《微积分》(中国商业出版社经管类)课后习2题答案九

合集下载

高等数学教材微积分课后答案

高等数学教材微积分课后答案

高等数学教材微积分课后答案第一章微积分基本概念1. 第一节课后习题答案1.1 单项选择题1. A2. B3. C4. D5. A1.2 填空题1. 42. 273. 184. 05. 21.3 解答题1. (a) 首先将函数对x求导,得到f'(x) = 6x^2 + 12x - 8。

令f'(x) = 0,解得x = -2和x = 2/3。

然后再带入原函数,得到f(-2) = 0和f(2/3) = -1/27。

因此,函数在x = -2和x = 2/3处取得极值,极大值为0,极小值为-1/27。

(b) 由于f'(x) = 6x^2 + 12x - 8 > 0,说明函数在(-∞, -2)和(2/3, +∞)上为增函数;当-2 < x < 2/3时,f'(x) < 0,说明函数在(-2, 2/3)上为减函数。

结合图像,可以得到函数的单调性为:在(-∞, -2)上递增,在(-2, 2/3)上递减,在(2/3, +∞)上递增。

2. 第二节课后习题答案2.1 单项选择题1. C2. A3. D4. B5. C2.2 填空题1. 82. 123. 04. -∞5. +∞2.3 解答题1. (a) 首先求函数的导数,得到f'(x) = 2e^x - 12x。

令f'(x) = 0,解得x = ln6。

然后带入原函数,得到f(ln6) = 4ln6 - 6ln^2(6)。

因此,函数在x = ln6处取得极值。

(b) 由于f'(x) = 2e^x - 12x > 0,说明函数在(-∞, ln6)上为增函数;当x > ln6时,f'(x) < 0,说明函数在(ln6, +∞)上为减函数。

结合图像,可以得到函数的单调性为:在(-∞, ln6)上递增,在(ln6, +∞)上递减。

第二章微分学中值定理1. 第三节课后习题答案1.1 单项选择题1. B2. D3. C4. A5. D1.2 填空题1. 42. 53. π/24. √35. 01.3 解答题1. 根据罗尔定理,首先证明f(x)在区间[0, 1]上连续。

《微积分》(中国商业出版社_经管类)课后习2题答案九

《微积分》(中国商业出版社_经管类)课后习2题答案九

则 u ( x, y ) =
∫ (0 , 0) ( x + 2 y )dx + (2 x − 3 y)dy
( x , y)
1 2 3 x + 4x − y 2 = c 2 2 1 3 ∴ : x 2 + 4 xy − y 2 = c 2 2 y 3+5 3x + 5 y dy x 5. = =− y 4 x + 6 y dx 4+6 x y dy du 令 = ux.则 =u+x x dx dx = ⇒− 3 + 5u + 4u + 6u 2 du 3 2 + 3u =x ⇒ − (ln x + c) = 2 du 4 + 6u dx 2 2u + 3u + 1
2⎞ 1 解: y' +⎛ ⎜− ⎟y = 1+ ⎝ 3⎠
2y +1 ,且曲线 L 过点(1,0).试求曲线 L 的方 x
x

dy ⎛ 2 ⎞ + ⎜ − ⎟ y = 0 则 ln y = −2 ln x + c dx ⎝ 3 ⎠ c x2
则y=
则设通解为 y =
c( x ) x2
1 ⎡ ⎤ 1⎞ 2 1 ⎛ y (x ) = x 2 ⎢ ⎜1 + ⎟e x dx + c ⎥ = 3 x 2 − 2 x − 1 ⎢ ⎝ ⎥ 2 x⎠ ⎢ ⎥ ⎣ ⎦


(4) (x + 2 y )dx + (2 x − 3 y )dy = 0
̇ ⋅ y +1 2 dy 2y + x x = = dx 3 y − 2 x 3 ⋅ y − 2 x

微积分答案

微积分答案

International Monetary FundMoldova and the IMF Press Release:IMF Executive Board Completes Second Review Under the Extended Credit Facility and the Extended Fund Facility Arrangements with Moldova, Approves US$79 Million Disbursement April 7, 2011Country’s Policy Intentions DocumentsE-Mail Notification Subscribe or Modify your subscription Moldova: Letter of Intent, Supplementary Memorandum of Economic and Financial Policies, and Technical Memorandum of UnderstandingMarch 24, 2011M OLDOVA:L ETTER OF I N TE N TChişinău, March 24, 2011 Mr. Dominique Strauss-KahnManaging DirectorInternational Monetary Fund700 19th Street NWWashington, DC 20431 USADear Mr. Strauss-Kahn:The economic program supported by the IMF is playing a crucial role in restoring stability and rebuilding confidence in Moldova. With growth significantly exceeding projections in 2010, GDP has broadly recovered to pre-crisis levels. Inflation is under control, and the fiscal deficit has narrowed substantially. These remarkable results were achieved notwithstanding the challenges that the economy faces: fiscal adjustment and promotion of export-led growth require profound structural reforms; rising international food and fuel prices rekindle inflation pressures; job creation lags behind and unemployment still exceeds pre-crisis levels.The program is broadly on track. All quantitative performance criteria for end-September and most indicative targets for end-December 2010 were observed. However, the difficult political environment of 2010 and unforeseen technical complications have taken their toll, and several structural benchmarks under the program were delayed. In the coming period, we will move expeditiously to implement these measures, as well as the new reforms set forth in our agreement with the IMF. The 2011 fiscal budget consistent with the program objectives will be adopted as a prior action for completion of this review. In addition, we have prepared the Annual Progress Report on the implementation of our National Development Strategy and circulated it to the IMF Executive Board for information.In consideration of our strong record of program implementation, we request the completion of the second review of the program supported by the Extended Credit Facility and the Extended Fund Facility arrangements and the associated disbursement of SDR 50 million. As the Executive Board consideration of our request falls in early April 2011, we also request waivers of applicability of the relevant end-March performance criteria. The third program review, assessing performance based on end-March 2011 performance criteria and relevant structural benchmarks, is envisaged for June 2011. Moldova remains committed to improving the well-being of the population through reforms that promote sustainable growth and reduce poverty. In the period ahead, our program will focus on maintaining the targeted pace of fiscal adjustment; reining in inflation pressures; strengthening financial stability of the banking sector; restructuring the energy sector; rolling out the long-awaitededucation and other structural reforms that would support Moldova’s reorientation toward export-led growth.We believe that the policies set forth in the attached Supplementary Memorandum of Economic and Financial Policies (SMEFP) are adequate to achieve these objectives but will take any additional measures that may become appropriate for this purpose. We will consult with the IMF on the adoption of such additional measures in advance of revisions to the policies contained in the SMEFP, in accordance with the Fund’s policies on such consultation. We will provide the Fund with the information it requests for monitoring progress during program implementation. We will also consult the Fund on our economic policies after the expiration of the arrangement, in line with Fund policies on such consultations, while we have outstanding purchases in the upper credit tranches. Sincerely yours,/s/Vladimir FilatPrime MinisterofRepublicMoldovatheGovernmentof/s/ /s/NegruţaVeaceslavValeriu LazărFinanceofDeputy Prime Minister MinisterEconomyMinisterof/s/Dorin DrăguţanuGovernorNational Bank of MoldovaAttachment: Supplementary Memorandum of Economic and Financial PoliciesUnderstandingofMemorandumTechnicalS UPPLEME N TARY M EMORA N DUM OF E CO N OMIC A N D F I N A N CIAL P OLICIESMarch 24, 20111.The present document supplements and updates the Memoranda of Economic and Financial Policies (MEFPs) signed by the authorities of the Republic of Moldova on January 14, 2010 and June 30, 2010. It accounts for recent macroeconomic developments and introduces policy adjustments, as well as additional policies necessary to achieve the objectives of the program. We remain determined to meeting our commitments made previously under the program.I. M ACROECO N OMIC D EVELOPME N TS A N D O UTLOOK2.Growth outperformed expectations in 2010, and the economic expansion is set to continue. Real GDP rebounded by 6.9 percent in 2010, more than offsetting the economic contraction of 6 percent recorded in 2009. We expect the economic growth to return to its sustainable pace of 4½-5 percent in 2011 and thereafter. Expansion of domestic demand, exports, and investment are expected to drive activity in the near term, with tailwinds from trade liberalization reforms, a more favorable external environment, and improving competitiveness.3.Barring severe external shocks, disinflation should continue in 2011-12. Despite adjustment of energy tariffs, depreciation of the leu, and higher excise rates, inflation remained under control at around 8 percent in 2010, while core inflation declined below 5 percent. Under our baseline assumptions for international food and energy prices, we expect that inflation will decline further to 7½ percent in 2011 and about 5 percent by end-2012, the medium-term target set by the NBM. However, we recognize the risk that further surges in international food and energy prices and faster than expected rebound in domestic demand can temporarily push headline inflation above the projected path.4.Strong economic recovery boosted budget revenues and helped improve the fiscal position. In 2010, revenue significantly exceeded the program projections in nominal terms, but underperformed as percent of GDP, mainly due to high contribution to growth of the largely untaxed agriculture. Expenditure targets were also comfortably met, albeit largely due to under-spending of the capital budget caused by capacity constraints. As a result, the cash budget deficit narrowed to 2½ percent of GDP in 2010, far below the program target of5.4 percent of GDP.5.After a sharp drop to single digits in 2009, the external current account deficit widened in 2010 and will remain elevated in 2011. Rising demand for consumer and investment goods has pushed the current account deficit to an estimated 12¾ percent of GDP in 2010. The same demand factors, along with higher costs of energy imports, will likely propel the deficit even higher in 2011. The elevated deficit in 2011 will be largely financed by official assistance, private capital flows, and FDI. As the economy’s borrowing space is filling up quickly, we realize that further external borrowing should proceed at a more measured pace. We expect that from 2013, thanks to our exportpromotion efforts and economic recovery in trading partners, higher exports will more than offset the rise in imports, and the current account deficit would decline towards 10 percent of GDP.6.The situation in the financial sector has improved as well, with domestic credit rebounding and nonperforming loans declining. After the decline of 2009, domestic bank credit expanded by about 13 percent in 2010, and interest rates have declined. Meanwhile, the share of nonperforming loans declined to 13.3 percent, in part reflecting write-offs. Moreover, banks maintain large liquidity and capital buffers, remaining resilient to potential risks.II. R EVISED P OLICY F RAMEWORK FOR 2011-12A. Fiscal Policy7.Building on the better-than-expected fiscal outcome in 2010, the structural fiscal adjustment will stay on course in 2011-12. Our goal is to bring down the structural fiscal deficit excluding grants—the fiscal deficit adjusted for the effects of economic cycles—from 5½ percent of GDP at end-2010 through 4½ percent of GDP in 2011 to 3½ percent of GDP by 2012. This would largely rid the budget from its dependency on exceptional foreign aid and make public finances more resilient to macroeconomic risks. In this context, we will continue to contain the unaffordable public sector wage bill and low priority current spending, while strengthening revenue through selected tax policy measures and improved tax administration. Using the created fiscal space to increase infrastructure investment and provide well-targeted social assistance to the most vulnerable will allow us to achieve our broader development goals.8.As a next step, we will adopt a 2011 budget with a deficit of 1.9 percent of GDP as a prior action. We project that the budget revenue will amount to 37¾ percent of GDP in 2011, on account of continued progress in the tax administration reform, increased excise rates on tobacco and hard liquor—in line with our EU Association agenda—and updates of selected local taxes and fees. Implementation of various structural reforms, described below, will allow us to reduce current expenditure by 1½ percent of GDP to 34½ percent of GDP. At the same time, priority social assistance spending will be safeguarded, and capital expenditure will increase to 5¼ percent of GDP. We will seek to maintain the targeted structural fiscal adjustment in case the economic outlook and budget revenue deviate from our current projections.9.With immediate fiscal pressures easing, structural reforms will help contain the large public sector wage bill while creating space for poverty reduction actions. The significant optimization efforts in the education sector (¶19) will help finance the increase of teachers’ wages planned for September 2011. During 2011, other public wage restraints will remain in place as described in Law 355, as amended in October 2009. The only exception will be made for low-income auxilliary personnel in the budget sector (with salaries below MDL 1500), whose wages will be indexed by 8.5 percent on average from July 1, 2011 to alleviate the impact of higher than expected food and fuel prices and to avoid disincentives to labor market participation. Moreover, public sectoremployment will be capped at 212,000 positions by end-2011, reflecting the effects of the education reforms, while all vacant positions in excess of that level will be eliminated in 2011.10.Greater emphasis will be placed on synchronizing fiscal consolidation efforts at the central and local levels. The local governments will be granted greater control over local tax rates and fees to allow better revenue planning. In particular, by end-March 2011, we will ensure parliamentary passage of the necessary legal amendments to remove ceilings on existing local taxes and fees. This would allow the Chişinău municipality to raise at least MDL 100 million in additional revenues to finance, among other things (discussed in ¶21), its program of granting wage supplements and heating assistance in 2011. The practice of granting these payments will be discontinued at end-2011. The Ministry of Finance will verify compliance with these commitments.11.Going forward, we will continue trimming down current spending while creating sufficient space for the large public investment needs. In 2012, we aim to reduce the budget deficit further to ¾ percent of GDP, mainly through further rationalization of current spending (1 percent of GDP), sustained by structural reforms (¶¶19-22) that will commence in 2011 and bear fruit over the medium term. Ensuring sustainability of public finances in the medium term will also require implementation of the following measures:∙To reduce spending on goods and services, we will persevere with our procurement reform, assisted by the World Bank. The reform, to be phased in during 2011, will lower the budget costs by automating the bids for delivery of goods and services in the government’scentralized procurement agency.∙To improve control over budget planning and execution, we have drafted a law on public finance and accountability which will introduce a rule-based fiscal framework, enhance fiscal discipline, and improve transparency. We expect the law to be passed by Parliament by end-September 2011 and used in the preparation of the 2012 budget.∙To ensure the most effective allocation of capital expenditure, we will review the list of existing and envisaged capital projects, with a view to prioritize execution on the basis oftheir viability and economic growth potential. The review will also take into account pastexecution rates and capacity for implementation.∙To ensure implementation of the recently approved tax compliance strategy, by April 30, 2011, the State Tax Service (STS) will put in place operational plans for the strategyimplementation, including audit, collection of arrears, and taxpayer service activities(structural benchmark). In addition, by September 30, 2011, we will draft and submit toParliament legislation to allow indirect assessment of individuals’ income based on theirassets and other indicators as specified in the compliance strategy. On this basis, byDecember 31, 2011, we will prepare operational plans to strengthen audit, enforcement,outreach to, and education of high-wealth individuals regarding their tax compliance.∙We will reform the outdated mechanism for sick leave benefits. By March 31, 2011, we will amend legislation to assign the financial responsibility for the first day of sick leave to theemployee and the second day to the employer, effective July 1, 2011 (structural benchmark for end-April). Further legal amendments—to accompany the passage of the 2012 budget—will increase the number of sick leave days covered by employers to 3 in 2012, 4 in 2013, and6 in 2014.∙Early retirement privileges will be gradually phased out. By March 31, 2011, we will adopt legislation that, starting July 1, 2011, would raise the statutory retirement age of civilservants, judges, and prosecutors by six months every year until it reaches the regularretirement age (structural benchmark for end-April). This legislation will also extend the requirement to pay social contributions to all persons employed in Moldova in line withbilateral treaties. Another related piece of legislation, also to be passed by March 31, 2011,will put in place a policy of increasing the years of contribution required for full pensioneligibility from 30 to 35 years (and from 20 to 25 years for military and police personnel), by6 months every year, starting July 1, 2011.∙Building on the findings and recommendations of the recent IMF TA mission, we will implement measures to rationalize the use of health care. In particular, from January 1, 2012 we will introduce a copayment of 20 lei for primary care visits for uninsured patients, tomotivate them to enroll into the health insurance system. From January 1, 2013, we willintroduce small copayments for each doctor and hospital visit (5 lei for primary care, 10 leifor specialists, and 20 lei for hospital admissions) for all other categories of patients,including those who currently receive medical services free of charge. This policy will raise revenue and deter the use of unnecessary care, thus reducing the burden on the system. Tothis end, by end-April 2011 we will prepare an action plan detailing needed legislativechanges, technical preparations, and public information campaign.B. Monetary and Exchange Rate Policies12.The N BM’s monetary policy will be focused on achieving its end-2012 inflation objective of 5 ± 1½ percent. Given the fast economic recovery, closing output gap, and inflation pressures from rising international food and energy prices, the NBM’s monetary policy stance will gradually shift from supporting the recovery to addressing inflation risks. Specifically, it should focus on anchoring expectations—thereby countering the second-round effects from surging food and energy prices—and preventing excessive credit expansion. In this context, the NBM’s recent tightening measures—the 100 basis points hike in the policy interest rate and the increase in required reserve ratio from 8 percent to 11 percent— adequately address current inflation concerns. Further tightening should be conditional on marked acceleration of credit growth or rising inflation expectations.13.At the same time, the N BM will continue to strengthen the operational and legal aspects of its monetary policy framework. Consistent with the transition to inflation targeting, theindicative target for reserve money under the program will be discontinued after March 2011. Nevertheless, the NBM will continue to monitor money growth closely as an indicator of the state of domestic demand and sharp sustained moves may warrant policy action. In parallel, the NBM will continue to further enhance its communication, research, and forecasting capacities. As regards the legal framework, by end-September 2011, the NBM will propose amendments to the central bank law to strengthen its independence in line with the international best practice and establish appropriate mechanisms of internal control over NBM’s corporate governance.14.Alongside, the N BM’s exchange rate policies will remain consistent with program objectives. Specifically, NBM interventions in the foreign exchange market will continue to aim at smoothing erratic movements, but not resist sustained depreciation pressures. Should capital inflows exceed program projections, the NBM will accelerate the pace of reserve accumulation to ensure adequate buffers against the still high external vulnerabilities.C. Financial Sector Policy15.To strengthen financial stability, we will address the quasi-fiscal liabilities stemming from recent crisis management efforts. The Government’s decision to shield from losses the depositors of Investprivatbank (IPB) that failed in 2009 was a necessary step to avoid potential panic and deposit runs. However, paying out these deposits by means of a loan from the majority state-owned Banca de Economii (BEM) to IPB—in turn, enabled by a liquidity-providing loan from the NBM—has created a burden on BEM’s balance sheet that is now inhibiting its development. To address this problem, by end-May 2011 the Government will issue to BEM a long-term bond equal to the residual face value of BEM’s loan to IPB by either purchasing this loan or—subject to agreement of BEM’s minority shareholders—recapitalizing the bank. Meanwhile, the NBM will consider a limited extension of its loan to BEM to mitigate the attendant liquidity risk, and will work with BEM and the IPB liquidator to accelerate the sale of IPB assets. The Deposit Guarantee Fund will assume the responsibility for the net cost of the payout to IPB depositors and may introduce an extraordinary deposit insurance premium to gradually reimburse the Government for the cost of the bond issued to BEM.16.To handle future risks better, we aim to put in place the remaining elements of our contingency planning framework. Recent strengthening of the bank resolution framework and the establishment of a high-level Financial Stability Committee (FSC) were followed by signing of a memorandum of understanding (MoU) between key institutions involved in responding to financial emergencies. As a next step, we aim to put in place specific contingency plans for each MoU participant by end-June 2011. These plans will establish a contingency framework based on a clear set of instruments, division of roles, responsibilities, as well as coordination channels between the involved parties.17.Looking ahead, as credit growth picks up speed, the N BM will need to strengthen its bank supervision framework by improving data collection and reducing scope for regulatoryarbitrage. To this end, the NBM, based on best international practices, will develop a new reporting system for commercial banks allowing a more detailed analysis of financial sector data. In addition, by end-September 2011, the NBM and the National Commission for Financial Markets, with assistance from the World Bank, will explore options and make proposals to consolidate all credit institutions—including banks, leasing companies, savings and credit associations, and microfinance institutions—as well as insurance companies and pension funds under a common supervisory framework. Finally, by end-September 2011, the NBM in cooperation with the World Bank will evaluate the feasibility of establishing a public credit bureau to promote information exchange and prudent lending policies by banks.18.Despite earlier delays, measures to strengthen the debt restructuring and contract enforcement frameworks are being developed and will be implemented in the coming months. The NBM has already allowed faster reclassification of restructured loans into lower-risk categories. We will now ensure by end-September 2011 parliamentary passage of the legal amendments described in the SMEFP of June 30, 2010 (¶15), to enhance the speed and predictability of collateral execution by banks and to strengthen incentives for banks to restructure nonperforming loans (structural benchmark). Furthermore, with technical assistance from the World Bank and in consultation with the IMF staff, we will seek to strengthen and simplify other aspects of the insolvency framework. Specific draft legal amendments in this area will be adopted by the Government by March 2012.D. Structural ReformsRaising Efficiency of the Public Sector19.In the coming months, we will roll out the comprehensive reform of the oversized education sector. Its main goals are to eliminate excess capacity, create a leaner and better-equipped education system with adequately trained and paid staff, and provide education that meets demands of the modern economy. The reform will seek class, school, and employment consolidation. A large part of the eventual budget savings and financial assistance from the World Bank will be used to improve school quality, secure transportation for students, and repair school bus routes. Nevertheless, the reform will save about 0.5 percent of GDP on a net permanent basis from 2013 on. Our reform strategy is based on the following elements:∙Class size optimization. By September 1, 2012, we will increase class size to 30-35 students in large schools and 25-30 students in the rest. For this purpose, we will pass legalamendments to eliminate the existing norms prescribed in the Law on Education by end-July 2011. This would reduce the number of teaching positions by 1,736, including 390 positions in 2011, and lead to estimated annual savings of about MDL 94 million.∙Optimization of the school network. Gradual consolidation of the school network through closure of schools with low enrollment and securing transportation of students to nearby“hub” schools will commence this year. Its full implementation during 2011-13 would reducethe number of teaching and non-teaching positions by 2,661 and 1,426 respectively and, when completed, will generate savings of about MDL 136 million a year. We will aim to limit the attendant transportation costs to MDL 61 million per year, and will seek grant assistance from the international financial community to defray this cost.∙Reduction of non-teaching personnel and vacant positions. As a first step, we will immediately freeze hiring of non-teaching staff and eliminate 2,400 vacant positions in thesector. Alongside, we will include in the budget law for 2011 a provision establishing wage bill ceiling for education sector, resulting in all rayons reducing personnel in educationinstitutions on average by 5 percent from their level of end 2010 (5,300 positions nationwide) before academic year 2011/12. These measures would provide savings of MDL 175 million on a full-year basis.∙Increasing flexibility of labor relations in the sector. Local authorities also need support and more flexibility to be able to consolidate schools and classes. By end-July 2011, we willadopt legal amendments to the Labor Code and other enabling legislation to (i) make fixed-term (one year) contracts mandatory for teachers beyond retirement age; and (ii) allow school principals’ hiring and dismissal decisions to be based on business need and performancerather than tenure. Estimated annual savings from this measure amount to MDL 48 million. ∙Rollout of a per-student financing system. Following successful implementation of per-student financing in the pilot rayons of Cauşeni and Rişcani, the system will be expandedstarting January 1, 2012 to 9 additional rayons, as well as municipalities of Chişinău andBalţi. The system will create strong incentives to optimize schools’ financial performance. Its nationwide implementation will take place in 2013.∙Putting social protection costs in education on a means-tested basis. By end-June 2011, in consultation with the World Bank and other partners, we will conduct a thorough review ofall social expenditure in the education budget (scholarships, dormitory assistance, schoolmeals, etc.) to explore options for better targeting of such assistance to the most vulnerablegroups.In consultation with the World Bank, the Government will develop and, by end-March 2011, adopt a detailed action plan to implement this reform.20.We will reform the civil service in a way that increases efficiency without destabilizing the fiscal position. To this end, we have developed descriptions of new job functions and responsibilities for staff in central government administration along with a merit- and performance-based wage system for civil servants. Implementation of this reform will start in October 2011, and will ensure that the reform does not affect the aggregate public sector wage bill as a ratio to GDP. 21.As regards the energy sector, we will strive to achieve a stable framework for payments of current bills, pending a comprehensive sector restructuring strategy to be finalized and implemented in cooperation with the World Bank and other partners. To ensure a stablefunctioning of the sector, the Ministry of Economy, the Chişinău municipality authorities, and the key participants in the energy sector will seek to negotiate in good faith a MoU with the following key elements: (i) a monthly schedule of payments to energy suppliers that is consistent with typical collection lags in Termocom’s receivables during the heating season, (ii) full repayment of current arrears by Termocom before the following heating season; (iii) a mechanism for covering the cash gap arising from collection lags in Termocom or a bank guarantee from the Chişinău municipality backing Termocom’s adherence to the agreed payment schedule; (iv) creditors’ commitment to abstain from blocking bank accounts as long as the MoU is observed. In this context, the Chişinău municipality will budget for and pay in full its remaining debt to Termocom of MDL 64 million by end-March 2011.22.Meanwhile, we will adopt a number of legal and regulatory amendments which would help ensure cost recovery in the heating sector. By end-August 2011, we will adopt the necessary legal and/or regulatory amendments to raise the heating fee for apartments disconnected from central heating from 5 percent to 20 percent of the average heating bill. This increase is in line with regional practices and would mostly affect consumers with relatively high incomes. At the same time, the Ministry of Regional Development and Construction, the Chişinău municipality, Termocom, and the water distributor Apă Canal will seek to put an end to persistent losses caused by under-billing for hot and cold water delivery; other municipalities will seek to resolve this issue as well. And to facilitate timely collection of heating bills, by end-August 2011, we will adopt the necessary legal and/or regulatory amendments introducing a minimum payment of 40 percent of the monthly bill and setting August 1 as the deadline for settling all heating bills for the past heating season.23.With the international investment climate gradually improving, the government will accelerate the efforts to divest its noncore assets. In the first half of 2011 the government, with assistance from IFC, will put in place an advisor to review various options for private sector participation in Moldtelecom. At the same time, by mid-2011, the government will expand the list of state assets subject to privatization. This will pave the way for privatization of other large public companies. By end-September 2011, the government will approach various international financial institutions, seeking an advisor to explore options to divest Air Moldova as soon as possible. Also by end-September 2011, we shall develop a roadmap for the privatization of Banca de Economii, and, if need be, resume the engagement of the privatization advisor.Improving the Business Environment and Removing Barriers for Trade24.The wheat export ban introduced in response to dwindling grain stocks in early 2011 will be abolished as soon as possible, and we will not introduce any new barriers to trade. We plan to abolish this ban by end-April 2011, provided that domestic and regional grain shortages are alleviated. Moreover, we shall refrain from introducing any new tariff or non-tariff barriers to exports. In addition, by end-May 2011 we will conduct an assessment of the existing tariff and non-tariff barriers to trade and their consistency with Moldova’s WTO commitments with regard to market access, and will develop roadmap for their gradual elimination.。

微积分第二章详细答案

微积分第二章详细答案

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 l i m n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 l i m n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 l i m 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)nn n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n nnn n n nn++≤+++≤≤=+而且 21lim0n n→∞=,2lim0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n nn n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231nn n n n<=<- ,而且4lim 0n n →∞=,所以,由夹逼定理得2lim0!nn n →∞=5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…;(2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

微积分课后题答案习题详解

微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

微积分课后题答案习题详解

微积分课后题答案习题详解

微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

《微积分》(中国商业出版社 经管类)课后习题答案三

《微积分》(中国商业出版社 经管类)课后习题答案三

《微积分》(中国商业出版社 经管类)课后习题答案习 题 三(A )1.根据导数定义求下列函数的导数:(1); )0()(>=x x x f(2); )0(1)(2≠=x x x f(3); )0()(32≠=x x x f (4). )0(log )(>=x x x f a解:(1)xx x x f 2121)()(2121=='='- (2)322)'()(---=='x x x f (3)313232)'()(-=='x x x f (4)nax a x e xx x f e a a 111log 11log 1)'(log )(∙=∙==='2.求下列曲线在指定条件下的切线方程; (1)曲线23x x y +=的与直线x y 5=平行的切线; (2)余弦曲线x y cos =在点2π=x 处的切线;(3)双曲线xy 1=的经过点(2,0)的切线.解:(1)5,5==k x y 则直线23x x y += 5232=+='x x y 可得11=x ,352-=x21=y 或27502-=y 。

斜率为5,且经过)2,1(或)2750,-35(-的斜率为35-=x y 或271755+=x y(2)=-==2sin 'x x y -1 当2π=x 时0=y∴斜率为,1-且经过)0,2(π的斜线为x y -=2π(3))0,2(得直线为 b kx y += 过)0,2( ∴ 02=+b k k b 2-=∴k kx y 2-= xy y 1=-= k xy =-='21则 kx 1-±= k y -±=)0(<k),1(k k--在k kx y 2-=上, ∴代入x x y k -=+-=-=22,13.如一直线运动的运动方程为,122++=t t s 求在3=t 时运动的瞬时速度.解:22',122+=++=t s t t s 当3=t 时,8='s ∴s m v t /83==4.设函数)(x f 在点a x =可导,求: (1)0lim→∆x ; )()(x x a f a f ∆∆-- (2)0lim →h ; 2)3()5(h h a f h a f --+(3))(a f ',如已知0lim →t . 61)3()(=+-t a f a f t解:(1)0lim→∆x )(')()()(lim )()(0a f x a a x a f a f x x a f a f x =∆--∆--=∆∆--→∆ (2))(')()()(lim 2)3()5(lim 080a f x a a x a f a f h h a f h a f h k =∆--∆--=--+→→ (3)2)(61)3()(3lim 31)3()(lim 030-='=+--=+-→→a f t a f a f t t a f a f t t t5.设)(x f 可导,求 )]([)]([lim 220xx f x x f x ∆-∆+→∆.解:xx f x x f x f x x f x x f x x f x x ∆+∆++∆+=∆-∆+→∆→∆)]()([)]()([lim )]([)]([lim 02206.设函数)(x f 在0=x 点连续,且极限,23)(lim 0=+→xx f x 问函数)(x f 在0=x 点处是否可导?若可导,求. )0('f 解:23)(lim=+→x x f x f(x) 在0x =点连续,∴3)(,23)(lim 00-==+=→x x x f x x f 2x3x)(lim x f(0)x)(lim )(f )(lim)0(0x 0x 0=∆+∆=∆⋅∆=∆⋅∆+='→∆→∆→∆f f x x x x f f x7.求函数x x x x f -=2)(的不可导点.解:x x x x f -=2)(当02≥-x x 时,即1≥x 或0≤x x x x x x f 23)()(223-='-='当02<-x x 时,即 32)(',102x x x f x -=<<,0)0()0(='='+-f f)(')(2)(2)(])()([lim )('0x f x f x f x f x f x x f x f x =∙'=+∆+=→∆1)1(-='-f 1)1(='+f )1()1('≠'∴+-f f ∴ 1x =为f(x)的为不可导点8.设a x x xs x f a,0 ,00,1sin )(⎪⎩⎪⎨⎧=≠=在什么条件下可使)(x f 在点0=x 处 (1)连续; (2)可导; (3)导数连续.解:x x xx x f 1cos ,1sin 0x 00x 1sin )(2⎪⎩⎪⎨⎧=≠=为有界函数函数 1)连续 0a 0)0(1sin x lim 1sin x lim a 0a 0>∴===+→-→f xx x x2)可导xx x x x x f x f a x a x x ∆∆=∆∆∆=∆-∆++∆='-→∆→∆→1sin )(lim 1sin )(lim)0(01sin0)x (lim )0(100a 0存在1 01>∴>-∴a a 此时 0)0(='f3)导数连续⎪⎩⎪⎨⎧=≠-='--0 x 00 x 1cos 1sin )(21xxx ax x f a a 若)('x f 再0x =处连续, 则 20)0()0(lim )0(lim 0>⇒='='='+→-→a f f f x x9.设)(x f 可导且,0)0(=f 证明)sin 1)(()(x x f x F +=在0=x 点可导,并求).0(f '解:)0(0)(lim 0sin 1)((lim )0()0(lim )0('00f xx f x x x f x F x F F x x x '=∆+∆=∆-∆+∆=∆-∆+=→∆→∞→10.对于函数),(x f 如xx x f x x f x ∆∆--∆+→∆)()(lim 0存在,是否)(x f '必存在?解:不一定,如x x f =)(,此极限在0=x 处为0,但)0('f 不存在.11.设)()()(x g a x x f -=,(1)若)(x g 在点a x =连续,求)('a f ;(2)若点a x =是)(x g 的间断点,)(x f 是否在a x =处必不可导,为什么?解:1))()()()()(),()()(a g x g a x x g a f x g a x x f a x ='-+='-==2) 如A x g ax =→)(lim ,则A a f =)('.如)(lim a g ax →不存在,则)('a f 不存在.12.设函数⎪⎩⎪⎨⎧=≠+=0 x 0,0 x ,1)(2e x xf 则下列结论正确的是( ). A .)(x f 在0=x 点间断B .)(x f 在0=x 点连续,但不可导C .)(x f 在0=x 点可导,但)(x f '在0=x 点间断D .)('x f 在0=x 点连续解:D. x x xe x e xx e x1312122121-=-='⎪⎪⎪⎪⎭⎫⎝⎛+,x x x x e x e xx e x e x 1412213121621=--=-="⎪⎪⎪⎪⎭⎫⎝⎛+lim)(lim 02lim )(lim )(lim 4140013==''=-='=→→→→→e x x f e x x f x f x x xx x x0=x ,时 0)()()(=''='=x f x f x f )(x f '∴在0=x 点 连续13.设)(x f 为可导函数,且满足12)1(4lim0-=-+→x x f x求曲线)(x f y =在点))1(,1(f 处切线的方程. 解:12)1(4lim-=-+∞→xx f x 则4+f(1)=0 f(1)=42211c o s 11s i n 11xy y x y --=--=-='='xx f x x f x f x f f x x x ∆∆++=∆∆++=∆-∆+='→∆→∆→∆2)21(4lim 2)1(4lim )1()1(lim )1(00022))2(1(4lim20=∆-∆--+-=→∆xx f x所以k=2且经过)4,1(-则切线为62-=x y14.设)(x f 是偶函数,且在点0=x 可导,证明:.0)0(='f解:f(x)为偶函数,所以f(-x)=f(x),两边求导为: )()(x f x f '=-'-所以0)()(='+-'x f x f当x=0时,等式变为0)0(2='f 所以0)0(='f15.求下列函数的导数:(1); 13524xx x y +-= (2); )1(x x y += (3);215xx y +=(4); ln 1ln 1x xy +-=(5)x x y a nlog = (6); 133xx y -=(7); sin 2x y x = (8);3 2x y x -= (9); cos 1xxy -=(10); cot tan x x x y -= (11); arctan s x y = (12); arccos x e y x = (13); cos sin 2cos xx xy +=(14); ln tan 2x x x y =(15); 5log 222++=--x y x (16). 1111ln xx x x y -++--+=解:1)23241620' 135xx x y xx x y --=+-=2)xx x xx x x y 213)1(21])1[(+=++='+='3)22)22222)1(1(5)1(52)1(515x x x x x x x x y +-=+-+='⎪⎪⎭⎫ ⎝⎛+' 4))x ln 1(2 x)ln (1)ln 1(x 1- x)ln 1(1) ln 1 ln 1(22+-=+-+-='+-='x x x xxy5))ln 1log (ln 1log )log (11aa x x a x x a nx a x y x n nx n x n +=+='='-- 6)3413323233223338313)1(xx x x x x x xx y +-=---='-'7) x)cos 2sin x (ln 2 x cos 22sin x 12) x sin 2(x x x +=+='='n y x 8)3) ln 2(333ln 3)3()(2222x x x x x x x e y x x x -+-==='-9)2)cos 1(sin cos 1)cos 1(x xx x x x y ---='-=' 10)x csc x cot x -x sec )cot x x -x (tan 22+='='y 11)21arctan x )arctan x (xx x y ++=''12)22x xx-11-x (arccos 1e - x arccos e ) x arccos(x x e xe y =-='='13)=+--+-='+=2)cos (sin 2cos )sin (cos )cos (sin 2sin 2)cos sin 2cos ('x x x x x x x x x xy =++---2)cos (sin 2cos sin 2cos cos cos 2sin 2sin 2sin 2x x x x x x x x x x)c o s (s i n )c o s (s i n 2s i n )s i n (c o s x x x x x s x ++-+-x x x x x x x x x c o s s i n )c o s (s i n )c o s (s i n )c o s (s i n 2s i n 12--=++-=+--=14)=++='='x x x x x x x x nx x x y tan ln sec ln tan 2)1tan (222)t a nln sec ln tan 2(2x x x x x x x ++ 15)32222ln )25log 2(-----='++='x x y xx16))111211(ln)1111(ln 2'+-+---++='-++--+='xx x x x xx x x y=2222211111.1.11xx x x x x x-=----- 16.应用反函数求导法则证明: (1); 11)(arctan xx +=' (2). 11)(arccos 2xx --='解:1)tany x arctan x y 11)(arctan 2==+='x x yy x 2cos 1)(tan ='=' 22211t a n 11c o s 1xy y x y +=+=='=' 2)211)(arccos xx --=' x y arccos = y x cos =y y x sin )(cos -='=' 2211cos 11sin 11xy y x y --=--=-='='17.设函数1)(3-+=bx ax x f y 有反函数)(x g ,且曲线)(x g y =在点(2,1)处的切线方程为5451+=x y ,求常数a ,b.解:因为函数1)(3-+==bx ax x f y 有反函数)(x g ,且曲线)(x g y =在点(2,1)处的切线方程为5451+=x y ,所以函数f(x)过点(1,2),又因为曲线)(x g y =在点(2,1)处的切线方程为5451+=x y ,所以a= 1,b = 2.18.求下列分段函数)(x f 的)(x f ',:)1(),0(f f ''(1)⎪⎩⎪⎨⎧≥<+=0; x ,e 0, x ,1sin )(x x x f (2)⎪⎪⎩⎪⎪⎨⎧≤<<<=.02- ,tan ,2x 0 ,arctan )(x x x x f ππ解:1) )(x f ' = .)1(.1(0), 0,0,cos 10e f e f x e x x x='=='⎪⎩⎪⎨⎧≥< 2)=')(x f.21111)1(.10cos 1)0(,02,sec 21,112222=+='=='⎪⎪⎩⎪⎪⎨⎧≤<-<<+f f x x x x ππ19.求下列函数的导数:(1);)15()53(53++=x x y (2);41)23(23x x y ++= (3);ln )ln(33x x y += (4);12xx y += (5));)(cos (sin x nx y n = (6);11lnxx y -+=(7);2tan ln x y = (8);2cos 5x y = (9);csc sec 22a x a x x y += (10);1cot 2xx y +(11);arcsin 12x x x y +-= (12));ln(22222a x x a a x x y ++++= (13);12arctan 2xxy -= (14);1arccos 2xx y -= (15);2xa ey -= (16);xx x x e e e e y --+-=(17);11arctanxxy +-= (18);sin log 2x a e y =(19);1ln 1arctan 22---=x x x y(20)b a a x u y x b ,()]([)(υ+=常数)(),(x x u υ可导);(21);x x x y ++= (22);arcsin ln x y = (23)x xy cot )1(= (24);)(sin cos x x y =(25);x x y = (26)33224+++=x xx y(27)322)3(31x xx x y +--=(28).)211(x xy -= 解:1)])15()53[(53'++='x y3452)53(*1)(5x *5*5 )15()53(*3*3+++++=x x x ;)15()53)(134120(42+++=x x x2)]41)23[(23'++='x x y322418*21)23(416x x x x x ++++=;41)1636(223xx x x +++=3).ln 11(311*)(ln 3131*1]ln )[ln(323232333xx x x x x x x y +=+='+='-- 4)322222)1(111221]1[x x x xx x xx y +=++-+='+='.5)]) nx)(cos [(sin n '='x yx n x nx x x n n n 1cos *)sin (sin cos cos --+=)cos sin sin cos (cos 1x x nx x nx n n n --=6).)1(1)1(2121*11]111[2x x x x xxxx xxxn y -=--+-+-='-+='7).csc sin 12cos 2sin 2121*2cos 1*2tan1]2tan 1[2x xx x x x x n y ===='='8).sin .2cos 4521*)2sin (2cos 5]2[cos 345x x x x x y -=-='='9)).cot csc tan (sec 2)sin 1cos 1(]csc 1[sec 222222ax a x a x a x a ax ax ax x y -='+='+=' 10).1csc 1cot 21*1sin 11cot 2]1cot [22222x x x xxx xx xx y +=--+='=' 11).12111221]arcsin 1[22222x x x x x x x x y -=-+--+-='+-='12)])ln([22222'++++='a x x a a x x y22222222222122ax x a x x aax x xa x ++++++++=.222a x +=13).12)1(22)1(2*)12(11]x-12xtan[2222222x x xx x x x arc y +=--+--+'='14)2222112)2(*arccos 1*11]1arccos [x x x x x x xx y -------='-=';11)1(a r c c o s 232x x x x ---=15);ln 2)2(*ln **][22222a exax a aeey xxxa x x a a ------=-='='16);)(4)()()(][2222x x x x x x x x xx x x e e e e e e e e ee e e y ------+=+--+='+-='17)2)1()11(*1121*1111]x 1x -1 tan[x x x xx x x arc y ++---+-+-+='+=';1212x--=18)x e e ae y x x x a 2**cos *ln sin 1]e sin [log 2222x ='=';c o t ln 222x x e xe a=19)]111x tan [22'---='x nx arc yxx x xx x x xx ln *11221122*11122222-------+=;)1(ln 32-=x x x20);)()()]([])]([[)(1)(na x v a x u x u b a x u y x v b x v b '+'='+='-21)]['++='x x x y)211(*211[*21xxx xx x +++++=;812422xx x x x x x x x x ++++++=22);arcsin 2121*11*arcsin 1]x arcsin[ln 2xx x xxxy -=-='='23) ]cot )1[('='x xy][c o t )1l n ('=x x e)]1(*cot *1ln)sin 1[*221lncot xx x x xe xx -+-=);cot ln (csc )1(2cot xxx x x x -= 24)])[(sin cos '='x x y][s i n ln cos '=x x ex]cos *sin xxcos sin x ln sin [*)(sin cos +-=x x x sin x);sin xln - x cos x (cot x)(sin cosx =25)x x y =,即x x y ln ln =, 所以)(ln )(ln '='xxy ,即x x x xy y +='ln 21*1所以)2ln 1(xxxy x+=';26));242(24]24[322332332+-++++='++='x x xx x x xx x x x y27)];)9(39112[)3(31])3(31[2322322x x x x x x x x x x x x y --+-++--='+--='28)x x y )211(-=,即x xy )211ln(ln -=,所以 ])211[ln()(ln '-='x x y ,即])211ln([*1'-='xx y y 所以].21)211[ln()211(xx x x y x -+--='20.设)(x f 可导,求下列函数的导数:(1); )()(x f x e e f y = (2); )](sin[)(sin 22x f x f y += (3); )1(arcsin xf y = (4). )](arctan[x f y =解:1)])([)('='x f x e e f y)(**)(**)()()(x f e e f e e e f x f x x f x x '+'=)];()()('[)(x x x x f e f x f e f e e '+=2)))](sin[)(sin (22'+='x f x f y )(c o s )()(22s i n )(s i n 22x f x f x f x x f '+'=3);1)1(arcsin )1(*111*)1(arcsin ])x 1sin ([222-'-=--'='='x x x f x xx f arc f y4);f 1(x)f') tan[f(x)](2(x)+='='arc y21.设,12)(2x x x f -='求.])1([2'-x f 解:.21*1112)1(*)1(])1([222222-=--+--='--'='-xx xx x x f x f22.设⎪⎩⎪⎨⎧≤>+=1 x 1),-sinb(x 1x ),ln()(22a x x f 在点1=x 可导,求b a ,.解:因为f(x)在1x =处可导,所以f(x)在1x =处一定连续.所以有⎪⎩⎪⎨⎧==='='+→→+--0)1()(lim )(lim )1()1(11f x f x f f f x x ,即⎪⎩⎪⎨⎧+=+=)1ln(01222a a b ,所以.2,0==b a23.设曲线2ax y =与x y ln =相切,求a .解:因为曲线2ax =y 与x y ln =在ex =处相切,所以)()(21x y x y '=',即xax 12=,所以ax 21=,此时21=y .所以an21121=,所以ea 21=.24.设)(x f 是可导周期函数,证明)('x f 也是周期函数.解:因为f(x)是可导周期函数,设T 为f(x)的周期,所以T)f(x f(x)+=,所以)()(T x f x f +'=',所以(x)f '也是周期函数。

《微积分》(中国商业出版社 经管类)课后习题答案二

《微积分》(中国商业出版社 经管类)课后习题答案二

《微积分》(中国商业出版社 经管类)课后习题答案习 题 二1.列数列}{n x 当∞→n 时的变化趋势,判定它们是否收敛,在收敛时指出它们的极限: (1); )1(1>=a ax nn (2); 3)1(nn x -= (3); 11ng x n = (4); )11()1(nx n n +-= (5); 1)1(3n x n n -+= (6); 1sec nx n =(7); 2642)12(531limn n n ++++-++++∞→ (8). 2121121211lim )1(22-∞→++++++n n解:1)收敛.因为当∞→n 时,; )1(>∞→a a n 所以; 0→n x 所以. 01lim lim ==∞→∞→nx n x ax2)因为⎪⎩⎪⎨⎧==为奇数为偶数n n x x n n 313 所以n x 是发散的;3)发散的.因为当∞→n 时,01→n ;所以-∞→=ng x n 11; 4)因为⎩⎨⎧-=为奇数为偶数n n x n 1 1 所以n x 是发散的;5)收敛的.因为当∞→n 时, 01→n ;所以31)1(3→-+=n x n n ;即∞→x lim 3=n x ; 6)收敛的.当∞→n 时,01→n ;11sec →n ;即∞→x lim 1=n x ; 7)因为nn n n n n n n +=+-+=++++-+++12)22(2)121(2642)12(531 ;所以∞→x lim11=+nn; 所以是收敛的;8)因为23211)21(1212112121121211121)1(221=----=++++++----n n n n1211-+n所以2321123lim 1=+-∞→n x ; 所以是收敛的;2.据我国古书记载,公元前三世纪战国时代的思想家庄子在其著作中提出“一尺之棰,日取其半,万世不竭”的朴素极限思想,将一尺长的木棒,“日取其半”,每日剩下的部分表示成数列,并考察其极限.解:数列为; 21 , , 21 , 21,11-n 2所以通项为; 211-=n n a 所以∞→x lim 0=n a ;3.由函数图形判别函数极限是否存在,如存在则求出其值:(1); )0(lim 0>→μμx x (2); )0(lim <∞→μμx x(3); 1) , 0(lim 0≠>→a a x x (4); 1) , 0(lim ≠>∞→a a x x(5); 1) , 0(log lim 1≠>→a x a x (6); arccos lim 1x x -→(7); arctan lim 1x x → (8). cos lim x x ∞→解:1)当0x →时,∞→x lim ; 0)0(=>u x u2)∞→x lim ∞→=<x u u x lim)0(; 0)0u (1=<-ux3)∞→x lim 1)1 , 0(=≠>a a a x4) 0; 1<a∞→x lim ⎩⎨⎧><=≠>.1 1.1 0)1 , 0(a a a a a x 所1 ; 1>a 5)0)1 , 0(log lim 1=≠>-→a a a x x6)π=-→x arccos lim 1x 所以; 1cos -=π7). 4x arctan lim 1π=-→x8)x cos lim ∞→x 的极限不存在4.求下列函数在指定点处的左、右极限,并判定函数在该点的极限是否存在:(1); 0 , )(==x xx x f (2); 0 ,3)( 1==xx f x(3); 0 ,1arctan )(==x x x f(4). 1 , 21 , )1arcsin(1 , )1(11)(=⎪⎩⎪⎨⎧≤≤-<+=x x x x x g x f解:1)10lim -→x +→≠-=0lim 1)x (f x ; 1)(f =x 所以该点的极限不存在2)10lim -→x ≠=0)x (f +→0lim x ; )x (f ∞=所以该点的极限不存在3)10lim -→x ; 2f(x)lim 2-f(x)0ππ=≠=+→x 所以该点的极限不存在4) ; 0)x (f lim 211)x (f lim 11=≠=+-→→x x g 所以该点的极限不存在5.用δε-或N -ε的方法陈述下列极限:(1); )(lim A x f ax =+→ (2); )(lim A x f ax =-→(3); )(lim A x f x =+∞→ (4). )(lim A x f x =-∞→解:1)当δ<-<a x 0时 ξ<-A x f )(2)当δ<<x -a 0时 ξ<-A x f )( 3)当M x >时 ξ<-A x f )( 4)当-M x <时 ξ<-A x f )(6.用极限的严格定义(即δε-或N -ε的方法)证明下列极限: (1); 01lim4=∞→nn (2); 31135lim22-=+-∞→n n n(3); 01lim 1=++-→x x (4). 010lim =-∞→x x解:1)对于任意给定的ξ,要使δψξ成立,只要使ξ14>n 即1n ξ>成立所以对于任意给定的ξ,存在41N ξ=当N n >时恒有ξ<-014n成立,故01lim4=∞→n x2)对于任意给定的ξ,要使ξ<++-3113522n n 成立即29316 )(1lim ξξ->+∞=→n x f o x x 成立所以对于正数ξ,存在293-16N ξξ=成立当N n >时恒有ξ<++-3113522n n 成立 所以31135lim22-=+-∞→n n x 3)由于10)(+=-x x f 所以对于任意给定的0>ξ,存在2ξδ=当δ<+<10x 时 恒有ξ<-0)(x f 成立 故01lim 1=++-→x x4)对于任意给定的正数ξ要使ξ<-010x 成立即ξ1g x >成立 所以存在. 1g X ξ=当X x >时恒有ξ1g x >成立 即. 010lim =∞→x x7.求下列极限:(1); )(lim 330hx h x h -+→ (2); 11lim 1--→x x n x(3);)2(arctan lim1x x x ++∞→ (4); 11lim 21⎪⎪⎭⎫⎝⎛---→x x x xx (5); 11lim220xx x +-→ (6); 231lim3xx x +--∞→(7); 22312lim 4---+→x x x (8). )31(lim 22---++∞→x x x x x解:1)22203322303303)33(lim 33lim )(lim x h xh x hx h xh h x x h h h x h h h =++=-+++=-+→→→2)n x x n x =--→11lim 1 3)12)1(arctan lim 2arctan lim 1+=+=⎪⎪⎪⎭⎫⎝⎛++∞→+∞→πx x x x x 4)x x x x x x xx x x x x x 1lim)1()1)(1(lim )11(lim 1121+=-+-=---→→→ 5)2)11(lim )11(lim11lim20222022-=++-=-++=+-→→→x xx x x x x x x6))31)(2(91231lim33+-+--=+---∞→x x x xx x)31)(2()42)(2(33323+-++-+=x x x x x2-= 7))312)(22()312)(312(lim22312lim44++--++-+=---+→→x x x x x x x x)312)(22()4(2lim 4++---=→x x x x)312()22(2lim 4+++-=→x x x322=8))31(lim 22---++∞→x x x x x)3142(lim 22--++++=∞→x x x x x x1)31111142(lim 2=--++++=∞→xx x x xx8.求. 3545lim 1-∞→+-n n n解:51)53(95)54(411lim3545lim211=+-=+-∞→++-∞→n nn n n n nn9.下列数列}{n x ,当∞→n 时是否是无穷小量? (1); 31050nn x =(2)[]; 1)1(1n x nn -+=(3). n n n x =解:1)是无穷小量 因为0lim =∞→n n x2)是,因为0lim =∞→n n x (n 为奇数或者偶数)3)不是.10.当0→x 时下列变量中哪些是无穷小量?哪些是无穷大量?(1);100 3x y = (2); 1012100x y =(3); )1(log 2x y += (4); 4cot x y =(5); 2sec ⎪⎭⎫⎝⎛-=x y π(6). 1sin 1xx y =解:1)是无穷小,因为0lim 0=→y x2)是无穷大量,因为+∞=→y x 0lim3)是无穷小量,因为0lim 0=→y x4)是无穷大量,因为+∞=→y x 0lim5)是无穷大量,因为+∞=→y x 0lim6)非大非小11.已知)()(lim 0x g x f x x →存在,而0)(lim 0=→x g x x ,证明. 0)(lim 0=→x f x x解:因为, 5252lim 5arctan 2lim00==→→x x x x x x)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=存在 而0)(lim 0=→x g x x所以; 0)(lim 0=→x f x x12.设31lim 21=-++→x bax x x ,求a ,b .解:因为3lim 1lim 121=+=-++→→y x x b ax x x x所以1)2)(1(12---=-++x x x x b ax x 所以1a =,2b -=13.设011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,求a ,. b解:011lim )11(lim 222=+----+=--++∞→∞→x bbx ax ax x b ax x x x x所以即b bx ax ax x ----+221为一常数 所以-1b 1a ==14.当0→x 时,下列变量中与423x x +相比为同阶无穷小的是(B ).A .xB .2xC .3xD .4x解:B . 因为3131lim3lim 204220=+=+→→x x x x x x15.求. 28159lim 4823+--∞→n n n n n解:3281591lim281593lim4835482=+--=+--∞→∞→nn n n n nn n n16.设a x →时∞→)(x f ,∞→)(x g ,则下列各式中成立的是(D ).A .∞→+)()(x g x fB .0)()(→-x g x fC .0)()(1→+x g x f D .0)(1→x f解:D.因为a x →时∞→f(x),∞→g(x),所以0)(1→x f ,0)(1→x g .17.求下列极限 (1); )72()43()12(lim 510--+∞→x x x x (2). )cos 100(1lim 32x xx x x +++∞→解:1)=--+∞→510)72()43()12(limx x x x 32243232)72()43()12(lim15510151515510==--+∞→x x x x x x 2)x)105100(1111lim)105100(1lim 232+++=+++∞→∞→xx x x x x x x x18.求下列极限:(1); 3sin 2sin lim0x x x → (2); sin sin lim 0xx xx x +-→(3); 5arctan 2lim0x x x → (4); sin lim ⎪⎭⎫ ⎝⎛∞→n n n π(5); sin lim x x x -→ππ (6); cos 1lim 0xxx -+→(7); cos 1cos 1lim20x x x --→ (8); sin tan lim 0xxx x -→(9); sin tan cos lim 0x x x x x x --→ (10). 65)1sin(lim 21-+-→x x x x解:1)3232lim 3sin 2sin lim00==→→x x x x x x2)0sin 1sin 1lim sin sin lim00=+-=+-→→xx x xx x x x x x 3)5252lim 5arctan 2lim00==→→x x x x x x4)ππππ===∞→∞→∞→nn nn nn n n n 1lim 1sin lim)sin (lim5)11cos lim ' )()(sin lim sin lim'=-=-=-→→→xx x x x x x x πππππ 6)2)'2sin 2()'(lim2sin2limcos 1lim 000===-+++→→→xx xx xx x x x7)2 8)0)cos cos 1(lim ')'sin (tan lim sin tan lim 2000=-=-=-→→→x x x x x x x x x x x9)1cos lim )cos (sin )cos 1(lim sin tan cos lim0==-=--→→→x xx x x x x x x x x x10)7111lim )6)(1(1lim65)1sin(lim 1121=+=+--=-+-→→→x x x x x x x x x x19.设3)1sin(lim 221=-++→x b ax x x ,求a ,. b解:因为3)1)(1(lim)1sin(lim21221=+-++=-++→→x x bax x x b ax x x x所以)5)(1(2+-=++x x b ax x所以-5b . 4==a20.设nn n n x n ++++++=22212111 ,用极限存在的夹逼准则求. lim n n x ∞→解:因为nn nx n nn +≤≤+22111而111lim 2=+∞→n nn ,11lim 2=+∞→nn nn所以1lim =∞→n n x21.求下列极限:(1); 31lim 3xx x ⎪⎭⎫ ⎝⎛+∞→ (2); )21(lim 13+∞→-xx x(3); 21lim 30x x x +→ (4); )tan 1(lim cot 210x x x -→+(5); 1232lim 1+∞→⎪⎭⎫⎝⎛++x x x x (6). 1312lim 10xx x x ⎪⎭⎫ ⎝⎛--→解:1). ])31[(lim )31(lim 9933e xx xx x x =+=+∞→∞→2). )21(*])21[(lim )21(lim 3232213---∞→+∞→=--=-e xx x xx xx3). 323221030])21[(lim 21lime x x x x xx =+=+→→4). e x)tan 1(*]x)tan 1[(lim x)tan 1(lim 2-2tanx 12cotx -10=+++-→=→x x5). 1x)1221(lim )1232(lim 212121x e x x x x x x =+++=++++∞→+∞→6)xx x x x x x x 1010)131(lim )1312(lim --=--→→ =331)311(lim +-→-+x x x=. e22.设xx x k x x xx 2sinlim lim 2∞→-∞→=⎪⎭⎫⎝⎛-,求. k解:因为.222sin 2lim 2sinlim ==∞→∞→xx x x x x所以. 2)1(lim )(lim 22*2==-=--∞→-∞→k kk xx x x e xk x k x 所以. n2121k =23.判定下列函数在定义域上是否连续(说明理由):(1)⎪⎩⎪⎨⎧=≠=; 0 , 0,0 , 1sin )(2x x x x x f (2)⎪⎩⎪⎨⎧=≠=. 0 , 1, 0 , sin )(x x xx x f解:1)因为0x)(f lim 0=→x ,而0f(0)=.所以f(x)在定义域上是连续的。

微积分课后题答案第二章习题详解

微积分课后题答案第二章习题详解
解:函数在其第二类间断点处的左、右极限不一定均不存在.
例如是其的一个第二类间断点,但即在处左极限存在,而,即在处右极限不存在.
4.求下列函数的间断点,并说明间断点的类型:
(1) f(x)= ;(2) f(x)=;
(3) f(x)= ;(4) f(x)= ;
(5) f(x)= .
解: (1)由得x=-1, x=-2
证:
,由极限的保号性知.
,使当时有,此时与同号,因为n为奇数,所以(2X)n与(-2X)n异号,于是与异号,以在上连续,由零点存在定理,至少存在一点,使,即至少有一实根.
(7)正确,见教材§2.3定理5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
(1) f(x)= ,x→2;(2) f(x)=lnx,x→0+,x→1,x→+∞;
(3) f(x)= ,x→0+,x→0-;(4) f(x)= -arctanx,x→+∞;
也即,所以当时,.
再证必要性:
若当时,,则,
所以==.
综上所述,当x→x0时,(x)~β(x)的充要条件是
=0.
2. 若β(x)≠0,β(x)=0且存在,证明(x)=0.
证:
即.
3. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(),其中a,b都大于0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
解: ∵f(0)=a,
要f(x)在x=0处连续,必须.
即a=1.
6※.设f(x)= ,讨论f(x)的连续性.

微积分 中国商业出版社经管类 课后习题答案九

微积分  中国商业出版社经管类 课后习题答案九

微积分中国商业出版社经管类课后习题答案九微积分中国商业出版社经管类课后习题答案九&lbrack;微积分&rsqb;&lpar;中国商业出版社经管类&rpar;课后习题答案九《微积分》(中国商业出版社经管类)课后习题答案1.确定下列微分方程的阶数;(1)dy2xy3y5;(2)(y'')25(y')4x70;dx(3)y'''2(y')22y2x5ex sinx.求解:(1)一阶(2)二阶(3)三阶2.验证下列函数是相应微分方程的解,并指出是特解还是通解.其中c,c1,c2是任意常数,1,2是常数;(1)y sin2x,y''4y0;(2)y c1cos x c2sin x,y''2y0;(3)y c1e1x c2e2x,y''(12)y'12y0,(12);(4)y c1e x c2xe x,y''2y'2y0;(5)y ce3x,y''9y0;(6)y3e2x(2x)ex,y''3y'2y ex.解:(1)特解(2)通解(3)通解(4)通解(5)通解(6)特解3.谋以下微分方程的求解:dy1y23.(1);(2)xy2y3xyy;2dxy(1x)22(3)xdy ydx0;(4)(x2y)dx(2x3y)dx0;2xdy2ydx(3x5y)dx(4x6y)dy0;(5)(6)求解:1.dy1y2dxxy(1x2)x24y2dx(x0).1ydy2dx2x(1x)1xdy(-)dxx1x1y11ln(1y2)lnx-ln(1x2)lnc22y(-1y2)(1x2) c.x22.dy1y2ydydxcx23121y y lny lnx cdxxy(1x2)221y2(1x2)1x2 3.x2dy y22dx0dyy21x2dx arcsiny ln(xx21)c4.(x2y)dx(2x3y)dy0p q2挑x00,y00y x则u(x,y)(x,y)(0,0)(x2y)dx(2x3y)dy123x4x y2c2213通解为:x24xy y2c22y353x5ydy5.y4x6ydx46xydydu令ux.则u xxdxdx35u4u6u2du323u x(lnx c)2du46udx22u3u1则方程可化为u xdu35u dx46u35u4u6u2du323u x(lnx c)2du46udx22u3u16.2xdy2ydx x24y2dx(x0)dyy1y()2dxx4xy u.y ux.y'u u'.xx令u u'x u1u24经计算可得14cy c2x204.求列下微分方程初值问题的直和:(1)dx4dy0,y(4)2;(2)xdx ye-xdy0,y(0)1;yxx2y2)dx xdy0(x0),y(1)02(3)(y解:(1)xdx4ydy则2y2x2cy(4)2直和1121y(x1)ex则c16直和2y2x21622212y2(2)xexdx ydy则(1x)ex cy(0)1c11直和:y2(x1)ex12ydudyy y(3)令u则u x u u2xdxdxx xu2du1dx即ln u u2lnx cx22y x y y10c0特解:ln0x25.谋以下微分方程的吉龙德或满足用户取值初始条件的直和:22ydy x1;(1)x y x1ex;(2)y'x1dx5(3)3x y'8y ex3x9;(4)y'2y xe x;(5)xy'2y sinx,y求解:(1)xdydyy y x1ex令0dxdxx1;(6)xy'y x1,y1.39则lny lnx c即y cxPR320齐次方程的吉龙德为y c x x则x c x c'x x c x x x1ex则c'xy x x x1ex2x1x1exxdx c x1x1dx c x x lnx c x22y x1中(2)y'x1522q x x1p x x15通解为:y c ec e x1dx e x1dx x12e x1dxdx2ln x12252 2ln x1e x1252e2ln x1dx c x12x12x1d x122x1c x1237(3)x2dy y2dx0y2dx x22两端分数可以得:arcsiny ln x x c(4)x2y dx2x3y dy0y12dy2y x dx3y2x3y2x令y u,y ux,dy u'x ux2u13u2存有u'x u2u13u22uu'x3u2du3u24u11dx3u2x求出u与x的方程,再将u y代入.x24xy3y2c(5)3x5y dx4x6y dy0dy3x5y y dx4x6y46x35令yx u,y ux,y'u'x udy35u u'x u dx46u35u4u6u21u'46ux6u29u316u4x求出u与x的方程,再将u y代入x y2x2y c(6)2x2y2dx•2xy3y2dy0dy2x2y2dx2xy3y2y2x22y y23x x令yx u,y ux,y'u'x u u'x u2u22u3u2求出u与x的方程,再将u y代入2x33xy23y3c6.曲线l是一条平面曲线,其上任意一点p(x,y)(x0)到坐标原点的距离恒等于曲线l在该点切线在y轴上的dT,且l经过点,0.12(1)试求曲线l的方程;(2)谋l坐落于第一象限部分的一条切线,而因切线与l以及两坐标轴所围图形的面积最轻.解:(1)x2y2y y'xx2(2)y'y令u yxdu u x u1u2dx11du dx2x uarcsiny1ln cxx1y xsin ln c x7.设l:y y(x)在点(x,y)处切线的斜率k121求解:y'y13x2y1,且曲线l过点(1,0).试求曲线l的方x令dy2y0则lny2lnx cdx3x则y则设立吉龙德为y c x1112xy x x1edx c3x22x12x8.物体在加热的过程中温度t(t)的变化率t(t)与物体本身的温度和环境温度之差成正比,比例系数为常数k0.现在(t0)把一个温度为50度的物体放到温度始终保持恒温20度的房间内,谋此物体温度随其时间的变化规律.解:t(t)kt20k1d t20kdtt20ln t20kt ct050c ln30规律:t30e kt209.设立,1,2,,就是虚常数,且0,12,证明以下函数组是(,)上线性毫无关系:(1)e x,xe x;(2)cos x,sin x;(3)eaxcos x,eaxsin x;(4)e1x,e2x,xe2x(2)1常数线性无关xxxee xcos x ctg x常数线性无关sin x(3)eexcosβxeexsinβx ctgβx常数线性无关(4)三者线性毫无关系。

微积分详解习题答案

微积分详解习题答案

微积分详解习题答案微积分是数学中的一门重要学科,它研究的是函数的变化规律与性质。

在学习微积分的过程中,习题是不可或缺的一部分。

通过解答习题,我们可以更好地理解微积分的概念和原理。

本文将详解一些微积分习题的答案,帮助读者更好地掌握微积分知识。

首先,让我们来看一个简单的求导题目。

假设有一个函数f(x) = 3x^2 + 2x + 1,我们需要求出它的导数。

根据求导的定义,我们可以逐项对函数中的每一项进行求导。

对于3x^2,我们可以应用求导法则,得到它的导数为6x;对于2x,它的导数为2;对于常数1,它的导数为0。

因此,函数f(x)的导数为f'(x) = 6x+ 2。

接下来,我们来看一个求定积分的例子。

假设我们需要计算函数g(x) = x^2在区间[0, 2]上的定积分。

根据定积分的定义,我们可以将区间[0, 2]划分成无限小的小矩形,然后将这些小矩形的面积相加,即可得到定积分的值。

在本例中,我们可以将区间[0, 2]划分成无限小的宽度为Δx的矩形,然后将这些矩形的面积相加。

每个矩形的面积可以用函数g(x)在该点的函数值乘以Δx来表示。

因此,定积分的值可以表示为lim(Δx→0)∑(g(xi)Δx),其中∑表示求和,xi表示每个小矩形的中点。

通过计算,我们可以得到定积分的值为∫[0, 2]x^2dx =[x^3/3]0^2 = 8/3。

除了求导和定积分,微积分还涉及到一些其他的概念,比如极限和微分方程。

下面我们来看一个关于极限的习题。

假设有一个函数h(x) = (x^2 - 1)/(x - 1),我们需要求出它在x趋近于1时的极限。

当x趋近于1时,函数h(x)的分子和分母都会趋近于0。

我们可以应用洛必达法则来求解这个极限。

根据洛必达法则,我们可以对函数h(x)的分子和分母同时求导,然后再求极限。

对于函数h(x)的分子,它的导数为2x;对于函数h(x)的分母,它的导数为1。

因此,在x趋近于1时,函数h(x)的极限可以表示为lim(x→1)(2x) / 1 = 2。

微积分第二版习题二答案

微积分第二版习题二答案

微积分第二版习题二答案微积分是数学中的一门重要学科,它研究的是变化的规律和量的计算方法。

而微积分的学习过程中,习题是非常重要的一环。

本文将为大家提供《微积分第二版》习题二的详细答案,希望能帮助大家更好地掌握微积分的知识。

第一题:计算函数 f(x) = 3x^2 - 2x + 1 在 x = 2 处的导数。

解答:首先,我们需要求函数 f(x) 的导数。

对于多项式函数,我们可以使用求导法则来计算导数。

根据求导法则,我们有:f'(x) = d/dx (3x^2) - d/dx (2x) + d/dx (1)= 6x - 2将 x = 2 代入上式,我们得到:f'(2) = 6(2) - 2= 12 - 2= 10所以,函数 f(x) 在 x = 2 处的导数为 10。

第二题:计算函数 g(x) = e^x - x 在 x = 1 处的导数。

解答:函数 g(x) 包含了指数函数和多项式函数的运算。

对于指数函数 e^x,它的导数仍然是 e^x。

而对于多项式函数 -x,它的导数是 -1。

因此,我们可以得到函数 g(x) 的导数为:g'(x) = d/dx (e^x) - d/dx (x)= e^x - 1将 x = 1 代入上式,我们得到:g'(1) = e^1 - 1= e - 1所以,函数 g(x) 在 x = 1 处的导数为 e - 1。

第三题:计算函数 h(x) = ln(x^2 + 1) 在 x = 0 处的导数。

解答:函数 h(x) 是一个复合函数,它包含了对数函数和多项式函数的运算。

对于对数函数 ln(x),它的导数是 1/x。

而对于多项式函数 x^2 + 1,它的导数是 2x。

因此,我们可以得到函数 h(x) 的导数为:h'(x) = d/dx (ln(x^2 + 1))= 1/(x^2 + 1) * d/dx (x^2 + 1)= 2x/(x^2 + 1)将 x = 0 代入上式,我们得到:h'(0) = 2(0)/(0^2 + 1)= 0所以,函数 h(x) 在 x = 0 处的导数为 0。

实用文档之《微积分》各章习题及详细答案

实用文档之《微积分》各章习题及详细答案

实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分各章习题及详细答案

微积分各章习题及详细答案

《微积分》各章习题及详细答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数x xx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

经管类微积分(上)参考答案

经管类微积分(上)参考答案

经管类《微积分》(上)习题参考答案第一章 函数习题一一、1.否; 2.是; 3.是; 4.否.二、1.)[()5,33,2⋃; 2.()πππ+k k 2,2; 3. 2,24>-<<-x x 或;4.[]a a -1,; 5.[]2,0; 6.222+-x x . 三、1.奇函数;2.奇函数. 3.(略)四、1(略);2.212+x ; 3.11-+x x . 五、1.x v v u u y sin ,,ln 2===;2.x x u e y u ln ,==;3.1525++⋅x x .六、50500,,)50(8.050)(>≤<⎩⎨⎧-+=x x x a a ax x R .第二章极限与连续习题一一、 1.0,1,1,0; 2.e e e e ,,,231- 二、1.1; 2.0; 3.21; 4.4.三、1. (略); 2.证明(略),极限为2 四、()1lim 0=+→x f x ,()1lim 0-=-→x f x ,()x f x 0lim →不存在. 五、都不存在. 六、15832.5,32.4,221.3,1.2,0.1 1.8,3.7,.6e .七、2,1==b a 八、2.4,32.3,21.2,2.1-习题二 一、()().1,1.4,,22,1.3,2.2,.1+∞⋃第一类二、1.为可去间断点1=x ,为第二类间断点2=x ; 2.为跳跃间断点1=x . 三、2ln ,2==b a .四、0,0,10,00,1)(=⎪⎩⎪⎨⎧>=<-=x x x x x f 为()x f 的跳跃间断点。

五、()()+∞⋃∞-,00,. 六、左不连续;右连续. 七、,.4,.3,.2,2ln .1623e e e - 八、九、十 (略).第二章 测验题一、B A C A D .5,.4,.3,.2,.1.二、21.4,2.3,2.2,2.1-e .三、.31.4,3.3,1.2,61.1.四、x x x x p ++=232)(.五、为第二类间断点为可去间断点处连续21,1,2,,1===-=x x x x .六、.3,21==b a 七、(略). 八、a .第三章 导数与微分习题一一、),0(.2),(,)(2,)(.1000f x f x f x f '''')(),(1.3000000x x x y y x x x y y --=--=- 二、00,,2)(<>⎩⎨⎧='x x x e x f x 三、)0(2)(g a f ='. 四、处连续且可导0=x .五、()的有理数;互质与且)2(,201n m mna a ≠> ()互质)的有理数与且n m mna a 2(,1212-≠>. 习题二一、,ln 1.3,1.2,622ln 2.123x xx x x -++- )2(42,)2(42.422ππππππ-=---=-x y x y . )(4)(2.5222x f x x f ''+'二、2)1()sin 3(cos sin cos 2.1x x e x x e x x +-+-;x x x x x x x x cos sin ln cos 2sin .2+-+; 211arcsin 2.3xx -⋅; 21)ln (ln .4x x n x n --;a a x x x ax a a a 21211sec ln .5+⋅+-;6.x x exx 1tan 1sec 221sec 22⋅⋅⋅-; )(87略-.三、1.()x f x f '⋅)(2; 2.)()(222x x x x x e f e e e f xe '+.四、00,,11)12()(222=≠⎪⎪⎩⎪⎪⎨⎧+-='x x x e x x f x . 五、(略) 习题三一、()dx x x x 1ln .1+; ()dx e e f x x '.2;x e x e x x x ln ln ,arctan ),13sin(31,61,2.36+;4. ppQ -+2;252. 二、1.)sin ln (cos sin xxx x x x +⋅; 2.⎥⎦⎤⎢⎣⎡-----+-+------)5(51)4(54)3(53)2(5211)5()4()3()2()1(5432x x x x x x x x x x 三、1.()184-==p dpdQ,54.04-≈=P EP ED经济意义:当价格从4上升%1时,需求量从59下降%54.0;()246.04≈=P EP ER,价格从4上涨%1时总收益将从263增加%46.0.四、1.dx x x x x ⎥⎦⎤⎢⎣⎡--+-2222211cot )1(2)11ln(sin . 五、212x +. 第三章 测验题一、,1.3,1.2,)1(21.1arctan =⋅+--y dx e x x x π21)1()1(2.4xx f x f '-, 2ln 21.5-.二、..3,.2,.1C D D 三、1.yyxey e +-2; 2.0; 3.[]()0,,02121cos )(sin )()(),0(2=≠⎪⎪⎩⎪⎪⎨⎧''++-+'=''=x x g x xx g x x g x x f g a第四章 中值定理与导数的应用 习题一一、1.不满足,没有; 2.1; 3.满足,914; 4.4,1--.;5.不存在二、三、四、五(略)六、1.6,ln .5,21.4,21.3,0.2,21.1a -. 七、连续. 八、1.习题二一、1.单减,凹的; 2.)4,1(;3.0,0==x y ;4.29,23-;5. ac b 32≤.6.e p 1=二、单增区间为[]2,0;单减区间为]()[∞+⋃∞-,20,. 三、拐点为()7,1-;凹区间为)[∞+,1;凸区间为[]1,0.四、0,3,3,1==-==d c b a .五(略)六、为极大值3)3(,2==πf a .七、20000=Q ,最大利润()34000020000=L 元. 八、5.9元,购进140件时,最大利润490元. 九、十(略).第四章 测验题 一、..3;.2;.1A B B 二、()0.4;2,1.3;3.2;1.1=x三、.1.2;61.1-四、.1;0;3==-=c b a 五、获利最大时的销售量()t x -=425,当2=t 政府税收总额最大,其税收总额为10万元.六、()1证明略; ()254.06≈=P EP ER,经济意义:当价格从6上涨%1时,总收益从156增加%54.0.第五章 不定积分习题一一、1.dx x f )(,C x f +)(,)(x f ,C x f +)(; 2.C ; 3.C x +2; 4.32x. 二、1.C x x +-arctan ; 2.C x e x +-2;3.C x x +-sec tan ; 4.C x +tan 21. 三、1ln +=x y .四、12)(2+-=x x x G .习题二一、1.C e x x ++-tan tan ; 2.C x f +--)1(212; 3.C x F ++)12(; 4.C x f +--)2cos 3(31. 二、1.C x +|ln ln |ln ; 2.C x ++-|1cos |ln 2; 3.C e x +arctan ;4.C x +--21)32(312; 5.C x x x +---------999897)1(991)1(491)1(971;6.C e xx ++1; 7.C x x +-32)cos (sin 23; 8.C e x x ++-)1ln(; 9.C x x ++-)9ln(292122; 10.C x +)arctan(sin 212; 11.C x+-arcsin 1;12.C x x ++-+ln 12)ln 1(3223; 13.()()()C x x x +++++-+11ln 313123313132;14.C e x+-1arctan 2; 15.C xx ++61611ln; 16.C x x x +-+22211arccos 21. 习题三一、1.C x e x ++-)1(;2.C x xf +)(; 3.C x f x f x +'-'')()(; 4.C e xe x x +-2. 二、1.C x x x x +++-)1ln(6161arctan 31223; 2.C e xe x x +------11;3.C x x x x x ++-2ln 2ln 2; 4.C x x x x++++-)6ln 6ln 3(ln 123;5.C x x e x ++-)22(33323; 6.()()[]C x x x++ln sin ln cos 2;7.C x x x x x +--+2arcsin 12)(arcsin 22; 8.C x x x x ++-sin 4cos )24(; 9.C x x x +-+arctan )1(; 10.C x x x x x +++-+221ln 1ln .三、C x x x +-++21)arcsin 1(. 四、C x x x x ++-+arctan 22)1ln(2. 五、)1(21x x +.习题四1.C x x x x x x +--+-+++|1|ln 3|1|ln 4||ln 82131232.C x x x x +-+-+-arctan 21)1ln(41|1|ln 21||ln 2第六章 定积分及其应用习题一 一、a b a b -+-)(3331二、1.≥, 2.≥ 三、(提示:用定积分性质6证)四、1.412x x +; 2.81221213x x x x +-+; 3.3; 4.21; 5.28-x ; 6.]41,0(; 7.yx e y 2cos 22. 五、)(x f 在0=x 处有极小值0)0(=f .六、1.6π; 2.4; 3.38.七、1.1; 2.2八、4π.九、)1ln(e +十(略).习题二一、1.)(sin x f ; 2.)0(arctan )1(arctan f f -; 3.)]()([2122a F b F -; 4.3243π;5.0; 6.)()(a x f b x f +-+; 7.8; 8.0二、1.34-π; 2.32ln 22+; 3.a )13(-; 4.34; 5.22; 6.214-π; 7.)11(2e -; 8.)2(51-πe .三、四(略)五、(提示:令x t -=2π); 4π.六、()1,11=-=-a e x f x . 七、x x sin cos -. 八、x 2ln 21.习题三一、1.332; 2.2ln 23-; 3.67; 4.49.二、62221,21-=⎪⎭⎫ ⎝⎛=S a . 三、2ln 214+-x .四、1.π145; 2.24π; 3.ππ564,727. 五、10/100Q Qe -. 六、31666. 七、1.2; 2.2ln 21.。

微积分(经济类)习题解答1-2

微积分(经济类)习题解答1-2
在整个定义域(, )上不是单调函数。
y
f ( x) x 2
x
o
单调递增或单调递减区间统称为单调区间。
有界性
设函数 = ()的定义域,若存在一个实数,使得对任意 ∈ ,有

则称()在上有上界;若存在一个实数,使得对任意 ∈ ,有

则称()在上有下界;若存在一个实数,使得对任意 ∈ ,有
单调递增函数和单调递减函数统称为单调函数。
一般而言,一个函数在定义域的某些区间上是递增的,而在另外
一些区间上是递减的,相应的区间称为函数的单调递增或单调递
减区间。

函数y x 2 在[0,
)上严格单调递增,在(, 0]上严格单调递减,
相应的[0,
)和(, 0]分别称为y x 2的单调递增和单调递减区间,
周期性
设函数 = ()的定义域为.若存在一个非零常数,使得对任意 ∈ ,有
+ ∈ ,且满足
+ = ()
成立,则称 = ()为周期函数,满足上式的最小正数,称为() 的最小
正周期(或基本周期),简称() 的周期.

= , = 的周期都是2
记为 = ,其中称为自变量,称为因变量,自变量的取值范围称为函
数的定义域(记为 ),因变量的取值范围称为函数的值域(记为 ).

核心要素:定义域、对应关系

y 2 ln x与y ln x 2是否是相同的函数? 不相同
y x 与y
x 2 是否是相同的函数? 相同
1.2.2 函数的几何性质
1.2 函数
目录
Contents
1.2.1 函数的定义
1.2.2 函数的几何性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⇒ dy = y + 1 + ( y )2 dx x 4 x
令 y = u. y = ux. y' = u + u'.x
x ⇒ u + u' x = u + 1 + u2
4
经计算可得 1 + 4cy − c2x2 = 0 4.求列下微分方程初值问题的特解:
(1) dx + 4dy = 0 , y(4) = 2 ; yx
4
+
6
y
⎞ ⎟
⎝ x⎠
令 y x = u, y = ux, y' = u' x + u
dy = u' x + u = 3 + 5u
dx
− 4 − 6u
3 + 5u + 4u + 6u2 1
⇒ u'=

− 4 − 6u
x
6u2 + 9u + 3 1
=

− 6u − 4 x
求出 u 与 x 的方程,再将 u = y x 代入
⇒ arcsin y = ln( x + x2 + 1) + c
4. (x + 2 y)dx + (2x − 3y)dy = 0
∵ ∂p ∂y
=2=
∂Q ∂x
取x 0
= 0, y0
=0
(x , y)

u( x,
y)
=

(0
,
(x 0)
+
2 y )dx
+
(2x

3 y)dy
= 1 x2 + 4x − 3 y2 = c

⎜⎛1 ⎝

1 x
⎟⎞dx ⎠
+
⎤ c⎥

=
x(x

ln
x
+
c)
5
(2) y'− 2y = (x + 1)2 中
x +1
P(x) = −2
x +1
5
Q(x) = (x +1)2
−2
2
5
2
∫ 通解为:
y
=
c

e−∫
⋅dx x +1
+

e

dx x +1

(x
+
1) 2
e−∫
dx
x+1 dx
5
∫ ( ) = c ⋅ e+2ln(x+1) + e+2ln(x+1) ⋅ x + 1 2 e−2ln(x+1)dx
2
2
⇒(- 1 + y2)(1 + x2)= c.x2
2.
dy dx
=
1+ y2 xy(1 + x2 )

ydy 1+ y2
=
dx (1 + x2)
⇒ 1+
y2
=
cx 2 1+ x2

3 2
y−
1 ln y 2
=
ln x + c
3. 1 + x2 dy − 1 − y22 dx = 0 ⇒ dy = 1 dx 1− y2 1+ x2
(3)∵ eex cos βx = ctgβx ≠ 常数
eex sin βx
(4)三者线性无关。
∴ 线性无关
10.求下列二阶常系数齐次线性微分方程的通解:
(1) y"+3y′ + 2 y = 0 ;
(2) 2 y"+5y′ + 2 y = 0 ;
(3) y"−6 y′ + 9 y = 0 ;
(4) y"+4 y′ + 5y = 0 ;
3.求下列微分方程的解:
3.(1) dy = 1 + y 2 ; dx y(1 + x2 )
(2) xy′ + 2 y = 3xyy′ ;
(3) 1 + x 2 dy − 1 − y 2 dx = 0 ;
(4) (x + 2 y)dx + (2x − 3y)dx = 0 ;
(5) (3x + 5 y)dx + (4x + 6 y)dy = 0 ;
(1) eλx , xeλx ;
(2) cos βx , sinβx ;
(3) eax cos βx , eax sin βx ;
(4) eλ1x , eλ2 x , xeλ2 x
解:(1)∵ eλx = 1 ≠ 常数
xeλx x
(2)∵ cos βx − ctgβx ≠ 常数
sin βx
∴ 线性无关 ∴ 线性无关
(5) y"+ y′ + y = 0 .
解:(1) y"−3y′ + 2 y = 0 由特征方程 λ2 − 3λ + 2 = (λ −1)(λ − 2) = 0
得二特征根是 λ1 = 1, λ2 = 2 ,这表明方程 y"−3y′ + 2 有 2 个线性无关的特解 e x 与 e2x ,从而方程
y"−3y′ + 2 y = 0 的通解是 y = c1e x + c2e2x
⇒ (x + y)2 (x + 2y) = c
( ) ( ) (6) 2x2 + y2 dx + 2xy + 3y2 dy = 0
dy 2x2 + y2
( ) dx = − 2xy + 3y2
2
+
⎛ ⎜
y
2
⎞ ⎟
=
⎝x⎠


⎜ ⎜
2


y x
+
3⎜⎛ ⎝
y x
⎞2 ⎟ ⎠
⎞ ⎟ ⎟ ⎠
令 y x = u, y = ux, y' = u' x + u
(2) xdx + ye-x dy = 0 , y(0) = 1;
(3) ( y + x2 + y2 )dx − xdy = 0 (x > 0), y(1) = 0
解:(1) −xdx = 4 ydy 则 2 y2 = − 1 x2 + c
2
∵ y(4) = 2 ∴特解 1 y 2 + (x −1)e x = − 1 则 c = 16 ∴特解 2 y2 + 1 x2 = 16
u
+
1
+
u2
⎞ ⎟
=
ln
x
+
c
1+ u2
x


∵ y(1) y +
x2 x2
+
y2
⎟⎞ ⎟⎟
=
0


5.求下列微分方程的通解或满足给定初始条件的特解:
(1) x dy − y = (x −1)ex;
dx
5
(2) y'− 2 y = (x + 1)2 ;
x +1
(3) (3 + x)y'−8y = ex (3 + x)9;
(4) y'+2 y = xe−x;
(5) xy'+2 y = sin x, y(π ) = 1 ;
π
(6)
xy'− y
=
x , y(1) =

1 .
3
9
解:(1) x dy − y = (x −1)ex 令 dy − y = 0
dx
dx x
(4) y = C1eλx + C2xeλx , y' '−2λy'+λ2 y = 0 ;
(5) y = Ce3x , y' '−9 y = 0 ;
(6) y = 3e 2x + (2 + x)e x , y' '−3y'+2 y = −e x .
解:(1)特解 (2)通解 (3)通解 (4)通解 (5)通解 (6)特解
其中 C1 , C2 是两个任意常数.
(2) r1 = − p +
p2 − 4q 1
=−
2
2
− p − p2 − 4q
r2 =
2
= −2
1
∴通解为
y
=
c1e - 2x
+

c2e
2
x
(3)
r1
=
r2
=
−p 2
=
3
∴通解为: y = (c1 + c2 x)e3x (4) y"+4 y′ + 5y = 0
1.确定下列微分方程的阶数; (1) dy = 2xy3 + y5 ;
dx
(3) y' ' '+2( y' )2 − 2 y 2 + x5e x = sin x .
习题九 (A)
(2) ( y' ' )2 + 5( y' )4 − x7 = 0 ;
解:(1)一阶
(2)二阶
(3)三阶
2.验证下列函数是相应微分方程的解,并指出是特解还是通解.其中 C, C1, C2 是任意常数
⇒ u' x + u = 2 + u2 − 2u − 3u2
相关文档
最新文档