⎦ B .42,33⎡⎤-⎢⎥⎣⎦C .33,,24⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ D .33,,42⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭7.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( ) A .910a ≤< B .910a <≤C .1011a <≤D .89a <≤8.已知某函数图象如图所示,则图象所对应的函数可能是( ) A .2xx y =B .22x y =-C .e x y x =-D .|2|2x y x =﹣9.已知数列{n a }中,n a >0,a 1=1,2n a +=11n a +,a 100=a 96,则a 2018+a 3=( ) A.52 B.21 C.2D .2-1 10.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π11.点(),M x y 在曲线22:4210C x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若a ,b +∈R ,则111a b++的最小值为( ) A .1 B .2 C .3D .412.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则()A .至少存在两个点P 使得1k =-B .对于任意点P 都有0k <C .对于任意点P 都有1k <D .存在点P 使得1k ≥第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高考数学必修2模拟习题七单选题(共5道)
1、三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分
别在BC和PO上,且CM=x,PN=3CM,试问下面的四个图象中,那个图象大致描绘了三棱锥N-AMC的体积V与x的变化关系(x∈[0,3])()
A
B
C
D
2、若三球的半径之比是1:2:3,那么半径最大的球体积是其余两球体积和的()倍.
A4
B3
C2
D1
3、已知两条直线m,n,两个平面α,β,给出下面四个命题:
①m∥n,m⊥α⇒n⊥α
②α∥β,m⊂α,n⊂β⇒m∥n
③m∥n,m∥α⇒n∥α
④α∥β,m∥n,m⊥α⇒n⊥β
其中正确命题的序号是()
A①③
B②④
C①④
D②③
4、下列说法正确的个数是()
①两直线a,b没有公共点,那a和b异面
②空间两组对边分别相等的四边形是平行四边形
③两两相交的三条线共面
④有两个面平行,其余各面都是平行四边形的几何体叫棱柱
⑤直线有无数个点不在平面内,则直线与该平面平行.
A0个
B1个
C2个
D3个
5、圆心为(0,4),且过点(3,0)的圆的方程为()A(x-4)2+y2=25
B(x+4)2+y2=25
Cx2+(y-4)2=25
Dx2+(y+4)2=25
填空题(共5道)
6、设正四面体的棱长为,是棱上的任意一点,且到面
的距离分别为,则___.
7、圆x2+y2+Ax+By=0与直线Ax+By=0(A2+B2≠0)的位置关系是______.(相交、相切、相离)
8、已知圆的圆心为M(2,-3),半径为4,则圆M的方程为
________________________.
9、设正四面体的棱长为,是棱上的任意一点,且到面
的距离分别为,则___.
10、一个空间几何体的正视图、侧视图是两个边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的体积等于_______________
-------------------------------------
1-答案:tc
解:底面三角形ABC的边AC=3,CM=x,∠ACB=30°,∴△ACM的面积为:=又∵三棱锥N-AMC的高NO=PO-PN=8-3x所以三棱锥N-AMC的体积V==当x=时取得最大值,开口向下的二次函数,故选A.
2-答案:B
3-答案:tc
解:用线面垂直和面面平行的定理可判断①④正确;②中,由面面平行的定义,m,n可以平行或异面;③中,用线面平行的判定定理知,n可以在α内;故选C.
4-答案:tc
解:对于①,没有公共点的直线a、b可能是平行直线,故①不正确;对于②,若将正方形ABCD沿对角线AC折成直二面角,则四边形ABCD的四条边相等,但它不是平行四边形,故②不正确;对于③,以正方体过同一个顶点的三条棱为例,它们的所在直线两两相交,但不能确定一个平面,故③不正确;对于④,若一个几何体有两个面平行且其余各面都是平行四边形,可用两个棱柱叠加来说明此命题不成立,此可得④不正确;对于⑤,直线与平面相交时,它们有唯一公共点,除此点外其它的点都不在平面内,故直线有无数个点不在平面内,则直线不一定该平面平行,故⑤不正确.综上所述,5个命题都是假命题故选:A
5-答案:C
-------------------------------------
1-答案:试题分析:根据题意,由于正四面体的棱长为,各个面的面积为,高为,那么可知底面积乘以高的三分之一即为四面体的体积,也等于从点P出发的两个棱锥的体积和且底面积相同,因此可知高为点
评:主要是考查了等体积法的运用,属于基础题。
2-答案:把圆的方程化为标准方程得:(x+)2+(y+)2=,∴圆心坐标为(-,-),半径为,∴圆心到直线Ax+By=0的距离d===r,则直线与圆的位置关系为相切.故答案为:相切
3-答案:(x-2)2+(y+3)2=16略
4-答案:试题分析:根据题意,由于正四面体的棱长为,各个面的面积为,高为,那么可知底面积乘以高的三分之一即为四面体的体积,也等于从点P出发的两个棱锥的体积和且底面积相同,因此可知高为点评:主要是考查了等体积法的运用,属于基础题。
5-答案:解:解:由题意可知三视图复原的几何体是一个直放的三棱柱,三棱柱的底面是边长为1的等腰直角三角形,高为1的三棱柱.所以几何体的体积为。