3、液体表面张力系数的测量
液体表面张力系数的测定
反方向旋转螺母, 电压表读数增加 继续旋转读数增 加到一个最大值
阶段1
继续旋转, 读数开始减小
阶段2
此时,观察电压表 读数,记下U1、U2
减小到某一个 值,液膜破裂
阶段3
22
1. 阶段1的受力分析
吊环下沿浸没在水中时,有
吊环下沿拉离水面,开始拉起液膜时,有
这里,f 为表面张力
次数 U1/mV U2/ mV Δ(U 1U2)/ mV α/(×103N/m)
1
2
3 4 5
内径D1/mm
外 经 D2/ mm
20
(3)结果表示
α αi 5
i 1
2 α α i i 1 n
5
=
Uቤተ መጻሕፍቲ ባይዱ
n( n 1 )
α= Eα=
21
五、实验现象的受力分析
对整个的实验过程,可以分为以下3个阶段:
电压表读数达到最大值,此时有
23
2. 阶段2的受力分析
达到最大值后,继续反方向转动调节螺母,可以发
现,电压表读数开始减小,这主要是因为附着在液膜上
的水在重力的作用下向下滑,所以拉力减小。
24
3. 阶段3的受力分析
在液膜拉破前瞬间有:
F1 = mg + f1 + f2 = mg + f
在液膜拉破后瞬间有:
8
二、实验仪器
1. 实验装置
1.底座及调节螺丝 4.金属片状圆环 6.数字电压表
2.升降调节螺母 3.培养皿 5.硅压阻式力敏传感器及金属外壳
9
2. 硅压阻式力敏传感器的结构及原理
(1)传感器
实验三液体表面张力系数的测定
实验三 液体表面张力系数的测定液体的表面张力是表征液体性质的一个重要参数,它描述了液体表层附近分子力的宏观表现,在船舶制造、水利学、化学化工、凝聚态物理中都能找到它的应用。
测量液体表面张力系数对于科学研究和实际应用都具有重要意义。
测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。
拉脱法是测量液体表面张力系数常用的方法之一。
该方法的特点是,用秤量仪器直接测量液体的表面张力,测量方法直观,概念清楚。
【预习思考题】1. 什么是表面张力?2. 液体表面张力系数的物理意义是什么?影响因素有哪些?3. 拉脱法测量液体表面张力系数的基本原理是什么?【实验目的】1.掌握用硅压阻力敏传感器测量的原理和方法。
2.了解液体的表面性质、理解测定液体表面张力系数的原理和方法。
3. 学习和掌握基本测量仪器游标卡尺的使用。
【实验原理】液体分子之间存在相互作用力,称为分子力。
液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。
而液体的表面层(其厚度等于分子的作用半径,约10–8 cm左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。
由于液体上的气相层的分子数很少,表面层内每一个分子受到向上引力比向下的引力小,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势。
这种液体表面的张力作用,被称为表面张力。
表面张力的大小与接触面周长成正比,即:f = α·2l。
其中α称表面张力系数,它在数值上等于作用在液体表面单位长度上的力,单位为N/m。
图 2 液体的表面张力4041在液体中浸入一只小圆环,使圆环的底面保持水平,然后将圆环轻轻地提起。
对润湿液体而言,靠近圆环的液面将呈现如图2所示的形状。
圆环与液面的接触线上由于液面收缩而产生的表面张力沿液面的切线方向,图中液面与圆环侧面的夹角φ称为接触角(或润湿角),当用外力F 缓缓向上拉小圆环时,接触角逐渐减小而趋于零,这时被圆环所拉起的液膜也成圆环形状。
液体表面张力系数的测量
液体表面张力系数的测定表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。
液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。
作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。
本实验采用拉脱法测定表面张力系数。
实验目的:1、了解液体表面性质。
2、熟悉用拉脱法测定表面张力系数的方法。
3、熟悉用焦利弹簧秤测量微小力的方法。
实验仪器:焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等实验原理:1、面张力的由来假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。
由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。
用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为d E 的激活能才能越过势垒,跑到表面去。
然而表面某个分子B 要想挤向内部,它只需排开分子''21、和克服两侧分子''43、的吸引力即可,后面没有分子拉它。
所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能'dE 就可越过势垒,潜入液体内部。
这样一来,由于表面分子向内扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。
此时分子B 需克服分子''43、对它的吸引力比刚才大,从而它的势阱也变深了,直到'dE 变得和d E 一样时,内外扩散达到平衡。
测液体表面张力系数实验报告
测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。
二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。
液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。
三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。
四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。
五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。
液体表面张力系数的测定
实验原理液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。
由于液面收缩而产生的沿着切线方向的力称为表面张力。
设想在液面上作长为L 的线段,线段两侧液面便有张力f 相互作用,其方向与L 垂直,大小与线段长度L 成正比。
即有:f =L (1)比例系数称为液体表面张力系数,其单位为Nm -1。
将一表面洁净的长为L、宽为d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有F = mg +f (2)式中F为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量;f 为表面张力。
此时,f 与接触面的周围边界2(L + d ),代入(2)式中可得本实验用金属圆环代替金属片,则有αα式中d 1、d 2 分别为圆环的内外直径。
实验表明,与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,值越小,液体含杂质越多,值越小,只要上述条件保持一定,则是一个常数,所以测量时要记下当时的温度和所用液体的种类及纯度。
实验仪器焦利秤,砝码,烧杯,温度计,镊子,蒸馏水,游标卡尺等。
焦利秤的主要结构如图所示:1 弹簧,2 配重圆柱体,3 小指针,4 游标尺,5 砝码托盘,6 载物平台,7 调节平台高度的小螺钉,8 调节平台高度的微调旋钮,9水平调节螺丝,10 调节游标高度的微调旋钮,11 调节游标高度的小螺钉,12 小镜子, 13 主尺。
ααααα仪器的实物图调平底盘,将仪器依次挂好;调底盘高度和游标高度,使指针位于游标中心“0”刻度测表面张力实验内容1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利秤立柱竖直。
在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。
调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值L0。
大学物理实验液体表面张力系数测定讲义
大学物理实验液体表面张力系数测定讲义液体表面张力系数测定一、实验简介液体具有尽量缩小其表面的趋势,好象液体表面是一张拉紧了的橡皮膜一样。
把这种沿着表面的、收缩液面的力称为表面张力。
表面张力的存在能说明物质处于液态时所特有的许多现象,比如泡沫的形成、润湿和毛细现象等等。
测定液体表面张力的方法很多,常用的有焦利氏秤法(拉脱法)、毛细管法、平板法、滴重法、最大泡压法等。
本实验采用焦利氏秤法(拉脱法)。
该方法的特点是,用秤量仪器直接测量液体的表面张力,测量方法直观,概念清楚。
二、实验原理液体表面层(其厚度等于分子的作用半径)内的分子所处的环境跟液体内部的分子是不同的。
表面层内的分子合力垂直于液面并指向液体内部,所以分子有从液面挤入液体内部的倾向,并使液体表面自然收缩想象在液面上划一条直线,表面张力就表现为直线两旁的液膜以一定的拉力相互作用。
拉力F 存在于表面层,方向恒与直线垂直,大小与直线的长度l 成正比,即 F =σl式中σ称为表面张力系数,它的大小与液体的成分、纯度、浓度以及温度有关。
三、实验方法金属丝框缓慢拉出水面的过程中,金属丝框下面将带起一水膜,当水膜刚被拉断时,诸力的平衡条件是/2F mg F =+而/F l σ= 得到2F mg lσ-=焦利秤的构造如图所示,它实际上是一种用于测微小力的精细弹簧秤。
一般的弹簧秤都是弹簧秤上端固定,在下端加负载后向下伸长,而焦利秤与之相反,它是控制弹簧下端的位置保持一定,加负载后向上拉动弹簧确定伸长值。
三线对齐为了保证弹簧下端的位置是固定的,必须三线对齐,即玻璃圆筒E上的刻线、小平面镜上的刻线、E上的刻线在小平面镜中的象,三者始终重合。
在力F作用下弹簧伸长Δl,根据虎克定律可知,在弹性限度内F = kΔl,将已知重量的砝码加在砝码盘中,测出弹簧的伸长量,由上式即可计算该弹簧的k值,由k值就可测外力F四、实验内容1、确定焦利氏秤上锥形弹簧的劲度系数(1) 把锥形弹簧,带小镜子的挂钩和小砝码盘依次安装到秤框内的金属杆上。
实验讲义-液体表面张力[总结]
实验讲义-液体表面张力系数的测量许多涉及液体的物理现象都与液体的表面性质有关,液体表面的主要性质就是表面张力。
例如液体与固体接触时的浸润与不浸润现象、毛细现象、液体泡沫的形成等,工业生产中使用的浮选技术,动植物体内液体的运动,土壤中水的运动等都是液体表面张力的表现。
液体表面在宏观上就好像一张绷紧的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力,用表面张力系数σ来描述。
因此,对液体表面张力系数的测定,可以为分析液体表面的分子分布及结构提供帮助。
液体的表面张力系数σ与液体的性质、杂质情况、温度等有关。
当液面与其蒸汽相接触时,表面张力仅与液体性质及温度有关。
一般来讲,密度小,易挥发液体σ小;温度愈高, σ愈小。
测量液体表面张力系数有多种方法,如拉脱法,毛细管法,平板法,最大泡压法等。
本实验是用拉脱法和毛细管法测定液体的表面张力系数。
【实验目的】1.用拉脱法测量室温下液体(水)的表面张力系数; 2. 用毛细管法测量室温下液体(水)的表面张力系数;3.学习力敏传感器的使用和定标。
【实验原理】一、拉脱法测量一个已知周长L 的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即122()F L D D σσπ=⋅=⋅+ (1)式中,F 为脱离力,D 1,D 2分别为圆环的外径和内径, σ为液体的表面张力系数.脱离力的测量应该为即将脱离液面测力计的读数F 1减去吊环本身的重力mg 。
吊环本身的重力即为脱离后测力计的读数F 2。
所以表面张力系数为:)()(2121211D D F F D D mg F +-=+-=ππσ (2)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即ΔΔU K F = (3)式中,∆U F 为外力的大小,K 为硅压阻式力敏传感器的灵敏度,∆U 为传感器输出电压的大小。
液体表面张力系数的测定
实验七液体表面张力系数的测定【实验目的】1. 了解焦利氏秤测微小力的原理、结构和方法;2.用拉脱法测量室温下水的表面张力系数;3.掌握用逐差法处理数据。
【实验仪器】焦利氏秤,Π型金属丝框,法码,游标卡尺,玻璃杯,酒精,金属镊子,温度计及蒸馏水。
【实验原理】许多涉及液体的物理现象都与液体的表面性质有关,液体表面的主要性质就是表面张力。
例如液体与固体接触时的浸润与不浸润现象、毛细现象、液体泡沫的形成等,工业生产中使用的浮选技术,动植物体内液体的运动,土壤中水的运动等都是液体表面张力的表现。
液体表面层中分子的受力情况与液体的内部不同。
在液体内部,任一个分子受其他分子引力、斥力在各方向上均相等,则所受的合力为0;而在表面层,由于液体上方气体分子密度较小,液体表面层分子间的距离大于正常距离,这时引力大于斥力。
这种状态下,整个液面如同绷紧的弹性薄膜,这时产生的沿液面并使之收缩的力称为液体表面张力,用表面张力系数来描述。
液体的表面张力系数与液体的性质、杂质情况、温度等有关。
当液面与其蒸汽相接触时,表面张力仅与液体性质及温度有关。
一般来讲,密度小,易挥发液体小;温度愈高,愈小。
如果在液体表面想象一条直线段,那么,表面张力就表现为线段两边的的液面会以一定的拉力相互作用,此拉力方向垂直于线段,大小与此线段的长度成正比,即(7-1)其中,为液体表面张力系数,它表示单位长线段两侧液体的相互作用,国际制中单位为牛顿/米,记为N?M-1。
拉脱法测定液体表面张力系数是基于液体与固体接触时的表面现象提出的。
由分子运动论可知,当液体分子和与其接触的固体分子之间的吸引力大于液体分子的内聚力时,就会产生液体浸润固体的现象。
现将一洁净Π型金属丝浸入水中,由于水能浸润金属,当拉起金属丝时,在Π型金属丝框内就形成双面水膜。
设Π型金属丝的直径为,内宽为,重量,受浮力,弹簧向上的拉力,液体的表面张力为。
则Π型丝的受力平衡条件为(7-2)设接触角为,由于水膜宽度为(L+d),则表面张力为(7-3)缓慢拉起Π型丝至水面时,接触角趋近于零,上式中。
实验报告-液体表面张力系数的测定
实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。
实验九-液体表面张力系数的测定
实验九液体表面张力系数的测定液体的表面张力是表征液体性质的一个重要参数.测量液体的表面张力系数有多种方法,拉脱法是测量液体表面张力系数常用的方法之一.该方法的特点是,用秤量仪器直接测量液体的表面张力,测量方法直观,概念清楚.用拉脱法测量液体表面张力,对测量力的仪器要求较高,由于用拉脱法测量液体表面的张力约在1×10-3~1×10-2 N之间,因此需要有一种量程范围较小,灵敏度高,且稳定性好的测量力的仪器.近年来,新发展的硅压阻式力敏传感器张力测定仪正好能满足测量液体表面张力的需要,它比传统的焦利秤、扭秤等灵敏度高,稳定性好,且可数字信号显示,利于计算机实时测量,为了能对各类液体的表面张力系数的不同有深刻的理解,在对水进行测量以后,再对不同浓度的酒精溶液进行测量,这样可以明显观察到表面张力系数随液体浓度的变化而变化的现象,从而对这个概念加深理解。
实验目的1.用拉脱法测量室温下液体的表面张力系数2.学习力敏传感器的定标方法实验仪器DH607液体表面张力系数的测定仪,吊环,砝码盘,砝码,镊子,玻璃器皿实验原理测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即(1)式中,为脱离力,D1,D2分别为圆环的外径和内径,为液体的表面张力系数.测量金属片从待测液体表面脱离时需要的力,对金属环进行受力分析,液膜拉断之前金属环的受力表达式为:式中:F为向上的拉力, mg为金属环的重力,为液体的表面张力,为与竖直方向的夹角。
液膜拉断瞬间,,。
液膜拉断后有, 则(2)F可由硅压阻式力敏传感器测出,是此实验的关键。
硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,所加外力与输出电压大小成正此,即U= K F (3)式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,U为传感器输出电压的大小。
液体表面张力系数的测定实验报告数据
液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、加深对液体表面张力现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。
在本实验中,我们采用拉脱法测量液体的表面张力系数。
将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。
当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。
三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。
四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。
2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。
3、挂上砝码盘,调节焦利秤的零点。
4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。
5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。
6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。
7、测量水温,记录温度值。
液体表面张力系数的测定实验报告
液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面上的表现,是液体分子间结合力的一种表现形式。
表面张力的大小与液体的性质、温度、压力等因素有关,因此测定液体表面张力系数对于研究液体性质和应用具有重要意义。
本实验通过测定不同液体的表面张力系数,探究液体性质的差异和影响因素。
实验目的:1. 了解液体表面张力的概念和测定方法。
2. 测定不同液体的表面张力系数,比较液体性质的差异。
3. 探究温度对液体表面张力的影响。
实验原理:实验中采用的测定液体表面张力系数的方法是测量液滴的形状,根据杨氏方程计算表面张力系数。
液滴在平衡状态下,液滴的表面张力与重力平衡,液滴的形状与表面张力系数有关。
实验步骤:1. 准备实验器材:玻璃板、毛细管、滴液瓶、温度计等。
2. 将玻璃板清洗干净,用酒精擦拭表面,以确保无杂质。
3. 用滴液瓶将待测液体滴在玻璃板上,注意滴液的大小和均匀性。
4. 用毛细管将待测液体滴在玻璃板上的液滴吸走,注意保持液滴形状稳定。
5. 用显微镜观察液滴的形状,并测量液滴的直径。
6. 测量环境温度,并记录数据。
7. 重复以上步骤,测量不同液体的表面张力系数。
实验结果与分析:通过实验测量得到不同液体的表面张力系数数据,并进行比较分析。
发现不同液体的表面张力系数存在差异,这与液体的性质有关。
例如,水的表面张力系数较大,而酒精的表面张力系数较小。
这可能是由于水分子之间的氢键作用较强,而酒精分子之间的相互作用力较弱所致。
此外,实验还发现温度对液体表面张力的影响较大。
随着温度的升高,液体分子的热运动增强,分子间相互作用力减弱,导致表面张力系数减小。
这与热力学原理中分子热运动与分子间距离的关系相符。
实验结论:1. 不同液体的表面张力系数存在差异,这与液体的性质有关。
2. 温度升高会导致液体表面张力系数减小。
实验误差与改进:1. 实验中可能存在测量液滴直径的误差,可以使用更精确的测量仪器进行测量。
测液体表面张力系数实验报告
测液体表面张力系数实验报告
1.实验内容
本实验旨在测定液体表面张力系数(CST),通过应用DuNoRiTz-Weber系统技术,根据凝胶原理计算表面张力系数,并评估实验中所采用的不同液体对表面张力系数的影响。
2.实验原理
表面张力是一种描述液体表面特征的量,它表示两种介质(气体与液体)在表面上吸引力的大小。
它由层与层之间的力组成,受到凝胶原理和液体分子的性质等多种因素的影响。
因此,表面张力的测量是对液体表面特性的客观评价的重要手段。
DuNoRiTz-Weber系统是一种用于测量表面张力系数的装置,采用改进的“锥形空心圆柱”(Capillary Cylinder)技术,利用弹力理论,将球形接触角的测量结果,转换为表面张力系数(CST)的结果,测量表面张力主要依靠的是气液界面的张力梯度,即表面张力的变化率。
CST可以用来评估液体的表面特征,如分子结构、气体和液体的相互作用能力等。
3.实验仪器
DuNoRiTz-Weber系统,液体样品(清水、乙醇、醋酸和氢氧化钠),计算机,滴定管等。
4.实验步骤
(1)准备DuNoRiTz-Weber系统:把液体样品放入滴定管中,将滴定管放入系统内,并用塑料密封好。
(2)连接计算机:将电脑与DuNoRiTz-Weber系统连接,运行软件,准备测量。
(3)测量:在软件上,设置参数,使系统进行测量,测量过程中注意检查系统状态,并及时用棉签清除油污或水滴,以确保测量精度。
(4)数据记录:测量完毕后,根据测量结果记录下每种液体的表面张力系数(CST),以及批次号等信息。
液体表面张力系数的测定
液体表面张力系数的测定实验内容1.测定焦利氏弹簧的倔强系数。
2.测定水的表面张力系数。
教学要求1.了解焦利氏秤测微小力的原理、结构和方法。
2.学习拉脱法测定水的表面张力系数。
3.掌握用逐差法处理数据。
4.了解弹簧平衡位置的选取对所研究问题的作用。
实验器材焦利氏秤,Π型金属丝框,0.5g法码10只,游标卡尺,玻璃杯,酒精,金属镊子,温度计。
许多涉及液体的物理现象都与液体的表面性质有关,液体表面的主要性质就是表面张力。
例如液体与固体接触时的浸润与不浸润现象、毛细现象、液体泡沫的形成等,工业生产中使用的浮选技术,动植物体内液体的运动,土壤中水的运动等都是液体表面张力的表现。
液体表面是具有厚度为分子有效半径(约m)的液体薄层。
根据分子运动论,液体表面层内的液体分子与液体内部分子比较,缺少一半能对其起吸收作用的液体分子,因而受到一个指向液体内部的力,这样,液体表面在宏观上就好像一张绷紧的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力。
用表面张力系数来描述。
因此,对液体表面张力系数的测定,可以为分析液体表面的分子分布及结构提供帮助。
液体的表面张力系数与液体的性质、杂质情况、温度等有关。
当液面与其蒸汽相接触时,表面张力仅与液体性质及温度有关。
一般来讲,密度小,易挥发液体小;温度愈高,愈小。
测量液体表面张力系数有多种方法,如拉脱法,毛细管法,平板法,最大工业气泡压力法等。
本实验是用拉脱法测定水的表面张力系数。
实验原理,那么,表面张力就表现为线段两边的的如果在液体表面想象一条直线段液面会以一定的拉力相互作用,此拉力方向垂直于线段,大小与此线段的长度成正比,即(6-1)其中,为液体表面张力系数,国际制中单位为牛顿/米,记为N•M-1,数值上等于作用在液体表面单位长度上的力的大小。
拉脱法测定液体表面张力系数是基于液体与固体接触时的表面现象提出的。
由分子运动论可知,当液体分子和与其接触的固体分子之间的吸引力大于液体分子的内聚力时,就会产生液体浸润固体的现象。
《液体表面张力系数》物理实验报告(有数据)
液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。
二、实验原理液体分子之间存在相互作用力,称为分子力。
液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。
而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。
由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。
这种液体表面的张力作用,被称为表面张力。
表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。
试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。
温度越高,液体中所含杂质越多,则表面张力系数越小。
将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。
当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。
由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。
本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。
若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。
液体表面张力系数测定实验步骤
液体表面张力系数测定实验步骤嘿,小伙伴们,今天来唠唠液体表面张力系数测定这个超有趣的实验。
咱先得把实验器材都找齐咯,就像召集小伙伴们一起去冒险一样。
那仪器就像是一群个性迥异的小怪兽,有金属环啦,有玻璃器皿啦。
然后呢,要把那个玻璃器皿洗得干干净净的,这就好比给小怪兽们准备一个超级整洁的战场。
不能有一点脏东西,不然啊,就像在干净的白纸上滴了墨汁,会把整个实验都搞砸的。
接着小心翼翼地把要测试的液体倒入玻璃器皿中,那液体就像一群听话的小士兵,整齐地在器皿里排好队。
再把金属环用特定的工具悬挂起来,这金属环就像是个要执行特殊任务的小英雄。
要确保它挂得稳稳当当的,要是它掉下去,那可就像超人突然失去了超能力,整个实验就乱套啦。
之后呢,慢慢地把金属环往液体里放,就像是小英雄在小心翼翼地探索未知的领地。
当金属环刚接触到液体表面的时候,就像是小英雄轻轻踩在了一片柔软的云朵上。
然后我们要观察一些细微的变化啦,这时候就得像侦探一样,眼睛瞪得大大的,一丁点儿蛛丝马迹都不能放过。
那液体表面的变化就像是隐藏着巨大秘密的宝藏地图,等着我们去破解。
再用仪器去测量相关的数据,那些数据就像是神秘的密码。
我们得仔仔细细地记录下来,要是记错了一个数字,就像在开锁的时候插错了钥匙,门可就打不开啦。
接下来要根据公式去计算液体表面张力系数啦,这公式就像是一个神奇的魔法咒语。
按照咒语的步骤一步步来,可不能乱了顺序,不然就像魔法失控一样,得出的结果肯定是错得离谱。
做完一次实验可不够哦,要像个执着的探险家一样,多做几次实验取平均值,这样才能得到更准确的结果。
就像多走几条路才能找到真正通往宝藏的路一样。
最后把实验器材都收拾好,这就像打完仗之后打扫战场一样,把小怪兽们都安置好,等待下一次的冒险。
哈哈,这样液体表面张力系数测定实验就大功告成啦。
液体表面张力系数的测定
实验十六液体表面张力系数的测定实验目的:1.学会用拉脱法测定液体的表面张力系数;2.了解焦利氏秤的构造和使用方法;3.通过实验加深对液体表面现象的认识。
实验仪器:焦利秤、形金属丝、砝码、镊子、玻璃皿、温度计、游标卡尺实验原理:液体表面层(其厚度等于分子的作用半径,约10m)内的分子所处的环境跟液体内部的分子是不同的。
在液体内部,每个分子四周都被同类的其他分子所包围,它所受到的周围分子的作用力的合力为零。
由于液体上方的气相层的分子数很少,表面层内每一个分子受到的向上的引力比向下的引力小,合力不为零,这个合力垂直于液面并指向液体内部,如图16-1所示,所以分子有从液面挤入液体内部的倾向,并使液体表面自然收缩,直到处于动态平衡,即在同一时间内脱离液面挤入液体内部的分子数和因热运动而到达液面的分子数相等时为止。
图16-1液体表面层和内部分子受力示意图将一表面洁净的金属丝框竖直地浸入水中,使其底边保持水平,然后轻轻提起,则其附近的液面将呈现出如图16-2所示的形状,即丝框上挂有一层水膜。
水膜的两个表面沿着切线方向有作用力f,称为表面张力,φ为接触角,当缓缓拉出金属丝框时,接触角φ逐渐减小而趋向于零。
这时表面张力f 垂直向下,其大小与金属丝框水平段的长度l 成正比,故有式中,比例系数称为表面张力系数,它在数值上等于单位长度上的表面张力。
在国际单位制中,的单位为N ·m 。
表面张力系数与液体的种类、纯度、温度和它上方的气体成分有关。
实验表明,液体的温度越高,值越小;所含杂质越多,值也越小。
因此,在测定值时,必须注明是在什么温度下测定的,并且要十分注意被测液体的纯度,测量工具(金属丝框、盛液器皿等)应清洁不沾污渍。
图16-2 液体表面张力受力分析在金属丝框缓慢拉出水面的过程中,金属丝框下面将带起一水膜,当水膜刚被拉断时,诸力的平衡条件是:(16-1)式中,F 为弹簧向上的拉力,W 为水膜被拉断时金属丝框的重力和所受浮力之差,l 为金属丝框的长度,d 为金属丝的直径,即水膜的厚度,h 为水膜被拉断时的高度,ρ为水的密度,g 为重力加速度,ldh ρg 为水膜的重力,由于金属丝的直径很小,所以这项值不大。
液体表面张力系数的测定(精)
液体表面张力系数的测定【实验目的】1.学会用拉脱法测定液体的表面张力系数。
2.了解焦利氏秤的构造和使用方法。
3.通过实验加深对液体表面现象的认识。
【仪器与器材】焦利氏秤1把,U 形金属丝1条,砝码1盒,镊子1把,玻璃皿1个,温度计1支,酒精灯1个,蒸馏水100ml ,游标尺1把。
【原理与说明】一、 实验原理由于液体分子与分子间的相互作用,使液体表面层形成一张紧的膜,其上作用着张力,叫做表面张力。
如图3-1所示,设想在液体MN 上划出一条线s s ',s s '把MN 分成A 、B 两部分。
由于A 、B 两部分之间的分子相互作用,在s s '两侧就形成表面张力f ,f 的方向与液体表面相切且垂直于s s ',f 的大小与s s '的长度l 成正比,用公式表示为 )13(-=l f α 式中,α为表面张力系数,即作用在s s '的每单位长度上的力。
表面张力系数是研究液体表面性质所要用到的物理量,不同种类的液体,α值不同;同一种液体的α值随温度上升而减小;液体不纯净,α值也会改变。
因此,在测定α值时必须注明在什么温度下进行,液体必须保持纯净。
测量表面张力系数α的方法很多,本实验用拉脱法测定。
将U 形金属丝浸入液体中,然后慢慢拉起,这时在金属丝内带起了一层薄膜,如图3-2所示。
要想使金属丝由液面拉脱,必须用一定的力 F ,这个力的大小应等于金属丝所受液面的表面张力 f F 2= (注意有两个表面)l F α2=图3-1 图3-2lF2=α (3-2) 本实验用焦利氏秤测出F ,然后代入式(3-2)计算出α值。
二、 仪器构造焦利氏秤实际上就是一个比较精确的弹簧秤,用焦利氏秤测力是根据虎克定律x k F ∆= (3-3) 式中,k 为弹簧的倔强系数,等于弹簧伸长单位长度的拉力, x ∆为弹簧伸长量,如果已知k 值,再测定弹簧在外力作用下的伸长量x ∆,就可以算出作用力F 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验步骤2
2、测量液体表面张力系数: (1)将金属环吊片挂在传感器的小钩上,调节升降台将液体升至靠近 金属环下沿,观察金属环下沿与待测液面是否平行。如果不平行,将 金属环取下,调节环片上的细丝,使之与液面平行(偏差增加1度, 测量误差将增加0.5%); (2)调节玻璃皿下的升降台,使环片下沿全部浸入待测液体中,然后 反向匀速下降升降台,使金属环片与液面间形成一个环状液膜。继续 下降液面,观察电压表读数,测量出液膜拉断前瞬间和拉断后电压值 U1、U2记录在表格中; (3)重复测量U1、U2各5次; (4)将数据带入液体表面张力系数公式,求出待测液体在某温度下的 表面张力系数,并对结果做出评价;
四、液体表面张力系数的 测量
实验目的
1、用砝码对力敏传感器进行定标,计算该 传感器的灵敏度; 2、掌握用拉脱法测量液体表面张力系数方 法; 3、学会双变量数据处理方法;
实验原理
1、液体表面张力系数: 2、拉脱法测量液体表面张力系数: 3、力敏传感器测量拉力的原理: 4、表面张力的测量与公式推导:
3、整理仪器;
数据记录
数据处理1
图1 力敏传感器的定标
数据处理2
思考题
1、实验前为什么要对力敏传感器定标?
参考值
继续下降液面,测量出环状液膜拉断前 和拉断后一瞬间数字电压表读数值
实验器材
THQZL-1型液体表面张力系数测定仪; 力敏传感器; 0.001kg砝码(8个); 镊子; 砝码盘; 金属圆形吊环; 玻璃皿;
1、液体表面张力系数:
2、拉脱法测量液体表面张力系数:
3、力敏传感器测量拉力的原理:
于
4、表面张力的测量与公式推导:
4、表面张力的测量与公式推导:
4、表面张力的测量与公式推导:
接通电源,将仪器预热15分钟
电源 在后面
挂物体
在传感器横梁端头小钩上挂上砝码盘,
调节调零旋钮,使数字电压表显示为零
00.0
调零
在砝码盘中分别加上等质量的砝码,记 录数字电压表的读数值
将金属状吊片挂在传感器的小钩上,观察环
状吊片下沿与待测液面是否平行
调平
调节玻璃器皿下的升降台,使其渐渐上升, 将环片的下沿部分全部浸泡于待测液体
待测液体
升降调节螺母
反向调节升降台,使液面逐渐下降,
金属环片和液面间形成一环状液膜
拉液膜记数据
实验装置
实验步骤1
1、力敏传感器的定标:测圆环内外直径,填入15-1 (1)接通电源,将仪器预热15分钟; (2)在传感器横梁端的小钩上挂上砝码盘,调节调零 旋钮(电子组合仪上的补偿电压旋钮)使数字电压 表示数为零(注意:调零后此旋钮不能再动); (3)在砝码盘中分别加入等质量m(每个砝码 0.001kg)的砝码,记录对应质量下的电压表读书U, 填入表15-2; (4)求出传感器灵敏度K;