八年级数学上册分式解答题单元检测(提高,Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学分式解答题压轴题(难)
1.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
【答案】王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .
【解析】
【分析】
王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=
2060小时. 【详解】
设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x ,
由题意可得:330.50.520360
x x ++-=,解得:5x =, 经检验,5x =是原方程的根,
∴315x =
答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .
【点睛】
本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.
2.已知下面一列等式:
111122⨯
=-;11112323⨯=-;11113434⨯=-;11114545
⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式: (2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)
x x x x ++++++. 【答案】(1)一般性等式为
111=(+11n n n n -+);(2)原式成立;详见解析;(3)
244x x
+. 【解析】
【分析】
(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.
【详解】
解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545
⨯=-;…, 知它的一般性等式为
111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1
n n n n ==⋅++, ∴原式成立;
(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)
x x x x ++++++ 1111112x x x x =
-+-+++11112334x x x x +-+-++++ 114x x =
-+ 244x x
=+. 【点睛】
解答此题关键是找出规律,再根据规律进行逆向运算.
3.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.
(注:=垃圾处理量垃圾处理率垃圾排放量
) (1)求该市2018年平均每天的垃圾排放量;
(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?
【答案】(1)100;(2)98.
【解析】
【分析】
(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;
(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.
【详解】
(1)设2018年平均每天的垃圾排放量为x 万吨,
40 2.540 1.25100x x
⨯=⨯+, 解得:x=100,
经检验,x=100是原分式方程的解,
答:2018年平均每天的垃圾排放量为100万吨. (2)由(1)得2019年垃圾的排放量为200万吨,
设2020年垃圾的排放量还需要増加m 万吨,
40 2.5200(110%)
m ⨯+⨯+≥90%, m ≥98,
∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.
【点睛】
此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.
4.阅读理解:
把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将
2131x x --表示成部分分式?
设分式2131x x --=11
m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131
x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12
m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25
m n x x +--,则m = ,n = ;
(2)请用上述方法将分式
43(21)(2)x x x -+-表示成部分分式. 【答案】(1)13-,
13;(2)21212
x x ++-. 【解析】
【分析】
仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.
【详解】
解:(1)∵()()()
522525m n x m n m n x x x x +--+=----, ∴0521
m n m n +=⎧⎨--=⎩, 解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩
. (2)设分式()()43212x x x -+-=212m n x x ++-
将等式的右边通分得:()()()()
221212m x n x x x -+++-=()()()
22212m n x m n x x +-++-, 由()()43212x x x -+-=()()()
22212m n x m n x x +-++-, 得2423m n m n +=⎧⎨-+=-⎩
, 解得21m n =⎧⎨=⎩
. 所以()()43212x x x -+-=21212x x ++-.
5.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.
(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);
(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.
【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%
【解析】
【分析】
(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.
(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数
可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.
【详解】
解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:
300x :3000.6x
+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),
答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.
(2)依题可得新能源汽车400公里所需费用为:
0.48×55=26.4(元),
∴新能源汽车每公里所需电电费为:
26.4÷400=0.066(元/公里),
依题可得燃油汽车400公里所需费用为:
400×0.8=320(元),
∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:
26.4÷320=0.0825=8.25%.
答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.
【点睛】
本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.
6.阅读后解决问题:
在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x 的分式方程3111a x x
+=--的解为正数,那么a 的取值范围是什么? 经过交流后,形成下面两种不同的答案:
小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.
因为解是正数,可得a ﹣2>0,所以a >2.
小强说:本题还要必须a≠3,所以a 取值范围是a >2且a≠3.
(1)小明与小强谁说的对,为什么?
(2)关于x 的方程
11222mx x x
-+=--有整数解,求整数m 的值. 【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.
【解析】
【分析】 (1)先根据解分式方程的步骤和解法解分式方程可得x =a ﹣2,根据分式方程有解和解是正数可得:x >0且x ≠1, 即a ﹣2>0, a ﹣2≠1,即可求解,
(2) 先根据解分式方程的步骤和解法解分式方程可得(m ﹣2)x =﹣2, 当m ≠2时,
解得:x =﹣
22
m -,根据分式方程有整数解可得: m ﹣2=±1,m ﹣2=±2,继而求m 的值. 【详解】 解:(1)小强的说法对,理由如下:
解这个关于x 的分式方程,得到方程的解为x =a ﹣2,
因为解是正数,可得a ﹣2>0,即a >2,
同时a ﹣2≠1,即a ≠3,
则a 的范围是a >2且a≠3,
(2)去分母得:mx ﹣1﹣1=2x ﹣4,
整理得:(m ﹣2)x =﹣2,
当m ≠2时,解得: x =﹣22
m -,
由方程有整数解,得到m ﹣2=±1,m ﹣2=±2,
解得:m =3,4,0.
【点睛】
本题主要考查分式方程解是正数和解是整数问题,解决本题的关键是要熟练掌握解分式方程的解法.
7.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由
1到n 排序,第1所民办学校得奖金
b n
元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.
(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金; (2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);
(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.
【答案】(1)211()(1)b b a b n n n n =-⨯
=- ,23111()(1)(1)b b a b n n n n n =-⨯-=-; (2)11
(1)k k b a n n
-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.
【解析】
【试题分析】
(1)根据第1所民办学校得奖金b n
元,然后再将余额除以n 发给第2所民办学校,
得:22311111()(1),()(1)(1).b
b b b a b a b n n n n n n n n n
=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11
(1)
k k b a n n -=- ; (3)11
(1)k k b a n n -=-,+11(1)k k b a n n
=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n
----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.
【试题解析】
(1)根据题意得:22311111()(1),()(1)(1).b
b b b a b a b n n n n n n n n n
=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11
(1)
k k b a n n -=- (3)11
(1)k k b a n n -=-,+11(1)k k b a n n
=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n
----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.
【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.
8.小明用12元买软面笔记本,小丽用21元买硬面笔记本.
(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;
(2)已知每本硬面笔记本比软面笔记本贵a 元,是否存在正整数a ,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.
【答案】(1))不能买到;(2)存在,a 的值为3或9.
【解析】
【分析】
【详解】
解:(1))设每本软面笔记本x 元,则每本硬面笔记本(x+1.2)元,由题意,得 12211.2
x x =+, 解得:x=1.6.
此时12211.6 1.2 1.6
=+=7.5(不符合题意), 所以,小明和小丽不能买到相同数量的笔记本;
(2)设每本软面笔记本m 元(1≤m≤12的整数),则每本硬面笔记本(m+a )元,由题意,得
1221m m a
=+, 解得:a=
34
m , ∵a 为正整数,
∴m=4,8,12.
∴a=3,6,9. 当86m a =⎧⎨=⎩时,1221 1.5m m a ==+(不符合题意) ∴a 的值为3或9.
9.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23
;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成. (1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;
(2)工程预算的施工费用不够,需追加预算4万元.
【解析】
【分析】
(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;
(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.
【详解】
(1)解:设乙队单独完成这项工程需要x 天,则甲队单独完成需要2x 3
填; 403012x
x 3
+= 解得:x 90=
经检验,x =90是原方程的根.
则22
x9060
33
=⨯=(天)
答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,
则有y(1
60
+
1
90
)=1.
解得y=36.
需要施工费用:36×(8.4+5.6)=504(万元).
∵504>500.
∴工程预算的施工费用不够用,需追加预算4万元.
10.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?
(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.
【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台
【解析】
【分析】
(1)可设甲种空调每台进价是x万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可;(2)设购买甲种空调n台,则购买乙种空调(50﹣n)台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n的范围,即可确定出购买方案;
(3)找到(2)中3种购进方案符合条件的即为所求.
【详解】
解:(1)设甲种空调每台进价是x万元,则乙种空调每台进价是(x+0.3)万元,依题意有
20 x =
40
0.3
x
×2,
解得x=0.1,
x+0.3=0.1+0.3=0.4.
答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;
(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有
0.10.4(50)1031s
n n n +-⎧⎨⎩, 解得31≤n≤3313
, ∵n 为整数,
∴n 取31,32,33,
∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;
(3)①购买甲种空调31台,购买乙种空调19台,
(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3000﹣120+5400﹣560﹣2520
=7720﹣2520
=5200(元),
不符合题意,舍去;
②购买甲种空调32台,购买乙种空调18台,
(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3100﹣120+5100﹣560﹣2520
=7520﹣2520
=5000(元),
符合题意;
③购买甲种空调33台,购买乙种空调17台,
(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3200﹣120+4800﹣560﹣2520
=7320﹣2520
=4800(元),
不符合题意,舍去.
综上所述,购买甲种空调32台,购买乙种空调18台.
【点睛】
此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.。