中考数学第118题训练1

合集下载

2019-2020初中数学八年级下册《特殊平行四边形与梯形》专项测试(含答案) (118)

2019-2020初中数学八年级下册《特殊平行四边形与梯形》专项测试(含答案) (118)

八年级数学下册《特殊平行四边形与梯形》测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是( )A .三角形B .矩形C .菱形D .梯形2.(2分)顺次连接等腰梯形四边中点所得四边形是( )A .菱形B .正方形C .矩形D .等腰梯形3.(2分)如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( )A .1B .2C .3D .不能确定4.(2分)如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是( )A .24B .20C .16D .125.(2分)四边形ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( )A .AB =AD B .OA =OBC .AC =BD D .DC ⊥BC6.(2分)如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于( )A .57B .512C .513 D .514 7.(2分)如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( )A .20B .22C .24D .308.(2分)如图,一张矩形纸片沿BC 折叠,顶点A 落在A ′处,第二次过A ′再折叠,使折痕DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为( )A .8B .9C .10D .119.(2分)一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( )A .2<a<14B .2<a<26C .6<a<18D .6<a<2610.(2分)判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分11.(2分)下列图形是轴对称图形的是 ( )A .平行四边形B .直角三角形C .菱形D .任意三角形二、填空题12.(3分)已知正方形的面积为4,则正方形的边长为 ,对角线长为 .13.(3分)如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.14.(3分)正方形是特殊的平行四边形,请写出一条正方形具有而平行四边形不具有的性质: .15.(3分)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 互相垂直,AC=9,中位线长215,则对角线BD 的长是 . 16.(3分)等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为 度.17.(3分)在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,边BC=•8cm ,则△ABO 的周长为________.18.(3分)如图,正方形ABCD 的边长为3cm ,∠ABE=15°,且AB=AE ,则DE= cm .19.(3分)在梯形ABCD 中,AD ∥BC ,∠C=90°,且AB=AD ,连结BD ,过A 作BD 垂线交BC 于E ,连结ED ,如果EC=5 cm ,CD=12 cm ,那么梯形ABCD 的面积是 cm 2.20.(3分)对于平行四边形ABCD ,给出下列五个条件:①AB=BC ;②AC ⊥BD ;③AC=BD ;④AB ⊥BC ;⑤BD 平分∠ABC .其中要使该平行四边形成为正方形必须同时满足的两个条件是 (要求填写两组你认为合适条件的编号).21.(3分)在直角坐标系内,点A ,B ,C ,D 的坐标依次为(-2,0),(-4,5),(x ,y),(0,5),要使四边形ABCD 为菱形,则x= ,y= .22.(3分)如图,四边形ABCD 是菱形,△AEF 是正三角形,点E ,F 分别在BC ,CD 上,且AB=AE ,则∠B= .解答题23.(3分)若矩形对角线的交点到两边的距离差为4 cm ,周长为56 cm ,则这个矩形的两边长分别为 和 .24.(3分)若矩形的短边长为6 cm ,两条对角线的夹角为60°,则对角线的长为 cm .三、解答题25.(6分)在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.26.(6分)在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.27.(6分)如图,在面积为4的菱形ABCD中,画一个面积为l的△ABP,使点P在菱形ABCD的边上(不写画法,但要保留作图痕迹).28.(6分)如图,在梯形ABCD中,AB∥CD,若0A=OB,问梯形ABCD是等腰梯形吗?为什么?29.(6分)如图,已知四边形ABCD是等腰梯形,CD∥BA,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.30.(6分)如图,在□ABCD中,BF平分∠ABC,交AD于F, EF∥CD,交BC于E.求证:四边形ABEF是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.A4.C5.A6.B7.C8.B9.A10.D11.C二、填空题12.2,13.514.对角线相等(答案不惟一)15.1216.45º17.1618.319.18620.取①②⑤中的一个与③④中一个组合即可21.-2,1022.80°23.18 cm,10 cm24.12 cm三、解答题.25.EC EB延长CE、BA相交于点F,证明△DCE≌△AFE,得CE=FE,DC=AF,∴BF=BC=3,∴BE⊥CE26.(1)12cm,cm ;(2)cm227.略28.是,证△DAB≌△CBA29.证△ABD≌△BAC30.证四边形ABEF是平行四边形,再证AB=AF。

中考数学 第118题训练(5)(无答案)

中考数学 第118题训练(5)(无答案)

1一、选择题 1.|-5|的值是A . 5 B.-5 C.15 D.15- 2.如图1,直线l 与直线a ,b 相交,且a ∥b ,∠1=800,则∠2的度数是A .600 B.800 C.1000 D.12003.已知△ABC 与△A 1B 1C 1相似,且AB :A 1B 1=1 :2,则△ABC 与△ABC 的面积比为 A .1 :1 B.1 :2 C .1 :4 D.1 :8 4.已知函数13y x =-,则函数自变量x 的取值范围是 A .x ≥3 B.x>3 C.x ≠3 D.x<-3 5.如图所示的几何体的正视图是6.一组数据1,2,3,4,5的方差是 A .1 B.2 C.3 D.47.已知⊙O 1的半径为2cm ,⊙O 2的半径为4cm ,圆心距O 1O 2为3cm ,则⊙O 1与⊙O 2的位置关系是 A .外离 B.外切 C.相交 D.内切8.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值是A. 1m <B. 1m >-C.1m >D.1m <-9.在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是 A .矩形 B.菱形 C.正方形 D.梯形10.已知圆锥的母线长为5cm ,底面半径为3cm ,则它的全面积为A .230cm π B.224cm π C.215cm π D.29cm π11.依据某校九年级一班体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图3(学生成绩取整数),则成绩在21.5-24.5这一分数段的频数和频率分别是A .4,0.1 B.10, 0.1 C.10, 0.2 D.20, 0.2 12.高为2且底面为正方形的长方体的体积为30,则长方体的底面边长为 A .1 B.2 C.4 D.8 13.已知函数2y ax ax =+与函数(0)ay a x=<,则它们在同一坐标系中的大致图象是14.下列命题中,正确的命题是A .边长为3,4,6的三角形是直角三角形B .三角形中各个内角的角平分线的交点是三角形的外心C .三角形中各条边的中垂线的交点是三角形的重心D .三角形的中位线平行于第三边且等于第三边的一半15.给出的下列计算或化简:(1)246()a a =,(2)33(3)27a a -=- (3)2124-=,(4)223(0).a a a a -=-<其中正确个数有A .1个 B.2个 C.3个 D.4个 二、(本大题3个小题,共18分,每小题6分)16.计算:0031()8tan 453+-+17分解因式:244ax ax a -+18.先将式子2211(1)x x x -+÷化简,然后请你自选一个理想的x 值求出原式的值。

2022年吉林省长春市中考数学试题及参考答案

2022年吉林省长春市中考数学试题及参考答案

2022年长春市初中学业水平考试数 学本试卷包括三道大题,共 24 道小题,共6页。

全卷满分 120 分,考试时间为 1.20分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区城内作答,在草稿纸、试卷上答题无效。

一、选择题(本大题共8小题,每小题3分,共24分)1.右是由5个相同的小正方体组合而成的立体图形,其主视图是A B C D (第1题) 2.长轨份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1 800 000度电,将数据1 800 000用科学记数法表示为A.18×105B.1.8×106C.1.8×107D.0.18×107 3.不等式x +2>3的解集是A.x <1B.x <5C. x >1D. x >5 4.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是A.a >0B.a <bC.b -1<0D.ab >0 5.下图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D , BC ⊥AD 垂足为C ,设∠ABC =α,下列关系式正确的是 A.sin α=AB BCB.sin α=BC ABC.sin α=AB ACD.sin α=ACAB(第5题) (第6题)6.如图,四边形ABCD 是⊙O 的内接四边形。

若∠BCD =121°,则∠BOD 的度数为 A.138° B.121° C.118° D.112°7.如图,在△ABC 中,据尺规作图痕迹,下列说法不一定正确的是 A. AF =BF B. AE =12AC C.∠DBF +∠DFB =90° D.∠BAF =∠EBC(第7题) (第8题)8.如图,在平面直角坐标系中,点P 在反比例函数y =k x(k >0,x >0)的图象上,其纵坐标为2,过点P 作PQ ∥y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM ,若点M 也在该反比例函数的图象上,则k 的值为 A.√32B. √3C. 2√3D. 4 二、填空题(本大题共6小题,每小题3分,共18分) 9.分解因式:m 2+3m = ·10.若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为 .11.《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空。

2024届安徽省宿州市第十一中学中考数学最后冲刺浓缩精华卷含解析

2024届安徽省宿州市第十一中学中考数学最后冲刺浓缩精华卷含解析

2024届安徽省宿州市第十一中学中考数学最后冲刺浓缩精华卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C2.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2D.a2﹣3a+94.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π5.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C.向左平移4个单位D.向右平移4个单位6.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是()A .x 0>B .x 1<C .x 1>D .x 为任意实数7.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°8.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y <0;③3a+c=0;④若(x 1,y 1)(x 2、y 2)在函数图象上,当0<x 1<x 2时,y 1<y 2,其中正确的是( )A .①②④B .①③C .①②③D .①③④ 10.若反比例函数k y x =的图像经过点1(,2)2A -,则一次函数y kx k =-+与k y x=在同一平面直角坐标系中的大致图像是( ) A . B . C . D .二、填空题(共7小题,每小题3分,满分21分)11.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m =_______.12.对于实数a,b,定义运算“*”:a*b=2()()a ab a ba b a b⎧-≥⎨-<⎩,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.13.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)AB的长等于_____;(2)点F是线段DE的中点,在线段BF上有一点P ,满足53BPPF=,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.14.分解因式:x2y﹣4xy+4y=_____.15.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12PC的最大值为_____.16.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.17.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.三、解答题(共7小题,满分69分)18.(10分)(1)解不等式组:2322112323x xxx>-⎧⎪-⎨≥-⎪⎩;(2)解方程:22 212x xx x+=--.19.(5分)先化简,再求值:22111xx x x⎛⎫-+⎪--⎝⎭,其中x满足2410x x-+=.20.(8分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(10分)问题提出(1).如图1,在四边形ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD 的面积为_;问题探究(2).如图2,在四边形ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在AD、CD 上分别找一点E、F,使得△BEF 的周长最小,作出图像即可.23.(12分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.24.(14分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据相反数的定义进行解答即可.【题目详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【题目点拨】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.2、B【解题分析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故选B.考点:勾股定理的应用.3、C【解题分析】根据平方差公式计算可得.【题目详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【题目点拨】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.4、B【解题分析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.5、A【解题分析】将抛物线()214y x =-++平移,使平移后所得抛物线经过原点,若左右平移n 个单位得到,则平移后的解析式为:()214y x n =-+++,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m 个单位得到,则平移后的解析式为:()214m y x =-+++,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.6、B【解题分析】分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.详解:对称轴是:x =1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小;故选B .点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.7、C【解题分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【题目详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【题目点拨】本题考查了等腰三角形的性质,平行线的性质,是基础题.8、C【解题分析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A 、既不是轴对称图形,也不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选C .考点:中心对称图形;轴对称图形.9、B【解题分析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确; 由图象可知,当﹣1<x <3时,y <0,②错误;由图象可知,当x=1时,y=0,∴a ﹣b+c=0,∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x 1,y 1)、(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2;当x 1<x 2<1时,y 1>y 2;故④错误;故选B .点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理.10、D【解题分析】 甶待定系数法可求出函数的解析式为:1y x =-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【题目详解】解:由于函数k y x =的图像经过点1,22A ⎛⎫- ⎪⎝⎭,则有 1k ,=- ∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【题目点拨】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;二、填空题(共7小题,每小题3分,满分21分)11、3或1.【解题分析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.综上所述:∴m的值为3或1.故答案为3或1.12、-1.【解题分析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.13见图形【解题分析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K,因为BI∥D J,所以BK:DK=BI:D J=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K.∵BI∥D J,∴BK:DK=BI:D J=5:2.连接EK 交BF 于P ,可证BP :PF =5:3.109(Ⅱ)由题意:连接AC 、BD .易知:AC ∥BD ,可得:EC :ED =AC :BD =3:1,取格点G 、H ,连接GH 交DE 于F .因为DG ∥CH ,所以FD :FC =DG :CH =5:8,可得DF =EF .取格点I 、J ,连接I J 交BD 于K .因为BI ∥D J ,所以BK :DK =BI :D J=5:2,连接EK 交BF 于P ,可证BP :PF =5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.14、y (x -2)2【解题分析】先提取公因式y ,再根据完全平方公式分解即可得.【题目详解】原式=2(44)y x x -+=2(2)y x -,故答案为2(2)y x -.15、1【解题分析】分析: 由PD−12PC =P D−PG≤DG ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =1. 详解: 在BC 上取一点G ,使得BG =1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12 PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG2243+1.故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.16、1【解题分析】根据平移规律“左加右减,上加下减”填空.【题目详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,解得m=1.故答案是:1.【题目点拨】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.17、5 8【解题分析】利用P(A)=mn,进行计算概率.【题目详解】从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为105 168.故答案是:5 8 .【题目点拨】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.三、解答题(共7小题,满分69分)18、(1)﹣2≤x<2;(2)x=45.【解题分析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【题目详解】(1)2322x112323x xx①②>-⎧⎪⎨-≥-⎪⎩,∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=45,检验:把x=45代入(2x﹣1)(x﹣2)≠0,所以x=45是原方程的解,即原方程的解是x=45.【题目点拨】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.19、21x x +,1. 【解题分析】 原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将2410x x -+=变形为214x x +=,整体代入计算即可.【题目详解】解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=--- 321(1)x x x x x -+-=- 2(1)(1)(1)x x x x x -+-=- 21x x+= ∵2410x x -+=,∴214x x +=,∴原式44x x== 【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20、7.6 m .【解题分析】利用CD 及正切函数的定义求得BC ,AC 长,把这两条线段相减即为AB 长【题目详解】解:由题意,∠BDC =45°,∠ADC =50°,∠ACD =90°,CD =40 m .∵在Rt △BDC 中,tan ∠BDC =.∴BC =CD =40 m .∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【题目点拨】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.21、(1)0.3 ,45;(2)108°;(3)16.【解题分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【题目详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)3,(2)见解析【解题分析】(1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求. 【题目详解】(1)∵AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=12∠ADC=30°,∴AB=3∴S△ABD=1·2AB AD=332∴四边形ABCD的面积为2S△ABD=33(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.故此时△BEF的周长最小.【题目点拨】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.23、(1)证明见解析;(2).【解题分析】试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.24、见解析【解题分析】(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【题目详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.。

垂径定理-中考数学专项训练(含解析)

垂径定理-中考数学专项训练(含解析)

垂径定理一、单选题A.82.如图,圆弧形桥拱的跨度A.2米B.43.如图,一个圆柱形的玻璃水杯,将其水平放置,截面是个圆,是弧AB的中点,2CD=cm,杯内水面宽A.6cm4.如图,CD是圆O长为()A.33A .45︒6.如图,O 的半径是A .27.如图是一段圆弧 AB 点.若63,AB CD =A .6πB .4π8.如图,在O 中,半径23r =,AB 过点C 作CD OC ⊥交O 于点D ,则A .4B的直径,11.如图,AB是O==,则CD5,3AB BC的弦,半径12.如图,AB是O中,直径13.如图,在O一点,连AE,过点C作14.如图,在圆O中,弦的直径15.如图.O为.的外接圆,16.如图,⊙O是ABC∠的度数为于点D,连接BD,则D三、解答题17.如图,AB为半圆O点D,若4,==AB AC(1)DE的长.(2)阴影部分的面积.18.如图,AB 为O 的直径,CD 为弦,CD AB ⊥于点E ,连接DO 并延长交O 于点F ,连接AF 交CD 于点G ,CG AG =,连接AC .(1)求证:AC DF ∥;(2)若12AB =,求AC 和GD 的长.19.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C D 、两点,若16cm 6cm AB CD ==,.(1)求AC 的长;(2)若大圆半径为10cm ,求小圆的半径.∠;(1)连接AD,求OAD(2)点F在 BC上,CDF∠=参考答案:∵OA OB =,C 为弦AB 中点,∴OC AB ⊥,4AC =,∴OE 平分 AB ,∵D 为 AB 的中点,∴点,D E 重合,∴,,O C D 三点共线,设圆的半径为r ,则:2OC OD CD r =-=-,由勾股定理,得:222OA AC OC =+,∴()22242r r =+-,解得:=5r ;故选B .4.C【分析】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.连接OC ,首先根据题意可求得63OC OE ==,,根据勾股定理即可求得CE 的长,再根据垂径定理即可求得CD 的长.【详解】解:如图,连接OC ,∵123AB BE ==,,∴63OB OC OE ===,,∵AB CD ⊥,∵50BOC ∠=︒,OC ∴OCB OBC ∠=∠=∵OC AB ⊥,∴AD BD =,故选:B.7.B【分析】本题考查的是垂径定理,勾股定理及弧长的计算公式,先根据垂径定理求出=长,由题意得OD OAOE AB ⊥ ,132AE BE AB ∴===,22OE OA AE ∴=-=在Rt COE △中,∵AB 是O 的直径,∴152OD OB AB ===∵,6CD AB CD ⊥=,∴13,2DE CD DEO ==∠∴22OE OD DE =-=∵5AB =,∴25OE =,∵DE 切O 于点E ,∴OE DE ⊥,∴90OED ∠=︒,∵1OA =,120AOB ∠=︒,∴30A B ==︒∠∠,AC BC =∴1122OC OA ==,AC =∵直径CD 长为4,∴1422OD =⨯=,∵1OG =,∴1DG OD OG =-=,∴AB 垂直平分OD ,OH 经过圆心O ,12AH BH AB ∴===∴2AO AH OH =+故答案为:5.在Rt AOD 中,12OD OA ==,,1cos 2AOD \Ð=,60AOD ∴=︒∠,OE AC ⊥ ,由垂径定理知,点E是CD的中点,也是AB是 的直径,CD⊥AB∴垂直平分CD,M是OA的中点,∴1122OM OA OD==,OA CD于点M,⊥∴点M是CD的中点,∴垂直平分CD,ABNC ND∴=,Q,∠=︒45CDFNCD NDC∴∠=∠=︒,45∴∠=︒,90CND。

2018年随州市中考数学试题含答案解析

2018年随州市中考数学试题含答案解析

2018年湖北省随州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.(3分)﹣的相反数是()A.﹣ B.C.﹣2 D.2【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)下列运算正确的是()A.a2•a3=a6 B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2D.(﹣a2)3=﹣a6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得.【解答】解:A、a2•a3=a5,此选项错误;B、a3÷a﹣3=a6,此选项错误;C、(a﹣b)2=a2﹣2ab+b2,此选项错误;D、(﹣a2)3=﹣a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.4.(3分)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.5.(3分)某同学连续6次考试的数学成绩分别是85,97,93,79,85,95,则这组数据的众数和中位数分别为()A.85 和89 B.85 和86 C.89 和85 D.89 和86【分析】根据众数、中位数的定义即可判断;【解答】解:将数据重新排列为79、85、85、93、95、97,则这组数据的中位数为=89,众数为85故选:A.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是次数出现最多的数;6.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S 四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.∵S△ADE =S四边形BCED,∴=,∴===﹣1.故选:C.【点评】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.7.(3分)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是( )A .B .C .D .【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D 选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A 、C 均错误; 故选:B .【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.8.(3分)正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .B .C .D .【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =×2×1=1,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为=, 故选:A .【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.9.(3分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m ,最大的“正方形数”为n ,则m +n 的值为( )A .33B .301C .386D .571【分析】由图形知第n 个三角形数为1+2+3+…+n=,第n 个正方形数为n 2,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n 个三角形数为1+2+3+…+n=,第n 个正方形数为n 2,当n=19时,=190<200,当n=20时,=210>200, 所以最大的三角形数m=190;当n=14时,n 2=196<200,当n=15时,n 2=225>200,所以最大的正方形数n=196,则m+n=386,故选:C.【点评】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=,第n个正方形数为n2.10.(3分)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D 两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D 点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.二.填空题(本大题共6小题、每小题3分,共18分,只需要将结果直接填在答卡对应题号处的横线上)11.(3分)计算:﹣|2﹣2|+2tan45°=4.【分析】直接利用二次根式的性质结合绝对值的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2﹣(2﹣2)+2×1=2﹣2+2+2=4.故答案为:4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=60度.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=20°,根据等腰三角形的性质解答即可.【解答】解:如图,连接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=60°,∵OA=OB,∴∠B=∠OAB=60°,故答案为:60.【点评】本题考查的是圆周角定理的运用,掌握圆的半径相等、等腰三角形的性质是解题的关键.13.(3分)已知是关于x,y的二元一次方程组的一组解,则a+b= 5.【分析】根据方程组解的定义,把问题转化为关于a、b的方程组,求出a、b 即可解决问题;【解答】解:∵是关于x,y的二元一次方程组的一组解,∴,解得,∴a+b=5,故答案为5.【点评】本题考查二元方程组,解题的关键是理解题意,学会用转化的思想思考问题,所以中考常考题型.14.(3分)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为3.【分析】根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值,本题得以解决.【解答】解:设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.(3分)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为(,﹣).【分析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【解答】解:作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OBH为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣).故答案为:(,﹣).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.(3分)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依据S△BDE=×BD×OE=×BE×DF,可得DF=,进而得出GF=,再根据S△ABF =S梯形ABFD﹣S△ADF,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,∵S△BDE=×BD×OE=×BE×DF,∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,GF==,∵S△ABF =S梯形ABFD﹣S△ADF,∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.【点评】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是利用图形面积的和差关系进行计算.三、解答题(本人题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.(6分)先化简,再求值:,其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子,由x为整数且满足不等式组可以求得x的值,从而可以解答本题.【解答】解:===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确分式的化简求值的计算方法.18.(7分)己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合+=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合+=﹣1找出关于k的分式方程.19.(9分)为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为6;(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为144度;(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有100人:(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.【分析】(1)用总人数减去其他分组的人数即可求得60≤x<70的人数a;(2)用360°乘以成绩在70≤x<80的人数所占比例可得;(3)用总人数乘以样本中优秀人数所占比例即可得;(4)先画出树状图展示所有12种等可能的结果数,再找出有C的结果数,然后根据概率公式求解.【解答】解:(1)a=30﹣(2+12+8+2)=6,故答案为:6;(2)成绩x在“70≤x<80”所对应扇形的圆心角度数为360°×=144°,故答案为:144;(3)获得“优秀“的学生大约有300×=100人,故答案为:100;(4)50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小明用C表示),画树状图为:共有12种等可能的结果数,其中有C的结果数为6,所以小明被选中的概率为=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和频率分布直方图.20.(8分)随州市新㵐水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.【分析】(1)根据等腰直角三角形的性质计算DE的长;(2)作AH⊥BC于H,如图2,由于BD=DE=3,则AB=3BD=15,在Rt△ABH 中,根据等腰直角三角形的性质可计算出BH=AH=15,然后在Rt△ACH中利用含30度的直角三角形三边的关系即可得到AC的长.【解答】解:(1)∵∠ABC=∠DEB=45°,∴△BDE为等腰直角三角形,∴DE=BE=×6=3.答:最短的斜拉索DE的长为3m;(2)作AH⊥BC于H,如图2,∵BD=DE=3,∴AB=3BD=5×3=15,在Rt△ABH中,∵∠B=45°,∴BH=AH=AB=×15=15,在Rt△ACH中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC的长为30m.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).21.(8分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM ⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【点评】本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.22.(11分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【分析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【解答】解:(1)设p与x之间的函数关系式为p=kx+b,,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点评】本题考查二次函数的应用、一元二次方程的应用,解不等式,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.=,5.=;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1=,2.0=;(注:0.1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.=1(填“>”、“<”或“=”)②若已知0.8571=,则3.1428=.(注:0.857l=0.285714285714…)【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0.=、5.=5+=,故答案为:、;(2)0.=0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x=,∴0.=;(3)同理0.1==,2.0=2+=故答案为:,(4)①0.==1故答案为:=②3.1428=3+=3+=故答案为:【点评】本题考查了规律探索和简单一元一次方程的应用,解答时注意按照阅读材料的示例找到规律.24.(12分)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x 轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N 的坐标:若不存在,请说明理由.【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D ⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.【解答】解:(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=B′D=m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(负值舍去),当x=时,HN=QM=﹣x2+2x+2=,点M(,0),∴点N坐标为(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.。

(整理版)年中考数学第118题训练(1)

(整理版)年中考数学第118题训练(1)

中考数学第1-18题训练(1)一、选择题:1.以下各式中,p ,q 互为相反数的是〔 〕 A .pq =1B .pq =-1C .p +q =0D .p -q =02.以下计算正确的选项是〔 〕 A .)(818181y x y x +=+ B .xzy z y x y 2=+C .yy x y x 21212=+- D .011=-+-xy y x3.a 是实数,且x >y ,那么以下不等式中,正确的选项是〔 〕 A .ax >ayB. a 2x ≤a 2yC .a 2x >a 2yD. a 2x ≥a 2y4.矩形、菱形、正方形都具有的性质是〔 〕 A .每一条对角线平分一组对角 B .对角线相等 C .对角线互相平分D .对角线互相垂直5.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为〔 〕A .44)2(22m n m x -=+ B .44)2(22n m m x -=+ C .24)2(22n m m x -=+ D .24)2(22m n m x -=+6.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.假设设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,那么y 与x 之间的函数关系式为〔 〕A .y =2a (x -1)B .y =2a (1-x )C .y =a (1-x 2)D .y =a (1-x )27.假设等腰三角形一腰上的高和另一腰的夹角为25°,该三角形的一个底角为〔 〕 °°C .65°°°°8.随机抛掷一枚均匀的硬币两次,那么出现两面不一样的概率是〔 〕 A .41 B .21 C .43 D .19.两圆的半径分别为7和1,圆心距为10,那么其内公切线长和外公切线长分别为〔 〕A .6,8B .6,10C .8,2D .8,610.我市某风景区,在“五一“长假期间,接待游人情况如以下图所示,那么这七天游览该风景区的平均人数为〔 〕A .2800人B .3000人C .3200人D .3500人11.小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm ,母线长为12cm ,不考虑接缝,这个生日帽的侧面积为〔 〕A .36πcm 2B .72πcm2C .100πcm 2D .144πcm2二、填空题:12、显微镜下发现某种细胞直径约为,用科学记数法表示这个数为____________mm . 13.请写出一个值k =____,使一元二次方程x 2-7x +k =0有两个不相等的非0实数根.14.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是__________. 15.如图是中国共产主义青年团团旗上的图案〔图案本身没有字母〕,5个角的顶点A ,B ,C ,D ,E 把外面的圆5等分,那么∠A +∠B +∠C +∠D +∠E =__________________.59,1216,2125,3236,…中得到巴尔末公式,从而翻开了光谱奥秘的大门,请你按照这种规律,写出第n 〔n ≥1〕个数据是___________. 三、解答题:17.解方程组:⎩⎨⎧=--=-+063042y x y x 18.解方程:2121=++x x19.计算:2010011(20072009)(1)(1233)3-⎛⎫++-+ ⎪⎝⎭·tan30°。

中考数学 第118题训练(12)(无答案)

中考数学 第118题训练(12)(无答案)

1一、选择题1、下列各数中,最小..的数是( ) A .-2 B .-1 C .0 D .2 2、下列立体图形中,是多面体的是( )3、下列计算中,正确的是( )A .33x x x =g B .3x x x -= C .32x x x ÷= D .336x x x += 4、下列命题中,正确的是( )A .对顶角相等B .同位角相等C .内错角相等D .同旁内角互补5、以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩6、下列各图中,是轴对称图案的是( )7、二次函数221y x x =-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .38、小明由A 点出发向正东方向走10米到达B 点,再由B 点向东南方向走10米到达C 点,则正确的是( ) A .∠ABC=22.5°B .∠ABC=45° C .∠ABC=67.5° D .∠ABC=135° 9、关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <0 10、如图,⊙O 是△ABC 的内切圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60°,如果⊙O的半径为2,则结论错误的是( )A .AD DB = B .»»AE EB = C .1OD = D .3AB =二、填空题(每小题3分,共18分) 11、化简2-= . 12、方程511x =+的解是 . 13、线段AB=4㎝,在线段AB 上截取BC=1㎝,则AC= ㎝. 143x -有意义,则实数x 的取值范围是15、已知广州市的土地总面积是74342km ,人均占有的土地面积S (单位:2/km 人),随全市人口n (单位:人)的变化而变化,则S 与n 的函数关系式是 .16、如图,点D 是AC 的中点,将周长为4㎝的菱形ABCD 沿对角线AC 方向平移AD 长度得到菱形OB ’C ’D ’,则四边形OECF 的周长是 ㎝ 三、解答题17、(9分)请以下列三个代数式中任选两个构造一个分式,并化简该分式。

中考数学 第118题训练(4)

中考数学 第118题训练(4)

1一、选择题:1.-31的相反数是 A .3 B .-3 C .31 D .-312.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为A .8.99×105亿米3.0.899×106亿米3C .8.99×104亿米3D .89.9×103亿米33.下列图形中既是轴对称图形又是中心对称图形的是A .B .C .D .4.下列说法错误的是A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率大于0且小于1D .不确定事件发生的概率为05.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是A .甲10元,乙8元B .甲8元,乙10元C .甲12元,乙10元D .甲10元,乙12元 6.下列三视图所对应的直观图是A .B .C .D .7.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定8.五个小组植树的棵数是:10,10,12,x ,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是A .12B .10C .9D .89.如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、H ,设△CDH 、△GHE 的面积分别为S 1、S 2,则A .3S 1 = 2S 2B .2S 1 = 3S 2C .2S 1 =3S 2D .3S 1 = 2S 210.将一块弧长为π 的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为A .3B .23 C .5 D .2511.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =A .60︒B .67.5︒C .72︒D .75︒12.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是A .0B .1C .2D .3二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.因式分解:2m 2-8n 2= .14.如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35︒,则∠D = . 15.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 ____________千米∕小时.16.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 对应边的比为1∶2,则线段AC 的中点P 变换后对应的点的坐标为 . 三、解答题:17.计算:|345tan |32)31()21(1-︒-⨯+--.18.化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围.A BCD中考数学第1-18题训练(4)。

中考数学第118题训练(2)

中考数学第118题训练(2)

中考数学第118题训练(2)一、选择题 (本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、运算:) ( a a a 234=÷⋅A 、3aB 、4aC 、5aD 、6a 2、左下图是一个水管的三叉接头,它的左视图是 ( )3、在直角坐标系中,点A(2,-3)关于原点对称的点位于 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、下列事件:① 打开电视机,它正在播广告;② 从一只装有红球的口袋中,任意摸出一个球,恰好是白球; ③ 两次抛掷正方体骰子,掷得的数字之和小于13; ④ 抛掷硬币1000次,第1000次正面向上。

其中为可能事件的是 ( )A 、①③B 、①④C 、②③D 、②④ 5、如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA , 则∠BCD= ( )A 、1050B 、1200B 、1350C 、15006、如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的依照是 ( )A 、两点之间线段最短B 、矩形的对称性C 、矩形的四个角差不多上直角D 、三角形的稳固性 7、x 为实数,下列式子一定有意义的是 () A 、1x 2+ B 、x x 2+ C 、1-x 12 D 、2x 18、将 )3(- , )2(- , )-sin30(30-2︒这三个实数按从小到大的顺序排列,正确的结果是 ( )A 、 )3(- )2(- )-sin30(3-2<<︒ B 、 )2(- )3(- )-sin30(03-2<<︒ C 、 )-sin30()2-()3-(-23︒<< D 、 )-sin30()3-()2-(-23︒<< 9、如图,将△ABC 绕顶点A 顺时针旋转600后,得到△A ''C B ,且'C 为BC 的中点,则D C ':'DB = ( )A 、1:2B 、1:22C 、1:3D 、1:3A B C D ABCDO·(第5题图)(第6题图)ABCD'B'C(第9题图)(第10题图)10、如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,OA//BC ,上底边OA 在直线y=x 上,下底边BC 交x 轴于E(2,0),则四边形AOEC 的面积为 ( ) A 、3 B 、3 C 、1-3 D 、13+ 二、填空题 (本小题共5小题,每小题3分,共15分)11、在电视上看到的天气预报中,绵阳王朗国家自然爱护区某天的气温为“-5C ︒”,表示的意思是__________________________。

中考数学第118题训练(10)

中考数学第118题训练(10)

中考数学第118题训练(10)一、选择题 (本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、运算1-2的结果是 ( )A 、-1B 、1C 、 -2D 、3 2、已知分式1x 1x+-的值是零,那么x的值是 ( ) A 、-1 B 、0 C 、1 D 、1± 3、如图,A 、B 、C 、是⊙O 上的三点,∠BAC=45°,则∠BOC 的大小是 ( ) A 、90° B 、60° C 、45° D 、22.5° 4、假如两圆半径分别为3和4,圆心距为8,那么这两圆的位置关系是 ( )A 、内切B 、相交C 、外离D 、外切5、全国中小学危房改造工程实施五年来,已改造农村中小学危房7 800万平方米,假如按一幢教学楼总面积是750平方米运算,那么该工程共修建教学楼大约有 ( )A 、10幢B 、10万幢C 、20万幢D 、100万幢 6、如图,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,假如EF=2,那么ABCD 的周长是 ( )A 、4B 、8C 、12D 、16 7、小华拿一个矩形木框在阳光下玩,矩形木框在地面上的投影不可能是 ( )A B C D8、假如两点P 1(1,y 1)和 P 2(2,y 2)都在反比例函数x1y =的图象上,那么 ( ) A 、0y y 12<< B 、0y y 21<< C 、0y y 12>> D 、0y y 21>> 9、在△ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 ( ) A 、3π B 、32π C 、π D 、34π10、自2006年3月26日起,国家对石油开采企业销售国产石油因价格超过一定水平(每桶40美元)所获的超额收入,将按比例征收收益金(征收比率及算法举例如下面的图和表)。

中考数学 第118题训练(13)

中考数学 第118题训练(13)

1图3 A BCDME选择题1.2-的相反数是( ) A.12-B.2-C.12D.22.今年我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( ) A.50.457310⨯B.44.57310⨯ C.44.57310-⨯D.34.57310⨯3.仔细观察图1所示的两个物体,则它的俯视图是( )4.下列图形中,不是..轴对称图形的是( )5.已知三角形的三边长分别是38x ,,;若x 的值为偶数,则x 的值有( ) A.6个 B.5个 C.4个 D.3个6.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( ) A.180元 B.200元 C.240元 D.250元 7.一组数据2-,1-,0,1,2的方差是( ) A.1 B.2 C.3 D.4 8.若2(2)30a b -++=,则2007()a b +的值是( )A.0 B.1 C.1- D.2007 9.如图2,直线a b ∥,则A ∠的度数是( ) A.28oB.31oC.39oD.42o10.在同一直角坐标系中,函数(0)ky k=≠与(0)y kx kk =+≠的图象大致是( )填空题11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是 .12.分解因式:2242x x -+ .13.若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 14.直角三角形斜边长是6,以斜边的中点为圆心,斜边上的中线为半径的圆的面积是 .15.邓老师设计了一个计算程序,输入和输出的数据如下表: 那么,当输入数据是时,输出的数据是 .解答题16.计算:01π3sin 4520073-⎛⎫+- ⎪⎝⎭o17.解不等式组,并把它的解集表示在数轴上:2(2)3134x x x x ++⎧⎪⎨+<⎪⎩≤ ① ②18.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠,45MBE =o∠. (1)求证:BE ME =.(2)若7AB =,求MC 的长.正面 A. B. C. D.A. B. C. D.A BDab图270°31°A.B.C.D.中考数学第1-18题训练(13)。

中考数学第118题训练(9)

中考数学第118题训练(9)

圆柱体A C(第2题图)C(第5题图)AB CO(第9题图)中考数学第118题训练(9)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、若2与a互为倒数,则下列结论正确的是()。

A、21a=B、2a-=C、21a-=D、2a=2、如图,圆柱体的表面展开后得到的平面图形是()。

3、某电视台举行歌手大奖赛,每场竞赛都有编号为1~10号共10道综合素养测试题共选手随机抽取作答。

在某场竞赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是()。

A、101B、91C、81D、714、下列运算正确的是()。

A、a2·a3=a6B、a8÷a4=a2C、a3+a3=2a6D、(a3)2=a65、如图,小明站在C处看甲乙两楼楼顶上的点A和点E。

C,E,A三点在同一条直线上,点B,D分别在点E,A的正下方且D,B,C三点在同一条直线上。

B,C相距20米,D,C相距40米,乙楼高BE为15米,甲楼高AD为()米(小明身高忽略不计)。

A、40B、20C、15D、306、据统计,宜昌市2005年财政总收入达到105.5亿元,用科学记数法(保留三个有效数字)表示105.5亿元约为()元。

A、1.055×1010B、1.06×1010C、1.06×1011D、1.05×10117、下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是()。

A、①②③B、①②③④C、①②D、②③8、国家统计局公布的统计公报显示:2001到2005年,我国GDP增长率分别为8.3%,9.1%,10.0%,10.1%,9.9%。

经济学家评论说:这五年的年度GDP增长率之间相当平稳。

从统计学的角度看,“增长率之间相当平稳”说明这组数据的()较小。

A、中位数B、标准差C、平均数D、众数9、如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()。

中考数学第118题训练(6)

中考数学第118题训练(6)

中考数学第118题训练(6)一、选择题 (本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、下列运算正确的是 ( )A 、-3+2=1B 、|-2|=-2C 、3×(-3)=-9D 、20-1=1 2、如图,几何体的左视图是 ( )3、一件标价为600元的上衣,按8折销售仍可获利20元。

设这件上衣的成本价为x 元,依照题意,下面所列的方程正确的是 ( )A 、20x -8.0600=⨯B 、20x -8600=⨯C 、20-x 8.0600=⨯D 、20-x 8600=⨯ 4、如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O的半径23r =,AC=2,则B cos 的值是 ( ) A 、23 B 、35 C 、25 D 、32 5、如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是 ( ) A 、5月1日 B 、5月2日 C 、5月3日 D 、5月5日 6、若圆锥的侧面展开图是一个弧长为π36的扇形,则那个圆锥的底面半径是 ( ) A 、36 B 、18 C 、9 D 、6 7、直线3x 23-y +=与x 轴、y 轴所围成的三角形的 面积为 ( )A 、3B 、6C 、43 D 、23 8、如图,抛物线的函数表达式是 ( )A 、2x -x y 2+=B 、2x --x y 2+=C 、2x x y 2++=D 、2x -x y 2++=9、有一块多边形草坪,在市政建设设计图纸上的面积为300cm 2,其中一条边的长度为5cm经测量,这条边的实际长度为15m ,则这块草坪的实际面积是 ( )A 、100m 2B 、270m 2C 、2700m 2D 、90 000m 2A B C D(第2题图)· OABDC日期(日)(第5题图)(第8题图)10、如图,矩形ABCG(AB<BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是 ( ) A 、0 B 、1 C 、2 D 、3 二、填空题 (本小题共5小题,每小题3分,共15分)11、不等式1)3(x ≤2-x +的解集为______________________。

中考数学 第118题训练(7)

中考数学 第118题训练(7)

1一、选择题: 1.计算3-1的结果是( ).A .31 B .—31C .3D .—3 2.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9 ÷(一x)3=x 6D .(-2a 3)2=4a 63.下列二次根式中与2是同类二次根式的是( ). A .12 B .23 C .32D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表: m 1 2 3 4 v0.012.98.0315.1A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十16.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 区县东坡区仁寿县 彭山县 洪雅县 青神县 丹棱县 人口数(万人) 8316033342016A .160万人,33.5万人 B.144万人,33.5万人 C .144万人,34万人 D .144万人,33万人 8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形 D .一组对边相等且有一个角是直角的四边形是矩形9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟 B .b a +8分钟 C .b b a +-8分钟 D .bba --8分钟 10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合 C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE的面积与ΔACE 的面积的比值是( ). A .21 B .41 C.81 D .161 12.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l二、填空题: 13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______. 16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14)17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______.18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.三、本大题共2个小题.每小题5分,共10分.19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤)20.计算:ba b -2十a 十b中考数学第1-18题训练(7)。

中考数学第118题训练

中考数学第118题训练

中考数学第118题训练一、选择题 (本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、-3的绝对值等于 ( )A 、-3B 、3C 、31- D 、31 2、如图1所示,圆柱的俯视图是 ( )图1 A B C D3、今年1—5月份,深圳市累计完成地点一样预算收入216.58亿元,数据216.58亿精确到 ( )A 、百亿位B 、亿位C 、百万位D 、百分位 4、下列图形中,是轴对称图形的为 ( )5、下列不等式组的解集,在数轴上表示为如图所示的是 ( )A 、⎩⎨⎧≤+>-02x 01xB 、⎩⎨⎧<+≤-02x 01xC 、⎩⎨⎧<-≥+02x 01xD 、⎩⎨⎧≤->+02x 01x6、班主任为了解学生星期六、日在家的学习情形,家访了班内的六位学生,了解到他们在家的学习时刻如下表所示。

那么这六位学生学习时刻的众数与中位数分别是 ( )A 、4小时和4.5小时B 、4.5小时和4小时C 、4小时和3.5小时D 、3.5小时和4小时 7、函数)0k (xky ≠=的图象如图2所示,那么函数k kx y -=的图象大致是 ( )图2 A B C D 8、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元。

在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 ( )A 、至多6人B 、至少6人C 、至多5人D 、至少5人 9、如图,王华晚上由路灯A 下的B 处走到A 处时,测得影子CD 的长为1米,连续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于 ( )学生姓名 小丽 小明 小颖 小华 小乐 小恩 学习时刻(小时)463458DABC(第5题图) o yxo x yx y o yo xOxyA 、4.5米B 、6米C 、7.2米D 、8米 10、如图,在□ABCD 中,AB :AD = 3:2,∠ADB=60°,那么cosA 的值等于 ( )A 、6325-B 、6325+ C 、635± D 、6323±二、填空题 (本小题共5小题,每小题3分,共15分)11、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 (本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1、-3的绝对值等于 ( )
A 、-3
B 、3
C 、31-
D 、3
1 2、如图1所示,圆柱的俯视图是 ( )
图1 A B C D
3、今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到 ( )
A 、百亿位
B 、亿位
C 、百万位
D 、百分位 4、下列图形中,是轴对称图形的为 ( )
5、下列不等式组的解集,在数轴上表示为如图所示的是 ( )
A 、⎩⎨⎧≤+>-02x 01x
B 、⎩⎨⎧<+≤-02x 01x
C 、⎩⎨⎧<-≥+02x 01x
D 、⎩⎨⎧≤->+02x 0
1x
6、班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示。

那么这
六位学生学习时间的众数与中位数分别是 ( )
A 、4小时和4.5小时
B 、4.5小时和4小时
C 、4小时和3.5小时
D 、3.5小时和4小时 7、函数)0k (k
y ≠=的图象如图2所示,那么函数k kx y -=的图象大致是 ( )
图2 A B C D 8、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元。

在每位同学得到一张相片、
共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 ( )
A 、至多6人
B 、至少6人
C 、至多5人
D 、至少5人 9、如图,王华晚上由路灯A 下的B 处走到A 处时,测得影子CD 的长为1米,继续往前走3米到达
E 处时,测得影子EF
的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于 ( )
A 、4.5米
B 、6米
C 、7.2米
D 、8米
中考数学第1-18题训练(1) D
A
B
C
(第5题图) 姓名
解题格式
要规范化
10、如图,在□ABCD 中,AB :AD = 3:2,∠ADB=60°,那么cosA 的值等于 ( )
A 、6325-
B 、63
25+ C 、
6
35± D 、63
23±
二、填空题 (本小题共5小题,每小题3分,共15分)
11、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个。

顾客摸奖时,一次
摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖。

那么顾客摸奖一次, 得奖的概率是_____________。

12、化简:
=+--3
m 1
9m m 2________________。

13、如图所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O 。

若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个 条件是________________。

14、人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数
分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、 21……这就是著名的斐波那契数列。

那么小聪上这9级台阶共有______________种不同方法。

三、解答题 (解答需写出必要的文字说明、演算步骤或证明过程。

) 16、(6分)计算:◊-◊π-+-+-)14.3(245sin 8212。

17、(6分)解方程:x
-31
-13-x x -2=。

18、(7分) 如图,在梯形ABCD 中,AD ∥BC, AB=DC=AD ,◊=∠120ADC 。

(1) (3分) 求证:DC B D ⊥; (2) (4分) 若AB=4,求梯形ABCD 的面积。

A
B
D
(第10题图)
A
B
C D E
F
(第9题图)
A
B
D
O
(第13题图)
C
(第18题图)。

相关文档
最新文档