中考数学(直角三角形的边角关系提高练习题)压轴题训练含详细答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学(直角三角形的边角关系提高练习题)压轴题训练含详细答案(1)

一、直角三角形的边角关系

1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.

(1)求之间的距离

(2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)

35. 【解析】

【分析】

(1)解直角三角形即可得到结论;

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC=

33

3,然后根据三角函数的定义即可得到结论.

【详解】

解:(1)由题意得:∠ABD=30°,∠ADC=60°,

在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ︒=6012

=120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,

则'60A E AC ==, '30

CE AA ==3

在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3

∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235

答:从无人机'A 上看目标D 235

【点睛】

本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.

2.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.

(1)求观察哨所A 与走私船所在的位置C 的距离;

(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截.

【解析】

【分析】

(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.

【详解】

(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=.

在Rt ABC V 中,sin AC B AB =,所以3sin 3725155

AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4sin 15125

CM AC CAM =⋅∠=⨯=,

3cos 1595AM AC CAM =⋅∠=⨯=. 在Rt ADM △中,tan MD DAM AM

∠=, 所以tan 7636MD AM ︒=⋅=.

所以222293691724AD AM MD CD MD MC =+=+==-=,.

设缉私艇的速度为v 海里/小时,则有

2491716v

=,解得617v =. 经检验,617v =是原方程的解. 答:当缉私艇以每小时617海里的速度行驶时,恰好在D 处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

3.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .

(1)判断DE 与⊙O 的位置关系,并说明理由;

(2)求证:BC 2=2CD•OE ;

(3)若314cos ,53

BAD BE ∠==,求OE 的长.

【答案】(1)DE 为⊙O 的切线,理由见解析;(2)证明见解析;(3)OE =

356

. 【解析】 试题分析:(1)连接OD ,BD ,由直径所对的圆周角是直角得到∠ADB 为直角,可得出△BCD 为直角三角形,E 为斜边BC 的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE ,从而得∠C=∠CDE ,再由OA=OD ,得∠A=∠ADO ,由Rt △ABC 中两锐角互

余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;

(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;

(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.

试题解析:(1)DE为⊙O的切线,理由如下:

连接OD,BD,

∵AB为⊙O的直径,

∴∠ADB=90°,

在Rt△BDC中,E为斜边BC的中点,

∴CE=DE=BE=BC,

∴∠C=∠CDE,

∵OA=OD,

∴∠A=∠ADO,

∵∠ABC=90°,

∴∠C+∠A=90°,

∴∠ADO+∠CDE=90°,

∴∠ODE=90°,

∴DE⊥OD,又OD为圆的半径,

∴DE为⊙O的切线;

(2)∵E是BC的中点,O点是AB的中点,

∴OE是△ABC的中位线,

∴AC=2OE,

∵∠C=∠C,∠ABC=∠BDC,

∴△ABC∽△BDC,

∴,即BC2=AC•CD.

∴BC2=2CD•OE;

(3)解:∵cos∠BAD=,

∴sin∠BAC=,

相关文档
最新文档