热学习题解11

合集下载

热力学习题与答案(原件)

热力学习题与答案(原件)

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。

答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。

(假设两固相具有相同的晶体结构)。

由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。

根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。

在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。

HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。

第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。

图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。

4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。

热学课后习题答案

热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

传热学第五版课后习题答案(1)11页

传热学第五版课后习题答案(1)11页

传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。

解:根据付立叶定律热流密度为:负号表示传热方向与x 轴的方向相反。

通过整个导热面的热流量为:0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m ².k),热流密度q=5110w/ m ², 是确定管壁温度及热流量Ø。

解:热流量又根据牛顿冷却公式管内壁温度为:1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

解:(1)由附录7可知,在温度为20℃的情况下,λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K),λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为:膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K)=0.0424+0.000137×20=0.04514 W/(m ·K);矿渣棉: λ=0.0674+0.000215t W/(m ·K)=0.0674+0.000215×20=0.0717 W/(m ·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。

由上可知金属是良好的导热材料,而其它三种是好的保温材料。

热学教程习题解答

热学教程习题解答

《热学教程》习题解答第一章习题(P43)1.1解:根据trR R R T 16.273)(= 则: )K (1.29135.9028.9616.273=⨯=T1.2解:(1)摄氏温度与华氏温度的关系为C)(5932F)( t t +=解出: 40-=t(2)华氏温标与开氏温标的关系为)15.273(5932-+=T t解出: 575=t(3)摄氏温度与开始温度的关系为15.273-=T t可知:该方程无解,即摄氏温标和开氏温标不可能给出相同的读数。

1.3解:根据定压理想气体温标的定义式K 15.373732038.0K 16.273limK 16.273)(0===→trP V V V T tr1.4解:(1)第三种正确。

因为由实验发现,所测温度的数值与温度计的测温质有关,对同种测温质,还与其压强的大小有关。

(2)根据理想气体温标定义trP P PT tr 0limK 16.273→=当这个温度计中的压强在水的三相点时都趋于零时,即0→tr P 时,则所测温度值都相等。

1.5解:(1)根据2t t βαε+=,由t 值可求出ε的值(见后表)(2)根据b a t +=*ε,利用0=*t ,100=*t 及相应的ε值,可得b a +⨯=00与 b a +⨯=15100解出:0,320==b a这样,由ε320=*t 求出相应的*t 值(见后表)。

(3)将与t 对应的ε及*t 值列表如下:由表中数据即可作出t -ε,*-t ε和*-t t 图(图略)。

(4)很明显,除冰点,t 与*t 相同外,其它温度二者温度值都不相同。

*-t ε是正比关系,但是用温度t 是比较熟悉的,与日常生活一致。

1.6解:当温度不变时,C PV =,设气压计的截面积为S ,由题意可知:S P S )73474880()734(80)748768(-+⨯-=⨯-可解出:)Pa (1099.9)Pa (76010013.1)734948020(45⨯=⨯⨯+⨯=P1.7解:设气体压强分别为P 1、P 2,玻璃管横截面积为S ,由题意可知: (1)cmHg P P 2001+= hcmHg P P -=02S h P S P )70()2070(21-⨯=-⨯解出:)cm (55.3=h (注意大气压强单位变换) (2)S P S P 70)2070(21⨯≥-⨯ )Pa (1065.65040⨯=≤cmHg P1.8答:活塞会移动。

传热学习题答案(DOC)

传热学习题答案(DOC)

传热学习题答案1-9 一砖墙的表面积为122m ,厚为260mm ,平均导热系数为1.5W/(m.K )。

设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。

解:根据傅立叶定律有:WtA9.207626.05)(25125.1=--⨯⨯=∆=Φδλ1-11 夏天,阳光照耀在一厚度为40mm 的用层压板制成的木门外表面上,用热流计测得木门内表面热流密度为15W/m 2。

外变面温度为40℃,内表面温度为30℃。

试估算此木门在厚度方向上的导热系数。

解:δλtq ∆=,)./(06.0304004.015K m W t q =-⨯=∆=δλ1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式()f w t t rlh q -=π2所以()f w t t d qh -=π=49.33W/(m 2.k) 1-14 一长宽各为10mm 的等温集成电路芯片安装在一块地板上,温度为20℃的空气在风扇作用下冷却芯片。

芯片最高允许温度为85℃,芯片与冷却气流间的表面传热系数为175 W/(m 2.K)。

试确定在不考虑辐射时芯片最大允许功率时多少?芯片顶面高出底板的高度为1mm 。

解:()()[]⨯⨯⨯+⨯⨯=∆=Φ001.001.0401.001.0./1752max K m W t hA (85℃-20℃) =1.5925W1-15 用均匀的绕在圆管外表面上的电阻带作加热元件,以进行管内流体对流换热的实验,如附图所示。

用功率表测得外表面加热的热流密度为3500W/2m ;用热电偶测得某一截面上的空气温度为45℃,内管壁温度为80℃。

设热量沿径向传递,外表面绝热良好,试计算所讨论截面上的局部表面传热系数。

《热学》期末复习用 各章习题+参考答案

《热学》期末复习用 各章习题+参考答案

(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.

热力学第二定律习题解答

热力学第二定律习题解答

3.2.5 习题解答1. 有两个可逆热机的高温热源均为600K ,低温热源分别为400K 和300K 。

这两个热机分别经过一次循环操作后均从高温热源吸热5 kJ ,计算:(1)这两个热机的效率。

(2)经一次循环操作后可做的功及向低温热源放出的热。

解:(1) 2112160040033.3%600T T T η⎛⎫--=== ⎪⎝⎭ 2122260030050.0%600T T T η⎛⎫--===⎪⎝⎭ (2) ∵ 2WQ η-=∴ 1120.3335kJ 1.67kJ W Q η=-=-⨯=- 2220.55kJ 2.5kJ W Q η'=-=-⨯=- ∵ 121Q Q W +=-∴ 121(5 1.67)kJ 3.33kJ Q Q W =--=-+=- 同理 122(5 2.5)kJ 2.5kJ Q Q W ''=--=-+=- 2. 某电冰箱内的温度为273K ,室温为298K ,今欲使1kg 273K 的水变成冰,问最少需做多少功?此冰箱对环境放热若干?已知273K 时,冰的熔化热为3351kJ kg -⋅。

解:可逆制冷机的制冷效率为1121Q T W T T β==-21112982731335kJ 30.7kJ 273T T W Q T --⎛⎫==⨯⨯= ⎪⎝⎭21(33530.7)kJ 365.7kJ Q Q W =--=-+=-3. 2mol 某单原子分子理想气体其始态为105 Pa 、273K ,经过一绝热压缩过程至终态为4⨯105Pa 、546K 。

试求算S ∆,并判断此绝热过程是否为可逆过程。

解:因为是理想气体的单纯状态变化过程,所以21,m 12ln ln p T pS nC nR T p ∆=+51155461028.314 2.5ln ln J K 5.76J K 273410--⎛⎫=⨯⨯⨯+⋅=⋅ ⎪⨯⎝⎭ 因为该绝热过程的0S ∆>,所以此绝热过程是不可逆过程。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。

大学物理习题详解No.11 热力学第一定律

大学物理习题详解No.11 热力学第一定律

《大学物理AII 》作业 No.11 热力学第一定律一、判断题:(用“T ”和“F ”表示)[ F ] 1.热力学第一定律只适用于热力学系统的准静态过程。

解:P284我们把涉及热运动和机械运动范围的能量守恒定律称为热力学第一定律。

无论是准静态过程还是非静态过程均是适用的,只是不同过程的定量化的具体形式不同[ F ] 2.平衡过程就是无摩擦力作用的过程。

解:平衡过程即是过程中的中间状态均视为平衡态,与是否存在摩擦无关。

[ T ] 3.在p -V 图上任意一线段下的面积,表示系统在经历相应过程所作的功。

解:P281,根据体积功的定义。

[ F ] 4.置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态一定都是平衡态。

解:P253平衡态就是系统的宏观量具有稳定值的状态。

[ T ] 5.热力学第一定律表明:对于一个循环过程,外界对系统作的功一定等于系统传给外界的热量。

解:P294二、选择题:1.一定量的理想气体,开始时处于压强、体积、温度分别为1p 、1V 、1T 的平衡态,后来变到压强、体积、温度分别为2p 、2V 、2T 的终态,若已知12V V >,且12T T =,则以下各种说法中正确的是:[ D ] (A) 不论经历的是什么过程,气体对外所作的净功一定为正值(B) 不论经历的是什么过程,气体从外界所吸的净热量一定为正值(C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少(D) 如果不给定气体所经历的是什么过程,则气体在过程中对外所作的净功和从外界吸热的正负皆无法判断解:⎰=21d V V V p A 只适用于准静态过程,对于任意过程,无法只根据12V V >,12T T =判断A 和Q 的正负。

2.一定量的理想气体,经历某过程后,它的温度升高了。

则根据热力学定律可以断定:(1) 该理想气体系统在此过程中吸了热;(2) 在此过程中外界对该理想气体系统作了正功。

大学物理热学习题附答案11

大学物理热学习题附答案11

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等(D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

热力学习题(答案)

热力学习题(答案)

一、9选择题(共21分,每题3分)1、1.1mol理想气体从p-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta<Tb,则这两过程中气体吸收的热量Q1和Q2的关系是[ A ](A) Q1>Q2>0; (B) Q2>Q1>0;(C) Q2<Q1<0; (D) Q1<Q2<0;(E) Q1=Q2>0.2、图(a),(b),(c)各表示连接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程, 图(a)和(b)则为半径不相等的两个圆.那么:[ C ](A) 图(a)总净功为负,图(b)总净功为正,图(c)总净功为零;(B) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为正;(C) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为零;(D) 图(a)总净功为正,图(b)总净功为正,图(c)总净功为负.3、如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为ab’c’da,那么循环abcda与ab’c’da所做的净功和热机效率变化情况是:(A)净功增大,效率提高; [ D ](B)净功增大,效率降低;(C) 净功和效率都不变;(D) 净功增大,效率不变.4、一定量的理想气体分别由图中初态a经①过程ab和由初态a’经②过程初态a’cb到达相同的终态b, 如图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ](A) Q1<0,Q1>Q2 ; (B) Q1>0, Q1>Q2 ;(C) Q1<0,Q1<Q2 ; (D) Q1>0, Q1<Q2 .5、根据热力学第二定律可知: [ D ](A) 功可以全部转换为热,但热不能全部转换为功;(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(C) 不可逆过程就是不能向相反方向进行的过程;(D) 一切自发过程都是不可逆的.6、对于理想气体来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做的功三者均为负值? [ D ](A) 等容降压过程; (B) 等温膨胀过程; (C) 绝热膨胀过程; (D) 等压压缩过程.7、在下列各种说法中,哪些是正确的? [ B ](1) 热平衡过程就是无摩擦的、平衡力作用的过程.(2) 热平衡过程一定是可逆过程.(3) 热平衡过程是无限多个连续变化的平衡态的连接.(4) 热平衡过程在p-V 图上可用一连续曲线表示. (A) (1),(2); (B) (3),(4); (C) (2),(3),(4); (D) (1),(2),(3),(4).8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比A/Q 等于: [ D ] (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7.9、在温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 [ B ] (A) 25% (B) 50% (C) 75% (D) 91.74%10、一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在 [ B ](A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热.二、填空题pV1、有1mol刚性双原子分子理想气体,在等压膨胀过程中对外做功A,则其温度变化ΔT=___ A/R ___;从外界吸收的热量Q p=__7A/2 ___.2、一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷机致冷系数w = T2/(T1-T2),则η与w的关系为_____11Wη=-_____.3.一热机由温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000J,则此热机每一循环做功__400________J. 4.热力学第二定律的克劳修斯叙述是_热量不能自动地从低温物体传向高温物体开尔文叙述是_不可能把从单一热源吸收的热量在循环过程中全部转变为有用的功,而不引起任何其他物体为生变化_________________________.5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1)pdV=(m/M)RdT表示___等压_________过程;(2)Vdp=(m/M)RdT表示_____等体_________过程;(3)pdV+Vdp=0表示_______等温_______过程.6、如图,温度为T0,2T0,3T0三条等温线与两条绝热线围成三个卡诺循环:(1)abcda;(2)dcefd;(3)abefa,则其效率分别为:η1=___33.3%___;η2=___50% ___;η3=____ 66.7%___.7. 理想气体在如图所示a-b-c 过程中,系统的内能增量E =___0__8.已知一定量的理想气体经历p -T 图上所示的循环过程,图中过程1-2中,气体___吸热__(填吸热或放热)。

热学练习题含答案

热学练习题含答案

一、单项选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1 和P2,则两者的大小关系是:(A)限耍(B)p<p2.(C)p1= p2.(D)不确定的. 答案:C2双原子理想气体,作等压膨胀,若气体膨胀过程从热源吸收热量700J,则该过程气体对外做功为:a、200Jb、350Jc、300Jd、250J 答案:A3. 下列方程中,哪一个不是绝热过程方程;a、TV S=常量;b、P I T T=常量;c、P y V=常量;d、PV y =常量答案:C4.设单原子理想气体由平衡态A,经一平衡过程变化到状态B,如果变化过程不知道,但A, B两状态的P, V, T都已知,那么就可以求出:a、气体膨胀所做的功;b、气体传递的热量;c、气体内能的变化;d、气体的总质量。

答案:C5.某理想气体状态变化时,内能与温度成正比,则气体的状态变化过程是:a、一定是等压过程;b、一定是等容过程;c、一定是绝热过程;d、以上过程都有可能发生。

答案:D6.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则:a、温度和压强都相同;b、温度相同,内能也一定相同;c、温度相同,但压强不同;d、温度和压强都相不同。

答案:C7.室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比为A/Q为:a、 1/3b、2/7c、2/5d、 1/4 答案:B8.对于理想气体系统来说,下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做的功三者皆为负值:a、等压压缩过程;b、等容降压;c、等温膨胀;d、绝热膨胀。

答案:A9.摩尔数相同的氧气和氦气(视为理想气体),分别从同一初始状态开始作等温膨胀,终态体积相同,则此两种气体在这一膨胀过程中:a、吸热相同,但对外做功不同;b、吸热不同,但对外做功相同;c、对外做功和吸热均不相同d、对外做功和吸热都相同答案:D 10.根据热力学第二定律可知:a 、 功可以全部转换为热,但热不能全部转换为功;b 、 热量可以从高温物体传到低温物体,但不能从低温物体传道高温物体;c 、 不可逆过程就是不能向相反方向进行的过程;d 、 一切自发过程都是不可逆的。

热力学习题答案

热力学习题答案

第1章 《热力学》习题解答1-1若一打足气的自行车内胎在7.0C 时轮胎中空气压强为54.010Pa ⨯,则在温度变为37.0C 时,轮胎内空气压强为多少?(设内胎容积不变)[解]:轮胎内的定质量空气做等容变化状态1 Pa P K T 511100.4,280⨯== 状态2:?,28022==P K T 由查理定律得Pa Pa P T T P T T P P 55112212121043.4100.4280310⨯=⨯⨯==⇒= 1-2 氧气瓶的容积为233.210m -⨯,其中氧气的压强为71.310Pa ⨯,氧气厂规定压强降到61.010Pa ⨯时,就应重新充气,以免经常洗瓶. 某小型吹玻璃车间平均每天用去30.40m 在51.0110Pa ⨯压强下的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)[解]:设氧气瓶的容积为320102.3m V -⨯=,使用过程的温度T 保持不变使用前氧气瓶中,氧气的压强为Pa P 71103.1,⨯= 根据克拉帕龙方程nRT PV =得: 使用前氧气瓶中,氧气的摩尔数为RTV P n 011,=氧气压强降到Pa P 62100.1,⨯=时,氧气瓶中,氧气的摩尔数为RTV P n 022,=所以能用的氧气摩尔数为()21021,P P RTV n n n -=-=∆ 平均每天用去氧气的摩尔数RTV P n 333,=故一瓶氧气能用的天数为()()5.91001.140.010113102.3,562332103=⨯⨯⨯-⨯=-=∆=-P V P P V n n N 1-3在湖面下50.0m 深处(温度为4.0C ),有一个体积为531.010m -⨯的空气泡升到湖面上来. 若湖面的温度为17.0C ,求气泡到达湖面的体积.(取大气压为50 1.01310Pa p =⨯)[解]:空气泡在湖面下50.0m 深处时,3511100.1,277m V K T -⨯==Pa P gh P 5530110013.610013.15010100.1⨯=⨯+⨯⨯⨯=+=ρ气泡到达湖面时,Pa P K T 522100.1,290⨯==由理想气体状态方程222111T V P T V P =得: 35351122121029.6100.12772900.1013.6m m V T T P P V --⨯=⨯⨯⨯=⋅=1-4如图所示,一定量的空气开始时在状态为A ,压力为2atm ,体积为l 2, 沿直线AB 变化到状态B 后,压力变为1 atm ,体积变为l 3. 求在此过程中气体所作的功。

大学物理习题集(气体动力论_热力学基础)11 (2)

大学物理习题集(气体动力论_热力学基础)11 (2)

第六章热力学第二定律6-1 一致冷机工作在t2=-10℃和t1=11℃之间,若其循环可看作可逆卡诺循环的逆循环,则每消耗1.00KJ的功能由冷库取出多少热量?解:可逆制冷机的制冷系数为ε=Q2/A=T1/(T1-T2)∴从冷库取出的热量为:Q2=AT2/(T1-T2)=103×263/(284-263)=1.25×104J6-2 设一动力暖气装置由一热机和一致冷机组合而成。

热机靠燃料燃烧时放出热量工作,向暖气系统中的水放热,并带动致冷机,致冷机自天然蓄水池中吸热,也向暖气系统放热。

设热机锅炉的温度为t1=210℃,天然水的温度为t2=15℃,暖气系统的温度为t3=60℃,燃料的燃烧热为5000Kcal·Kg-1,试求燃烧1.00Kg燃料,暖气系统所得的热量。

假设热机和致冷机的工作循环都是理想卡诺循环。

解:动力暖气装置示意如图,T1=273+210=483K,T3=273+60=333K,T2=273+15=288K。

I表热机,Ⅱ表致冷机。

热机效率η=A/Q1=1-T3/T1=0.31∴ A=ηQ1=0.31Q1致冷机的致冷系数ε=Q2/A=T2/(T3-T2)∴Q2=A·T2/(T3-T2)=0.31Q1288/(333-288)=1.984Q1而Q1=qM=5000×1Kcal ∴暖气系统得到的热量为:Q=Q3+Q4=(Q1-A)+(A+Q2)=Q1+Q2=Q1+1.984Q1=2.984×5000=1.492×104 Kcal=6.24×104 KJ6-3 一理想气体准静态卡诺循环,当热源温度为100℃,冷却器温度为0℃时,作净功800J,今若维持冷却器温度不变,提高热源温度,使净功增加为 1.60×103 J,则这时:(1)热源的温度为多少?(2)效率增大到多少?设这两个循环都工作于相同的两绝热线之间。

大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案

大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案

第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。

答:内能是组成物体的所有分子的动能与势能的总和。

热量是热传递过程中所传递的能量的量度。

内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。

(1) 错。

热量是过程量,单一状态的热量无意义。

(2) 对。

物体的内能与温度有关。

2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p = 故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。

数值传热学习题解答(汇总版)

数值传热学习题解答(汇总版)

习题1-7解:由于对称性,取半个通道作为求解区域。

常物性不可压缩流体,二维层流、稳态对流换热的控制方程组为: 质量守恒方程0=∂∂+∂∂yv x u 动量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y u x u x py vu x uu νρ ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y v x v y p y vv x uv νρ 能量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂2222y T xT a y vT x uT 边界条件:进口截面 ()0,,===v c T y u u in ; 平板通道上(下)壁面 0,0=∂∂==yTv u ; 中心线上对称条件: 0,0u T v y y∂∂===∂∂; 出口截面0,0,0=∂∂=∂∂=∂∂xT x v x u ; 或者写:采用数值传热学的处理方法。

图1-10 习题1-7的图示本题如果采用整个通道作为计算区域,应该扣除0.5 分2-3.解:由u x u ∂∂=()xuu ∂∂21=η22y u ∂∂得: 其守恒形式为:()xuu ∂∂=2η22y u ∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分得:()dxdydt x uu t t t nsew ⎰⎰⎰∆+∂∂=⎰⎰⎰∆+∂∂t t t e w n s dydxdt y u 222η()()[]dxdt y u y u dydt uu uu s n t t t ewtt t w e n s ][2⎪⎪⎭⎫ ⎝⎛∂∂−⎪⎪⎭⎫ ⎝⎛∂∂=−⎰⎰⎰⎰∆+∆+η 将()()2)(PE e uu uu uu +=, ()()()2P W w uu uu uu +=,()n PN n y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂,()sSP s y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

y y y s n ∆==)()(δδ 带入,得:xdt y u u u ydt uu uu t t t S P N tt tW E ∆∆+−=∆⎥⎦⎤⎢⎣⎡−⎰⎰∆+∆+]2[22)()(η t x yu u u t y uu uu tSt P t N t W t E ∆∆∆+−=∆∆−222)()(η整理得离散方程为:()()0242=∆−+−∆−yu u u xuu uu t P t S t N tWt E η2—3:解:由2221()u 2u u ux x y η∂∂∂===∂∂∂得:原方程的守恒形式为: 222()2u ux yη∂∂=∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分,把可积的部分积出后得:22()t tsne wtu u dtdy +∆−⎰⎰= 2t te wtn s u u dtdx y y η+∆⎡⎤⎛⎫⎛⎫∂∂−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰⎰选定2u 随y 而变化的型线,这里取为阶梯式,即在控制容积内沿y 方向不变,则2222()=y ()t tt ts ne we w ttu u dtdy u u dt +∆+∆−∆−⎰⎰⎰选定2u 随t 而变化的规律,这里采用阶梯式显式,则22()t tewty u u dt +∆∆−⎰= ()()22t t e w u u t y ⎡⎤−∆∆⎢⎥⎣⎦选定uy∂∂随x 而变化的型线,这里取为阶梯式,即在控制容积内沿x 方向不变,则22t tt t e wtt n s n s u u u u dtdx x dt y y y y ηη+∆+∆⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂−=∆−⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎰⎰⎰ 选定uy∂∂随t 而变化的规律,这里采用阶梯显式,则 2t ttn s u u x dt y y η+∆⎡⎤⎛⎫⎛⎫∂∂∆−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰= 2t t n s u u t x y y η⎡⎤⎛⎫⎛⎫∂∂−∆∆⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦进一步选取u 随x,y 分段线性变化,则2222E Pe u u u += , 222w 2W P u u u +=()nt PtN ty uu y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂n , ()stSt p ts y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

工程热力学习题解答(冯青 李世武 张丽主编)

工程热力学习题解答(冯青 李世武 张丽主编)

w12 =
Rg 1 0.287 ( p1v1 − p2 v 2 ) = (T1 − T2 ) = (300 − 500) = -114.8 KJ/kg n −1 n −1 1.5 − 1
由于 w12 <0,所以是压缩功。 1-13某种气体在汽缸中进行一个可逆膨胀过程,其体积由0.1m 增加到0.3m 。已知膨胀过程 (1)气体所做的膨胀功; 中气体压力与体积变化关系为 { p}MPa = 0.24{V }m3 + 0.04 ,试求: (2)当活塞和汽缸的摩擦力保持为1000N,而活塞面积0.2m 时,扣除摩擦消耗后活塞所输 出的功。 解: (1)
1-9设某一气体的状态方程为 f ( p, v, T ) = 0 ,试证明:
(
∂p ∂v ∂T ) T ( ) p ( ) v = −1 ∂v ∂T ∂p
证:对状态方程求微分
df = (
∂f ∂f ∂f )dp + ( )dv + ( )dT = 0 ∂p ∂v ∂T
令 dT =0,则 (
∂p ∂f ∂f ) T = −( )/ ( ) ∂v ∂v ∂p

9.81×1000 287×293
=88989.9 Pa
Rg T g
ln
287 × 293 80000 p =1912.8 m ln =− 9.81 100000 p0
3
1-8某烟囱高30m, 其中烟气的平均密度为0.735kg/m 。 若地面大气压为0.1MPa, 温度为20℃。 现假设空气密度在烟囱高度范围内为常数,密度按1-7题中求解,试求烟囱内部底部的真空 度。 解:烟囱外空气密度为 ρ 空 =
习题 1-2 图
容器左侧的绝对压力为 p左 = p A = p b + pgA = 0.098 + 0.125 = 0.223 MPa 又∵容器左侧的绝对压力为 p左 = p B = pC + pgB ∴ pC = p左 − pgB = 0.223 − 0.190 = 0.033 MPa< pb ∴表 C 是真空表,其读数为 p vC = p b − pC = 0.098 − 0.033 =0.065 MPa 则容器右侧的绝对压力为 p右 = p b − p vC = 0.098 − 0.065 = 0.033 MPa 1-3 上题中,若表 A 为真空表,其读数为 24.0kPa,表 B 的读数为 0.036 MPa,试确定表 C 的读数。 解:则根据题意,有 容器左侧的绝对压力为 p左 = p A = p b − p vA = 0.098 − 0.024 = 0.074 MPa 若表 B 为压力表,则容器左侧的绝对压力为 p左 = p B = pC + pgB ∴ pC = p左 − pgB = 0.074 − 0.036 = 0.038 MPa< pb ∴表 C 是真空表,其读数为 p vC = p b − pC = 0.098 − 0.038 =0.060 MPa 则容器右侧的绝对压力为 p右 = p b − p vC = 0.098 − 0.060 = 0.038 MPa 若表 B 为真空表,则容器左侧的绝对压力为 p左 = p B = pC − p vB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M p 1.0 1.013 105 32 103 (2) 1.30 kg/m3 V RT 8.31 300
p 1 32 或: 1.30g/ L RT 0.082 300
M M 1.3 26 (3) m 5.3 10 kg 25 N VN n 2.45 10 V
2015-6-20 / 付淑英
上一页 下一页
6
【习题2-6】在常温下(例如27℃),气体分子的平均平动能等于多 少ev?在多高的温度下,气体分子的平均平动能等于1000ev?
【解答】 分子的平均平动能(平均自由度t=3) 3 3 t kT 1.38 1023 (273 27) 6.2110 21 J 2 2 leV=1.6×10-19J
i • (5) 1 摩尔自由度为 i 的分子组成的系统内能为 RT 2
• (6) 1 摩尔自由度为 3 的分子(单原子分子)组成
的系统的内能,或者说热力学体系内,1 摩尔
3 任何分子的平均平动动能之总和为 RT 2
2015-6-20 / 付淑英
上一页 下一页
13
【3-2】 速率分布函数的物理意义是什么? 试说明下列各 量的物理意义 ( n 为分子数密度,N 为系统总分子数 )
v
2


3 8.31 300 483m / s 3 32 10
【习题3-4】 某种气体分子在温度T1时的方均根速 率等于温度T2时的平均速率,求T2/T1。 【解答】
2015-6-20 / 付淑英
v
8RT2 = πμ
3RT1 2 v μ
T2 3π T1 8
上一页 下一页
【解答】 由: p nkT n p
kT
单位体积(每立方米)内的分子数
10 1013 133 n 1.38 1023 (27 273)
= 3.21×109 (m-3)= 3.21×103 (cm-3)
注:1mmHg=133Pa
2015-6-20 / 付淑英
上一页 下一页
TH 2
2 ( 1.12 104) 2 103 1.01104 K 3 8.31
tH 2 9.8 103 (C)
2 3 ( 1.12 104) 3 3 t 1.3 10 (C) TO 2 32 10 1.6 10 K O2 3 8.31
v 2 v 其中 v 500 m/s, Δv 1m/s
式中:
28 103 26 m 4.65 10 kg. 23 N A 6.02 10
26 3 2 4.651026 5002 21.381023 273

4.65 10 ΔN 4πN e 23 2π 1.38 10 273 8.5 103 N (m-3 ) 8.5 103 N (cm-3 )
1-1. 某种柴油机的气缸容积为0.827×10-3m3。设压缩 前其中空气的温度47º C,压强为 8.5×104 Pa。当活塞急 剧上升时可把空气压缩到原体积的1/17,使压强增加到 4.2×106Pa,求这时空气的温度。如把柴油喷入气缸,将
会发生怎样的情况?
解 : 只需考虑空气的初状态和末状态,把空气作为理 想气体,有: p1V1 p2V2 4Pa, p =4.2106Pa p =8.5 10 1 2 T T
tO2 7.110 (C)
3
月球表面在阳光照射下的温度可达127℃,如此高温下,月球上难 存留氢气和氧气(虽未完全逃逸,却也不能留在月球)。
2015-6-20 / 付淑英
上一页 下一页
9
【习题2-14】一立方容器,每边长1.0m,其中贮有标准状态下 的氧气,试计算容器一壁每秒受到的氧分子碰撞的次数。设 分子的平均速率和方均根速率的差别可以忽略。
4 d 3 3 V0 ( ) d 3 2 6
3
V 1 V0 N n
6 6 9 3 d 4.28 10 m 25 n 2.45 10
(5) 分子的平均平动能(平均自由度t=3)
3 3 t kT 1.38 1023 (273 27) 6.2110 21 J 2 2
【解答】 依题意:
v v
2
3RT
3 8.3 273 461m/s 3 32 10
容器一壁每秒受到的氧分子碰撞的次数:(所有分 子每秒与单位面积器壁碰撞次数)
n n n v 或 v 6 4 4
v2
25 n 2.69 10 v2 461 3.11027 (s 1 ) 4 4
6.211021 2 t 3.88 10 eV 19 1.6 10
2 t 2 1000 1.6 1019 6 T 7.7 10 K 23 3k 3 1.38 10
2015-6-20 / 付淑英
上一页 下一页
7
【习题2-13】若使氢分子和氧分子的方均根速率等于它们在地球 表面上的逃逸速率,各需多高的温度?地球半径约6370km。
d N :表示分布在 0 ~v 区间内的分子数 • (v4 ) 0 )dv f(v f ( v ) d v 0 0 N 占总分子数的百分比。

v
v


0
f (v v f1: 归一化 (v )dv :表示分布在0 ~∞ 的速率区间内所有 ( 5)d )
0
v2 v2 v2


Nf (v )dv Nf ( v )d v dN • v ( 6 ) :表示分布在 v1 ~v2 区间内的分子数 v v 1 1 1
【解答】 在地球表面的逃逸速率即为第二宇宙速率11.2km/s
[ v2 2v1 2 gR地 2 9.8 6370 103 1.12 104 m/s]
故,当 v2 3RT 1.12 104 m/s
2 v2 ( 1.12 104) T 3R 3 8.31
2015-6-20 / 付淑英
上一页 下一页
10
【习题2-16】
【解答】 依题意:
v v
2
3RT
3 8.3 273 461m/s 3 32 10
容器一壁每秒受到的氧分子碰撞的次数:(所有分 子每秒与单位面积器壁碰撞次数)
n n n v 或 v 6 4 4
2015-6-20 / 付淑英
上一页 下一页
dN 内的分子数(dN)占总分子数(N)的百分比 f ( v) Ndv
14
dN nf v)d v( nf v)dv • ( 2( ) V
dN f ( v) d v N
N n V
:表示分布在速率 v 附近、 速率区间dv 内的分子数密度。
• ( 3) (v v :表示分布在速率 v 附近、 Nf (vNf )dv )d dN 速率区间dv 内的分子数。
2015-6-20 / 付淑英
上一页
下一页
2
1-3.
,∴n1T1=n2T2 即:n1T1 = n2T2 = p/k(常量)
2015-6-20 / 付淑英
上一页
下一页
3
【习题2-1】目前可获得的极限真空度为10-13mmHg的数量级,问 在此真空度下每立方厘米内有多少空气分子,设空气的温度为 27℃。
1 2
所以
T1=320K,V1:V2=1:17 p2V2 T2 T1 930K p1V1
注:这一温度已超过柴油的燃点,所以柴油喷入
气缸时会立即燃烧,发生爆炸推动活塞作功。
2015-6-20 / 付淑英
上一页 下一页
1
1-2. 容器内装有质量为 0.10kg氧气,压强为106 Pa , 温度为 47°C。因为容器漏气, 经过若干时间后,压强 降到原来的 5/8,温度降到 27°C。问(1)容器的容积有多
v2
25 n 2.69 10 v2 461 3.11027 (s 1 ) 4 4
2015-6-20 / 付淑英
上一页 下一页
11
【3-1】 说明下列各量的物理意义
1 (1) kT 2
(2)3 kT 2
i (3) kT 2
3 (6) RT 2
• 【解答】:
M i i RT ( 4) M 2 (5) RT 2 mol
16
【3-5】 求0℃时1.0cm3氮气中速率在500m/s到501m/s之 间的分子数(在计算中可将dv近似地取为△v=1m/s) 【解答】 设1m3氮气中分子数为N,速率在500-501m/s之 间内的分子数为△N,由麦氏速率分布律:
m N 4N e 2kT
3 2 mv 2 2 kT
(1)f (v)dv
nf ( v)dv ( 2)
(3)Nf ( v)dv
(4) f (v)dv (5)0 f ( v)dv

v
0


( 6)

v2
v1
Nf (v)dv
【解答】 f ( v) :表示一定质量的气体,在温度为 T 的平衡态时,分布在速率 v 附近单位速率区间 (1)f (v)dv :表示分布在速率 v 附近,速率区 间dv 内的分子数占总分子数的百分比
所以,地球上能够存留住大量的氢气和氧气。
2015-6-20 / 付淑英
上一页 下一页
8
【习题2-13】若使氢分子和氧分子的方均根速率等于它们在月球 表面上的逃逸速率,各需多高的温度?月球半径约1720km。
【解答】 在月球表面的逃逸速率
v 2 g月R月 2 9.8 1720 103 2.4 103 m/s 6
4
【习题2-5】一容器内有氧气,其压强P=1.0atm,温度为t=27℃, 求(1) 单位体积内的分子数:(2) 氧气的密度;(3) 氧分子的质 量;(4) 分子间的平均距离;(5) 分子的平均平动能。
相关文档
最新文档