七年级下学期数学全册单元期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期数学全册单元期末试卷及答案-百度文库
一、选择题
1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )
A .b =5a
B .b =4a
C .b =3a
D .b =a
2.下列各式从左到右的变形中,是因式分解的是( )
A .2(3)(3)9a a a +-=-
B .2323(2)a a a a a
--=-- C .245(4)5a a a a --=-- D .22()()a b a b a b -=+- 3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )
A .-98.110⨯
B .-88.110⨯
C .-98110⨯
D .-78.110⨯ 4.若(x-2y)2 =(x+2y)2+M,则M= ( ) A .4xy
B .- 4xy
C .8xy
D .-8xy 5.下列各式中,计算结果为x 2﹣1的是( )
A .()21x -
B .()(1)1x x -+-
C .()(1)1x x +-
D .()()12x x -+ 6.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
7.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是
( )
A .22()()a b a b a b +-=-
B .222()a b a b -=-
C .2()b a b ab b -=-
D .2()ab b b a b -=-
8.不等式3+2x>x+1的解集在数轴上表示正确的是( )
A .
B .
C .
D .
9.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高 B .一条中线 C .一条角平分线
D .一边上的中垂线 10.七边形的内角和是( )
A .360°
B .540°
C .720°
D .900° 二、填空题
11.分解因式:29a -=__________.
12.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .
13.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .
14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .
15.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.
16.计算:x (x ﹣2)=_____
17.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.
18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.
19.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.
20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.
三、解答题
21.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.
22.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.
23.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12
,b =﹣2. 24.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量
25.计算 (1)1012(2)3π-⎛⎫---+- ⎪⎝⎭
; (2)52482(2)()()x x x x +-÷-.
26.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .
27.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.
28.如图,一个三角形的纸片ABC ,其中∠A=∠C ,
(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;
(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;
(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
【分析】
分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.
【详解】
解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,
12S S S =-
2
25315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC
a AB a BC AB
b BC AB b 2
2(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,
50a b
, 5b a .
故选:A .
【点睛】
本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.
2.D
解析:D
【分析】
根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.
【详解】
A 、C 不是几个式子相乘的形式,错误;
B 中,32a a
--
不是整式,错误; D 是正确的
故选:D .
【点睛】
本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解. 3.B
解析:B
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000000081=-88.110⨯;
故选B .
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4.D
解析:D
【分析】
根据完全平方公式的运算法则即可求解.
【详解】
∵(x-2y)2 =(x+2y)2+M
∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy
故选D.
【点睛】
此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.
5.C
解析:C
【分析】
运用多项式乘法法则对各个算式进行计算,再确定答案.
【详解】
解:A.原式=x2﹣2x+1,
B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;
C.(x+1)(x﹣1)=x2﹣1;
D.原式=x2+2x﹣x﹣2=x2+x﹣2;
∴计算结果为x2﹣1的是C.
故选:C.
【点睛】
此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.
6.D
解析:D
【详解】
解:A、能通过其中一个四边形平移得到,不符合题意;
B、能通过其中一个四边形平移得到,不符合题意;
C、能通过其中一个四边形平移得到,不符合题意;
D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.
故选D.
7.A
解析:A
【分析】
根据长方形的面积=长 宽,分别表示出甲乙两个图形的面积,即可得到答案.
解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -
故选A .
【点睛】
本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.
8.A
解析:A
【分析】
先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.
【详解】
解:移项,得2x -x >1-3,
合并同类项,得x >﹣2,
不等式的解集在数轴上表示为:

故选:A .
【点睛】
本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.
9.B
解析:B
【分析】
根据三角形中线的性质作答即可.
【详解】
解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B .
【点睛】
本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.
10.D
解析:D
【分析】
n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.
【详解】
(7﹣2)×180°=900°.
故选D .
【点睛】
本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.
二、填空题
11.【解析】
试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点
解析:()()33a a +-
【解析】
试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.
a 2-9=a 2-32=(a+3)(a-3).
故答案为(a+3)(a-3).
考点:因式分解-运用公式法.
12.12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
解析:12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
13.或 2
【分析】
可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.
【详解】
解:相等的两边的长为1cm ,则
解析:或 2
【分析】
可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.
【详解】
解:相等的两边的长为1cm,则第三边为:10-1×2=8(cm),1+1<8,不符合题意;
相等的两边的长为2cm,则第三边为:10-2×2=6(cm),2+2<6,不符合题意;
相等的两边的长为3cm,则第三边为:10-3×2=4(cm),3+3>4,符合题意;
相等的两边的长为4cm,则第三边为:10-4×2=2(cm),2+4>4,符合题意.
故第三边长为4或2cm.
故答案为:4或2.
【点睛】
此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.
14.22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm
解析:22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.
故填22.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
15.﹣1或﹣2或﹣2016
【分析】
根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.
【详解】
解:①当2x+3=1时,解得:x=﹣1,
此时x+2016=2015,则(2x+3)x+2016=12
解析:﹣1或﹣2或﹣2016
【分析】
根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.
【详解】
解:①当2x+3=1时,解得:x=﹣1,
此时x+2016=2015,则(2x+3)x+2016=12015=1,
所以x=﹣1.
②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,
则(2x+3)x+2016=(﹣1)2014=1,
所以x=﹣2.
③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,
则(2x+3)x+2016=(﹣4029)0=1,
所以x=﹣2016.
综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.
故答案为:﹣1或﹣2或﹣2016.
【点睛】
本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.16.x2﹣2x
【分析】
根据单项式乘多项式法则即可求出答案.
【详解】
解:原式=x2﹣2x
故答案为:x2﹣2x.
【点睛】
此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.
解析:x2﹣2x
【分析】
根据单项式乘多项式法则即可求出答案.
【详解】
解:原式=x2﹣2x
故答案为:x2﹣2x.
【点睛】
此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.
17.60
【解析】
先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.
【详解】
∵AB∥CD,
∴∠C与它的同位角相等,
根据三角形的外角等于
解析:60
【解析】
【分析】
先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.
【详解】
∵AB∥CD,
∴∠C与它的同位角相等,
根据三角形的外角等于与它不相邻的两内角之和,
所以∠A+∠E=∠C=60度.
故答案为60.
【点睛】
本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
18.65
【分析】
根据两直线平行内错角相等,以及折叠关系列出方程求解则可.
【详解】
解:如图,由题意可知,
AB∥CD,
∴∠1+∠2=130°,
由折叠可知,∠1=∠2,
∴2∠1=130°,

解析:65
【分析】
根据两直线平行内错角相等,以及折叠关系列出方程求解则可.
【详解】
解:如图,由题意可知,
∴∠1+∠2=130°,
由折叠可知,∠1=∠2,
∴2∠1=130°,
解得∠1=65°.
故答案为:65.
【点睛】
本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.
19.1
【分析】
利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.
【详解】
解:∵(a+b)2=7,
∴a2+2ab+b2=7,
∵a2+b2=5,
∴5+2ab
解析:1
【分析】
利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.
【详解】
解:∵(a+b)2=7,
∴a2+2ab+b2=7,
∵a2+b2=5,
∴5+2ab=7,
∴ab=1.
故答案为1.
【点睛】
本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.
20.5
【分析】
设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.
解:设正方形A ,B 的边长分别为a ,b .
由图甲得:,
由图乙得:,化简得,
∴,
∵a+b>0,
∴a+b
解析:5
【分析】
设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A ,B 的边长分别为a ,b .
由图甲得:2
()1a b -=,
由图乙得:22()()12+--=a b a b ,化简得6ab =,
∴22()()412425+=-+=+=a b a b ab ,
∵a +b >0,
∴a +b =5,
故答案为:5.
【点睛】
本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 三、解答题
21.6°
【解析】
试题分析:先根据三角形内角和求出∠BAC 的度数,由AE 是△ABC 的角平分线,求出∠DAC 的度数,由AD 是BC 边上的高,求出∠EAC 的度数,再利用角的和差求出∠DAE 的度数.
解:∵在△ABC 中,∠ABC =56°,∠ACB =44°
∴∠BA C =180°-∠ABC-∠ACB =80°
∵AE 是△ABC 的角平分线
∴∠EAC=12
∠BA C =40° ∵AD 是BC 边上的高,∠ACB =44°
∴∠DAC=90°-∠ACB =46°
∴∠DAE=∠DAC-∠EAC=6°
22.3x 2-3x -5,25
原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.
【详解】
原式=()222945521x x x x x -----+
=222945521x x x x x ----+-
=2335x x --,
当2100x x =--,即210x x =-时,
原式=()
235310525x x -=⨯-=-
【点睛】
本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.
23.22442a ab b -+;13
【分析】
原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.
【详解】
解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1
=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1
=4a 2﹣4ab+2b 2, 当a =
12
,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.
24.(1)证明过程见解析;(2)12
N AEM NFD ∠=∠-∠,理由见解析;(3)13
∠N+∠PMH=180°. 【分析】
(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;
(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12
N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-
∠PMI=1
3
∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到
1 3∠FNP=180°-∠PMH,即
1
3
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB
∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y
∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=1
3
∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×1
3
∠FNP=180°-∠PMH
1
3
∠FNP=180°-∠PMH
即1
3
∠N+∠PMH=180°
故答案为1
3
∠N+∠PMH=180°
【点睛】
本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质
得到角之间的关系.
25.(1)2- ;(2)103x
【分析】
(1)根据负整数指数幂以及零指数幂运算即可求解;
(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.
【详解】
解:(1)原式=213=2---;
(2)原式12252481010122101010221=24443x x
x x x x x x x x x ⨯+-⎛⎫⋅+⋅-=-=-=-= ⎪⎝⎭. 【点睛】
本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.
26.证明见解析.
【分析】
根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F .
【详解】
证明:∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∴BD ∥CE ,
∴∠C=∠ABD ;
又∵∠C=∠D ,
∴∠D=∠ABD ,
∴AB ∥EF ,
∴∠A=∠F .
考点:平行线的判定与性质;对顶角、邻补角.
27.【分析】
利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】
∵221x y ,
∴化简得:241xy x y , ∵1x y -=,
∴241xy x y 可化为:241xy ,
即有:5xy =,
∴2222313516x xy y x y xy .
【点睛】
此题考查了整式的混合运算 化简求值,熟练掌握运算法则是解本题的关键.
28.(1)见解析;(2)∠1+∠2=2∠C;(3)∠1-∠2=2∠C.
【分析】
(1)根据折叠的性质得∠DFE=∠A,由已知得∠A=∠C,于是得到∠DFE=∠C,即可得到结论;
(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;
(3)∠A′ED=∠AED(设为α),∠A′DE=∠ADE(设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A,于是得到结论.
【详解】
解:(1) 由折叠知∠A=∠DFE,
∵∠A=∠C,
∴∠DFE=∠C,
∴BC∥DF;
(2)∠1+∠2=2∠A.理由如下:
∵∠1+2∠AED=180°,∠2+2∠ADE=180°,
∴∠1+∠2+2(∠ADE+∠AED)=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1+∠2+2(180°-A)=360°,
即∠1+∠2=2∠C.
(3)∠1-∠2=2∠A.
∵2∠AED+∠1=180°,2∠ADE-∠2=180°,
∴2(∠ADE+∠AED)+∠1-∠2=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1-∠2+2(180°-∠A)=360°,
即∠1-∠2=2∠C.
【点睛】
考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。

相关文档
最新文档