第9章 永磁交流伺服电动机
交流伺服电动机解析,交流伺服电动机的基本类型、控制方式及其特点
交流伺服电动机解析,交流伺服电动机的基本类型、控制方式及其特点交流伺服电动机,是将电能转变为机械能的一种机器。
交流伺服电动机主要由一个用以产生磁场的电磁铁绕组或分布的定子绕组和一个旋转电枢或转子组成。
电动机利用通电线圈在磁场中受力转动的现象而制成的。
交流伺服电动机主要由定子部分和转子部分组成,其中定子的结构与旋转变压器的定子基本相同,在定子铁心中也安放着空间互成90度电角度的两相绕组(其中一组为激磁绕组,另一组为控制绕组)。
交流伺服电动机控制精度高,矩频特性好,具有过载能力,多应用于物料计量,横封装置和定长裁切机上。
交流伺服电动机的基本类型与普通交流电动机类似,交流伺服电动机也分为异步和同步两种。
两相交流伺服电动机原理上就是一台两相异步电动机。
它的定子上正交放置两相绕组,这两相绕组一个叫励磁绕组,另一相为控制绕组。
转子一般有两种结构形式,一种是笼型转子,这种转子的结构与普通笼型感应电动机的转子相同;另一种是非磁性空心杯转子,其结构如图所示。
笼型转子与空心杯转子比较。
前者输出力矩大、结构简单、励磁电流小、效率高,唯一不足是转子转动惯量大,因而动态响应不如空心杯转子快。
空心杯转子具有惯性小,反应灵敏,调速范围大、但这种电动机的励磁电流较大,因而功率因素和效率较低。
运行时,励磁绕组一般施加固定单相交流电压,通过对控制绕组的控制电压进行必要的控制来实现对转速的调节。
同时应注意,在相位上是不同的。
交流伺服电动机的控制方式交流伺服电动机的控制方式有三种:(1)幅值控制幅值控制通过改变控制电压Uc的大小来控制电机转速,此时控制电压Uc与励磁电压Uf之间的相位差始终保持90°电角度。
控制绕组为额定电压时所产生的气隙磁通势为圆形旋转磁通势,产生的电磁转距最大。
(2)相位控制通过改变控制电压Uc与励磁电压Uf之间的相位差来实现对电机转速和转向的控制,而控制电压的幅值保持不变。
Uc相位通过移相器可以改变,从而改变两者之间的相位差,(3)幅值相位控制励磁绕组串接电容c后再接到交流电源上,控制电压Uc与电源同相位,但幅值可以调节,当Uc的幅值可以改变时,转子绕组的耦合作用,使励磁绕组的电流If也变化,从而使励磁绕组上的电压Uf及电容上的电压uc也跟随改变,Uc与Uf的相位差?也随之改变,即改变Uc的大小,Uc与Uf的相位差也随之改变,从而改变电机的转速。
交流永磁同步伺服电机的工作原理
交流永磁同步伺服电机的工作原理朋友,今天咱们来聊聊交流永磁同步伺服电机这个超酷的东西。
你知道吗?交流永磁同步伺服电机就像是一个特别听话又超级能干的小助手呢。
它的核心部分有永磁体,这永磁体就像一个有着超强魔力的小磁铁,一直稳稳地待在电机里,散发着自己独特的魅力。
当我们给这个电机通上交流电的时候呀,就像是给这个小助手下达了开始工作的指令。
交流电会在电机的定子绕组里产生一个旋转的磁场,这个磁场就像一个看不见的大手,开始挥舞起来。
而那个永磁体呢,它可是个很有个性的家伙,它在这个旋转磁场的影响下,就想跟着一起动起来。
为啥呢?因为异性相吸,同性相斥呀,这个磁场的力量对永磁体有着很强的吸引力和排斥力。
你想象一下,这个永磁体就像是一个小舞者,而那个旋转磁场就是音乐的节奏。
小舞者要根据音乐的节奏来跳舞,永磁体就得按照旋转磁场的节奏来转动。
而且呀,它们配合得可好了,永磁体转动的速度和旋转磁场的速度基本上是同步的,这就是为啥叫永磁同步伺服电机啦。
这个电机的工作可不仅仅是这么简单地转一转哦。
它还特别聪明,能够根据我们的需求来精确地控制转动的角度、速度和扭矩呢。
比如说,在一些自动化的生产线上,我们需要这个电机把某个零件精确地送到某个位置,它就能做到。
这就好比你告诉一个特别机灵的小朋友,把这个小玩具放到那个小盒子里,他就能准确地完成任务。
在这个过程中呀,电机的控制系统就像是一个智慧的大脑。
它会时刻监测电机的运行状态,看看永磁体是不是按照我们想要的速度和角度在转动。
如果有一点点偏差,这个智慧的大脑就会马上调整,就像一个严格的老师,一旦发现学生的动作不标准,就立刻纠正。
交流永磁同步伺服电机在很多地方都发挥着巨大的作用呢。
在机器人的关节处,它就像是机器人的肌肉和关节的完美结合,让机器人能够灵活地做出各种动作,就像一个舞者在舞台上翩翩起舞。
在数控机床里,它又像一个超级精确的工匠,能够把零件加工得非常精细,一丝一毫的差错都不会有。
而且哦,这个电机还有一个很贴心的地方呢。
永磁交流伺服电机原理
永磁交流伺服电机原理近年来由于无刷式伺服(马达)电机(brushless servo motor)制造与控制技术的急速发展,再加上大规模集成电路与半导体功率组件的进步,使其商品化产品日益增多,在高性能伺服应用场合如计算机控制数值工具机、工业机器人等,均已逐渐取代了传统式的有电刷的直流伺服电机(dc servo motor)。
无刷式伺服电动机主要可分为两大类(表1) (1)无刷式直流伺服电机(brushless dc servo motor),一般亦称的为永磁式同步电机(PM synchronous motor) 或永磁式交流伺服电机(PM ac servo motor),(2)感应式交流伺服电机(induction ac servo motor)。
无刷式直流伺服电机采用内装式的霍尔效应(Hall-effect)传感器组件来检测转子的绝对位置以决定功率组件的触发时序,其效用有如将直流伺服电机的机械式电刷换相(mechanical commutation)改为电子式换相(electronic commutation),因而去除了直流伺服电动机因电刷所带来的限制。
目前一般永磁式交流伺服电机的回接组件多采用解角器(resolver) 或光电解编码马器(photo encoder),前者可量测转子绝对位置,后者则祇能测得转子旋转的相对位置,电子换相则设计于驱动器内。
表1伺服电机的分类永磁式直流伺服电动机如图1(a)所示,其永久磁铁在外,而会发热的电枢线圈(armature winding)在内,因此散热较为困难,降低了功率体积比,在应用于直接驱动(direct-drive)系统时,会因热传导而造成传动轴(如导螺杆)的热变形。
但对交流伺服电机而言,不论是永磁式或感应式,其造成旋转磁场的电枢线圈,如图1(b)所示,均置于电机的外层,因而散热较佳,有较高的功率体积比,且可适用于直接驱动系统。
交流电机依其扭矩产生方式可分为两大类(1)同步交流电机(synchronous ac motor)与(2)感应交流电机(induction ac motor),同步交流电机因其转子可由外界电源或由本身磁铁而造成的磁场与定子的旋转磁场交互作用而达到同步转速,但是感应交流电机的转子则因定子与转子间的变压器效应(transformer effect)而产生转子感应磁场,为了维持此感应磁场以产生旋转扭矩,转子与定子的旋转磁场间必须有一相对运动—滑差(slip),因此感应电机的转速无法达到同步转速。
交流伺服电机
交流伺服电机交流伺服电机是一种广泛应用于工业自动化领域的电机类型,在现代生产中发挥着重要作用。
交流伺服电机通过内置的编码器反馈系统,可以实现精确的位置控制和速度控制,从而提高了生产效率和产品质量。
本文将介绍交流伺服电机的工作原理、应用领域以及优势特点。
工作原理交流伺服电机通过电子控制系统控制电流的大小和方向,从而控制电机转子的位置和速度。
其工作原理包括位置控制回路、速度控制回路和电流控制回路。
位置控制回路接收编码器反馈信号,比较目标位置和当前位置之间的差异,通过控制电流大小和方向来驱动电机转子转动至目标位置。
速度控制回路根据编码器反馈信号和设定速度值之间的差异,控制电机的转速。
电流控制回路则根据速度控制回路的输出,控制电机的电流大小和方向,以实现精确的速度控制。
应用领域交流伺服电机广泛应用于各种自动化设备和机械领域,如工业机器人、数控机床、包装设备、印刷设备等。
在这些领域,交流伺服电机可以提供精确的位置控制和速度控制,满足高效生产的需求。
同时,在医疗设备、航空航天等领域也有着重要应用,用于控制精密的运动系统。
优势特点交流伺服电机相比其他类型的电机具有以下优势特点:•高精度:交流伺服电机具有较高的控制精度,可以实现微米级的定位精度,适用于需要高精度控制的应用。
•高效率:交流伺服电机运行稳定,能够提供较高的效率,降低能源消耗,节省生产成本。
•响应速度快:交流伺服电机响应速度快,可以在短时间内实现从静止到目标速度的转变,提高生产效率。
•可编程控制:交流伺服电机可以通过程序控制实现各种运动模式和轨迹规划,满足不同应用的需求。
总体而言,交流伺服电机在工业自动化领域具有重要地位,通过其高精度、高效率和快速的特点,为生产提供了稳定可靠的动力支持。
本文简要介绍了交流伺服电机的工作原理、应用领域以及优势特点,希望能够帮助读者更好地了解交流伺服电机的基本知识。
交流永磁伺服电机知知识点总结
交流永磁伺服电机是一种广泛应用于现代工业和自动化领域的重要设备。
以下是对交流永磁伺服电机的一些主要知识点的总结:
1.工作原理:交流永磁伺服电机的工作原理基于磁场与电流之间的相互作用。
通过控制电机的电流,可以改变电机的磁场,进而控制电机的转动。
2.结构:交流永磁伺服电机主要由定子、转子和控制器组成。
定子包含一个或多个绕组,用于产生励磁磁场。
转子通常由永磁体构成,用于产生转矩。
控制器负责控制电机的电流和电压,以实现电机的精确控制。
3.控制方式:交流永磁伺服电机可以通过开环或闭环控制方式进行控制。
开环控制通过给定电压或电流控制电机的转速和位置,而闭环控制则通过反馈信号与设定值比较,实现电机的精确控制。
4.优点:交流永磁伺服电机具有高效率、高精度、高响应速度等优点。
此外,由于其采用永磁体作为转子,因此具有较高的扭矩密度和较低的维护成本。
5.应用领域:交流永磁伺服电机广泛应用于机床、机器人、电力电子、航空航天等领域。
在这些领域中,交流永磁伺服电机被用于精确控制机器的运动和位置,实现高效、精准的生产和加工。
以上是对交流永磁伺服电机的一些主要知识点的总结。
在实际应用中,需要根据具体的应用场景和需求选择合适的交流永磁伺服电机,并进行合理的配置和控制。
永磁同步伺服电动机工作原理
永磁同步伺服电动机工作原理永磁同步伺服电动机(Permanent Magnet Synchronous Servo Motor,简称PMSM)是一种利用永磁体产生磁场与电流产生磁场之间的相互作用来实现转动的电动机。
它具有高效率、高功率密度、高控制精度等优点,在众多领域得到了广泛应用。
PMSM的工作原理可以简单概括为:通过在转子上安装永磁体,使得转子具有永久磁性,而在定子上通过绕组通以交流电流,产生旋转磁场。
转子上的永磁体与定子上的旋转磁场之间产生磁力作用,从而使得转子转动。
同时,通过改变定子绕组的电流,可以实现对电机的速度和力矩的精确控制。
PMSM的转子通常由两种类型的永磁体组成:永磁体沿轴向排列的表面永磁体和沿轴向排列的内部永磁体。
这两种类型的永磁体都可以产生强大的磁场,从而使得电机具有较高的输出功率。
PMSM中的转子磁场与定子磁场之间的相互作用可以通过反电动势来实现。
当定子绕组中的电流改变时,会产生反电动势。
这个反电动势与转子磁场的相对运动速度成正比,反电动势与转子磁场之间的相对运动速度的方向相反。
因此,通过检测反电动势的大小和方向,可以获得转子位置和速度信息,并实现对电机的精确控制。
PMSM的控制系统通常采用矢量控制技术,即通过控制定子绕组中的电流矢量来实现电机的转速和力矩的精确控制。
矢量控制技术可以将电机的转子磁场与定子磁场的相对运动速度的大小和方向进行精确控制,从而实现对电机的高效率控制。
PMSM的工作原理可以通过以下步骤进行简单说明:1. 通过外部电源将交流电流输入到定子绕组中,产生旋转磁场;2. 定子绕组中的交流电流会产生一个旋转磁场,这个旋转磁场与转子上的永磁体之间产生磁力作用;3. 磁力作用使得转子开始转动,转动的速度和方向与定子绕组中的电流有关;4. 通过改变定子绕组中的电流,可以改变磁力的大小和方向,从而改变转子的转动速度和方向;5. 反电动势的检测可以获得转子位置和速度信息,通过控制定子绕组中的电流矢量,可以实现对电机的精确控制。
永磁交流伺服电动机的数学模型
Tm pnf iq
(9-29)
Tr pn (Ld Lq )idiq
(9-30)
当交、直轴磁阻不同时,电感Ld和Lq不相等,因此存在 磁阻转矩。实际伺服系统中使用的多为表贴式永磁同步电机,
可以认为其转子结构是对称的,即Ld=Lq=Ls,因此有
T pnf iq
(9-31)
(4)机械运动方程:
d T TL B J dt
式中,Ld、Lq分别为三相定子绕组在d、q轴上的等效电感(单 位为H);ψf为转子永磁体产生的磁链(单位为Wb)。
(3)电磁转矩计算:
T
pn
[ f
iq
(Ld
Lq )idiq ]
(9-28)
由式(9-28)可以看出,永磁交流伺服电动机的电磁转
矩由两部分组成:一是转子永磁磁场与定子绕组q轴电流作用
产生的永磁转矩Tm;另一是由电感变化引起的磁阻转矩Tr。
转子dq坐标系下的数学模型
1.坐标变换
以功率不变为原则,dq、αβ、ABC坐标系之间的电流变
换关系如下(电压、磁链等的变换与此相同):
(1)定子静止三相ABC坐标系到静止两相αβ坐标系的
变换——Clarke变换。
ia
i
式中,
TABC-
iA iB iC
1
1 2
1
2
T ABC
2
3
0 1
dd
dt
rd
(9-26)
式中,ud、uq分别为定子电压在d、q轴分量(单位为V);id、iq 分别为定子电流在d、q轴分量(单位为A);ψd、ψq分别为定子 磁链在d、q轴分量(单位为Wb);ωr为转子的电角速度(单位为 rad/s)。
(2)磁链表达式:
永磁交流同步伺服电机的结构和工作原理
永磁交流同步伺服电机的结构和工作原理
交流同步伺服电机的种类:
励磁式、永磁式、磁阻式和磁滞式
(1)永磁交流同步伺服电机的结构
永磁交流同步伺服电机由定子、转子和检测元件三部分组成。
电枢在定子上,定子具有齿槽,内有三相交流绕组,形状与普通交流感应电机的定于相同。
永磁交流同步伺服电机结构
(2)永磁交流同步伺服电机工作原理和性能
永磁交流同步伺服电机的性能同直流伺服电机一样,也用持性曲线和数据表来表示。
最主要的是转矩—速度特性曲线。
在连续工作区(Ⅰ区),速度和转矩的任何组合,都可连续工作。
但连续工作区的划分受到一定条件的限制。
连续工作区划定的条件有两个:一是供给电机
的电流是理想的正弦波;二是电机工作在某一特定温度下。
断续工作区(Ⅱ区)的范围更大,尤其在高速区,这有利于提高电机的加、减速能力。
工作原理特性曲线。
交流永磁伺服电机工作原理
交流永磁伺服电机工作原理交流永磁伺服电机是一种先进的电动机,其工作原理基于对磁场的控制和反馈,能够实现高精度的位置控制和速度调节。
在现代工业自动化领域得到广泛应用。
1. 结构组成交流永磁伺服电机由定子和转子两部分组成。
定子包括定子铁芯、定子绕组,而转子由永磁体组成。
在电机内部,定子绕组通过外部的电流激励,产生一个旋转磁场,永磁体则在该磁场的作用下转动。
2. 工作原理当给交流永磁伺服电机通以电流时,定子绕组中会产生一个旋转磁场,该磁场与永磁体之间会产生一个磁场相互作用力矩,从而使永磁体转动。
这就是基本的电磁转动原理。
通常,交流永磁伺服电机的转子上安装有编码器,用于实时检测转子位置。
通过对编码器的反馈,控制系统可以精确控制电机的转动速度和位置。
3. 控制方法交流永磁伺服电机通常采用矢量控制技术进行控制。
矢量控制可以通过对电流和磁场进行独立控制,实现高精度的速度和位置控制。
在控制系统中,通常采用PID控制器对电机进行闭环控制。
PID控制器通过比较设定值和反馈值,调整电机的输出电流,从而实现对电机速度和位置的控制。
4. 应用领域交流永磁伺服电机广泛应用于需要高精度控制的领域,例如数控机床、印刷设备、纺织机械等。
由于其响应速度快、控制精度高、能耗低的特点,使其在现代自动化生产中扮演着重要的角色。
交流永磁伺服电机在医疗设备、航空航天、机器人等领域也有广泛应用,为这些领域的精密控制提供了有力支持。
结语交流永磁伺服电机凭借着其高精度的控制能力和稳定可靠的性能,成为当今工业自动化领域的重要装备之一。
通过对其工作原理的深入理解,可以更好地应用和运用这一先进的电动机技术。
交流伺服电动机工作原理
交流伺服电动机工作原理引言:交流伺服电动机是一种广泛应用于自动化控制系统中的电动机。
它具有高精度、高可靠性和高动态性能等优点,在工业自动化领域中得到了广泛的应用。
本文将详细介绍交流伺服电动机的工作原理。
一、交流伺服电动机概述交流伺服电动机是一种能够实现闭环控制的电动机。
它通过传感器获取反馈信号,并将该信号与设定值进行比较,通过控制电路对电机进行精确控制,使电机输出符合要求的速度和位置。
交流伺服电动机通常由电机本体、传感器和控制器三部分组成。
二、交流伺服电动机工作原理1. 电机本体交流伺服电动机的电机本体通常由定子和转子两部分组成。
定子是由三个对称分布的线圈组成,分别连接在三相交流电源上。
转子上装有永磁体或通过流过定子线圈的电流产生磁场。
当定子线圈通电时,定子磁场与转子磁场之间会产生转矩,从而驱动转子运动。
2. 传感器交流伺服电动机的传感器通常用于实时测量电机的速度和位置。
常见的传感器有编码器和霍尔元件等。
编码器可以测量转子的位置和运动速度,通过编码器的信号反馈给控制器,从而实现真正的闭环控制。
霍尔元件则可以用来测量电机转子的位置。
3. 控制器交流伺服电动机的控制器是实现闭环控制的核心。
控制器接收传感器反馈的信号,并将其与设定值进行比较,通过控制算法计算出控制信号,并输出给电机驱动器。
电机驱动器根据控制信号对电机进行控制,使电机输出符合要求的速度和位置。
三、交流伺服电动机的工作过程交流伺服电动机的工作过程可以分为三个阶段:速度控制、位置控制和力矩控制。
1. 速度控制在速度控制阶段,控制器通过传感器测量电机的实际速度,并与设定值进行比较。
根据差值,控制器计算出控制信号,并将其输出给电机驱动器。
电机驱动器根据控制信号调整电机的输入电压和频率,以实现对电机转速的控制。
2. 位置控制在位置控制阶段,控制器通过传感器测量电机的实际位置,并与设定值进行比较。
根据差值,控制器计算出控制信号,并将其输出给电机驱动器。
交流永磁伺服电机原理 -回复
交流永磁伺服电机原理-回复交流永磁伺服电机是一种采用永磁材料作为转子的交流电机,并结合伺服控制系统实现精确控制的电动机。
它在许多工业和自动化应用中被广泛使用,其性能优越,能够实现高速、高精度和高效率的运动控制。
首先,我们来了解一下交流永磁伺服电机的结构和原理。
该电机由固定子和转子组成。
固定子是由定子绕组和磁场产生器组成,常见的磁场产生器有永磁体和电磁体两种。
而转子则是由永磁材料制成,其与固定子相互转动,产生转矩。
在工作过程中,固定子上的三相绕组通过电流产生一定的磁场,在控制系统的控制下,根据转子的位置和速度变化,控制电流改变工作磁场,从而产生转矩。
电流通常通过变频器来实现,变频器可以根据需要改变电机转速和转矩。
了解了交流永磁伺服电机的基本结构和工作原理后,我们再来探讨一下它的优势和应用方面。
首先,交流永磁伺服电机具有高性能的特点。
由于使用永磁材料作为转子,它具有高磁导率和高能量密度,使得电机的功率密度更高,效率更高。
同时,它的惯性低、加速度快,具有较好的动态特性,能够实现更精确的位置和速度控制。
其次,交流永磁伺服电机具有宽工作范围和高控制精度。
通过伺服控制系统,可以实时监测电机的位置和速度,然后精确调整电流来控制转矩和转速。
这使得电机可以在不同负载下稳定运行,并实现高精度的定位和运动控制。
再次,交流永磁伺服电机具有较好的响应性能。
由于其结构简单、转子惯性低,响应速度较快,使得它适用于需要快速启动和停止的应用场合。
此外,它还具有较好的负载适应性,可以在变负载和冲击负载下有效地改变输出转矩和速度,保持稳定的工作状态。
最后,交流永磁伺服电机在工业自动化领域有广泛的应用。
它可以用于各种机械传动系统,如机床、印刷设备、包装设备、纺织机械等。
同时,它还可以应用于自动化生产线和机器人等高精度运动控制系统中,实现高效、精确的操作。
综上所述,交流永磁伺服电机是一种结合了永磁材料和伺服控制系统的高性能电机。
其优势在于高功率密度、高控制精度、快速响应和广泛的应用范围。
永磁交流伺服电机通用技术条件
永磁交流伺服电机通用技术条件
永磁交流伺服电机通用技术条件是一种高性能的电机,在工业机械、制造业和自动化设备中得到广泛应用。
其通用技术条件如下:
1. 电机额定功率范围:0.1 ~ 500 kW。
2. 电机额定转速范围:500 ~ 5000 RPM。
3. 电机工作电源:三相交流电源,额定电压范围380V/220V。
4. 控制方式:矢量控制、FOC矢量控制等。
5. 精度等级:高精度,可达到零误差闭环控制。
6. 内置编码器、位置传感器等反馈元件,能够实现闭环控制。
7. 高转矩密度,低惯量,达到快速响应和高精度定位的要求。
8. 低振动、低噪音、低热损耗等特点,适用于高速、高精度、长时间运转的场合。
9. 可适应不同的环境温度、湿度、震动等条件。
10. 符合国家相关标准,如GB、ISO等。
以上是永磁交流伺服电机通用技术条件的简要介绍,具体应用时应根据实际需求进行选型和配置。
交流永磁伺服电机原理
交流永磁伺服电机原理交流永磁伺服电机是一种先进的电机类型,其原理基于永磁体和交流电机的结合。
这种电机利用永磁体的磁场来产生转矩,从而实现电机的旋转。
交流永磁伺服电机通常由定子和转子两部分组成。
定子部分包含一个或多个绕组,这些绕组通过交流电产生旋转磁场。
转子部分则由永磁体构成,永磁体产生的磁场与定子产生的磁场相互作用,从而产生转矩。
当给定子绕组施加交流电压时,定子产生的旋转磁场与转子永磁体产生的磁场相互作用,产生转矩使电机旋转。
这种相互作用使得电机的旋转速度和方向可以通过调整交流电压的频率和幅度来控制。
交流永磁伺服电机的优点包括高效率、高精度、高响应速度和低噪音等。
由于其结构简单、维护方便、可靠性高等特点,交流永磁伺服电机在许多领域得到了广泛应用,如工业自动化、航空航天、交通运输等。
除了上述提到的优点,交流永磁伺服电机还具有以下特点:
1. 宽调速范围:交流永磁伺服电机可以实现从低速到高速的宽调速范围,适用于各种不同的应用场景。
2. 节能环保:由于其高效率和低噪音的特点,交流永磁伺服电机在运行过程中产生的热量较少,不需要大型散热器,从而减少了能源浪费和环境污染。
3. 易于控制:交流永磁伺服电机的旋转速度和方向可以通过调整输入的交流电压的频率和幅度来控制,使得其控制方式简单、直观。
4. 可靠性高:由于其结构简单、维护方便的特点,交流永磁伺服电机在长时间运行过程中具有较高的可靠性,减少了故障率和维修成本。
总之,交流永磁伺服电机是一种高效、精确、快速、节能环保、易于控制和可靠性高的电机类型,适用于各种不同的应用场景。
伺服电机结构和工作原理
(2)相位控制 保持控制电压旳幅值不变,仅变化控制电压与 励磁电压间旳相位差。
(3)幅-相控制 同步变化控制电压旳幅值和相位。
二、直流伺服电动机
1.基本构造
老式旳直流伺服电动机动实质是容量较小旳 一般直流电动机,有他励式和永磁式两种,其构 造与一般直流电动机旳构造基本相同。
三、交直流伺服电动机旳区别
直流伺服电动机旳缺陷: ① 电刷和换向器易磨损,换向时产生火花,限制转速 ② 构造复杂,制造困难,成本高 交流伺服电动机旳优点: ① 构造简朴,成本低廉,转子惯量较直流电机小 ② 交流电动机旳容量不小于直流电动机
伺服系统旳性能要求
一、基本要求
1、位移精度高 位移精度:指指令脉冲要求机床工作台旳位移量和该指令脉
1、构造(永磁同步电机) 主要由:定子1、转子5和检测元件8等几部分构成。
1 2
3
4
1
56
7
8
9
2.工作原理
交流伺服电动机在没有控制电压时,气隙中 只有励磁绕组产生旳脉动磁场,转子上没有开启 转矩而静止不动。当有控制电压且控制绕组电流 和励磁绕组电流不同相时,则在气隙中产生一种 旋转磁场并产生电磁转矩,使转子沿旋转磁场旳 方向旋转。但是对伺服电动机要求不但是在控制 电压作用下就能开启,且电压消失后电动机应能 立即停转。假如伺服电动机控制电压消失后像一 般单相异步电动机那样继续转动,则出现失控现 象,我们把这种因失控而自行旋转旳现象称为自 转。
为消除交流伺服电动机旳自转
现象,必须加大转子电阻r2,这是 因为当控制电压消失后,伺服电动
机处于单相运营状态,若转子电阻
很大,使临界转差率sm>1,这时正 负序旋转磁场与转子作用所产生旳
永磁交流伺服电机原理
永磁交流伺服电机原理近年来由于无刷式伺服(马达)电机(brushless servo motor)制造与控制技术的急速发展,再加上大规模集成电路与半导体功率组件的进步,使其商品化产品日益增多,在高性能伺服应用场合如计算机控制数值工具机、工业机器人等,均已逐渐取代了传统式的有电刷的直流伺服电机(dc servo motor)。
无刷式伺服电动机主要可分为两大类(表1) (1)无刷式直流伺服电机(brushless dc servo motor),一般亦称的为永磁式同步电机(PM synchronous motor) 或永磁式交流伺服电机(PM ac servo motor),(2)感应式交流伺服电机(induction ac servo motor)。
无刷式直流伺服电机采用内装式的霍尔效应(Hall-effect)传感器组件来检测转子的绝对位置以决定功率组件的触发时序,其效用有如将直流伺服电机的机械式电刷换相(mechanical commutation)改为电子式换相(electronic commutation),因而去除了直流伺服电动机因电刷所带来的限制。
目前一般永磁式交流伺服电机的回接组件多采用解角器(resolver) 或光电解编码马器(photo encoder),前者可量测转子绝对位置,后者则祇能测得转子旋转的相对位置,电子换相则设计于驱动器内。
表1伺服电机的分类永磁式直流伺服电动机如图1(a)所示,其永久磁铁在外,而会发热的电枢线圈(armature winding)在内,因此散热较为困难,降低了功率体积比,在应用于直接驱动(direct-drive)系统时,会因热传导而造成传动轴(如导螺杆)的热变形。
但对交流伺服电机而言,不论是永磁式或感应式,其造成旋转磁场的电枢线圈,如图1(b)所示,均置于电机的外层,因而散热较佳,有较高的功率体积比,且可适用于直接驱动系统。
交流电机依其扭矩产生方式可分为两大类(1)同步交流电机(synchronous ac motor)与(2)感应交流电机(induction ac motor),同步交流电机因其转子可由外界电源或由本身磁铁而造成的磁场与定子的旋转磁场交互作用而达到同步转速,但是感应交流电机的转子则因定子与转子间的变压器效应(transformer effect)而产生转子感应磁场,为了维持此感应磁场以产生旋转扭矩,转子与定子的旋转磁场间必须有一相对运动—滑差(slip),因此感应电机的转速无法达到同步转速。
交流永磁同步伺服电机及其驱动技术pmsm
形成旋转磁场。
第15页/共83页
定义了合成定子电流矢量后,则 定子绕组的总磁势矢量为
Fs Nis N (ia aib a2ic )
N—定子绕组线圈总匝数
要注意合成定子电流仅仅是为了 描述方便引入的虚拟量。
β
b
is ia aib a2ic
a cos120 j sin120 1 j 3 22
a2 cos 240 j sin 240 1 j 3 22
11
33
is ia 2 ib 2 ic j( 2 ib 2 ic )
c
第22页/共83页
is
a
is
ia
1 2
ib
1 2
同步电机 和 感应电机 永磁同步电机 (Permanent Magnet Synchronous Motor 简称PMSM)
第1页/共83页
1、结构 和工作原理
第2页/共83页
主要由定子、转子及测量转子位置的传感器构成。 定子和一般的三相感应电机类似,采用三相对称
绕组结构,它们的轴线在空间彼此相差120度。 转子上贴有磁性体,一般有两对以上的磁极。 位置传感器一般为光电编码器或旋转变压器 。
SL RL
C1
uapwM ubpwM ucpwM
T1
T3
T5
Z
L1 L2 L3
o
uS
a
b
c /uapwM /ubpwM /ucpwM
ZZ
n
C2
T2
T4
T6
PMSM
第33页/共83页
IGBT (Insulated-gate Bipolar Transistor ) 由MOSFET和GTR复合而成,结合二者的优点。
永磁伺服电动机的工作原理
永磁伺服电动机的工作原理永磁伺服电动机是一种高性能的电动机,它的工作原理是利用永磁体的磁场与电流所产生的磁场相互作用,从而实现转矩和速度的控制。
1.结构组成:永磁伺服电动机由永磁体和电磁线圈两部分组成。
永磁体通常采用稀土永磁材料,具有高磁能、高磁导率和低磁阻等特点,可以产生强大的磁场。
电磁线圈则通过控制输入的电流来改变电磁场的强度和方向。
2.磁场相互作用:当电磁线圈通电时,产生的电流会在电磁线圈周围形成磁场。
这个磁场与永磁体的磁场相互作用,使得电动机产生转矩。
当电磁线圈的电流方向改变时,磁场的方向也改变,从而改变转矩的方向。
通过控制电磁线圈的电流大小和方向,可以实现对电动机转矩和速度的精确控制。
3.控制方法:永磁伺服电动机的控制方法有位置控制、速度控制和力矩控制等。
对于位置控制,可以通过测量转子位置并与目标位置进行比较,控制电磁线圈的电流来驱动电动机旋转到指定位置。
对于速度控制,可以测量转子速度并与目标速度进行比较,通过调节电磁线圈的电流来调整转速。
对于力矩控制,可以通过测量输出转矩并与目标转矩进行比较,控制电磁线圈的电流来实现所需的转矩输出。
4.优势和应用:永磁伺服电动机具有快速响应、高效率、高精度和稳定性好等优点,广泛应用于工业自动化、机器人、医疗设备、数控机床等领域。
其高性能使得永磁伺服电动机可以实现高速旋转、高精度定位和快速动态响应的要求,提升设备的运行效率和质量。
同时,由于永磁体的存在,永磁伺服电动机不需要外部磁场激励,使得其结构简单、体积小、重量轻,更适合限空要求严格的场合使用。
综上所述,永磁伺服电动机通过利用永磁体的磁场与电流所产生的磁场相互作用,实现了对转矩和速度的精确控制。
其高效、高精度和稳定性好的特点使得其在各个领域得到广泛应用。
精品课件-控制电机(第四版)(陈隆昌)-第9章 永磁交流伺服电动机
第9章 永磁交流伺服电动机
图9-2 (a)表贴式;(b)内置式
第9章 永磁交流伺服电动机
永磁交流伺服电动机的定子与一般异步电动机的定子相同, 定子铁心通常也是由带有齿和槽的冲片叠成的,为了削弱齿槽 效应引起的转矩脉动,定子铁心采用斜槽;定子槽中嵌放对称 的多相定子绕组,可以采用星形或者角形连接,目前较为普遍 的是三相绕组电机。定子绕组的布置应使得定、转子极数相同。
第9章 永磁交流伺服电动机
综上所述,影响永磁同步电动机不能自行启动的因素主要 有下面两个方面:
(1)转子及其所带负载存在惯性。 (2)定子供电频率高,使定、转子磁场之间转速相差过大。
第9章 永磁交流伺服电动机
1—永磁体;2— 图9-7 自启动永磁同步电动机转子结构
第9章 永磁交流伺服电动机 传统上,为了使永磁同步电动机能自行启动,在转子上一
第9章 永磁交流伺服电动机 第9章 永磁交流伺服电动机
9.1 概述 9.2 永磁交流伺服电动机结构及工作原理 9.3 永磁交流伺服电动机的稳态分析 9.4 永磁交流伺服电动机的数学模型 9.5 永磁交流伺服电动机的矢量控制 9.6 永磁交流伺服电动机系统的性能指标
第9章 永磁交流伺服电动机
9.1 概 述 在第7章中已介绍的两相交流伺服电动机属于传统的异步 型交流伺服电动机, 其转子旋转速度始终低于定子磁场旋转 的速度, 即转子转速始终低于同步速, 转子与定子旋转磁场 之间存在转差率。 正是由于转子与定子旋转磁场之间的相同 运动, 使得转子导体切割定子旋转磁场时, 在转子绕组中产 生感应电动势和电流, 进而产生电磁力和电磁转矩, 带动负 载旋转。异步型交流伺服电动机的转速会随负载的大小而变化, 且它作为执行元件使用时,对控制信号的响应性能相对较差。
交流永磁同步伺服电机
交流伺服永磁电机选型手册1,2016警告和操作注意事项1.拆装光电编码器,否则破坏编码器与电动机绕组的相对位置(零点)而致使电动机无法运行!2.在正常气候条件下,用500V兆欧表测量电动机绕组对机壳的绝缘电阻,其值不应小于20MΩ。
3.按本使用说明书所述的电动机与驱动单元接线方式正确连接,确保保护接地牢固可靠。
4.电动机从零速至最高速空载运行,应无异常噪声和震动,方可投入负载运行。
5.电动机运行中,切勿接触运转中的电动机轴以及电动机外壳。
6.具有相应资格的人员,才能调整、维护电动机。
7.不得拖拽电线(缆)、电动机轴搬运电动机。
8.用户对产品的任何改动本公司将不承担任何责任。
本使用说明书由最终用户收藏。
1伺服电机为自冷式散热方式,安装时请选择足够大的安装板。
伺服电机长期工作,机体本身会有一定的温度,这是正常情况。
装配了失电制动器的伺服电机,其失电制动器的电源必须由驱动器控制开闭,否则会造成工作状态不佳。
2伺服电机内装精密反馈元件,严禁重力敲击电机轴伸端及后部。
严禁随意更改、折装及加工电机部件。
工作运行环境1.海拔高度不超过1000m。
当海拔高度超过1000m时,需考虑到因空气冷却效果减弱对部分性能指标的影响。
2.环境温度在-10℃~+40℃的范围内。
3.空气相对湿度≤90%(无凝露)。
4.AC稳态电压值为(0.85~1.1)×额定电压值。
3伺服电机型号说明安装及联线U、V、W为伺服电机绕组线圈引线端。
4绝对值编码器定义:注意:60制动器有极性要求:“2”接“+”,“3”接“-”,使用电压:DC 24V80、90、110、130制动器接DC 24V.150、180制动器有DC24V和DC100V两种,具体使用电压看电机标签.560电机外形图如装抱闸,则电机机身长度增加46mm.注意事项:60抱闸电机,接DC24V电源,“2”接正,“3”接负,有极性要求.6780电机外形图.如装抱闸,则电机机身长度增加44mm 8990电机外形图.如装抱闸,则电机机身长度增加42mm 1011110电机外形图如装抱闸,则电机机身长度增加42mm.1213130电机外形图如装抱闸,则电机机身长度增加41mm.14151617150电机外形图如装抱闸,则电机机身长度增加62mm.1819150电机外形图如装抱闸,则电机机身长度增加62mm.2021180电机外形图如装抱闸,则电机机身长度增加45mm 22232425。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
9.3 永磁交流伺服电动机的稳态分析 9.3.1 定子绕组的电势平衡方程
(1)电枢绕组漏电势
jX I E a
(2)励磁电势
j4.44 fW E 0 s f
(3)电枢反应电势
n ns
60 f r min p
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
永磁式同步电动机起动
影响永磁式同步电动机不能自行起动的因素主要有下面两个方面: (1) 转子本身存在惯性; (2) 定、转子磁场之间转速相差过大。
第九章 永磁交流伺服电动机
Saliency
Barrier
with
and a
a
Single
Squirrel
Flux
Cage
Winding for Starting与一个单一的 磁通屏障和鼠笼绕组转子凸极永磁电 机启动内部
第九章 永磁交流伺服电动机 永磁交流伺服系统的组成
控制电机 (Control Electrical
Machine)
控制电机 (Control Electrical
Machine)
永磁式同步电动机起动
为了使永磁式同步电动机能自行起动,在转子上一般都装有起动绕组。但 如果电动机转子本身惯性不大,或者是多极的低速电机,定子旋转磁场转 速不很大, 那末永磁式同步电动机不另装起动绕组还是会自己起动的。
第九章 永磁交流伺服电动机
S
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
如果将相电流的时轴取 在该相轴上,则电流相 量 Î恰好和磁动势矢量 F1重合。
当某电流达正的最大值,该相电流相量与其时轴重合,三相合成磁动势基波 的正波幅就正好与该相相轴重合,这时合成磁动势基波矢量 F1正处在在该相 的相轴上。
控制电机 (Control Electrical
Machine)
第九章 永磁交流伺服电动机 3. Interior PM Machine
控制电机 (Control Electrical
Machine)
交、直轴磁路电磁气隙长度不同,磁路磁阻大小不相等,为凸极电机
3-phase, 12 slot, 8pole brushless IPM synchronous machine
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
Magnetic field of an IPM motor in the cross-section of a 3-phase 9slot 6-pole. Coils are wound around every tooth and interconnected to produce a concentrated type winding.在一个三相9 6极 截面的IPM电机的磁场。线圈缠绕在每个齿间连接产生集中式绕组。
控制逆变器电路开关导通和关断的脉冲宽度调制信号,控制驱动电路给定
总结 永磁交流伺服系统是根据给定的指令,将电信号转换为转矩的伺服
运行。该系统在获得指令后,通过处理器运行预先编制好的程序,生成所 需的脉冲,控制逆变主电路中电力电子器件的通 / 断,将电压施加到永磁
同步电动机的定子多相绕组,在气隙中产生旋转磁场。定子旋转磁场与转
永磁 交流 伺服 系统
电流)检测、电力电子驱动和微电子控制电路;集电机与控制器于一 体,构成自动控制系统中性能优越的伺服单元,通过控制器改变伺服
电动机的运行状态,实现变频起动并响应位置或速度伺服控制指令。
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
永磁式同步电动机工作原理
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
2. Inset PM Motor
交、直轴磁路电磁气隙长度不同,磁路磁阻大小不相等,为凸极电机
Teeth Between Magnets to Create Rotor Saliency
第九章 永磁交流伺服电动机
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
Interior PM Motor with Rotor Saliency with a Single Flux Barrier
Interior PM Motor with Multiple Flux Barrier Rotor Saliency
I d I a sin
I q I a cos
2 2 2 Ia Id Iq
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
+A
N
A X
Ff 1 B
1.永磁交流伺服电机本体 前面已经介绍过
2. 功率驱动单元
永磁交流伺服电动机的功率驱动单元是向定子绕组供电的电力电子逆变电路,包括可
关断功率器件(开关管)。
第九章 永磁交流ectrical
Machine)
V1
V3
V5
B
V2
V4
V6
C
A
3.信号反馈单元 信号反馈单元包括转子位置、定子电压和电流(有时还包括直流母线电压 和电流)的信号检测和调理等电路,实现控制所需机械量和电量的反馈。 转子位置检测——通常采用光/电编码器 电压和电流检测——通常采用霍尔传感器
子磁场相互作用,产生电磁转矩,拖动负载作伺服运动。
第九章 永磁交流伺服电动机 中国首辆永磁高铁下线 2014-11-03 14:06
控制电机 (Control Electrical
Machine)
由中国南车集团株洲所 研制的新一代高速列车 永磁同步牵引系统,近 日已成功通过国家铁道 检测试验中心的地面试 验考核。 首辆装有永磁牵引系统 的高铁已经在南车青岛 四方整车下线,接下来 将进入考核试验阶段, 最快3年后实现商业化 运营。 株洲所此次永磁高铁的 下线,标志着我国成为 世界上少数几个掌握高 铁永磁牵引系统技术的 国家。
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
Stator and cut-away rotor for a 2-pole line-fed
IPM motor, which operates at synchronous
speed without electronic controls. The rotor Interior PM Motor with Rotor includes a squirrel cage and PMs定子和切开 一个极线馈IPM电机的转子,它工作在同步速度 没有电子控制。转子包括鼠笼和PMS
第九章 永磁交流伺服电动机 4. 控制单元
控制电机 (Control Electrical
Machine)
控制单元构成
储)。
控制交流伺服电动机运行的指挥中心,大多采用高速、
高精度微处理器(如 DSP 、 ARM )及其外围接口电路(输入、显示、存
控制单元功能
子供电。
接收控制指令和反馈信息,按照选择的控制算法,生成
第九章 永磁交流伺服电动机
控制电机 (Control Electrical
Machine)
9.1 概述
永磁交流伺服电动机的特点
结构简单 可靠性高 功率因数和效率高 调速范围宽 响应速度快 过载能力强
功率密度和转矩密度高
位置分辨率和定位精度高
力矩波动小,低速运行稳定性好
能承受频繁起停、制动和正/反转
以永磁电机为驱动电机,配合以信号(转子位置、转速、定子电压和
控制电机 (Control Electrical
Machine)
9.2 转子磁路结构
1. Surface PM Motor
交(Quadrature axis )轴、直轴(Direct axis )磁路电磁气隙长度相同, 磁路磁阻大小相等,为隐极电机( Non-salient pole motor )