2019年中考数学复习 第二部分 热点专题突破 专题二 借助数学模型解决实际问题试题(含解析)
2019-2020年中考数学复习第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练
2019-2020年中考数学复习第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练针对演练1. 若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2. 设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =-c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ;函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,求n .3. 函数y =k x 和y =-k x (k ≠0)的图象关于y 轴对称,我们定义函数y =k x 和y =-k x(k ≠0)相互为“影像”函数:(1)请写出函数y =2x -3的“影像”函数:________;(2)函数________的“影像”函数是y =x 2-3x -5;(3)若一条直线与一对“影像”函数y =2x (x >0)和y =-2x(x <0)的图象分别交于点A 、B 、C (点A 、B 在第一象限),如图,如果CB ∶BA =1∶2,点C 在函数y =-2x(x <0)的“影像”函数上的对应点的横坐标是1,求点B 的坐标.第3题图4. 如图,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1,又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2,如此下去,得到线段OP 3,OP 4…,OP n (为正整数).(1)求点P 3的坐标;(2)我们规定:把点P n (x n ,y n )(n =0,1,2,3…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,|y n |)称为点P n 的“绝对坐标”,根据图中P n 的分布规律,求出点P n的“绝对坐标”.第4题图考向2) 几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1. (2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD.(2)如图②,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.第1题图2. 阅读下面的材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”,如图①,▱ABEF即为△ABC的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有______个;(3)若△ABC是锐角三角形,且AB<AC<BC,如图②,请画出△ABC的所有“友好矩形”,指出其中周长最小的“友好矩形”,并说明理由.第2题图)3. (2017常州)如图①,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,________一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足________时,四边形MNPQ是正方形;(2)如图②,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD 是等角线四边形,且AD =BD ,则四边形ABCD 的面积是________; ②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.第3题图4. (2017黄石)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为2∶1,我们不妨就把这样的矩形称为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求CG GB的值;(3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值.第4题图5. 对于一个四边形给出如下定义:如一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形,如图①中,∠B =∠D ,AB =AD ;如图②中,∠A =∠C ,AB =AD 则这样的四边形均为奇特四边形.(1)在图①中,若AB =AD =4,∠A =60°,∠C =120°,请求出四边形ABCD 的面积; (2)在图②中,若AB =AD =4,∠A =∠C =45°,请直接写出四边形ABCD 面积的最大值; (3)如图③,在正方形ABCD 中,E 为AB 边上一点,F 是AD 延长线上一点,且BE =DF ,连接EF ,取EF 的中点G ,连接CG 并延长交AD 于点H ,若EB +BC =m ,问四边形BCGE 的面积是否为定值?如果是,请求出这个定值(用含m 的代数式表示);如果不是,请说明理由.第5题图6. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图①,在四边形ABCD 中,添加一个条件使得四边形A B CD 是“等邻边四边形”.请写出你添加的一个条件;(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;(3)如图②,小红作了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠ABC 的平分线BB ′方向平移得到△A′B′C′,连接AA ′,BC ′.小红要使平移后的四边形ABC ′A′是“等邻边四边形”,应平移多少距离(即线段BB ′的长)?第6题图7. (2017江西)我们定义:如图①,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B′C′.当α+β=180°时,我们称△AB′C ′是△ABC 的“旋补三角形”,△AB ′C ′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知 (1)在图②,图③中,△AB′C′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =____BC ; ②如图③,当∠BAC =90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△A B C 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用 (3)如图④,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.第7题图 答案1. 解:(1)不是.理由如下:∵解方程x 2+x -12=0,得x 1=-4,x 2=3, ∴|x 1|+|x 2|=4+3=2×|3.5|, ∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”; (2)存在.理由如下:∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴假设c =mb 2+n ,当b =-6,c =-27时,有-27=36m +n , ∵x 2=0是“偶系二次方程”,∴n =0,m =-34,∴c =-34b 2.又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =-274=-34×32,∴可设c =-34b 2,对任意一个整数b ,当c =-34b 2时,b 2-4ac =b 2-4c =4b 2,∴x =-b±2|b|2,∴x 1=-32b ,x 2=12b ,∴|x 1|+|x 2|=32|b |+12|b |=2|b |.∵b 是整数,∴对于任意一个整数b ,存在实数c ,当且仅当c =-34b 2时,关于x 的方程,x 2+bx +c=0是“偶系二次方程”.2. 解:(1)∵y =x 2+x +1,∴y =(x +12)2+34,∴二次函数y =x 2+x +1的顶点坐标为(-12,34),∴二次函数y =x 2+x +1的一个“反倍顶二次函数”的顶点坐标为(12,32),∴反倍顶二次函数的解析式为y =(x -12)2+32=x 2-x +74;(2)y 1+y 2=x 2+nx +nx 2+x =(n +1)x 2+(n +1)x =(n +1)(x 2+x )=(n +1)(x +12)2-n +14, ∴顶点的坐标为(-12,-n +14),y 1-y 2=x 2+nx -nx 2-x =(1-n )x 2+(n -1)x =(1-n )(x 2-x)=(1-n)(x -12)2-1-n4, ∴顶点的坐标为(12,-1-n4),由于函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”, 则-2×1-n 4=-n +14, 解得n =13.3. 解:(1)y =-2x -3;【解法提示】令-x =x 得y =-2x -3.(2)y =x 2+3x -5;【解法提示】令-x =x 得y =x 2+3x -5.(3) 如解图,作CC ′⊥x 轴,BB ′⊥x 轴,AA ′⊥x 轴垂足分别为C′、B′、A′,第3题解图设点B (m ,2m ),A (n ,2n),其中m >0,n >0, 由题意,将x =-1代入y =-2x中解得y =2,∴点C (-1,2),∴CC ′=2,BB ′= 2m ,AA ′=2n,又∵A′B′=n -m ,B ′C ′=m +1,CC ′∥BB ′∥AA ′,CB ∶AB =1∶2, 则B′C′∶A′B′=1∶2,则⎩⎪⎨⎪⎧n -m =2(m +1)2m -2n =23(2-2n ),消去n 化简得到3m 2-2m -3=0,解得m =1+103或1-103(舍弃),∴2m =21+103=-2+2103,∴点B 坐标为(1+103,-2+2103).4. 解:(1)根据题意,得OP 3=2OP 2=4OP 1=8OP 0=8,根据等腰直角三角形的性质,得P 3(-42,42); (2)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的角平分线上或x 轴或y 轴上, 但各点“绝对坐标”的横、纵坐标均为非负数, 因此,各点的“绝对坐标”可分三种情况:①当P n 的n =0,4,8,12…,则点在x 轴上,则“绝对坐标”为(2n,0) ,②当P n 的n =2,6,10,14…,则点在y 轴上,则“绝对坐标”为(0,2n) ; ③当P n 的n =1,3,5,7,9…,则点在各象限的角平分线上,则“绝对坐标”为(2n -12,2n -12).考向2 几何类针对演练1. 解:(1)①∵AB =CD =1,AB ∥CD , ∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴▱ABCD 是菱形. 又∵∠ABC =90°,∴四边形ABCD 为正方形, ∴BD =2;②如解图①,连接AC ,BD ,第1题解图①∵AB =BC ,AC ⊥BD , ∴∠ABD =∠CBD , 又∵BD =BD , ∴△ABD ≌△CBD , ∴AD =CD ;(2)若EF 与BC 垂直,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不是等腰直角四边形,不符合条件; 若EF 与BC 不垂直,①当AE =AB 时,如解图②,此时四边形ABFE 是等腰直角四边形,第1题解图②∴AE =AB =5;②当BF =AB 时,如解图③,此时四边形ABFE 是等腰直角四边形,第1题解图③∴BF =AB =5. ∵DE ∥BF ,∴△PED ∽△PFB ,∴ED FB =PD PB =12, ∴DE =2.5,∴AE =9-2.5=6.5.综上所述,AE 的长为5或6.5. 2. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上;(2)2;【解法提示】如解图①的矩形BCAF 、矩形ABED 为Rt △ABC 的两个“友好矩形”;第2题解图(3)此时共有3个“友好矩形”,如解图②的矩形BCDE 、矩形CAFG 及矩形ABHK ,其中的矩形ABHK 的周长最小.理由如下: ∵矩形BCDE 、矩形CAFG 及矩形ABHK 均为△ABC 的“友好矩形”,∴这三个矩形的面积相等,令其为S ,设矩形BCDE ,矩形CAFG 及矩形ABHK 的周长分别为L 1,L 2,L 3,△ABC 的边长BC =a ,CA =b ,AB =c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c ,∴L 1-L 2=(2S a +2a )-(2S b +2b )=2S ab (b -a )+2(a -b )=2(a -b)·ab -S ab,而ab >S ,a >b ,∴L 1-L 2>0,即L 1>L 2,同理可得,L 2>L 3,∴L 3最小,即矩形ABHK 的周长最小. 3. 解:(1)①矩形;【解法提示】平行四边形和菱形的对角线不相等,矩形的对角线相等,故矩形一定是等角线四边形.②垂直;【解法提示】∵四边形ABCD 是等角线四边形,∴AC =BD ,∵M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 的中点,∴MN =PQ =12AC ,PN =MQ =12BD ,∴MN =PQ =PN =MQ ,∴四边形MNPQ 是菱形,根据“有一个角是直角的菱形是正方形”可知需要四边形MNPQ 有一个角是直角,又易知MN ∥PQ ∥AC ,PN ∥QM ∥BD ,∴要使四边形MNPQ 是正方形需要AC ⊥BD .(2)①3+221; ∵AD =BD ,∴D 在AB 的垂直平分线上,∵四边形ABCD 是等角线四边形, ∴AC =BD ,在Rt △ABC 中,∠ABC =90°,AB =4,BC =3, ∴AC =5, ∴BD =5,如解图①,取AB 的中点为M ,则DM ⊥AB ,第3题解图①在Rt △ADM 中,AD =BD =5,AM =BM =2,由勾股定理得DM =21;∴S 四边形ABCD =S △ABD +S △BCD =12AB ·DM +12BC ·BM=12×4×21+12×3×2=3+221; ②四边形ABED 面积最大值为18,理由如下: 如解图②,设AE 与BD 交于点O ,夹角为α,则第3题解图②S 四边形ABED =S △AED +S △ABE =12AE ·ODsin α+12AE ·OBsin α=12AE ·BDsin α,∵AE =BD ,∴S 四边形ABED =12AE 2sin α,∴当AE 最大,且α=90°时,四边形ABED 的面积最大, 此时延长AC 交圆C 于E ,则AE 最大为5+1=6, ∴四边形ABED 的最大面积为12×62=18.4. (1)证明:如解图①所示,第4题解图①∵PC =BC ,∠BCP =90°, ∴BP =2BC ,又∵矩形ABCD 为“标准矩形”,∴AB =2BC , ∴AB =BP ;(2)解:如解图②,作点Q 关于直线BC 对称的点F ,连接AF 交BC 于点E ,连接QE 、GF ,第4题解图②∵DQ =CP ,∴CQ =DP =CF 且AQ 为定值, ∴EQ =EF ,GQ =GF ,∵AQ 为定值,要使△AGQ 的周长最小时, ∴只需AG +GQ =AG +GF 最小,显然AG +GF ≥AF =AE +EF =AE +EQ ,即当点G 与点E 重合时,△AGQ 的周长最小, 此时CG GB =CE EB =CF AB =DPAB,∵DP AB =CD -CP AB =AB -BC AB =1-BC AB =1-22,∴当△AGQ 的周长最小时,CG GB =1-22; (3)证明:如解图③,MN 交AF 于点K ,连接KT ,第4题解图③由(2)可知,CF =DP , ∴PF =AB 且PF∥AB ,∴四边形ABFP 为平行四边形, 又由PM =BN , ∴MF =AN ,∴△MFK ≌△NAK ,∴点K 为AF 与MN 的中点, 又∵点T 为BF 的中点, ∴KT 为△FAB 的中位线, ∴S △FKT =S △TMK =S △TKN ,∴S △MNT =2S △FKT =12S △FAB =14S 平行四边形ABFP =14×2=24,∴△MNT 的面积S 为定值,这个定值为24. 5. 解:(1)如解图①,设AC 与BD 交于点O ;第5题解图①∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形,∴AB =AD =BD =4, ∠ABD =∠ADB =60°, ∵∠ABC =∠ADC , ∴∠CBD =∠CDB , ∵∠BCD =120°,∴∠CBD =∠CDB =30°, ∴CB =CD , ∵AB =AD , ∴AC ⊥BD ,∴BO =OD =2,OA =AB ·sin60°=23,OC =OB ·tan30°=233,∴S 四边形ABCD =12·BD ·OA +12·BD ·OC =12·BD ·(OA +OC )=1633;(2)2;【解法提示】如解图②,作DH ⊥AB 于H ,过点B 、D 、C 作圆,连接BD ,第5题解图②∵∠C ′=∠C =45°, ∴当C′B =C′D 时,△BDC ′的面积最大,此时四边形ABC ′D 的面积最大, 易证四边形ABC′D 是菱形, 在Rt △AHD 中,∵∠A =45 °,∠AHD =90°,AD =4, ∴AH =HD =22,∴四边形ABC′D 的面积=AB·DH =82, ∴四边形ABCD 的面积的最大值为8 2. (3)四边形BCGE 的面积是定值,理由如下: 如解图③,连接EC 、CF ,作FM ⊥BC 于M .第5题解图③在△BCE 和△DCF 中, ⎩⎪⎨⎪⎧BE =DF ∠EBC =∠FDC,BC =DC∴△BCE ≌△DCF (SAS), ∴CE =CF , ∵EG =GF , ∴S △ECG =S △FCG ,∵四边形CDFM 是矩形,∴BC =DC =MF ,DF =BE =CM , ∴BM =m ,BE +FM =m ,∴△FCM ,△DCF ,△BCE 的面积相等, ∴S 四边形BCGE =12·S 四边形BEFM =12·12·m ·m =14m 2.6. 解:(1)AB =BC 或BC =CD 或CD =AD 或AD =AB ; (2)解:小红的结论正确. 理由如下:∵四边形的对角线互相平分, ∴这个四边形是平行四边形, ∵四边形是“等邻边四边形”, ∴这个四边形有一组邻边相等, ∴这个“等邻边四边形”是菱形;(3)由∠ABC =90°,AB =2,BC =1,得:AC =5, ∵将Rt △ABC 平移得到Rt △A ′B ′C ′,∴BB ′=AA′,A′B′∥AB,A ′B ′=AB =2,B ′C ′=BC =1,A ′C ′=AC =5, (Ⅰ)如解图①,当AA′=AB 时,BB ′=AA′=AB =2;第6题解图①(Ⅱ)如解图②,当AA′=A′C′时,BB ′=AA′=A′C′ =5;第6题解图②(Ⅲ)当A′C′=BC′=5时,如解图③,延长C′B′交AB 与点D ,则C′B ′⊥AB ,第6题解图③∵BB ′平分∠ABC ,∴∠ABB ′=12∠ABC =45°,∴∠BB ′D =∠ABB′=45°, ∴B ′D =BD ,设B′D=BD =x ,则C′D =x +1,BB ′=2x ,∵根据在Rt △BC ′D 中,BC ′2=C′D 2+BD 2即x 2+(x +1)2=5, 解得:x =1或x =-2(不合题意,舍去), ∴BB ′=2x =2;第6题解图④(Ⅳ)当 BC′=AB =2时,如解图④,与(Ⅲ)方法同理可得: x =-1+72或x =-1-72(舍去),∴BB ′=2x =-2+142.故应平移2或5或2或-2+142的距离.7. 解:(1)①12,②4;【解法提示】①如解图①中,第7题解图①∵△ABC 是等边三角形,∴AB =BC =AC =AB′=AC′, ∵DB ′=DC′, ∴A D ⊥B ′C ′,∵∠BAC =60°,∠BAC +∠B′AC ′=180°, ∴∠B ′AC ′=120°, ∴∠B ′=∠C′=30°, ∴AD =12AB ′=12BC .②如解图②中,第7题解图②∵∠BAC =90°,∠BAC +∠B′AC′=180°, ∴∠B ′AC ′=∠BAC =90°, ∵AB =AB′,AC =AC′, ∴△BAC ≌△B ′AC ′, ∴BC =B′C ′, ∵B ′D =DC′,∴AD =12B ′C ′=12BC =4;(2)猜想:AD =12BC .理由:如解图③中,延长AD 到M ,使得AD =DM ,连接B′M,C ′M ,第7题解图③∵B ′D =DC ′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC ′=B′M=AC ,∵∠BAC +∠B′AC′=180°, ∠B ′AC ′+∠AB′M =180°, ∴∠BAC =∠MB ′A, ∵AB =AB ′,∴△BAC ≌△AB ′M , ∴BC =AM , ∴AD =12BC ;(3)存在.理由:如解图④中,延长AD 交BC 的延长线于M ,作BE ⊥AD 于E ,作线段BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作△PCD 的中线PN ,连接DF 交PC 于O ,第7题解图④∵∠ADC =150°, ∴∠MDC =30°, ∴在Rt △DCM 中,∵CD =23,∠DCM =90°,∠MDC =30°, ∴CM =2,DM =4,∠M =60°, 在Rt △BEM 中,∵∠BEM =90°,BM =BC +CM =14,∠MBE =30°, ∴EM =12BM =7,∴DE =EM -DM =3, ∵AD =6, ∴AE =DE , ∵BE ⊥AD ,∴PA =PD ,PB =PC , 在Rt △CDF 中,∵CD =23,CF =6, ∴∠CDF =∠CPE =60°, 易证△FCP ≌△CFD , ∴CD =PF ,∵CD ∥PF , ∴四边形CDPF 是矩形, ∴∠CDP =90°,∴∠ADP =∠ADC-∠CDP =60°, ∴△ADP 是等边三角形, ∴∠APD =60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.。
2019年中考数学复习第二部分热点专题突破专题二借助数学模型解决实际问题试题含解析
专题二 借助数学模型解决实际问题一次函数模型1. 用待定系数法求一次函数的解析式例1 (2016,河北)某商店通过调低价格的方式促销n 个不同的玩具,调整后的单价y (元)与调整前已知这个玩具调整后的单价都大于2元.(1)求y 与x 之间的函数关系式,并确定x 的取值范围;(2)某个玩具调整前的单价是108元,顾客购买这个玩具省了多少元? (3)这n 个玩具调整前、后的平均单价分别为,,猜想与之间的关系式,并写出推导过程.【思路分析】(1)已知y 与x 之间的函数类型,可利用待定系数法,由表中所给的两组数据列方程组解得.(2)已知自变量x 的值为108,求对应的函数值,再求调整前、后的单价差.(3)利用平均数公式求得.解:(1)设y =kx +b .依题意,得⎩⎪⎨⎪⎧4=6k +b ,59=72k +b.解得⎩⎪⎨⎪⎧k =56,b =-1.∴y =56x -1. 依题意,得56x -1>2.解得x >185,即x 的取值范围为x >185. (2)将x =108代入y =56x -1, 得y =56×108-1=89.108-89=19(元),∴顾客购买这个玩具省了19元. (3) =56-1.推导过程:由(1)知y 1=56x 1-1,y 2=56x 2-1,…,y n =56x n -1,∴=1n(y 1+y 2+…+y n )=1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫56x1-1+⎝ ⎛⎭⎪⎫56x2-1+…+⎝ ⎛⎭⎪⎫56xn -1=1n ⎣⎢⎡⎦⎥⎤56(x1+x2+…+xn )-n=56·1n (x 1+x 2+…+x n )-1 =56-1.针对训练1 如图①,长为60 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为30 km/h.设甲车、乙车距南站A 的路程分别为y 甲 km ,y 乙 km ,行驶时间为t h.训练1题图(1)如图②,已画出y 甲与t 之间的函数图象,其中a =60,b =2,c =4; (2)分别写出0≤t ≤2及2<t ≤4时,y 乙关于t 的函数解析式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数. 【思路分析】 (1)由函数图象的数据,根据行程问题的数量关系就可以求出结论.(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b ;当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.用待定系数法就可以求出结论.(3)通过描点法画出函数图象即可.解:(1)6024(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b .由题意,得⎩⎪⎨⎪⎧60=b ,0=2k +b.解得⎩⎪⎨⎪⎧k =-30,b =60.∴y 乙=-30t +60.当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.由题意,得⎩⎪⎨⎪⎧0=2k1+b1,60=4k1+b1.解得⎩⎪⎨⎪⎧k1=30,b1=-60.∴y 乙=30t -60.(3)y 乙与t 的函数图象如答图所示.训练1答图因为两个图象有两个交点,所以在整个行驶过程中两车相遇的次数为2.2. 借助等式求一次函数的解析式例2 (2009,河北节选)某公司装修需用A 型板材240块、B 型板材180块,A 型板材的规格是60 cm ×30 cm ,B 型板材的规格是40 cm ×30 cm.现只能购得规格是150 cm ×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(如图所示的是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁张、按裁法二裁张、按裁法三裁z 张,且所裁出的A ,B 两种型号的板材刚好够用.(1)上表中,m =0,n =3;(2)分别求出y 关于x 和z 关于x 的函数解析式.例2题图【思路分析】 (1)按裁法二裁剪时,2块A 型板材的长为120 cm.150-120=30(cm),所以无法裁出B 型板材.按裁法三裁剪时,3块B 型板材的长为120 cm ,120<150,而4块B 型板材的长为160 cm ,160>150,所以无法裁出4块B 型板材.(2)由题意,得共需用A 型板材240块、B 型板材180块.所以x +2y =240,2x +3z =180.然后即可求出解析式.解:(1)03(2)由题意,得共需用A 型板材240块、 B 型板材180块.∴x +2y =240,2x +3z =180.∴y =-12x +120,z =-23x +60.针对训练2 一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,恰好用完购机款61 000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 关于x 的函数解析式.【思路分析】 (1)由A 型、B 型、C 型三款手机共60部和A ,B 型手机的部数可表示出C 型手机的部数.(2)根据购机款列出等式可表示出x ,y 之间的关系.解:(1)60-x -y .(2)根据题意,得900x +1 200y +1 100(60-x -y )=61 000. 整理,得y =2x -50.3. 字母系数的一次函数最值问题例3煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1 000 t 煤炭要全部运往A ,B 两厂,通过了解获得A ,B 两厂的有关信息如下表:(表中运费栏“元/(t ·km)”(1)写出总运费(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.(可用含a 的代数式表示)【思路分析】 (1)根据总费用=运往A 厂所需的费用+运往B 厂所需的费用.整理后可得出y 关于x 的函数解析式.(2)根据一次函数的性质算出所求方案的费用.解:(1)∵运往A 厂x t , ∴运往B 厂(1 000-x )t.依题意,得y =200×0.45x +150a ·(1 000-x )=90x +150 000a -150ax =(90-150a )x +150 000a .依题意,得1 000-x ≤800.解得x ≥200. ∵x ≤600, ∴200≤x ≤600.∴y =(90-150a )x +150 000a (200≤x ≤600).(2)当0<a <0.6时,90-150a >0,y 随x 的增大而增大.∴当x =200时,y 最小=(90-150a )×200+150 000a =120 000a +18 000. 此时1 000-x =1 000-200=800.当a >0.6时,90-150a <0,y 随x 的增大而减小.∴当x =600时,y 最小=(90-150a )×600+150 000a =60 000a +54 000. 此时1 000-x =1 000-600=400.当a =0.6时,y =90 000,此时,不论如何分配运往A 厂,B 厂的煤炭量,总运费都是一样的. 综上所述,当0<a <0.6时,运往A 厂200 t ,B 厂800 t ,总运费最少,最少总运费为(120 000a +18 000)元;当a >0.6时,运往A 厂600 t ,B 厂400 t ,总运费最少,最少总运费为(60 000a +54 000)元;当a =0.6时,总运费为90 000元.针对训练3 (2018,湘西州,导学号5892921)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.(1)求y 关于x 的函数解析式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大总利润是多少元? (3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台.若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【思路分析】 (1)根据“总利润=A 型电脑每台利润×A 型电脑数量+B 型电脑每台利润×B 型电脑数量”可得函数解析式.(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的取值范围,再结合(1)所求函数解析式及一次函数的性质求解可得.(3)根据题意,得y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60.分三种情况讨论:①当0<a <100时,y 随x 的增大而减小;②当a =100时,y =50 000;③当100<a <200时,y 随x 的增大而增大.分别进行求解.解:(1)根据题意,得y =400x +500(100-x )=-100x +50 000. (2)∵100-x ≤2x ,∴x ≥3313.∵y =-100x +50 000中,k =-100<0, ∴y 随x 的增大而减小. ∵x 为正数,∴当x =34时,100-x =66,y 最大=46 600.答:该商店购进A 型电脑34台、B 型电脑66台,才能使销售总利润最大,最大总利润是46 600元. (3)根据题意,得y =(400+a )x +500(100-x ), 即y =(a -100)x +50 000,3313≤x ≤60.①当0<a <100时,y 随x 的增大而减小, 所以当x =34时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑时,销售总利润最大. ②当a =100时,a -100=0, 所以y =50 000,即商店购进A 型电脑数量满足3313≤x ≤60的整数时,均获得最大利润. ③当100<a <200时,y 随x 的增大而增大, 所以当x =60时,y 取得最大值,即商店购进60台A 型电脑和40台B 型电脑时,销售总利润最大.二次函数模型1. 借助图象信息求函数解析式例4 (2018,河北,导学号5892921)如图所示的是轮滑场地的截面示意图,平台AB 距x 轴(水平)18 m ,与y 轴交于点B ,与滑道y =k x(x ≥1)交于点A ,且AB =1 m .运动员(看成点)在BA 方向获得速度v m/s 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (m)与飞出时间t (s)的平方成正比,且t =1时h =5,M ,A 的水平距离是vt m.(1)求k 的值,并用t 表示h ;(2)设v =5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及y =13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5 m/s ,v 乙 m/s.当甲距x 轴1.8 m ,且乙位于甲右侧超过4.5 m 的位置时,直接写出t 的值及v 乙的取值范围.例4题图【思路分析】 (1)用待定系数法解题即可.(2)根据题意,分别用t 表示x ,y ,再用代入消元法得出y 与x 之间的关系式,然后再求运动员与正下方滑道的竖直距离.(3)把y =1.8代入,解方程求出t 的值.求出甲距x 轴1.8 m 时的横坐标,根据题意求出乙位于甲右侧超过4.5 m 时的v 乙的取值范围.解:(1)∵点A (1,18)在滑道y =k x上,∴18=k 1.∴k =18.设h =at 2.把t =1,h =5代入,得5=a ·12. 解得a =5.∴h =5t 2.(2)∵v =5,AB =1, ∴x =AB +vt =5t +1.∵h =5t 2,OB =18,∴y =OB -h =-5t 2+18. 由x =5t +1,得t =15(x -1).∴y =-5⎣⎢⎡⎦⎥⎤15(x -1)2+18=-15(x -1)2+18.当y =13时,13=-15(x -1)2+18. 解得x =6或x =-4.∵x ≥1, ∴x =6.把x =6代入y =18x,解得y =3.所以y =13时运动员与正下方滑道的竖直距离是13-3=10(m). (3)把y =1.8代入y =-5t 2+18,得t 2=8125.解得t =1.8或t =-1.8(负值舍去). ∴x =5t +1=10.由题意,得1+1.8v 乙-10>4.5. ∴v 乙>7.5.针对训练4 (2018,石家庄43中模拟)某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图,折线段O →A →B 表示救援船在整个航行过程中离港口的距离y (n mile)随航行时间x (min)的变化规律.抛物线y =ax 2+k 表示故障渔船在漂移过程中离港口的距离y (n mile)随漂移时间x (min)的变化规律.已知救援船返程速度是前往速度的23.根据图象提供的信息,解答下列问题:(1)救援船行驶了16n mile 与故障渔船会合;(2)求该救援船的前往速度;(3)若该故障渔船在发出求救信号后40 min 内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全?训练4题图【思路分析】 (1)根据图象即可得出答案.(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min.由题意,得16v+16=1623v ,求出方程的解即可.(3)求出抛物线的解析式,把x =40代入求出y 的值,再用y 的值除以时间求出速度即可.解:(1)16(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min. 由题意,得16v+16=1623v .解得v =0.5.答:该救援船的前往速度为0.5 n mile/min. (3)由(2)知t =16÷0.5=32. ∴A (32,16).将A (32,16),C (0,12)的坐标分别代入y =ax 2+k , 得⎩⎪⎨⎪⎧16=a·322+k ,12=k.解得⎩⎪⎨⎪⎧a =1256,k =12.∴y =1256x 2+12. 把x =40代入,得y =1256×402+12=734. 734÷4060=2198(n mile). 答:救援船的前往速度每小时至少是2198n mile ,才能保证故障渔船的安全. 针对训练5 (导学号5892921)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2 m 的A处发出,把球看成点,其运行的高度y (m)与运行的水平距离x (m)满足关系式y =a (x -6)2+h .已知球网与点O 的水平距离为9 m ,高度为2.43 m ,球场的边界距点O 的水平距离为18 m.(1)当h =2.6时,求y 关于x 的函数解析式;(不要求写出自变量x 的取值范围) (2)求当h =2.6时,球能否越过球网,球会不会出界; (3)若球一定能越过球网,又不出边界,求h 的取值范围.训练5题图【思路分析】 (1)利用h =2.6,将点(0,2)的坐标代入解析式求出即可.(2)当x =9时,y =-160(x -6)2+2.6=2.45,进而判断球能否越过球网;当y =0时,-160(x -6)2+2.6=0,解方程即可判断球是否会出界.(3)根据球一定能越过球网,又不出边界分别列出不等式,解不等式即可得出答案.解:(1)∵h =2.6,且球从点O 正上方2 m 的A 处发出,∴抛物线y =a (x -6)2+h 过点(0,2).∴2=a ×(0-6)2+2.6.解得a =-160.∴y 关于x 的函数解析式为y =-160(x -6)2+2.6. (2)当x =9时,y =-160(x -6)2+2.6=2.45>2.43, ∴球能越过球网.当y =0时,-160(x -6)2+2.6=0.解得x 1=6+239>18,x 2=6-239(舍去). 故球会出界.(3)∵y =a (x -6)2+h 过点(0,2), ∴2=36a +h . ∴a =2-h36. 若球一定能越过球网,则当x =9时,y >2.43, 即y =2-h 36×(9-6)2+h >2.43. 解得h >19375. 若球不出边界,则当x =18时,y ≤0, 即y =2-h 36×(18-6)2+h ≤0. 解得h ≥83.故若球一定能越过球网,又不出边界,则h 的取值范围是h ≥83.2. 借助表格信息求函数解析式例5 (2013,河北,导学号5892921)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q =W +100,而W 的大小与运输次数n 及平均速度x (km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与的倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ;(2)当x =70,Q =450时,求n 的值; (3)若n =3,要使Q 最大,确定x 的值;(4)设n =2,x =40,能否在n 增加m %(m >0),同时x 减少m %的情况下,而Q 的值仍为420?若能,求出m 的值;若不能,请说明理由.【思路分析】 (1)根据题目所给的信息,设W =k 1x 2+k 2nx ,然后根据Q =W +100,列出Q 与x ,n 之间的关系式.(2)将x =70,Q =450代入,求n 的值即可.(3)把n =3代入,确定关系式,然后求Q 最大时x 的值即可.(4)根据题意列出关系式,求出当Q =420时m 的值即可.解:(1)设W =k 1x 2+k 2nx ,则Q =k 1x 2+k 2nx +100.由表中数据,得⎩⎪⎨⎪⎧420=402k1+2×40k2+100,100=602k1+1×60k2+100.解得⎩⎪⎨⎪⎧k1=-110,k2=6.∴Q =-110x 2+6nx +100.(2)将x =70,Q =450代入Q =-110x 2+6nx +100, 得450=-110×702+6×70n +100. 解得n =2.(3)当n =3时,Q =-110x 2+18x +100=-110(x -90)2+910.∵-110<0,∴函数图象开口向下,有最大值,则当x =90时,Q 有最大值. ∴要使Q 最大,x =90. (4)能.由题意,得420=-110[40(1-m %)]2+6×2(1+m %)×40(1-m %)+100. 解得m %=12或m %=0(舍去).∴m =50.针对训练 6 (2017,成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x (单位:km),乘坐地铁的时间y 1(单位:min)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数解析式;(2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.【思路分析】 (1)根据表格中的数据,运用待定系数法,即可求得y 1关于x 的函数解析式.(2)设李华从文化宫站回到家所需的时间为y ,则y =y 1+y 2=12x 2-9x +80.根据二次函数的性质,即可得出最短时间.解:(1)设y 1关于x 的函数解析式为y 1=kx +b . 将(8,18),(9,20)代入,得⎩⎪⎨⎪⎧8k +b =18,9k +b =20, 解得⎩⎪⎨⎪⎧k =2,b =2.∴y 1关于x 的函数解析式为y 1=2x +2.(2)设李华从文化宫站回到家所需的时间为y min ,则y =y 1+y 2 =2x +2+12x 2-11x +78 =12x 2-9x +80 =12(x -9)2+39.5.∴当x =9时,y 取得最小值,最小值为39.5.所以李华应选择在B 站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min.3. 借助文字表述求函数解析式例6 某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x 件,其中x >0. 若在甲地销售,每件售价y 元与x 件之间的函数解析式为y =-110x +100,每件成本为20元.设此时的年销售利润为w 甲元(利润=销售额-成本).若在乙地销售,受各种不确定因素的影响,每件成本为a 元(a 为常数,15≤a ≤25),每件售价为106元,销售x 件每年还需缴纳110x 2元的附加费.设此时的年销售利润为w 乙元(利润=销售额-成本-附加费). (1)当a =16且x =100时,w 乙=8 000;(2)求w 甲与x 之间的函数解析式(不必写出x 的取值范围),并求当x 为何值时,w 甲最大以及最大值是多少;(3)为完成x 件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.【思路分析】 (1)利用“利润=销售额-成本-附加费”得出w 乙=(106-a )x -110x 2,代入数值求得答案即可.(2)利用“利润=销售额-成本”求得w 甲与x 之间的函数解析式,利用配方法求得最值即可.(3)先计算得到w 乙-w 甲=(26-a )x .因为15≤a ≤25,x >0,所以w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.解:(1)8 000(2)根据题意,得w 甲=(y -20)x=⎝ ⎛⎭⎪⎫-110x +100-20x=-110x 2+80x=-110(x -400)2+16 000.所以当x =400时,w 甲有最大值,最大值为16 000.(3)w 乙-w 甲=(106-a )x -110x 2-⎝ ⎛⎭⎪⎫-110x2+80x =(26-a )x .∵15≤a ≤25,x >0,∴w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.针对训练7 (2018,襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20 kg ,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4 kg.第x 天的售价为y 元/kg ,y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/kg ,第26天的售价为25元/kg.已知种植销售蓝莓的成本是18元/kg ,每天的利润是W 元(利润=销售收入-成本).(1)m =(-12),n =25;(2)销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【思路分析】 (1)根据题意将相关数值代入即可.(2)在(1)的基础上分段表示利润,讨论最值.(3)分别用(2)中的两个函数在取值范围内讨论利润不低于870元的天数,注意天数为正整数.解:(1)-1225(2)由题意,得第x 天的销量为20+4(x -1)=4x +16(kg).当1≤x <20时, W =(4x +16)⎝ ⎛⎭⎪⎫-12x +38-18 =-2x 2+72x +320=-2(x -18)2+968.∴当x =18时,W 最大=968.当20≤x ≤30时,W =(4x +16)(25-18)=28x +112.∵28>0,∴W 随x 的增大而增大.∴当x =30时,W 最大=952.∵968>952,∴当x =18时,W 最大=968.所以销售蓝莓第18天时,当天的利润最大,最大利润是968元.(3)当1≤x <20时,令-2x 2+72x +320=870.解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下,∴当11≤x <20时,W ≥870.∵x 为正整数,∴有9天利润不低于870元.当20≤x≤30时,令28x+112≥870.解得x≥271 14 .∴27114≤x≤30.∵x为正整数,∴有3天利润不低于870元.综上所述,当天利润不低于870元的共有12天.。
2019中考数学第二部分专题综合强化专题二实际应用型问题针对训练
第二部分 专题二类型1 购买、销售、分配类问题1.(2018·常德)某水果店5月份购进甲、乙两种水果共花费1 700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克.(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意,得⎩⎪⎨⎪⎧8x +18y =1 700,10x +20y =1 700+300,解得⎩⎪⎨⎪⎧x =100,y =50.答:该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120-a )千克, 根据题意,得w =10a +20(120-a )=-10a +2 400. ∵甲种水果不超过乙种水果的3倍, ∴a ≤3(120-a ),解得a ≤90.∵k =-10<0,∴w 随a 值的增大而减小,∴当a =90时,w 取最小值,最小值为-10×90+2 400=1 500. 答:6月份该店需要支付这两种水果的货款最少应是1 500元.2.(2018·泰安)文美书店决定用不多于20 000元购进甲乙两种图书共1 200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍.若用1 680元在文美书店可购买甲种图书的本数比用1 400元购买乙种图书的本数少10本.(1)甲、乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意,得1 400x -1 6801.4x=10,解得x =20.检验:当x =20时,1.4x ≠0,所以x =20是原方程的解,且符合题意. 所以,甲种图书售价为每本1.4×20=28(元).答:甲种图书的售价为每本28元,乙种图书的售价为每本20元. (2)设甲种图书进货a 本,总利润w 元,则w =(28-20-3)a +(20-14-2)(1 200-a )=a +4 800.又∵20a +14×(1 200-a )≤20 000, 解得a ≤1 6003,w 随a 的增大而增大,∴当a =533时,w 最大,此时,乙种图书进货本数为1 200-533=667(本).答:甲种图书进货533本,乙种图书进货667本时能获得最大利润.3.某商场销售A ,B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1 100元.(1)求每件A 种商品和每件B 种商品售出后所得利润各多少元?(2)若该商场一次购进A ,B 两种商品共34件,全部售完后所得利润不低于4 000元,那么该商场至少需要购进多少件A 种商品?解:(1)设每件A 种商品利润为x 元,每件B 种商品利润为y 元.由题意,得⎩⎪⎨⎪⎧x +4y =600,3x +5y =1 100,解得⎩⎪⎨⎪⎧x =200,y =100,答:每件A 种商品利润为200元,每件B 种商品利润为100元. (2)设购进A 种商品a 件,则购进B 种商品(34-a )件. 由题意,得200a +100(34-a )≥4 000,解得a ≥6. 答:商场至少需购进6件A 种商品.4.某校周六、周日分别从甲班与乙班各选出20位同学去帮助某果园的果农采摘菠萝,任务都是完成720千克菠萝的采摘、运送、包装三项工作.已知每个同学每小时完成同项工作的工作量一样,且知每人每小时可采摘60千克.(1)周六时甲班将工作做如下分配:6人采摘,8人运送,6人包装,发现刚好各项工作完成的时间相等,那么每人每小时运送、包装各多少千克?(2)得知相关信息后,周日乙班将分配方案调整如下:20人一起完成采摘任务后,然后自由分成两组,第一组运送,第二组包装,发现当第一组完成了任务时,第二组在相等的时间内还有80千克的菠萝还没有包装,于是第一组同学马上帮助第二组同学进行包装直至完成任务,试问自由分成的两组各多少人?解:(1)设采摘了x 小时,根据题意,得 6×60×x =720,解得x =2,故每人每小时包装:720÷(6×2)=60(kg), 每人每小时运送720÷(8×2)=45(kg). 答:每人每小时运送60 kg 、包装45 kg.(2)设负责运送的人数为y 人,则包装人数为(20-y )人, 根据题意,得72045y =720-80-y,解得y =12,检验:当y =12时,45y ≠0,20-y ≠0,所以y =12是原方程的根,且符合题意,可知自由分成的两组中,第一组12人,第二组为20-12=8(人). 答:自由分成的第一组12人,第二组8人. 类型2 工程、生产、行程类问题1.(2018·昆明盘龙区模拟)一辆汽车计划从A 地出发开往相距180千米的B 地,事发突然,加速为原速的1.5倍,结果比计划提前40分钟到达B 地,求原计划平均每小时行驶多少千米?解:设原计划平均每小时行驶x 千米,则加速后平均每小时行驶1.5x 千米, 根据题意,得180x -1801.5x =4060,解得x =90,经检验,x =90是原分式方程的根,且符合题意. 答:原计划平均每小时行驶90千米.2.(2018·威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设升级前每小时生产x 个零件,根据题意,得240x-240+13x=4060+2060. 解得x =60.检验,当x =60时,(1+13)x ≠0,所以x =60是原方程的解且符合题意.∴60×(1+13)=80(个).答:软件升级后每小时生产80个零件.3.(2018·抚顺)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1 200米,改造总费用不超过145万元,至少安排甲队工作多少天?解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据题意得360x -36032x =3,解得x =40,检验:当x =40时,32x ≠0,所以x =40是原分式方程的解,且符合题意,32x =32×40=60. 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米. (2)设安排甲队工作m 天,则安排乙队工作1 200-60m40天,根据题意得7m +5×1 200-60m40≤145,解得m ≥10.答:至少安排甲队工作10天.4.(2018·官渡区二模)列方程(组)及不等式解应用题某种型号油、电混合动力汽车,从A 地到B 地使用纯燃油行驶的费用为76元;从A 地到B 地使用纯电行驶的费用为26元.已知每行驶1千米用纯燃油行驶的费用比用纯电行驶的费用多0.5元.(1)求用纯电行驶1千米的费用为多少元?(2)若要使从A 地到B 地油电混合行驶所需的油和电总费用不超过39元,则至少用电行驶多少千米? 解:(1)设用纯电行驶1千米的费用为x 元,则用纯油行驶1千米的费用为(x +0.5)元, 根据题意得76x +0.5=26x,解得x =0.26, 检验,当x =0.26时,x +0.5≠0,所以x =0.26是原分式方程的解. 答:用纯电行驶1千米的费用为0.26元. (2)设从A 地到B 地用电行驶y 千米, 根据题意得0.26y +(0.26+0.5)(260.26-y )≤39,解得y ≥74. 答:至少用电行驶74千米. 类型3 增长率问题1.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?解:(1)设该快递公司投递快递总件数的月平均增长率为x ,由题意,得 10×(1+x )2=12.1,解得x 1=10%,x 2=-210%(舍去).答:该快递公司投递快递总件数的月平均增长率为10%. (2)不能,4月:12.1×1.1=13.31(万件),21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务. ∵22<13.310.6<23,∴至少还需增加2名业务员.答:不能,至少需要增加2名业务员.2.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元? 解:(1)设该企业从2014年到2016年利润平均增长率为x .根据题意得2(1+x )2=2.88, 解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 答:该企业从2014年到2016年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88(1+20%)=3.456, 3.456>3.4,答:该企业2017年的利润能超过3.4亿元.3.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5 000万元,2017年投入基础教育经费7 200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1 500台,调配给农村学校,若购买一台电脑需3 500元,购买一台实物投影需2 000元,则最多可购买电脑多少台?解:(1)设该市这两年投入基础教育经费的年平均增长率为x , 根据题意得5 000(1+x )2=7 200, 解得x 1=0.2=20%,x 2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%. (2)2018年投入基础教育经费为7 200×(1+20%)=8 640(万元), 设购买电脑m 台,则购买实物投影仪(1 500-m )台, 根据题意得3 500m +2 000(1 500-m )≤86 400 000×5%, 解得m ≤880.答:2018年最多可购买电脑880台. 类型4 方案设计问题与最值问题1.(2018·怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A ,B 两种树苗,共21棵,已知A 种树苗每棵90元,B 种树苗每棵70元.设购买A 种树苗x 棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数表达式,其中0≤x ≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用. 解:(1)根据题意,得y =90x +70(21-x )=20x +1 470, ∴y 与x 的函数表达式为y =20x +1 470. (2)∵购买B 种树苗的数量少于A 种树苗的数量, ∴21-x <x ,解得x >10.5.又∵y =20x +1 470,且x 取整数, ∴当x =11时,y 有最小值为1 690,答:使费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.2.(2018·恩施)某学校为改善办学条件,计划采购A ,B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39 000元;4台A 型空调比5台B 型空调的费用多6 000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A ,B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217 000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元? 解:(1)设A 型空调和B 型空调每台各需x 元、y 元,由题意得⎩⎪⎨⎪⎧3x +2y =39 000,4x -5y =6 000,解得⎩⎪⎨⎪⎧x =9 000,y =6 000,答:A 型空调和B 型空调每台各需9 000元、6 000元. (2)设购买A 型空调a 台,则购买B 型空调(30-a )台, ⎩⎪⎨⎪⎧a ≥12-a ,9 000a +-a ,解得10≤a ≤1213,∴a =10,11,12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台, 方案二:采购A 型空调11台,B 型空调19台, 方案三:采购A 型空调12台,B 型空调18台. (3)设总费用为w 元,w =9 000a +6 000(30-a )=3 000a +180 000,∴当a =10时,w 取得最小值,此时w =210 000,答:采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210 000元.3.(2018·梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A ,B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样.(1)求A ,B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2 800元,B 型电动自行车每辆售价为3 500元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?解:(1)设A ,B 两种型号电动自行车的进货单价分别为x 元、(x +500)元. 由题意得50 000x =60 000x +500,解得x =2 500,检验:当x =2 500时,x (x +500)≠0,所以x =2 500是分式方程的解,且符合题意,此时x +500=3 000. 答:A ,B 两种型号电动自行车的进货单价分别为2 500元,3 000元. (2)∵购进A 型电动自行车m 辆, ∴购进B 型电动自行车(30-m )辆.根据题意得y =(2 800-2 500)m +(3 500-3 000)(30-m )=-200m +15 000. (3)根据题意得,2 500m +3 000(30-m )≤80 000, 解得m ≥20.又∵m <30,∴20≤m <30, 由(2)得y =-200m +15 000, ∵-200<0,∴y 随m 的增大而减小,∴当m =20时,y 取最大值,最大值为-200×20+15 000=11 000(元). 此时30-m =10.答:当购进A 种型号电动自行车20辆,B 种型号电动自行车10辆时,能获得最大利润,此时最大利润是11 000元.4.(2018·湘西)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.解:(1)根据题意,y =400x +500(100-x )=-100x +50 000.(2)∵100-x ≤2x ,∴x ≥1003=3313.∵y =-100x +50 000中k =-100<0, ∴y 随x 的增大而减小.∵x 为正数,∴当x =34时,y 取得最大值,最大值为46 600,答:该商店购进A 型电脑34台、B 型电脑66台,才能使销售总利润最大,最大利润是46 600元. (3)据题意得,y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60 ①当0<a <100时,y 随x 的增大而减小, ∴当x =34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大. ②当a =100时,a -100=0,y =50 000,即商店购进A 型电脑数量满足3313≤x ≤60的整数时,均获得最大利润;③当100<a <200时,a -100>0,y 随x 的增大而增大, ∴当x =60时,y 取得最大值.即商店购进60台A 型电脑和40台B 型电脑的销售利润最大. 类型5 图象类问题1.(2018·上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?解:(1)设该一次函数的解析式为y =kx +b ,将(150,45),(0,60)代入y =kx +b 中,⎩⎪⎨⎪⎧150k +b =45,b =60,解得⎩⎪⎨⎪⎧k =-110,b =60,∴该一次函数的解析式为y =-110x +60.(2)当y =-110x +60=8时,解得x =520.即行驶520千米时,油箱中的剩余油量为8升. 530-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.2.(2018·衡阳)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?解:(1)设y 与x 的函数解析式为y =kx +b ,将(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,解得⎩⎪⎨⎪⎧k =-1,b =40,所以y 与x 的函数解析式为y =-x +40(10≤x ≤16). (2)根据题意知,W =(x -10)y =(x -10)(-x +40) =-x 2+50x -400 =-(x -25)2+225,∵a =-1<0,∴当x <25时,W 随x 的增大而增大.∵10≤x ≤16,∴当x =16时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.3.为更新果树品种,某果园计划新购进A ,B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A 种树苗的单价为7元/棵,购买B 种树苗所需费用y (元)与购买数量x (棵)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)若在购买计划中,B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.解:(1)设y 与x 的函数关系式为y =kx +b ,当0≤x <20时,把(0,0),(20,160)代入y =kx +b 中,得⎩⎪⎨⎪⎧0=b ,160=20k +b ,解得⎩⎪⎨⎪⎧k =8,b =0.此时y 与x 的函数关系式为y =8x ;当x ≥20时,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,此时y 与x 的函数关系式为y =6.4x +32. 综上可知:y 与x 的函数关系式为y =⎩⎪⎨⎪⎧8xx <,6.4x +x(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≤45-x ,∴22.5≤x ≤35,设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347, ∵k =-0.6,∴W 随x 的增大而减小,∴当x =35时,W 总费用最低,W 最低=-0.6×35+347=326(元). 答:当B 种树苗为35棵树,总费用最低为326元.4.春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游. 租车公司:按日收取固定租金80元,另外再按租车时间计费. 共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y 1(元),y 2(元)与租车时间x (时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y 1,y 2与x 的函数表达式; (2)请你帮助小丽一家选择合算的租车方案. 解:(1)由题意,设y 1=kx +80,将(2,110)代入,得110=2k +80,解得k =15, 则y 1与x 的函数表达式为y 1=15x +80;设y 2=mx ,将(5,150)代入,得150=5m ,解得m =30, 则y 2与x 的函数表达式为y 2=30x .(2)由y 1=y 2得,15x +80=30x ,解得x =163;由y 1<y 2得,15x +80<30x ,解得x >163;由y 1>y 2得,15x +80>30x ,解得x <163.故当租车时间为163小时时,两种选择一样;当租车时间大于163小时时,选择租车公司合算; 当租车时间小于163小时时,选择共享汽车合算.。
2019中考数学狙击重难点系列专题2----二次函数的实际应用之抛球问题
二次函数的实际应用--抛球问题一、单选题1.把一个物体以初速度v0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=v0t- gt2(其中g是常数,取10米/秒2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是( )A. 1.05米B. -1.05米C. 0.95米D. -0.95米2.林书豪身高1.91m,在某次投篮中,球的运动路线是抛物线y= x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为()A.3.2mB.4mC.4.5mD.4.6m3.在羽毛球比赛中,某次羽毛球的运动路线可以看做是抛物线y=-x2+bx +c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O 点的距离是4m,那么这条抛物线的表达式是( )A.y=-x2+x+1B.y=-x2+x-1C.y=-x2-x+1D.y=-x2-x-1 4.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢h 0 8 14 18 20 20 18 14 …20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A. 1B. 2C. 3D. 4二、解答题5.如图所示,一个运动员推铅球,铅球在点处出手,出手时球离地面约.铅球落地点在处,铅球运行中在运动员前处(即)达到最高点,最高点高为.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?三、综合题6.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?7.如图,已知排球场的长度OD为18 m,位于球场中线处球网的高度AB为2.4 m,一队员站在点O处发球,排球从点O的正上方1.6 m的C点向正前方飞出,当排球运行至离点O的水平距离OE为6 m时,到达最高点G建立如图所示的平面直角坐标系(1)当球上升的最大高度为3.4 m时,对方距离球网0.4 m的点F处有一队员,他起跳后的最大高度为3.1 m,问这次她是否可以拦网成功?请通过计算说明(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)8.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t (单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?9.如图,一场篮球赛中,球员甲跳起投篮,已知球出手时离地面m,与篮圈中心的水平距离为7 m,当球水平运行4 m时达到离地面的最大高度4 m.设篮球运行的轨迹为抛物线的一部分,篮圈距地面3 m,在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)(1)问:此球能否投中?(2)此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19 m,则他如何做才能成功?10.小明在一次打篮球时,篮球传出后的运动路线为如图所示的抛物线,以小明所站立的位置为原点O建立平面直角坐标系,篮球出手时在O点正上方1m 处的点P.已知篮球运动时的高度y(m)与水平距离x(m)之间满足函数表达式y=- x2+x+c.(1)求y与x之间的函数表达式;(2)球在运动的过程中离地面的最大高度;(3)小亮手举过头顶,跳起后的最大高度为BC=2.5m,若小亮要在篮球下落过程中接到球,求小亮离小明的最短距离OB. 11.足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑其它因素),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.(1)求y关于x的函数解析式;(2)足球的飞行高度能否达到4.88 m?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44 m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要在几s内到球门的左边框?12.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?13.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.14.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.15. 2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图),若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=-x2+x+,则羽毛球飞出的水平距离为________米.答案解析部分一、单选题1.【答案】C【解析】【解答】把t=2.1代入h=v0t-gt2得,h=10×2.1-×10×2.12=-1.05(米),-1.05+2=0.95(米).故答案为:C.【分析】将t=2.1,v0=10,g=10代入函数解析式即可算出h的值,再用h的值加上小明开始距地面的高度即可得出答案。
专题02 二次函数与营销问题-2019年中考数学复习压轴题突破之二次函数(解析版)
【方法综述】此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量取值范围有关的问题。
首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。
【典例示范】类型一常规盈利问题例1:(2019湖北宜昌)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润(万元)与销售时间(月)之间的关系(即前个月的利润总和和之间的关系).根据图象提供的信息,解答下列问题:由已知图象上的三点坐标,求累积利润(万元)与时间(月)之间的函数关系式;求截止到几月末公司累积利润可达到万元;求第个月公司所获利润是多少万元?【答案】(1);(2)截止到月末公司累积利润可达万元;(3)万元.﹣2)2﹣2,即S=t2﹣2t.答:累积利润S与时间t之间的函数关系式为:S=t2﹣2t;(2)把S=30代入S=(t﹣2)2﹣2,得:(t﹣2)2﹣2=30.解得:t1=10,t2=﹣6(舍去).*网答:截止到10月末公司累积利润可达30万元.针对训练1.(2018宁波)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c 的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【答案】(1)y2=﹣x2+x;(2)w=﹣(t﹣4)2+6,t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.【解析】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得:,∴y2=﹣x2+x.(2)w=y1+y2=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.&网2.(2019泰州姜堰区期末)某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2)57;(3)当售价为59元时,利润最大,为3610元(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-100,二次函数向下,函数有最大值,当x=59时,利润最大,为3610元.3.(2019安徽阜阳期末)某企业生产了一款健身器材,可通过实体店和网上商店两种途径进行销售,销售了一段时间后,该企业对这种健身器材的销售情况进行了为期30天的跟踪调查,其中实体店的日销售量y1(套)与时间x(x为整数,单位:天)的部分对应值如下表所示:时间x(天)0510********日销售量y(套)025*********(1)求出y1与x的二次函数关系式及自变量x的取值范围(2)若网上商店的日销售量y2(套)与时间x(x为整数,单位:天)的函数关系为,则在跟踪调查的30天中,设实体店和网上商店的日销售总量为y(套),求y与x的函数关系式;当x为何值时,日销售总量y达到最大,并写出此时的最大值.【答案】(1),(0≤x≤30,且为整数);(2)当x=30时,y取得最大值360.(2)依题意有y=y1+y2,当0≤x≤10时,,∴当x=10时,y取得最大值80;当10<x≤30时,∴当x=30时,y取得最大值360;学&科网综上可知,当x=30时,y取得最大值360.4.(2018广东中山)某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格x(元)满足函数关系:y=﹣2x+200.为保证市场稳定,供货商规定销售价格不得低于75元/件.(1)写出每天的销售利润w(元)与销售价格x(元)的函数关系式(不必写出x的取值范围);(2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是1200元?【答案】(1)w=﹣2x2+300x﹣10000;(2)每件小电器的销售价格定为90元时,才能使该款小电器每天获得的利润是1200元.【解析】解:(1)由题意可得:w=(x﹣50)(﹣2x+200)=﹣2x2+300x﹣10000;(2)由题意可得:1200=﹣2x2+300x﹣10000,解得:x1=60(不合题意舍去),x2=90,学*科网答:每件小电器的销售价格定为90元时,才能使该款小电器每天获得的利润是1200元.5.(2019洛阳市月考)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).当每吨售价是240元时,计算此时的月销售量;(1)求出y与x的函数关系式(不要求写出x的取值范围);(2)该经销店要获得最大月利润,售价应定为每吨多少元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】(1)60吨.(2)y=﹣x2+315x﹣24000.(3)利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:当月利润最大时,x为210元,而对于月销售额W=x(45+×7.5)=﹣(x﹣160)2+19200来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.&网6.(2018重庆月考)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B 种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?【答案】(1)文具店购进A种钢笔每支15元,购进B种钢笔每支20元;(2)该文具店B种钢笔销售单价定为33元时,每月获利最大,最大利润是676元.(2)设B种钢笔每支售价为x元,每月获取的总利润为W,则W=(x﹣20)(64﹣12)=﹣4x2+264x﹣3680=﹣4(x﹣33)2+676.学&科网∵a=﹣4<0,∴当x=33时,W取得最大值,最大值为676.答:该文具店B种钢笔销售单价定为33元时,每月获利最大,最大利润是676元.7.(青岛市李沧区期末)某公司营销A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数的表达式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少万元?【答案】(1)销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m),=﹣0.1m2+1.2m+3,=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,学&科网∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.类型二一次函数与二次函数相结合的营销问题例2.(2019江苏东台)某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.【答案】(1)y=-30x+600;(2);(3)x=15时,利润最大1350元.(2)w=(x-6)(-30x+600)=-30x2+780x-3600,即w与x之间的函数关系式为w=-30x2+780x-3600;(3)由题意得:6(-30x+600)≤900,解得x≥15.w=-30x2+780x-3600图象对称轴为:x=-=-=13.∵a=-30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,,∴当x=15时,w最大=1350即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.针对训练1.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于80万元,已知这种设备的月产量x(套)与每套的售价y(万元)之间满足关系式y=150﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?【答案】(1)y2=30x+500;(2)25≤x≤35;(3)月产量为30件时,利润最大,最大利润是1300万元.(2)依题意得:,解得:25≤x≤35;(3)∵W=x•y1﹣y2=x(150﹣2x)﹣(500+30x)=﹣2x2+120x﹣500∴W=﹣2(x﹣30)2+1300∵25<30<35,*网∴当x=30时,W=1300最大答:当月产量为30件时,利润最大,最大利润是1300万元.2.(2019天津南开期末)某商家独家销售具有地方特色的某种商品,每件进价为40元。
2019中考数学专题强化训练--实际应用型问题(含答案)
2019中考数学专题强化训练--实际应用型问题(含答案)第二部分专题二类型1 购买、销售、分配类问题.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为甲种水果10元/千克,乙种水果20元/千克.若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克.若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意,得8x+18y=1700,10x+20y=1700+300,解得x=100,y=50.答:该店5月份购进甲种水果100千克,购进乙种水果50千克.设购进甲种水果a千克,需要支付的货款为元,则购进乙种水果千克,根据题意,得=10a+20=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3,解得a≤90.∵=-103.4,答:该企业XX年的利润能超过3.4亿元..为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知XX年该市投入基础教育经费5000万元,XX年投入基础教育经费7200万元.求该市这两年投入基础教育经费的年平均增长率;如果按中基础教育经费投入的年平均增长率计算,该市计划XX年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需XX元,则最多可购买电脑多少台?解:设该市这两年投入基础教育经费的年平均增长率为x,根据题意得50002=7200,解得x1=0.2=20%,x2=-2.2.答:该市这两年投入基础教育经费的年平均增长率为20%.XX年投入基础教育经费为7200×=8640,设购买电脑台,则购买实物投影仪台,根据题意得3500+XX≤86400000×5%,解得≤880.答:XX年最多可购买电脑880台.类型4 方案设计问题与最值问题.某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.求y与x的函数表达式,其中0≤x≤21;若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.解:根据题意,得y=90x+70=20x+1470,∴y与x的函数表达式为y=20x+1470.∵购买B种树苗的数量少于A种树苗的数量,∴21-x10.5.又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值为1690,答:使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元..某学校为改善办学条件,计划采购A,B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.求A型空调和B型空调每台各需多少元;若学校计划采购A,B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?在的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?解:设A型空调和B型空调每台各需x元、y元,由题意得3x+2y=39000,4x-=6000,解得x=9000,y=6000,答:A型空调和B型空调每台各需9000元、6000元.设购买A型空调a台,则购买B型空调台,a≥1230-a9000a+600030-a217000,解得10≤a≤1213,∴a=10,11,12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台.设总费用为元,=9000a+6000=3000a+180000,∴当a=10时,取得最小值,此时=210000,答:采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元..我市从XX年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A,B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.求A,B两种型号电动自行车的进货单价;若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车辆,两种型号的电动自行车全部销售后可获利润y元.写出y与之间的函数关系式;该商店如何进货才能获得最大利润?此时最大利润是多少元?解:设A,B两种型号电动自行车的进货单价分别为x 元、元.由题意得50000x=60000x+500,解得x=2500,检验:当x=2500时,x≠0,所以x=2500是分式方程的解,且符合题意,此时x+500=3000.答:A,B两种型号电动自行车的进货单价分别为2500元,3000元.∵购进A型电动自行车辆,∴购进B型电动自行车辆.根据题意得y=+=-200+15000.根据题意得,2500+3000≤80000,解得≥20.又∵<30,∴20≤<30,由得y=-200+15000,∵-200<0,∴y随的增大而减小,∴当=20时,y取最大值,最大值为-200×20+15000=11000.此时30-=10.答:当购进A种型号电动自行车20辆,B种型号电动自行车10辆时,能获得最大利润,此时最大利润是11000元..某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.解:根据题意,y=400x+500=-100x+50000.∵100-x≤2x,∴x≥1003=3313.∵y=-100x+50000中=-1000,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.类型5 图象类问题.一辆汽车在某次行驶过程中,油箱中的剩余油量y与行驶路程x之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?解:设该一次函数的解析式为y=x+b,将,代入y=x +b中,0+b=45,b=60,解得=-110,b=60,∴该一次函数的解析式为y=-110x+60.当y=-110x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.30-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米..一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y与销售价x之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润与销售价x之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?解:设y与x的函数解析式为y=x+b,将,代入,得10+b=30,16+b=24,解得=-1,b=40,所以y与x的函数解析式为y=-x+40.根据题意知,===-x2+50x-400=-2+225,∵a=-1163;由y1>y2得,15x+80>30x,解得x<163.故当租车时间为163小时时,两种选择一样;当租车时间大于163小时时,选择租车公司合算;当租车时间小于163小时时,选择共享汽车合算.。
陕西专用2019版中考数学一练通第二部分重点题型突破专项二解答题专项十一几何综合探究题试题20200313116
十一几何综合探究题满分训练类型1 探究线段长度的极值和定值问题1.(2018·某高新一中模拟)如图,直线l外有一点D,D到直线l的距离是5,在△ABC中,∠ABC=90°,AB=6,tan∠CAB=13,边AB在直线l上滑动,则四边形ABCD的周长的最小值是多少?2.(2018·某铁一中模拟)如图,在矩形ABCD中,AB=4,BC=2,E,F分别是AB,CD上的动点,且EF⊥AC,连接EC,FA,求EC+FA的最小值是多少。
3.(2018·某交大附中模拟)在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,P是平面上一点,且DP=1,连接BP,CP,将线段PB绕点P顺时针旋转90°,得到线段PB′,连接AB′,则AB′的最大值为多少?4.(2018·某工大附中模拟)(1)如图①,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD,BE,求AD BE。
(2)如图②,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,P是射线AM 上一动点,连接CP,作CQ⊥CP,交线段AB于点Q,求PQ的最小值。
(3)小姜准备加工一个四边形零件,如图③,这个零件的示意图为四边形ABCD,要求BC=4,∠BAD=135°,∠ADC=90°,AD=CD。
请你帮小姜求出这个零件的对角线BD的最大值。
类型2 探究图形面积的最值问题5.【问题提出】(1)如图①,在△ABC中,∠ACB=90°,AB=8,△ABC的最大面积是。
(2)如图②,在菱形ABCD中,对角线AC+BD=14,求菱形的最大面积。
【问题解决】(3)如图③,赵师傅用一个半径为a的圆形板材,想制作一个面积最大的矩形。
能否裁出?若能,请算出这个矩形的最大面积;若不能,请说明理由。
2019中考数学总复习第二部分专题综合强化专题二创新作图题课件
专题二 创新作图题
• 【专题分析】创新作图题是江西近5年的必考题型,此类题型既考查学 生的作图能力,又考查学生对特殊图形旋转的掌握.创新作(画)图题 类型大致可归纳为5种类型:①在三角形中画图;②在四边形中画图 (2018.15);③在多边形中画图(2017.16);④在网格中画图 (2016.17;2014.17);⑤在圆中画图(2015.17).
• 【解答】方法一:连接BD,交AC于O,连接OE,则OE=CD;
方法二:连接 BD,交 AC 于 O,连接 EO 并延长,交 BC 于点 G,交 AD 于点 H,
则 GH=CD.
类型三 在多边形中画图
• 【类型特征】在多边形中画图,常见于以正多边形为背景,用无刻度的 直尺作(画)出符合要求的几何图形.
类型一 在三角形中画图
• 【类型特征】在三角形中画图,常见于以等腰三角形或等腰三角形与其 他图形组合为背景,用无刻度的直尺作(画)出符合要求的几何图形.
• 【解题策略】在作图中,常需从设问出发,结合等腰三角形或等腰三角 形与其他图形组合所隐含的线段、角等的数量及位置关系找切入点. 在 三角形中画图,要充分利用三角形的性质,熟记一般三角形的性质、三 角形中重要线段性质及特殊三角形的相关性质,如:(1)等腰三角形 中两腰相等,两底角相等,三线合一性质;(2)等边三角形中所含的 60°或相等的边,三线合一性质;(3)直角三角形中互余角,斜边中线 性质,30°,60°特殊角,等等;(4)熟记角平分线、中位线、中线、 高线性质,三角形三条角平分线(或高线或中线)必交于一点,以及垂 直平分线可得到相等的线段、角和互余的角等.
•或已知切点和圆心,则这两点连线(并延长)与劣弧所对弦的交点即 为所求.(注:作圆外一点到圆的一条直径的垂线想到三角形三条高线 交于一点且直径两端点及圆上任意一点连线即有垂线);(5)将三角 形的面积分成面积相等的两部分,想到等底同高的两个三角形面积相等,
安徽省2019年中考数学总复习 第二轮 中考题型专题复习二 解答题专题学习突破 专题复习九 函数的图
百度文库,精选试题函数的图象与性质专题复习(九)一次函数与反比例函数的图象综合题类型1b. B两点、其解析式为y=-x+、已知A(1、m)B(n、1)、直线l过A、1.(2016·合肥瑶海区模拟) 5时、求m、n的值;(1)当b=k2+k=0的解.(x>0)也过A、B两点、求关于x的方程x -bx(1)(2)在的条件下、若此时双曲线y=x4.=4、ny=1时、x=4、即m=+解:(1)当b=5时、y=-x5;当x=1时、y=4;当21.=、x5x+4=0、解得x=4、方程为(2)根据题意、得k=4x-21k轴于点yAB=y交于点交C(3、n)、直线2.(2016·安徽模拟)已知、如图所示、一次函数y=x与反比例函数1x k 、求:、3)、2)、交反比例函数y=于点A(mB(01x k的值;的解析式y=ax+b和AB(1)直线2k +b≥的解集.(2)在x>0范围内、结合图象求不等式ax x3. =y、n)在一次函数=x解:(1)∵点图象上、∴C(3、3)3.∴ C(k又∵反比例函数y图象经过点C、∴k=3.又∵A(m、3)在反比例函数y=图象上、∴3=.∴m=1.∴A(1、3).1xm又∵直线y=1xk3ax+b经过A(1、3)、B(0、2)、2a+b=3,a=1,????∴解得??b=2.b=2.????∴直线AB的解析式为y=x+2.由图象可知、在第一象限内、当x≥1时、y≥y. 12k∴不等式ax+b≥的解集为x≥1.2(2)xm3.(2016·威海)如图、反比例函数y=的图象与一次函数y=kx+b的图象交于A、B两点、点A的坐标为(2、6)、x点B的坐标为(n、1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点、若S=5、求点E的坐标.AEB△m解:(1)把点A(2、6)代入y=、得m =12.x试题习题,尽在百度.百度文库,精选试题12.=则所求反比例函数的表达式为y x12 、n=121)代入y=、得把点B(n、x .(12、1)则点B的坐标为1??,=6+2kb,k=-??2?解得、点B(12、1)、得由直线y=kx+b过点A(2、6) ?1.=12k+b????7.=b17.+则所求一次函数的表达式为y=-x 2 (0、7).P、m)、连接AE、BE、则点的坐标为AB(2)设直线与y轴的交点为P、设点E的坐标为(07|.PE=|m-∴ S=5、∵S=S-AEP△△BEPAEB△11. -7|=×|m-7|×(12-∴2)=5.∴|m28.、m=∴m=621、8).的坐标为(0、6)或(0∴点E1k n).、2)、B(、A(2.(2016·乐山)如图、反比例函数y=与一次函数y=ax+b的图象交于点42x (1)求这两个函数的解析式;k的图象有且只有一个=轴向下平移m个单位、使平移后的图象与反比例函数y(2)将一次函数y=ax +b的图象沿y x 的值.交点、求mk4.k=的图象上、∴2)在反比例函数y=解:(1)∵A(2、x4.y=∴反比例函数的解析式为x1148.n==4、解得、n)在反比例函数y=的图象上、∴n又∵B(2x2,b=2a+2??,a=-4?1?? bax+的图象上、得解得B(由A(2、2)、、8)在一次函数y=?1210.b=b.+a8=????210.+=-4xy∴一次函数的解析式为m. -4x+10=-向下平移=-(2)将直线y4x+10m个单位得直线的解析式为y4 有且只有一个交点、=与双曲线-+=-∵直线y4x10my x试题习题,尽在百度.百度文库,精选试题42令-4x+10-m=、得4x+(m-10)x+4=0.x218.或m、解得=2-10)-64=0∴Δ=(m8-m .1、6)(m为常数)的图象经过点A(-5.(2016·宿州灵璧县一模)已知反比例函数y=x 的值;(1)求m8-m 的坐标.2BC、求点CC、且AB =A作直线AC与函数y=的图象交于点B、与x轴交于点(2)如图、过点x解:(1)∵反比例函数图象过点A(-1、6)、m-8=6∴、解得m=2. 1-故m的值为2.(2)分别过点A、B作x轴的垂线、垂足分别为点E、D.由题意、得AE=6、OE=1.∵BD⊥x轴、AE⊥x轴、∴AE∥BD.CBBD∴△CBD∽△CAE.∴=.CAAECB11BD∵AB=2BC、∴=.∴=、即BD=2.CA336∴点B的纵坐标为2.当y=2时、x=-3、即B(-3、2).设直线AB解析式为y=kx+b、-k+b=6,k=2,????把A和B坐标代入、得解得??-3k+b=2.b=8.????∴直线AB解析式为y =2x+8.令y=0、解得x=-4.∴C(-4、0).类型2 求二次函数的解析式.(2016·安徽模拟)二次函数y=x+bx+c的图象经过点(4、3)、(3、0)、求函数表达式、并26求出当0≤x≤3时、y的最大值.y=x+bx+c的图象经过点(4、3)、(3、0)、2解:∵二次函数16+4b+c=3,b=-4,????∴解得??9+3b+c=0.c=3.????23. +x-4xy∴函数表达式为=221.2)-=+3(x--y=x4x3.有最大值是0时、y=∴当x 11)、.4(3)(07.已知二次函数的图象过点、、顶点坐标为-求这个二次函数的关系式;(1)试题习题,尽在百度.百度文库,精选试题x轴交点坐标.(2)求这个二次函数图象与12、=-、解得=3a+4)+11、将(0、3)代入上式可得16a+11=解:(1)根据题意、可设该二次函数关系式为ya(x21211.+(x+4)故这个二次函数关系式为y=-2120=、得 (2)在函数y=-(x+4)+11中、令y 212、+22、0)=-4、故这个二次函数图象与-22x轴交点坐标为(-、解得-(x+4)+11=0x =-44+22、x212 .-22、0)(-42、请解答下列问题:-1、0)c+2x+经过点A(0、3)、B(8.如图、抛物线y=ax求抛物线的解析式;(1) 的长.、连接BD、求BD(2)抛物线的顶点为点D、对称轴与x轴交于点E22x+c、得1、0)代入抛物线y=ax+解:(1)把点A(0、3)、B(-,,a=-1c=3????解得??3.0.c =a-2+c=????23.2x+∴抛物线的解析式为y=-x+224. =BE=2、DE4)D的坐标为(1、、点E坐标为(1、0)、∴1)x(2)y=-+2x+3=-(x-+4、顶点22225.=BD2=DE+B=4+2是二次函数图象上D、两点、交y轴于点C(03)、点C、和.如图、二次函数的图象与9x轴交于A(-3、0)B(1、0)D. 、的一对对称点、一次函数的图象过点B 点坐标;(1)请直接写出D (2)求二次函数的解析式; (3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.解:(1)∵二次函数的图象与x轴交于A(-3、0)和B(1、0)两点、-3+1∴对称轴是x==-1.2又∵点C(0、3)、点C、D是二次函数图象上的一对对称点、∴D(-2、3).(2)设二次函数的解析式为y=a(x+3)(x-1)(a≠0)、将C(0、3)代入、得3=a×3×(-1)、解得a=-1.∴二次函数的解析式为y=-(x+3)(x-1).y=-x-2x+3.2即(3)一次函数值大于二次函数值的x的取值范围是x<-2或x>1.试题习题,尽在百度.百度文库,精选试题类型3 二次函数的图象与性质的综合题10.(2016·安徽中考信息交流卷二)如图、直线y=-2x+4与x轴、y轴分别交于A、B两点、把△AOB绕着点O逆时针旋转90°得到△OCD.(1)请直接写出C、D两点的坐标;(2)求出经过A、B、C三点的抛物线的解析式;(3)点P是(2)中抛物线对称轴上的一个动点、当△PAB的周长最小时、求点P的坐标.解:(1)∵直线y=-2x+4与x轴、y轴分别交于A、B两点、∴当x=0时、y=4、则B(0、4);当y=0、x=2、则A(2、0).∵把△AOB绕着点O逆时针旋转90°得到△COD、∴C(-4、0)、D(0、2).(2)∵抛物线与x轴交点为C(-4、0)、A(2、0)、∴设抛物线解析式为y=a(x+4)(x-2).把点B(0、4)代入、得-8a=4.1解得a=-.2112故抛物线解析式为y=-(x+4)(x-2)=-x-x+4.2211922(3)∵y=-x-x+4=-(x+1)+、222连接BC、交对称轴于点P、此时、△PAB 的周长最小、设直线BC的解析式为y=kx+b.b=4,k=1,????则解得??-4k+b=0.b=4.????故直线BC的解析式为y=x+4.当x=-1时、y=3、故P(-1、3)..已知抛物线y=x-2mx+3m+2m.2211(1)若抛物线经过原点、求m的值及顶点坐标、并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m取何实数值、抛物线顶点一定不在第四象限?说明理由;当实数m变化时、列出抛物线顶点的纵、横坐标之间的函数关系式、并求出该函数的最小函数值.y=x-2mx+3m+2m=(x-m)+2m+2m、2222解:∵(m、2m+2m).2∴抛物线顶点为(1)将(0、0)代入抛物线解析式中、2解得m=0或m=-.3当m=0时、顶点坐标为(0、0);224当m=-时、顶点坐标为(-、-).339∵第三象限的平分线所在的直线为y=x、试题习题,尽在百度.百度文库,精选试题42 )不在该直线上.(-、-∴(0、0)在该直线上、932.2m+2m)(2)∵抛物线顶点为(m、2m+2m>0∴①当m>0时、2、此时抛物线的顶点在原点;2m=2、此时抛物线顶点在第一象限;0m=0时、2m+②当22、则顶点坐标在第三象限、2m+2m<0m<0时、若2m+2m>0、则顶点坐标在第二象限;若③当为何实数值、抛物线的顶点一定不在第四象限.∴无论m2+2m、、纵坐标为n、则n=2m设顶点横坐标为m1122 )-、2m+2m=2(m+∵n=2211.时、n有最小值-∴当m=-222B.轴交于另一点C(0、4)两点、与x、+bx-4a经过A(-10)、12.(2016·芜湖南陵县模拟)如图、抛物线y=ax 点的坐标;(1)求抛物线的解析式、并直接写出B 对称的点的坐标;1)在第一象限的抛物线上、求点D关于直线BC(2)已知点D(m、m+的坐标.为抛物线上一点、且∠DBP=45°、求点PBD(3)在(2)的条件下、连接、点P、4)两点、0)-4a经过A(-1、、解:(1)抛物线y=ax+bx,=-1=0,aa-b-4a????∴2 C(0解得??3.b=-4a=4.????24.+x+3x∴抛物线的解析式为y=-24. 、x=14=0、得x=-令y=-x+3x+21、0).∴B点的坐标是(4+1)在抛物线上、(2)∵点D(m、m220. 3=、即m-2m-3m∴m+1=-m++43.m=∴m=-1或 4).D的坐标为(3、∵点D在第一象限、∴点OB. =OC由(1)知.°∴∠CBA=45DE. 、连接关于直线BC的对称点为点E设点D 3. =AB、且CD∵C(0、4)、∴CD∥∴∠ECB=∠DCB=45°.3. =CD=∴E点在y轴上、且CE =1.∴E(0、1).∴OE 1).关于直线BC对称的点的坐标为(0、∴点DG. 于点、过点D作DG⊥BC于点(3)如备用图、过点P作PF ⊥ABF. =45°、∴∠有OB=OC=4OBC由(1) CBD=∠PBA.=∵∠DBP45°、∴∠3. 且CD=∥、、C(04)、D(34)、∴CDOB∵. °=∠CBO=∴∠DCG4523.==∴DGCG2试题习题,尽在百度.百度文库,精选试题23DG tantan.∠CBDPBF==∴=∠5BG 5t、3t、则BF=设PF=4.-5t∴OF=点在抛物线上.∵P24. +4)+4)∴3t=-(-5t++3(-5t22.=舍去∴t=0()或t25662????,- P.∴??255、BC在x轴上、且AB=3、=213.(2016·桐城三校联考试题)如图、在平面直角坐标系xOy中、矩形ABCD的边3ABG.=轴于点C、交y3x-23经过点直线y由二次函数对称性得、顶点横坐标为解:(2)=22355.23=令x=、则y3=×-22235 .(∴顶点坐标为、)22352.-)+设抛物线解析式为y=a(x2232.a代入、得把点D(1=、23)332352.-)∴解析式为y+=(x232 .23)(m>0)设顶点(3)E在直线上运动的横坐标为m、则E(m、3m-3223.+3m2设抛物线解析式为y=-(x-m)3322舍=0(3-2=2m-23、解得m3m3)、则EGEG①当FG=时、FG==2m2mF(0、-2、代入解析式、得m+133.=3去)、m-22333722-;+)+3=∴所求的解析式为y3(x-223 、代入解析式、得23m、、则2FGEFGE②当=时、=3mF(02-3)试题习题,尽在百度.百度文库,精选试.30、解舍3333322-)∴所求的解析式为y=;(x-232 时、不存在.FG③当=FE373232y3+-或(x综上所述、平移后存在抛物线、使△EFG为等腰三角形、此时抛物线的解析式为y=3-+)23233232. )=--(x232试题习题,尽在百度.。
2019年中考数学专题知识突破(二)新定义型问题
专题知识突破二新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 (2019•济南)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)思路分析:根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出选择.考点二:运算题型中的新定义例2 (2019•铜仁)定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=_______.思路分析:先根据新定义计算出-1⊗2=6,然后计算再根据新定义计算6⊗3即可.考点三:探索题型中的新定义例3 (2019•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.考点四:开放题型中的新定义例4 (2019•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意考点五:阅读材料题型中的新定义例5 (2019•乐山)对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1-x2|+|y1-y2|为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,-3),O为坐标原点.则:(1)d(O,P0)=_________;(2)若P(a,-3)到直线y=x+1的直角距离为6,则a=__________.思路分析:(1)根据题中所给出的两点的直角距离公式即可得出结论;(2)先根据题意得出关于x的式子,再由绝对值的几何意义即可得出结论.四、中考真题演练一、选择题1.(2019•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1-x2|+|y1-y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖ B.|AB|>‖AB‖ C.|AB|≤‖AB‖ D.|AB|<‖AB‖2.(2019•龙岩)定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a <b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A .12B .12C .1D .0 3.(2019•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1C .1,1D .1,24.(2019•常德)阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为( )A .(60°,4)B .(45°,4)C .(50°,5.(2019•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )A .90°B .120°C .150°D .180°6.4.(2019•乌鲁木齐)对平面上任意一点(a ,b ),定义f ,g 两种变换:f (a ,b )=(a ,-b ).如f (1,2)=(1,-2);g (a ,b )=(b ,a ).如g (1,2)=(2,1).据此得g (f (5,-9))=( )A .(5,-9)B .(-9,-5)C .(5,9)D .(9,5)7.5.(2019•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是( )A .B .C .D .二、填空题8.(2019•临沂)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A 与集合B 中的所有元素组成的集合称为集合A 与集合B 的和,记为A+B .若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=___________.910.(2019•北京)在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P (-y+1,x+1)叫做点P ′伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为______,点A 2019的坐标为_______;若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 __________.11.(2019•荆州)我们知道,无限循环小数都可以转化为分数.例如:将0.3∙12. (2019•塘沽区二模)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸、…,已知标准纸的短边长为a .(说明:①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸、…都是矩形;②本题中所求边长或面积都用含a 的代数式表示.)(Ⅰ)如图2,把上面对开得到的“16开”纸按如下步骤折叠:第一步:将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B ′处,铺平后得折痕AE ;第二步:将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则AD :AB 的值是 ;(Ⅱ)求“2开”纸长与宽的比 ;(Ⅲ)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E ,F ,G ,H 分别在“16开”纸的边AB ,BC ,CD ,DA 上,则DG 的长 .13. (2019•连云港)如图1,折线段AOB 将面积为S 的⊙O 分成两个扇形,大扇形、小扇形的面积分别为S 1、S 2,若 121S S S S ==0.618,则称分成的小扇形为“黄金扇形”.生活中的折扇(如图2)大致是“黄金扇形”,则“黄金扇形”的圆心角约为 _______.(精确到0.1)14.(2019•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.三、解答题15.(2019•厦门)当m,n是正实数,且满足m+n=mn时,就称点P(m,mn)为“完美点”,已知点A(0,5)与点M都在直线y=-x+b上,点B,C是“完美点”,且点B在线段AM上,若,求△MBC的面积.16.(2019•白银)阅读理解:17.(2019•漳州)如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_____度和______度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有____个等腰三角形,其中有________个黄金等腰三角形.18.(2019•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(12,12),E(0,-2),F(0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O 的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(2019•黔西南州)已知点P (x 0,y 0)和直线y=kx+b ,则点P 到直线y=kx+b 例如:求点P (-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x-y+1=0,其中k=1,b=1.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.21.(2019•抚州)【试题背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.【探究2】(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为.(直接写出结果即可)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.【拓展】(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.22.(2019•顺义区一模)设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x 与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=2014x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=12x2-2x是闭区间[c,d]上的“闭函数”时,求c,d的值.23.(2019•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(2)如图2,若∠ABC=30°,B 1B=AB ,计算tan15°的值(保留准确值);24.(2019•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2-4mx+2m 2+1和y 2=ax 2+bx+5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.25.(2019•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O 是△ABC 的重心(如图1),连结AO 并延长交BC 于D ,证明:23AO AD =; (2)若AD 是△ABC 的一条中线(如图2),O 是AD 上一点,且满足23AO AD =,试判断O 是△ABC 的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O 是△ABC 的重心,过O 的一条直线分别与AB 、AC 相交于G 、H (均不与△ABC 的顶点重合)(如图3),S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,试探究 BCHG AGHS S V 四边形的最大值.专题二 新定义型问题参考答案 三、中考典例剖析考点一:规律题型中的新定义例1解:A 、∵2有3个,∴不可以作为S 1,故选项错误;B 、∵2有3个,∴不可以作为S 1,故选项错误;C 、3只有1个,∴不可以作为S 1,故选项错误D 、符合定义的一种变换,故选项正确.故选:D .考点二:运算题型中的新定义例2解:-1⊗2=22-(-1)×2=6,6⊗3=32-6×3=-9.所以(-1⊗2)⊗3=-9.故答案为-9.考点三:探索题型中的新定义例3解:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上, 到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .当x=b 时,y=-b+1.则2b 12b a a 1-≤-+≤⎧⎪⎨⎪-⎩>=,∴-1<b ≤3;(3)若m >1,函数向下平移m 个单位后,x=0时,函数值小于-1,此时函数的边界t ≥1,与题意不符,故m ≤1.当x=-1时,y=1 即过点(-1,1)四、中考真题演练一、选择题1.C2.A3.D4.A5.D6.D7.C二、填空题8. {-3,-2,0,1,3,5,7}9.210.(-3,1),(0,4);-1<a<1且0<b<211.45 9912:113.137.5 14.30°三、解答题15.解:∵m+n=mn且m,n是正实数,∴mn+1=m,即mn=m-1,∴P(m,m-1),即“完美点”P在直线y=x-1上,∵点A(0,5)在直线y=-x+b上,∴b=5,∴直线AM:y=-x+5,∵“完美点”B在直线AM上,∴由y x1 y x5==-⎧⎨-+⎩解得x3y2==⎧⎨⎩,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=-x,而直线y=x-1与直线y=x 平行,直线y=-x+5与直线y=-x平行,∴直线AM与直线y=x-1垂直,∵点B是直线y=x-1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x-1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴,∵,∴,又∵∴BC=1,∴S △MBC =12 16.解:由题意得2x-(3-x )>0, 去括号得:2x-3+x >0,移项合并同类项得:3x >3, 把x 的系数化为1得:x >1.17.解:(1)如图1所示:∵AB=AC ,∠A=36°,∴当AE=BE ,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC 中画n 条线段,则图中有2n 个等腰三角形,其中有n 个黄金等腰三角形.故答案为:2n ,n .18.解:(1)①如图1所示,过点E 作⊙O 的切线设切点为R ,∵⊙O 的半径为1,∴RO=1,∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°,∴E 点是⊙O 的关联点,∵D (12,12),E (0,-2),F (0), ∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点使得组成的角度等于60°, 故在点D 、E 、F 中,⊙O 的关联点是D ,E ;故答案为:D ,E ;②由题意可知,若P 要刚好是⊙C 的关联点,需要点P 到⊙C 的两条切线PA 和PB 之间所夹的角为60°,由图2可知∠APB=60°,则∠CPB=30°,连接BC ,则PC=sin BC CPB∠=2BC=2r , ∴若P 点为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d≤2r ;由上述证明可知,考虑临界点位置的P 点,如图3,点P 到原点的距离OP=2×1=2,过点O 作l 轴的垂线OH ,垂足为H ,tan ∠OGF=FO OG = ∴∠OGF=60°,∴OH=OGsin60°sin ∠OPH=OH OP = ∴∠OPH=60°,可得点P 1与点G 重合,过点P 2作P 2M ⊥x 轴于点M ,可得∠P 2OM=30°,∴OM=OP 2cos30°从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;考虑临界情况,如图4,即恰好E、F点为⊙K的关联时,则KF=2KN=12EF=2,此时,r=1,故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1.19.解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.(3)在直线y=-x+1任意取一点P,当x=0时,y=1.∴P(0,1).∵直线y=-x+3,∴k=-1,b=3,21.解:(1)∵l∥k,BE⊥l,∴∠BFC=∠BEA=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF,∴AE=BF,∵d1=d3=1,d2=2,∴BE=3,AE=1,在直角△ABE中,AB==,;(2)过B作BE⊥l于点E,交k于点F.则BE=1,BF=3,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠FBC=90°,又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=12BC,则AE=12BF=32,在直角△ABE中,=当AB是长边时,如图(b),同理可得:;故答案为:(3)证明:如解答图1,连接AC,∵四边形ABCD是菱形,且∠ADC=60°,∴AC=AD,∵△AEF是等边三角形,∴AE=AF,∵AE⊥k,∠AFD=90°,∴∠AEC=∠AFD=90°,∴直角△AEC≌直角△AFD,∴EC=DF;(4)当2<DH<4时,BC∥DE.理由如下:如图2,当2<DH<4时,点D在线段CM上,连接AM.∵∠ABM=∠ACM=90°,AB=AC,AM=AM,∴Rt△ABM≌Rt△ACM,∴∠BAM=∠CAM,∴AM⊥BC,又∵AD=AE,AB=AC,∴Rt△ABE≌Rt△ACD,∴∠BAE=∠CAD,∴∠EAM=∠DAM,∴AM⊥ED.∴BC∥DE.22.解:(1)反比例函数y=2014x是闭区间[1,2019]上的“闭函数”,理由如下:反比例函数y=2014x在第一象限,y随x的增大而减小,当x=1时,y=2019;当x=2019时,y=1,所以,当1≤x≤2019时,有1≤y≤2019,符合闭函数的定义,故反比例函数y=2014x是闭区间[1,2019]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,km b m? kn b n==+⎧⎨+⎩,解得k1b0==⎧⎨⎩.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,km b n? k n b m==+⎧⎨+⎩,解得k1b m n ==-⎧⎨+⎩.∴此函数的解析式是y=-x+m+n;(3)∵y=12x2-2x=12(x2-4x+4)-2=12(x-2)2-2,∴该二次函数的图象开口方向向上,最小值是-2,且当x<2时,y随x的增大而减小;当x >2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=12x2-2x的最小值是-2=c,根据“闭函数”的定义知,d=12c2-2c或d=12d2-2d;Ⅰ)当d=12c2-2c时,由于d=12×(-2)2-2×(-2)=6>2,符合题意;Ⅱ)当d=12d 2-2d 时,解得d=0或6, 由于d >2,所以d=6;②当c≥2时,此二次函数y 随x 的增大而增大,则根据“闭函数”的定义知,22122122c c cd d d ⎧-=⎪⎪⎨⎪-=⎪⎩, 解得,66c d =⎧⎨=⎩, ∵c <d ,∴66c d =⎧⎨=⎩不合题意,舍去. 综上所述,c ,d 的值分别为-2,6.24.解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x-h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x-3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x-3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x-3)2+4与y=3(x-3)2+4顶点相同,开口都向上,∴两个函数y=2(x-3)2+4与y=3(x-3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x-3)2+4与y=3(x-3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12-4×m×1+2m2+1=1.整理得:m2-2m+1=0.解得:m1=m2=1.∴y1=2x2-4x+3=2(x-1)2+1.∴y1+y2=2x2-4x+3+ax2+bx+5=(a+2)x2+(b-4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x-1)2+1=(a+2)x2-2(a+2)x+(a+2)+1.其中a+2>0,即a>-2.∴b42(a2) 8(a2)1--+⎧⎨++⎩==.解得:a5b10⎧⎨-⎩==.∴函数y2的表达式为:y2=5x2-10x+5.∴y2=5x2-10x+5=5(x-1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0-1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3-1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.25.解:(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O是△ABC的重心,∴CE是中线,点E是AB的中点.∴DE是中位线,∴DE∥AC,且DE=12 AC.∵DE∥AC,∴△AOC∽△DOE,∴AO ACOD DE=2,∵AD=AO+OD,∴AOAD=23.(2)答:点O是△ABC的重心.证明:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,AOAD=23,而AOAD=23,∴点Q与点O重合(是同一个点),∴点O是△ABC的重心.(3)如答图3所示,连接DG.设S△GOD=S,由(1)知AOAD=23,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S.为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S,∴S△ABC=2S△ABD=(6x+6)S.设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S.∴S 四边形BCHG =S △ABC -S △AGH =(6x+6)S-(2k+2)S=(6x-2k+4)S . ∴BCHG AGHS S V 四边形=(6-24)(22)x k S k S ++=3-21x k k ++ ① 如答图3,过点O 作OF ∥BC 交AC 于点F ,过点G 作GE ∥BC 交AC 于点E ,则OF ∥GE . ∵OF ∥BC , ∴23OF AO CD AD ==, ∴OF=23CD=13BC ; ∵GE ∥BC , ∴11GE AG BC AB x ==+, ∴GE=1BC x +; ∴131BC OF BC GEx =+=13x +, ∴13(1)OF x GE OF x +=--+=12x x+-. ∵OF ∥GE , ∴OH OF GH GE=, ∴1-2-OH OF x OG GE OF x+==, ∴k=12-x x+,代入①式得: BCHG AGH S S V 四边形=13-23-22-1112-x x x k x x k x +++=+++=-x 2+x+1=-(x-12)2+54, ∴当x=12时,BCHG AGHS S V 四边形有最大值,最大值为54.。
河南省2019年中考数学总复习第二章方程(组)与不等式(组)数学文化拓展素材
《九章算术》(涉及方程)《九章算术》是我国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就.《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次正式引入负数及其加减法运算法则.《九章算术》的出现标志着中国古代数学形成了完整的体系.1.我国古代数学名著《九章算术》记载了利用算筹表示方程组和解方程组的问题.算筹图表示的是方程组则算筹图表示的方程组的解是 ( )A. B.C. D.2.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问这个物品的价格是多少元.”该物品的价格是元.3.《九章算术》中的方程问题:今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50.则甲的钱数是,乙的钱数是.《算法统宗》(涉及方程)在中国古代数学的整个发展过程中,《算法统宗》是一部十分重要的著作.其作者程大位(1533—1606),字汝思,号宾渠,安徽休宁人.从二十多岁起他便在长江中下游一带经商,对数学产生了浓厚的兴趣.四十岁时,倦于外游,便弃商归故里,认真钻研古籍,撷取名家之长,历经二十年,于明万历壬辰年(1592)写就巨著《算法统宗》十七卷.在《算法统宗》这部著作中,许多数学问题都是以歌诀形式呈现的:(1)浮屠增级远看巍巍塔七层, 红光点点倍加倍.共灯三百八十一, 请问尖头几盏灯.这首歌诀的大意:远处有一座雄伟的佛塔,塔上挂了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯.(2)以碗知僧巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧.这首歌诀的大意:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚.(3)和尚分馒头一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?这首歌诀的大意:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人.1.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.2.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房间,房客人.3.《算法统宗》这部书里有这样一题,大意:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧?”牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的,连你牵着的这只肥羊也算进去,才刚好凑满一百只.”则这位牧羊人赶的这群羊共有只.《孙子算经》(涉及方程)《孙子算经》是我国古代重要的数学著作.传本的《孙子算经》共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法, 卷下对后世的影响最为深远.卷下的第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?下卷第26题“物不知数”为后来的“大衍求一术”的起源,被看作是中国数学史上最有创造性的成就之一,称为中国余数定理:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问物几何?显然,这相当于求不定方程组的正整数解n,《孙子算经》所给答案是n=23.1.《孙子算经》中有首歌谣,大意为:如图,有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A.五丈B.四丈五尺C.一丈D.五尺2.《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.问木长几何?”意思是“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺.”设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B.C. D.3.我国古代数学名著《孙子算经》中有“鸡兔同笼”数学名题,小敏将该题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?此时的答案是.4.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完.则城中有户人家.一元二次方程的几何解法你知道吗,对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!下面我们以方程x2+2x-35=0为例加以说明.(方程可转化为x2+2x=35,x(x+2)=35两种形式)图(1)三国时期的数学家赵爽(约公元3世纪)在其所著的《勾股圆方图注》中记载的方法是:如图(1),构造边长为(x+x+2)的正方形,则大正方形的面积(x+x+2)2,另一方面,大正方形是由四个长和宽分别为x+2,x的矩形和一个边长为2的小正方形组成的,所以大正方形的面积等于四个矩形加上中间小正方形的面积,即大正方形的面积为4×35+22,故(x+x+2)2=144,x>0,解得x=5.说明:赵爽的解法是把x2+2x=x(x+2)看作矩形的面积,然后用四个这样的矩形及一个边长为2的小正方形组成一个边长为(x+x+2)的正方形,再由面积公式求出x.图(2)公元9世纪,阿拉伯数学家阿尔·花拉子密采用的方法是:构造图(2),阿尔·花拉子密的方法直接从“形”上反映了配方法,一方面,正方形的面积为(x+1)2,即(x2+2x)+1;另一方面,它又等于36,即35+1,据此同样可得x=5.其实赵爽的方法和阿尔·花拉子密的方法本质上是一致的.利用几何法解一元二次方程,巧妙之处在于不用过多的语言和运算即可解决求方程的解的问题.赋予代数式的几何意义是解决这类问题的关键.需要指出的是,一元二次方程的几何解法,反映了古代数学家在探索一元二次方程的求解过程中留下的足迹,如果遇到负根,就无法求解,这也说明了这种方法的局限性.后来人们发现的一元二次方程ax2+bx+c=0(a≠0)的求根公式x=,克服了这种局限性.参考答案《九章算术》(涉及方程)1.C 由题意知,算筹图表示的方程组是解得故选C.2.53 设有x个人共同购买这个物品,根据题意得8x-3=7x+4,解得x=7.则8x-3=8×7-3=53(元),故该物品的价格是53元.3.37.5 25 设甲持钱为x,乙持钱为y,依题意列方程组为解得故甲的钱数为37.5,乙的钱数为25.《算法统宗》(涉及方程)1.20 15 设索长为x尺,竿子长为y尺,根据题意,得解得2.8 63 设该店有客房x间,根据题意得,7x+7=9(x-1),解得x=8,7×8+7=63.故该店有客房8间,房客63人.3.36 设这位牧羊人赶的这群羊共有x只,依题意,得x+x+x+x+1=100,解得x=36,故这位牧羊人赶的这群羊共有36只.《孙子算经》(涉及方程)1.B 设竹竿的长为x尺,根据题意得,竹竿的影长为一丈五尺,即15尺,标杆的长为一尺五寸,即1.5尺,标杆的影长为五寸,即0.5尺,则=,解得x=45.故选B.2.B 根据“用一根绳子去量一根长木,绳子还剩余4.5尺”可列方程y=x+4.5;根据“将绳子对折再量长木,长木还剩余1尺”可列方程y=x-1.故选B.3.鸡22只,兔11只设鸡有x只,兔有y只.依题意得方程组解得故鸡有22只,兔有11只.4.75 设城中有x户人家,根据题意,得x+=100,解得x=75.故城中有75户人家.。
(完整word版)2019年中考专题复习第二讲实数的运算(含详细参考答案)
2019年中考专题复习 第二讲 实数的运算【基础知识回顾】一、实数的运算.1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行. 2、运算法则:加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小的 ,任何数同零相加仍得 。
减法,减去一个数等于 。
乘法:两数相乘,同号得 ,异号得 ,并把 相乘。
除法:除以一个数等于乘以这个数的 。
乘方:(-a )2n +1= (—a ) 2n=3、运算定律:加法交换律:a+b= 加法结合律:(a+b )+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。
0a = (a≠0) a -p= (a≠0)【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。
2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照的原则进行比较以外,,还有比较法、比较法等,两个负数大的反而小。
2、如果几个非负数的和为零,则这几个非负数都为。
【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。
22的大小,可以先确定10和65的取值范围,然后得结论:10+2 65—2。
】【重点考点例析】考点一:实数的大小比较。
例1 (2018•福建)在实数|-3|,—2,0,π中,最小的数是()A.|-3| B.-2 C.0 D.π【思路分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.解:在实数|—3|,-2,0,π中,|—3|=3,则-2<0<|-3|<π,故最小的数是:—2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.考点二:估算无理数的大小例2 (2018•南京)下列无理数中,与4最接近的是()A B C D【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键. 考点三:实数与数轴例3(2018•北京)实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .|a |>4 B .c —b >0 C .ac >0 D .a+c >0【思路分析】本题由图可知,a 、b 、c 绝对值之间的大小关系,从而判断四个选项的对错. 解:∵—4<a <-3,∴|a |<4,∴A 不正确; 又∵a <0,c >0,∴ac <0,∴C 不正确; 又∵a <—3,c <3,∴a+c <0,∴D 不正确; 又∵c >0,b <0,∴c-b >0,∴B 正确; 故选:B .【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负. 考点四:实数的混合运算例4 (2018•怀化)计算:0112sin 3022|31|π-︒--+-+()()【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=1213122⨯-+-+ =1+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 考点五:实数中的规律探索。
中考数学复习专题之二“将军饮马”模型解决最值问题
专题二 “将军饮马”模型解决最值问题【实战精例1】(2019•广西)如图,AB 为O 的直径,BC 、CD 是O 的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知AB =2BC =,当CE DE +的值最小时,则CEDE的值为( )A .910B .23C D 【实战精例2】 (滨州·中考真题)如图,等边ABC ∆的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若2AE =,EM CM +的最小值为 .一、“将军饮马”模型问题:如图,在定直线l上找一动点P,使点P到两定点A和B的距离之和最小,即PA+PB 最小。
【简析1】如图,作出定点B关于定直线l的对称点C,连接AC与定直线l的交点Q即为所要寻找的点,且最小值等于AC。
类型一:“两定一动“--和最小【经典剖析1】(2021秋•官渡区期末)如图,已知点D、E分别是等边三角形ABC中+的最小值为()AD=,点F是线段AD上的动点,则BF EFBC、AB边的中点,6A.3 B.6 C.9 D.12【经典剖析2】如图,直线8=+分别与x轴、y轴交于点A和点B,点C,D分别y x为线段AB,OB的中点,点P为OA上一动点,当PC PD+值最小时,点P的坐标为()A.(4,0)−−D.(1,0)−C.(2,0)−B.(3,0)【经典剖析3】 已知(1,1)A −、(2,3)B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( ) A .1(0,)4B .1(0,)3C .1(0,)4−D .1(0,)3−【经典剖析4】如图,边长为a 的等边ABC ∆中,BF 是AC 上中线且BF b =,点D 在BF上,连接AD ,在AD 的右侧作等边ADE ∆,连接EF ,则AEF ∆周长的最小值是( )A .1223a b +B .12a b +C .12a b +D .32a类型二:两定一动“--差最大--定点同侧类型三:“两定一动“--差最大【经典剖析1】(2019秋•龙口市期末)如图,已知点(0,1)B−,点P为x轴上一A,(2,3)点,当||−最大值时,点P的坐标为.PB PA类型四:“两动一定“--最短距离【经典剖析1】如图,四边形ABCD中,130∠=∠=°,在BC,CD上B DBAD∠=°,90分别找一点M,N,使AMN∠+∠的度数为()∆的周长最小时,则ANM AMNA.80°B.90°C.100°D.130°【经典剖析2】如图,30=,点E,F分别是BA,∠=°,点D是它内部一点,BD mABC∆周长的最小值为()BC上的两个动点,则DEFA.0.5m B.m C.1.5m D.2m类型五:“两动两定“--最短距离【经典剖析1】(2021春•江岸区校级月考)如图所示,50AOB ∠=°,30BOC ∠=°,12OM =,4ON =.点P 、Q 分别是OA 、OB 上动点,则MQ PQ NP ++的最小值是 .类型六:“两定点一定长①”【类型七】“两定点一定长②”【经典剖析1】如图,在矩形ABCD 中,4AB = ,7BC= ,E 为CD 的中点,若P Q 、为BC 边上的两个动点,且2PQ =,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.问题作法图形原理在直线l 上求两点M,N (M 在N 左侧),使MN=a ,使AM+MN+NB 最短将A 向右移a 个单位到A’,作A ’关于l 对称点A’’,连接A’’B 与交点即为N ,左移a 个单位,即为M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……专题二 借助数学模型解决实际问题一次函数模型1. 用待定系数法求一次函数的解析式例1 (2016,河北)某商店通过调低价格的方式促销n 个不同的玩具,调整后的单价y (元)与调整前的单价(元)满足一次函数关系,如下表:(1)求y 与x 之间的函数关系式,并确定x 的取值范围;(2)某个玩具调整前的单价是108元,顾客购买这个玩具省了多少元?(3)这n 个玩具调整前、后的平均单价分别为x ,y ,猜想x 与y 之间的关系式,并写出推导过程.【思路分析】(1)已知y 与x 之间的函数类型,可利用待定系数法,由表中所给的两组数据列方程组解得.(2)已知自变量x 的值为108,求对应的函数值,再求调整前、后的单价差.(3)利用平均数公式求得.解:(1)设y =kx +b .依题意,得⎩⎪⎨⎪⎧4=6k +b ,59=72k +b .解得⎩⎪⎨⎪⎧k =56,b =-1.∴y =56x -1.依题意,得56x -1>2.解得x >185,即x 的取值范围为x >185.(2)将x =108代入y =56x -1,得y =56×108-1=89.108-89=19(元),∴顾客购买这个玩具省了19元. (3) y =56x -1.推导过程:由(1)知y 1=56x 1-1,y 2=56x 2-1,…,y n =56x n -1,∴y =1n(y 1+y 2+…+y n )=1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫56x 1-1+⎝ ⎛⎭⎪⎫56x 2-1+…+⎝ ⎛⎭⎪⎫56x n -1 =1n ⎣⎢⎡⎦⎥⎤56(x 1+x 2+…+x n )-n =56·1n (x 1+x 2+…+x n )-1 =56x -1. 针对训练1 如图①,长为60 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为30 km/h.设甲车、乙车距南站A 的路程分别为y 甲 km ,y 乙 km ,行驶时间为t h.训练1题图(1)如图②,已画出y 甲与t 之间的函数图象,其中a = 60 ,b = 2 ,c = 4 ; (2)分别写出0≤t ≤2及2<t ≤4时,y 乙关于t 的函数解析式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.【思路分析】 (1)由函数图象的数据,根据行程问题的数量关系就可以求出结论.(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b ;当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.用待定系数法就可以求出结论.(3)通过描点法画出函数图象即可.解:(1)60 2 4(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b .由题意,得⎩⎪⎨⎪⎧60=b ,0=2k +b .解得⎩⎪⎨⎪⎧k =-30,b =60. ∴y 乙=-30t +60.当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.由题意,得⎩⎪⎨⎪⎧0=2k 1+b 1,60=4k 1+b 1.解得⎩⎪⎨⎪⎧k 1=30,b 1=-60.∴y 乙=30t -60.(3)y 乙与t 的函数图象如答图所示.训练1答图因为两个图象有两个交点,所以在整个行驶过程中两车相遇的次数为2. 2. 借助等式求一次函数的解析式例2 (2009,河北节选)某公司装修需用A 型板材240块、B 型板材180块,A 型板材的规格是60 cm ×30 cm ,B 型板材的规格是40 cm ×30 cm.现只能购得规格是150 cm ×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(如图所示的是裁法一的裁剪示意图)z 张,且所裁出的A ,B 两种型号的板材刚好够用.(1)上表中,m = 0 ,n = 3 ;(2)分别求出y 关于x 和z 关于x 的函数解析式.例2题图【思路分析】 (1)按裁法二裁剪时,2块A 型板材的长为120 cm.150-120=30(cm),所以无法裁出B 型板材.按裁法三裁剪时,3块B 型板材的长为120 cm ,120<150,而4块B 型板材的长为160 cm ,160>150,所以无法裁出4块B 型板材.(2)由题意,得共需用A 型板材240块、B 型板材180块.所以x +2y =240,2x +3z =180.然后即可求出解析式.解:(1)0 3(2)由题意,得共需用A 型板材240块、 B 型板材180块.∴x +2y =240,2x +3z =180.∴y =-12x +120,z =-23x +60.针对训练2 一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,恰好用完购机款61 000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 关于x 的函数解析式.【思路分析】 (1)由A 型、B 型、C 型三款手机共60部和A ,B 型手机的部数可表示出C型手机的部数.(2)根据购机款列出等式可表示出x,y之间的关系.解:(1)60-x-y.(2)根据题意,得900x+1 200y+1 100(60-x-y)=61 000.整理,得y=2x-50.3. 字母系数的一次函数最值问题例3 煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1 000 t煤炭要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如下表:((1)写出总运费(元)关于运往A厂的煤炭量(t)的函数解析式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.(可用含a的代数式表示)【思路分析】 (1)根据总费用=运往A厂所需的费用+运往B厂所需的费用.整理后可得出y关于x的函数解析式.(2)根据一次函数的性质算出所求方案的费用.解:(1)∵运往A厂x t,∴运往B厂(1 000-x)t.依题意,得y=200×0.45x+150a·(1 000-x)=90x+150 000a-150ax=(90-150a)x+150 000a.依题意,得1 000-x≤800.解得x≥200.∵x≤600,∴200≤x≤600.∴y=(90-150a)x+150 000a(200≤x≤600).(2)当0<a<0.6时,90-150a>0,y随x的增大而增大.∴当x=200时,y最小=(90-150a)×200+150 000a=120 000a+18 000.此时1 000-x=1 000-200=800.当a>0.6时,90-150a<0,y随x的增大而减小.∴当x=600时,y最小=(90-150a)×600+150 000a=60 000a+54 000.此时1 000-x=1 000-600=400.当a=0.6时,y=90 000,此时,不论如何分配运往A厂,B厂的煤炭量,总运费都是一样的.综上所述,当0<a<0.6时,运往A厂200 t,B厂800 t,总运费最少,最少总运费为(120 000a+18 000)元;当a>0.6时,运往A厂600 t,B厂400 t,总运费最少,最少总运费为(60 000a+54 000)元;当a=0.6时,总运费为90 000元.针对训练3 (2018,湘西州,导学号5892921)某商店销售A型和B型两种电脑,其中A 型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数解析式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大总利润是多少元?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台.若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【思路分析】 (1)根据“总利润=A 型电脑每台利润×A 型电脑数量+B 型电脑每台利润×B 型电脑数量”可得函数解析式.(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的取值范围,再结合(1)所求函数解析式及一次函数的性质求解可得.(3)根据题意,得y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60.分三种情况讨论:①当0<a <100时,y 随x 的增大而减小;②当a =100时,y =50 000;③当100<a <200时,y 随x 的增大而增大.分别进行求解.解:(1)根据题意,得y =400x +500(100-x )=-100x +50 000. (2)∵100-x ≤2x ,∴x ≥3313.∵y =-100x +50 000中,k =-100<0, ∴y 随x 的增大而减小. ∵x 为正数,∴当x =34时,100-x =66,y 最大=46 600.答:该商店购进A 型电脑34台、B 型电脑66台,才能使销售总利润最大,最大总利润是46 600元.(3)根据题意,得y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60.①当0<a <100时,y 随x 的增大而减小, 所以当x =34时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑时,销售总利润最大. ②当a =100时,a -100=0, 所以y =50 000,即商店购进A 型电脑数量满足3313≤x ≤60的整数时,均获得最大利润.③当100<a <200时,y 随x 的增大而增大, 所以当x =60时,y 取得最大值,即商店购进60台A 型电脑和40台B 型电脑时,销售总利润最大.二次函数模型1. 借助图象信息求函数解析式例4 (2018,河北,导学号5892921)如图所示的是轮滑场地的截面示意图,平台AB 距x 轴(水平)18 m ,与y 轴交于点B ,与滑道y =k x(x ≥1)交于点A ,且AB =1 m .运动员(看成点)在BA 方向获得速度v m/s 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (m)与飞出时间t (s)的平方成正比,且t =1时h =5,M ,A 的水平距离是vt m.(1)求k 的值,并用t 表示h ;(2)设v =5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及y =13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5 m/s ,v 乙 m/s.当甲距x 轴1.8 m ,且乙位于甲右侧超过4.5 m 的位置时,直接写出t 的值及v 乙的取值范围.例4题图【思路分析】 (1)用待定系数法解题即可.(2)根据题意,分别用t 表示x ,y ,再用代入消元法得出y 与x 之间的关系式,然后再求运动员与正下方滑道的竖直距离.(3)把y =1.8代入,解方程求出t 的值.求出甲距x 轴1.8 m 时的横坐标,根据题意求出乙位于甲右侧超过4.5 m 时的v 乙的取值范围.解:(1)∵点A (1,18)在滑道y =k x上, ∴18=k1.∴k =18.设h =at 2.把t =1,h =5代入,得5=a ·12. 解得a =5.∴h =5t 2.(2)∵v =5,AB =1, ∴x =AB +vt =5t +1.∵h =5t 2,OB =18,∴y =OB -h =-5t 2+18. 由x =5t +1,得t =15(x -1).∴y =-5⎣⎢⎡⎦⎥⎤15(x -1)2+18=-15(x -1)2+18.当y =13时,13=-15(x -1)2+18.解得x =6或x =-4. ∵x ≥1, ∴x =6.把x =6代入y =18x,解得y =3.所以y =13时运动员与正下方滑道的竖直距离是13-3=10(m). (3)把y =1.8代入y =-5t 2+18,得t 2=8125.解得t =1.8或t =-1.8(负值舍去). ∴x =5t +1=10.由题意,得1+1.8v 乙-10>4.5. ∴v 乙>7.5.针对训练4 (2018,石家庄43中模拟)某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图,折线段O →A →B 表示救援船在整个航行过程中离港口的距离y (n mile)随航行时间x (min)的变化规律.抛物线y =ax 2+k 表示故障渔船在漂移过程中离港口的距离y (n mile)随漂移时间x (min)的变化规律.已知救援船返程速度是前往速度的23.根据图象提供的信息,解答下列问题:(1)救援船行驶了 16 n mile 与故障渔船会合; (2)求该救援船的前往速度;(3)若该故障渔船在发出求救信号后40 min 内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全?训练4题图【思路分析】 (1)根据图象即可得出答案.(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min.由题意,得16v +16=1623v ,求出方程的解即可.(3)求出抛物线的解析式,把x =40代入求出y 的值,再用y 的值除以时间求出速度即可.解:(1)16(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min.由题意,得16v +16=1623v .解得v =0.5.答:该救援船的前往速度为0.5 n mile/min. (3)由(2)知t =16÷0.5=32. ∴A (32,16).将A (32,16),C (0,12)的坐标分别代入y =ax 2+k ,得⎩⎪⎨⎪⎧16=a ·322+k ,12=k . 解得⎩⎪⎨⎪⎧a =1256,k =12.∴y =1256x 2+12.把x =40代入,得y =1256×402+12=734.734÷4060=2198(n mile). 答:救援船的前往速度每小时至少是2198n mile ,才能保证故障渔船的安全.针对训练5 (导学号5892921)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2 m 的A 处发出,把球看成点,其运行的高度y (m)与运行的水平距离x (m)满足关系式y =a (x -6)2+h .已知球网与点O 的水平距离为9 m ,高度为2.43 m ,球场的边界距点O 的水平距离为18 m.(1)当h =2.6时,求y 关于x 的函数解析式;(不要求写出自变量x 的取值范围) (2)求当h =2.6时,球能否越过球网,球会不会出界; (3)若球一定能越过球网,又不出边界,求h 的取值范围.训练5题图【思路分析】 (1)利用h =2.6,将点(0,2)的坐标代入解析式求出即可.(2)当x =9时,y =-160(x -6)2+2.6=2.45,进而判断球能否越过球网;当y =0时,-160(x -6)2+2.6=0,解方程即可判断球是否会出界.(3)根据球一定能越过球网,又不出边界分别列出不等式,解不等式即可得出答案.解:(1)∵h =2.6,且球从点O 正上方2 m 的A 处发出,∴抛物线y =a (x -6)2+h 过点(0,2).∴2=a ×(0-6)2+2.6.解得a =-160.∴y 关于x 的函数解析式为y =-160(x -6)2+2.6.(2)当x =9时,y =-160(x -6)2+2.6=2.45>2.43,∴球能越过球网.当y =0时,-160(x -6)2+2.6=0.解得x 1=6+239>18,x 2=6-239(舍去). 故球会出界.(3)∵y =a (x -6)2+h 过点(0,2), ∴2=36a +h . ∴a =2-h 36.若球一定能越过球网,则当x =9时,y >2.43, 即y =2-h 36×(9-6)2+h >2.43.解得h >19375.若球不出边界,则当x =18时,y ≤0,即y =2-h 36×(18-6)2+h ≤0.解得h ≥83.故若球一定能越过球网,又不出边界,则h 的取值范围是h ≥83.2. 借助表格信息求函数解析式例5 (2013,河北,导学号5892921)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q =W +100,而W 的大小与运输次数n 及平均速度x (km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示(2)当x =70,Q =450时,求n 的值; (3)若n =3,要使Q 最大,确定x 的值;(4)设n =2,x =40,能否在n 增加m %(m >0),同时x 减少m %的情况下,而Q 的值仍为420?若能,求出m 的值;若不能,请说明理由.【思路分析】 (1)根据题目所给的信息,设W =k 1x 2+k 2nx ,然后根据Q =W +100,列出Q 与x ,n 之间的关系式.(2)将x =70,Q =450代入,求n 的值即可.(3)把n =3代入,确定关系式,然后求Q 最大时x 的值即可.(4)根据题意列出关系式,求出当Q =420时m 的值即可.解:(1)设W =k 1x 2+k 2nx ,则Q =k 1x 2+k 2nx +100.由表中数据,得⎩⎪⎨⎪⎧420=402k 1+2×40k 2+100,100=602k 1+1×60k 2+100. 解得⎩⎪⎨⎪⎧k 1=-110,k 2=6. ∴Q =-110x 2+6nx +100.(2)将x =70,Q =450代入Q =-110x 2+6nx +100,得450=-110×702+6×70n +100.解得n =2.(3)当n =3时,Q =-110x 2+18x +100=-110(x -90)2+910.∵-110<0,∴函数图象开口向下,有最大值,则当x =90时,Q 有最大值. ∴要使Q 最大,x =90. (4)能.由题意,得420=-110[40(1-m %)]2+6×2(1+m %)×40(1-m %)+100.解得m %=12或m %=0(舍去).∴m =50.针对训练6 (2017,成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x (单位:km),乘坐地铁的时间y 1(单位:min)是关于的一次函数,其关系如下表:(1)求y 1关于x (2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.【思路分析】 (1)根据表格中的数据,运用待定系数法,即可求得y 1关于x 的函数解析式.(2)设李华从文化宫站回到家所需的时间为y ,则y =y 1+y 2=12x 2-9x +80.根据二次函数的性质,即可得出最短时间.解:(1)设y 1关于x 的函数解析式为y 1=kx +b . 将(8,18),(9,20)代入,得⎩⎪⎨⎪⎧8k +b =18,9k +b =20, 解得⎩⎪⎨⎪⎧k =2,b =2.∴y 1关于x 的函数解析式为y 1=2x +2.(2)设李华从文化宫站回到家所需的时间为y min ,则y =y 1+y 2 =2x +2+12x 2-11x +78=12x 2-9x +80 =12(x -9)2+39.5. ∴当x =9时,y 取得最小值,最小值为39.5.所以李华应选择在B 站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min.3. 借助文字表述求函数解析式例6 某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x 件,其中x >0.若在甲地销售,每件售价y 元与x 件之间的函数解析式为y =-110x +100,每件成本为20元.设此时的年销售利润为w 甲元(利润=销售额-成本).若在乙地销售,受各种不确定因素的影响,每件成本为a 元(a 为常数,15≤a ≤25),每件售价为106元,销售x 件每年还需缴纳110x 2元的附加费.设此时的年销售利润为w 乙元(利润=销售额-成本-附加费).(1)当a =16且x =100时,w 乙= 8 000 ;(2)求w 甲与x 之间的函数解析式(不必写出x 的取值范围),并求当x 为何值时,w 甲最大以及最大值是多少;(3)为完成x 件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.【思路分析】 (1)利用“利润=销售额-成本-附加费”得出w 乙=(106-a )x -110x 2,代入数值求得答案即可.(2)利用“利润=销售额-成本”求得w 甲与x 之间的函数解析式,利用配方法求得最值即可.(3)先计算得到w 乙-w 甲=(26-a )x .因为15≤a ≤25,x >0,所以w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.解:(1)8 000(2)根据题意,得w 甲=(y -20)x=⎝ ⎛⎭⎪⎫-110x +100-20x =-110x 2+80x =-110(x -400)2+16 000. 所以当x =400时,w 甲有最大值,最大值为16 000.(3)w 乙-w 甲=(106-a )x -110x 2-⎝ ⎛⎭⎪⎫-110x 2+80x =(26-a )x .∵15≤a ≤25,x >0,∴w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.针对训练7 (2018,襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20 kg ,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4 kg.第x 天的售价为y 元/kg ,y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧mx -76m (1≤x <20,x 为正整数),n (20≤x ≤30,x 为正整数),且第12天的售价为32元/kg ,第26天的售价为25元/kg.已知种植销售蓝莓的成本是18元/kg ,每天的利润是W 元(利润=销售收入-成本).(1)m =( -12),n = 25 ; (2)销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【思路分析】 (1)根据题意将相关数值代入即可.(2)在(1)的基础上分段表示利润,讨论最值.(3)分别用(2)中的两个函数在取值范围内讨论利润不低于870元的天数,注意天数为正整数.解:(1)-1225 (2)由题意,得第x 天的销量为20+4(x -1)=4x +16(kg). 当1≤x <20时,W =(4x +16)⎝ ⎛⎭⎪⎫-12x +38-18 =-2x 2+72x +320=-2(x -18)2+968.∴当x =18时,W 最大=968.当20≤x ≤30时,W =(4x +16)(25-18)=28x +112.∵28>0,∴W 随x 的增大而增大.∴当x =30时,W 最大=952.∵968>952,∴当x =18时,W 最大=968.所以销售蓝莓第18天时,当天的利润最大,最大利润是968元.(3)当1≤x <20时,令-2x 2+72x +320=870.解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下,∴当11≤x <20时,W ≥870.∵x 为正整数,∴有9天利润不低于870元.当20≤x ≤30时,令28x +112≥870.解得x ≥27114. ∴27114≤x ≤30. ∵x 为正整数,∴有3天利润不低于870元.综上所述,当天利润不低于870元的共有12天.。