高考数学理科必考题型:第43练-归纳与类比推理(含答案)

合集下载

类比推理考试题目及答案

类比推理考试题目及答案

类比推理考试题目及答案一、单选题1. 题目:如果“苹果”是“水果”,那么“橘子”是______。

A. 蔬菜B. 水果C. 肉类D. 谷物答案:B2. 题目:如果“钢笔”是“书写工具”,那么“钢琴”是______。

A. 乐器B. 运动器材C. 办公设备D. 厨房用具答案:A3. 题目:如果“医生”是“治疗”,那么“教师”是______。

A. 诊断B. 教育C. 维修D. 管理答案:B4. 题目:如果“图书馆”是“书籍”,那么“体育馆”是______。

A. 运动B. 阅读C. 学习D. 娱乐答案:A5. 题目:如果“汽车”是“运输”,那么“飞机”是______。

A. 运输B. 通讯C. 导航D. 娱乐答案:A二、多选题1. 题目:如果“太阳”是“恒星”,那么以下哪些是“行星”?A. 地球B. 月亮C. 火星D. 金星答案:ACD2. 题目:如果“河流”是“流动”,那么以下哪些是“静止”?A. 湖泊B. 冰川C. 沙漠D. 海洋答案:ABC3. 题目:如果“电脑”是“电子设备”,那么以下哪些是“机械设备”?A. 打印机B. 汽车C. 洗衣机D. 手机答案:BC4. 题目:如果“音乐”是“艺术”,那么以下哪些是“科学”?A. 数学B. 物理C. 化学D. 绘画答案:ABC5. 题目:如果“蜜蜂”是“授粉”,那么以下哪些是“捕食”?A. 狮子B. 鲨鱼C. 老虎D. 蚂蚁答案:ABCD三、填空题1. 题目:如果“蜜蜂”是“花蜜”,那么“蚂蚁”是______。

答案:昆虫2. 题目:如果“狮子”是“草原”,那么“企鹅”是______。

答案:南极3. 题目:如果“书”是“阅读”,那么“电影”是______。

答案:观看4. 题目:如果“画家”是“画布”,那么“音乐家”是______。

答案:乐器5. 题目:如果“树木”是“森林”,那么“星星”是______。

答案:银河四、判断题1. 题目:如果“苹果”是“水果”,那么“香蕉”也是水果。

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习【题型归纳】题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.例1、(1)【2021年理科数学甲卷】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件(2)【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件题型举一反三1、(2021∙天津高三二模)设x ∈R ,则“230x x -<”是“12x <<”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件题型举一反三2、(2021∙山东济宁市高三二模)“直线m 垂直平面α内的无数条直线”是“m α⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必安条件题型举一反三3、(2021∙河北张家口市高三三模)“0a >”是“点()0,1在圆222210x y ax y a +--++=外”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件题型举一反三4、(2021∙辽宁高三模拟)设1z ,2z 为复数,“120z z ->”是“12z z >”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件题型举一反三5、(2021∙浙江高三二模)已知P 、A 、B 、C 、D 是空间内两两不重合的五个点,PAB △在平面α内,PCD 在平面β内,αβ⊥,则“AB β⊥”是“AB CD ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件题型举一反三6、(2021∙浙江温州市高三模拟)已知α∈R ,则“1sin 2cos 25αα+=”是“sin 2cos αα=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 题型举一反三7、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

第三讲推理与证明(1)概括推理的一般步骤:①经过察看某些个别状况发现某些同样性质;②从已知的同样性质中推出一个明确表述的一般性命题(猜想 ).(2)类比推理的一般步骤:①找出两类事物之间的相像性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想 ).(3)综合法的特色是:从“已知”看“可知”,逐渐推向“未知”,要求逐渐推理,实际上是找寻它的必需条件.(4)剖析法的特色是:从“未知”看“需知”,逐渐聚拢“已知”,即从要证明的结论出发,逐渐追求使它建立的充足条件,直至最后,即把要证明的结论归纳为判断一个明显建立的条件为止.(5)适适用反证法证明的四类数学命题:①独一性命题;②结论波及“至多”“起码”“无穷”的命题;③否认性命题;④直接证明较繁琐或困难的命题.(6)数学概括法数学概括法证明的步骤①证明当 n 取第一个值 n0 0∈N*)时结论建立;(n②假定 n= k(k∈N*,且 k≥ n0)时结论建立,证明n= k+1 时结论也建立.由①②可知,对随意n≥n0,且 n∈N*时,结论都建立.1. (2013 ·建福 )设 S, T 是R的两个非空子集,假如存在一个从S 到 T 的函数 y= f(x)知足:(1)T={ f(x)|x∈ S} ;(2) 对随意 x1,x2∈S,当 x1<x2时,恒有 f(x1)<f(x2).那么称这两个会合“保序同构”.以下会合对不是“保序同构”的是() A. A=N*,B=NB. A= { x|- 1≤ x≤3} , B= { x|x=- 8 或 0<x≤ 10}C. A= { x|0<x<1} , B=RD. A=Z,B=Q答案D分析关于 A,取 f(x)= x+ 1,知足题意.- 8, x=- 1,关于 B ,取 f(x)=x+ 1,- 1< x<0,知足题意 .2x + 1, 0≤ x≤ 3,1关于 C,取 f(x)= tan[ π(x-2)] ,知足题意.清除法,选 D.2. (2013 陕·西 )察看以下等式12= 112- 22=- 312- 22+ 32= 612- 22+ 32- 42=- 10,,照此规律,第n 个等式可为 ________.答案2222n+1 2n+1n n+ 1 1 - 2+3 -4+, + (-1)n = (- 1)·2分析察看等式左侧的式子,每次增添一项,故第n 个等式左侧有 n 项,指数都是2,且正、负相间,所以等式左侧的通项为(- 1)n+1n2.等式右侧的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21 , ,.设此数列为 { a n} ,则 a2- a1= 2, a3-a2=3, a4- a3= 4,a5- a4= 5,,, a n- a n-1= n,各式相加得a n- a1=2+ 3+ 4+ ,+ n,即 a n= 1+2+3+ ,+ n =n n+ 1.所以第n个等式为22+ 32- 42+, +(- 1)n+1 21)n+2 1 - 2n = (-1n n+12.3. (2013 湖·北 )古希腊毕达哥拉斯学派的数学家研究过各样多边形数,如三角形数1,3,6,10,, ,第 n 个三角形数为n n+1=121n,记第 n 个 k 边形数为 N(n,k)(k≥ 3),22n +2以以下出了部分k 边形数中第 n 个数的表达式:三角形数121N(n,3)= n+ n,22正方形数N(n,4)=n2,五边形数321N(n,5)= n- n,22六边形数N(n,6)=2n2- n ,,,,,,,,,,,,,,,能够推测 N( n,k)的表达式,由此计算N(10,24)= ___________.答案 1 000分析22k - 224- k由 N( n,4)= n ,N( n,6)= 2n - n ,能够推测: 当 k 为偶数时, N(n ,k)=2n +2n ,∴ N(10,24) =24- 2× 100+4- 24× 1022= 1 100- 100=1 000.4. (2012 陕·西 )察看以下不等式:1 3 1+22<2,1 1 51+22+ 32<3,1 1 1 71+22+ 32+42<4,,,照此规律,第五个不等式为 ________....答案11 111 111+ 22222< 62 +3 +4 +5 +6分析概括察看法.察看每行不等式的特色, 每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子组成等差数列.∴ 第五个不等式为 1+ 1 1 1 1 1 112 + 2+ 2+ 2+ 2< 6 .2 3 4 5 62ab为 a ,b 的调解均匀数.如图,C 为线段 AB 上的点, 5. (2010 湖·北 )设 a >0,b > 0,称 a + b且 AC =a , CB = b ,O 为 AB 中点,以 AB 为直径作半圆.过点C 作 AB 的垂线交半圆于 D ,连接 OD ,AD ,BD.过点 C 作 OD 的垂线,垂足为E.则图中线段 OD 的长度是 a ,b 的算术均匀数, 线段 ________的长度是 a ,b 的几何均匀数, 线段 ________的长度是 a ,b 的调解均匀数.答案CD DE分析 在 Rt △ ABD 中, CD 是斜边 AB 上的高,所以 CD 2 =AC ·CB ,所以 CD = AC ·CB = ab ,所以线段 CD 的长度是 a , b 的几何均匀数.在 Rt △OCD 中,由于 CE ⊥ OD ,所以DE = CD,CD OD 2CDab2ab所以线段 DE 的长度=== .2所以线段 DE 的长度是 a ,b 的调解均匀数.题型一 合情推理 1 x - a n 例 1(1)设数列 { a n 是首项为 0 * ,f nsin ,x ∈ n , a n +1 ],} 的递加数列, n ∈ N (x)= n[a知足:关于随意的b ∈ [0,1) ,f n (x)= b 总有两个不一样的根, 则{ a n } 的通项公式为 _______.x 2 y 2(2)若 P 0(x 0,y 0)在椭圆 a 2+b 2= 1(a>b>0) 外,则过 P 0 作椭圆的两条切线的切点为 P 1,P 2,则切点弦 P 1P 2 所在直线方程是 x 0 x y 0y= 1.那么关于双曲线则有以下命题: 若 P 0(x 0,y 0)a 2 + 2 在双曲线 x 22 b 2 y 2P 0 作双曲线的两条切线的切点为 P ,P ,则切a -b = 1(a>0, b>0)外,则过1 2点弦 P 1P 2 所在的直线方程是 ________.审题破题(1) 先求数列 { a n } 的前几项,概括项的规律,作出猜想; (2) 双曲线和椭圆方程对比,形式近似,只需注意到椭圆的切线方程中x 2,y 2 分别换成了 x 0x , y 0y 即可.答案 (1) a =n n - 1 π(2)x 0x - y 0 yn 2a 2 2 =1b分析 (1) ∵a 1= 0,当 n = 1 时, f 1(x) =|sin(x - a 1)|= |sin x|,x ∈ [0, a 2] ,又 ∵ 对随意的 b ∈ [0,1) , f 1(x)= b 总有两个不一样的根,∴ a 2= π;2sin 1 x - a 2 = sin 1 x - πf ( x)= 2 2= cos x , x ∈ [ π, a 3],2∵ 对随意的 b ∈[0,1) ,f 2(x)= b 总有两个不一样的根,1 ∴ a 3= 3π; f 3 (x)= sin 3 x - a 31 1= sin 3 x - 3π = sin 3x , x ∈ [3 π, a 4],∵ 对随意的 b ∈[0,1) ,f 3(x)= b 总有两个不一样的根,∴ a 4= 6π.由此可得 a n + 1- a n = n π, ∴a n = n n - 1 π2.x 2 y 2x 0x y 0y所在直线方程 22 →yy2 2 P 1P 2 2 2 = 1,x→ xx ,y0.类比,(2)关于椭圆 a + b = 1,切点弦 a +bx 2 y 2 x 0x y 0 y双曲线 a 2- b 2= 1 的切点弦 P 1P 2 所在直线方程为 a2- b 2 =1.反省概括 应用合情推理应注意的问题:(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后类比推导类比对象的性质.注意:概括推理重点是找规律,类比推理重点是看共性.变式训练 1(1) 若从点 O 所作的两条射线OM 、 ON 上分别有点 M 1、 M 2 与点 N 1、 N 2,则三S 角形面积之比SOM 1N 1=OM 1 ON 1O 所作的不在同一平面内的三条射线· .如图,若从点OM 2 ON 2OM 2N 2OP 、OQ 和 OR 上分别有点 P 1、P 2,点 Q 1、Q 2 和点 R 1、R 2,则近似的结论为 ________.答案 V O P 1Q 1 R 1= OP 1 OQ 1 OR 1· ·VO P 2Q 2 R 2OP 2 OQ 2 OR 2分析考察类比推理问题,由图看出三棱锥P 1-OR 1Q 1 及三棱锥 P 2- OR 2Q 2 的底面面积之比为 OQ 1 OR 1 ,又过极点分别向底面作垂线,获得高的比为 OP 1,故体积之比为OQ 2 ·OP 2 OR 2VO P 1Q 1R 1= OP 1 OQ 1 OR 1V O P 2 Q 2R 2 · · .OP 2 OQ 2 OR 2(2)已知命题:若数列 { a n } 为等差数列,且 a m = a , a n = b (m ≠ n , m 、 n ∈ N *),则 a m +n = bn - am;现已知等比数列 { b n } ( b ≠0, n ∈N * ), b m = a ,b n = b (m ≠n , m 、 n ∈ N * ),若类n -m比上述结论,则可获得b m + n = __________.答案 n - m b na m分析等差数列中的 bn 和 am 能够类比等比数列中的b n 和 a m ,等差数列中的 bn - amb nbn - amn - m b n能够类比等比数列中的am,等差数列中的 n - m 能够类比等比数列中的am,故 b m + n = n -m b na m . 题型二 直接证明与间接证明例 2设实数数列 { a n } 的前 n 项和 S n 知足 S n + 1= a n +1S n (n ∈ N * ). (1)若 a 1, S 2,- 2a 2 成等比数列,求 S 2 和 a 3;(2)求证:对 k ≥ 3 4有 0≤ a k + 1≤ a k ≤ .3审题破题 (1) 依据 S 22=- 2a 1a 2 及 S 2= a 2a 1 从方程的角度求出 S 2.再由 S 3= a 3S 2= S 2+ a 3,求出 a 3.(2)依据 S n + 1= a n +1S n (n ∈ N * )的关系,找寻 a n + 1 与 a n 的递推关系,再用不等式放缩法、剖析法、反证法的思想方法求解.(1)解 S 22=- 2a 1a 2 ,由题意 得 S 22=- 2S 2,S 2= a 2S 1= a 1a 2,由 S 2 是等比中项知 S 2≠ 0.所以 S 2=- 2.由 S 2+ a 3=S 3=a 3S 2 解得 a 3=S 2- 222-1=- 2-1=3.S(2)证明由题设条件有 S n + a n +1= a n +1S n ,Sa n +1n故 S n ≠ 1, a n +1≠ 1 且 a n +1=S n - 1, S n = a n + 1- 1,进而对 k ≥ 3 有S k - 1= a k - 1+S k - 2a k =S k -1- 1 a k - 1+ S k - 2- 1a k -1+ a k - 1 2a k -1- 1= a k -1a k 1= 2 -a - + 1.①--a k -1+ a k 1k 1a k -1- - 1121 2 3 2因 a k -1 -a k - 1+1= a k - 1- + >0 且 a k - 1≥ 0,2 4由 ①得 a k ≥0.2要证 a ≤ 4,由 ① 只需证 2≤ 4,a k - 1k3k -1- a k-1+ 1 3a即证 3a k 2- 1≤ 4(a k 2 -1- a k -1+ 1),即 (a k - 1- 2)2≥ 0,此式明显建立.所以a k ≤ 4(k ≥ 3).a k 23>a k ,最后证 a k + 1≤ a k ,若否则 a k + 1= 2a k - a k +1又因 a k ≥ 0,故 2 a k >1,即 ( a k - 1)2<0. 矛盾.a k - a k +1 所以 a k + 1≤ a k (k ≥ 3).综上,当 k ≥ 3 时有 0≤ a k + 1≤a k ≤ 4.3反省概括综合法与剖析法是直接证明中的“ 姊妹证明 ” 方法.往常状况下, 运用剖析法,由果索因,找到一个正确的结论或已知条件,而后运用综合法正确推理书写.在进 行立体几何证明中, 我们常从结论出发找寻问题的打破口, 但在逆推时也可能遇到阻碍,这时再从已知出发顺推搜寻中间细节, 问题即可得以解决. 自然,若所证命题从正面难以下手时,不如使用反证法.变式训练 2 (2013 ·陕西 )设 { a n } 是公比为 q 的等比数列.(1)推导 { a n } 的前 n 项和公式;(2)设 q ≠ 1,证明:数列 { a n +1} 不是等比数列. (1)解设 { a n } 的前 n 项和为 S n ,当 q =1 时, S n =a 1+a 1+, + a 1= na 1;2n - 1①当 q ≠1 时, S n =a 1+a 1q + a 1q + , + a 1q .qS n = a 1q +a 1 q 2+a 1q 3+ , + a 1q n ,②① - ②得, (1- q)S n = a 1- a 1 q n ,n∴ S n =a 1 1- q ,1- qna 1, q = 1,n∴ S n = a 1 1- q,q ≠ 1.1-q(2)证明假定 { a n + 1} 是等比数列,则对随意的k ∈ N * ,(a k +1+ 1)2= (a k + 1)(a k + 2+ 1),2a k + 1+ 2a k + 1+1= a k a k + 2+a k + a k +2 +1,a 21q 2k + 2a 1 q k = a 1q k - 1·a 1q k +1+ a 1q k -1+ a 1q k +1,kk - 1k + 1∵ a 1≠ 0, ∴ 2q = q + q .∵ q ≠0, ∴ q 2- 2q + 1= 0, ∴ q =1,这与已知矛盾.∴ 假定不建立,故 { a n +1} 不是等比数列.题型三 数学概括法例 3已知数列 { a n } 知足关系式 a n +1= n+ 2, n ∈ N * ,且 a 1= 2.a n(1)求 a 2, a 3, a 4;(2)求证: n + 1≤ a n < n + 1+ 1;(3)求证:n + 1- 1< 1 + 1 +, + 1<2( n + 3- 3).a 1 a 2 a na + = n审题破题(1) 依据递推式和初始值求解即可; (2)依据已知的递推式+ 2,使用n 1 a n数学概括法进行证明;(3)依据 (2) 的结果进行证明.(1)解由题意,知 a 2=5, a 3= 14,a 4= 43.25 14(2)证明由 a n + 1= n+2 及 a 1= 2,知 a n >0.a n下边用数学概括法证明:① 当 n = 1 时, a 1= 2 知足 1+ 1≤ a 1< 1+1+ 1,建立. ② 假定当 n = k (k ∈N * )时,k + 1≤ a k < k +1+ 1 建立,则当 n = k + 1 时, a + = k+ 2> k + 2= k + 1+ 1.k 1 a kk + 1+ 1a k + 1= k+ 2≤ k + 2.a k k + 1下边用剖析法证明: k+ 2< k + 2+ 1.k + 1欲证k + 2<k +2+ 1,k +1只需证 k + k + 1<( k + 1) k + 2,只需证 (k + k + 1)2 <[( k + 1) k + 2] 2, 只需证 2 k + 1>0 ,此式明显建立.所以 k + 2< k +2+ 1 建立.k +1进而 a + = k+ 2≤ k + 2< k + 2+ 1.k 1a kk + 1由 ①② 可知,对全部 k ∈N *, n + 1≤a n < n + 1+1 建立.(3)证明 由(2) 知 1 < 1 ≤1 ,n n + 1 n + 1+1 a而 1 ≥ 1 = n +1- n ,n + 1+ 1 n + 1+ n 1 =2<2n +1n +1 +n + 3+ n + 2n + 1= 2( n + 3- n + 2),所以 n + 1- n< 1<2( n + 3- n + 2),a n所以 ( 2- 1)+, +(n + 1- n)< 1 + 1 + , + 1a 1 a 2 a n <2( 4- 3)+ ,+ 2( n + 3- n + 2),所以 n + 1- 1< 1 + 1+, + 1 <2( n + 3- 3).a 1 a 2 a n反省概括 在递推数列问题中,假如给出的是形如 a n + 1= f(a n )的递推式,则能够考虑用数学概括法进行证明, 这是由于在设出 a k 知足的结论后, 能够依据 a n + 1= f(a n )获得 a k +1知足的结论.在使用数学概括法证明问题时,在概括假定后,概括假定就是证明n = k+ 1 时的已知条件, 把概括假定当已知条件证明后续结论时, 能够使用综合法、 剖析法、反证法,也能够再次使用数学概括法.变式训练 1 1 1 1 3 1 *3 已知 f(n)= 1+ 3 3 3 3 , g(n)= - 2n 22 +3 +4 + , + n 2 , n ∈ N . (1)当 n = 1,2,3 时,试比较 f(n)与 g(n)的大小关系;(2)猜想 f(n)与 g(n)的大小关系,并给出证明.解 (1)当 n = 1 时, f(1)= 1, g(1)= 1,所以 f(1)= g(1);当 n =2 时, f(2) =98, g(2)= 118,所以 f(2)< g(2) ; 当 n =3 时, f(3) = 251, g(3) =312,所以 f(3)< g(3).216216(2)由 (1),猜想 f(n)≤ g(n),下边用数学概括法给出证明:① 当 n = 1,2,3 时,不等式明显建立.② 假定当 n = k(k ≥ 3, k ∈ N * )时,不等式建立,1 1 1 1 3 1 即 1+23+ 33+ 43+ , +k 3<2-2k 2,那么,当 n = k +1 时, f(k + 1)= f(k)+13<3- 12+ 1 1 3,k +1 2 2k k +1 1 1 k + 3 1 - 3k - 1 由于2 k +1 2 - 2k 2- k + 13 =2 k + 1 3- 2k 2= 2 k + 1 3k 2<0, 所以 f(k + 1)<3- 1 2= g(k + 1).2 2 k + 1∴ 当 n = k + 1 时 f(n)≤ g(n)建立.由 ①② 可知对全部 n ∈N * ,都有 f(n)≤ g(n)建立.典例 (1)(2012·江西 )察看以下各式: a + b = 1, a 2 + b 2 = 3, a 3+ b 3= 4, a 4+ b 4= 7, a 5+ b 5= 11,, ,则 a 10+ b 10 等于()A . 28B .76C .123D .199分析察看规律,概括推理.从给出的式子特色察看可推知, 等式右端的值, 从第三项开始, 后一个式子的右端值等于它前方两个式子右端值的和,照此规律,则 a 10+ b 10= 123.答案C(2)记等差数列 { a n } 的前 n 项和为 S n ,利用倒序乞降的方法,可将S n 表示成首项 a 1、末 项 a n 与项数 n 的一个关系式, 即公式 S n = n a 1+ a n;近似地, 记等比数列 { b n } 的前 n 项2积为 T n ,且 b n >0 (n ∈ N * ),试类比等差数列乞降的方法,可将 T n 表示成首项 b 1、末项b n 与项数 n 的一个关系式,即公式 T n = ________.分析 利用等比数列的性质:若m + n = p + q ,则 b m ·b n = b p ·b q ,利用倒序求积方法有T n =b 1b 2·, ·b n ,n两式相乘得 T n 2= ( b 1 b n )n ,即 T n = (b 1b n ) 2 .T n =b n b n - 1·, ·b 1,n答案(b 1b n )2得分技巧合情推理的重点是追求规律, 明确已知结论的性质或特色. 高考取此类问题的指向性很强,要获得正确结论的概括或类比.阅卷老师提示(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后经过类比,推导出类比对象的性质.(3)概括推理重点是找规律,类比推理重点是看共性.1. 已知数列 { a n } 的前 n 项和 S n = n 2a n ( n ≥2),而 a 1= 1,经过计算a 2, a 3,a 4,猜想 a n 等于()22A. n + 1 2B.n n + 122 C.2n- 1D.2n - 1答案 B分析a n = S n - S n - 1=n 2a n -( n -1) 2a n -1,∴ (n - 1)2n - 1a n - 1= ( n -1)( n + 1)a n .∴ a n =a n -1.n + 1由 a 1=1 知: a 2= 1,a 3=1.3 6∴ 猜想 a n = 2,应选 B.n n + 12. 以下四个图形中, 着色三角形的个数挨次组成一个数列的前4 项,则这个数列的一个通项公式为()A . a n = n -1B .a n = 3 n3C . a n = 3n - 2nD . a n = 3n -1+2n - 3答案 A分析a 1= 1, a 2= 3,a 3= 9, a 4= 27,故猜 a n = 3n -1.3. 以下推理中属于概括推理且结论正确的选项是()A .设数列 { a n } 的前 n 项和为 S n ,由 a n = 2n - 1,求出 S 1= 12, S 2= 22, S 3= 32,, ,推断: S n = n 2B .由 f(x) = xcos x 知足 f(- x)=- f(x)对 ?x ∈ R 都建立,推测: f(x)= xcos x 为奇函数2222x 2 y 2C .由圆 x + y = r 的面积 S = πr ,推测:椭圆 a 2+ b 2= 1(a>b>0)的面积 S = πabD .由 (1+ 1)2>21, (2+ 1)2>2 2, (3+ 1)2>23,, ,推测:对全部 n ∈N * , (n + 1)2>2n 答案 A分析注意到,选项 A 由一些特别案例得出一般性结论, 且注意到数列 { a n } 是等差数列,其前 n 项和等于 S n = n 1+ 2n - 1= n 2,选项 D 中的推理属于概括推理, 但结论不正确. 因2 此选 A.2Sa 、b 、c ,△ ABC 的面积为 S ,内切圆半径为 r ,则 r = ;a + b + c类比这个结论可知:四周体S — ABC 的四个面的面积分别为S 1 、S 2 、S 3、 S 4,内切球的半径为 R ,四周体 P — ABC 的体积为 V ,则 R 等于()V2VA. +S +S +SB.+S +S +SS 12 3 4 S 1 2343V4VC.+S +S +SD.+S +S +SS 1 234S 1234答案 C分析此题考察类比推理,用体积切割的方法,能够得出3VR =+S +S +S.S 1 2345. 察看等式: 1+1=2,1+1+1=3,1+1+1+1=4,根1×2 2×3 31× 2 2×3 3× 44 1× 22×3 3×4 4×55据以上规律,第四个等式为________.答案1 +1× 212× 3+1 + 3× 41 + 4× 51 =5 5×6 66. 设等差数列 { a n } 的前 n 项和为S n ,则 S 4, S 8- S 4 , S 12- S 8, S 16- S 12 成等差数列.类比以上结论有:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,________,________,T 16成等比数T 12列.答案T 8 T 12T 4 T 8分析等差数列类比于等比数列,和类比于积,减法类比于除法,可得类比结论为:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,T 8, T 12,T 16成等比数列.T 4 T 8 T 12专题限时规范训练一、选择题1. 察看以下各式: 72= 49,73= 343,74= 2 401,, ,则 72 014 的末两位数字为()A . 01B .43C .07D . 49答案 D分析由于 71= 7,72 =49,73= 343,74= 2 401,7 5= 16 807,76= 117 649, , ,所以这些数的末两位数字呈周期性出现, 且周期 T = 4.又由于 2 014= 4× 503+ 2,所以 72 014 的末两位 数字与 72 的末两位数字同样,应选D.2. 定义一种运算“ * ”:关于自然数n 知足以下运算性质: (ⅰ )1*1=1,( ⅱ )(n+1)*1= n*1+1,则 n*1 等于()A . nB .n + 1C .n - 1D . n 2答案 A分析由 (n + 1)*1 = n*1 + 1,得 n*1 = (n - 1)*1 + 1= (n - 2)*1 + 2= , = 1]3. 定义 A* B ,B*C ,C*D ,D * A 的运算分别对应以下图中的 (1)(2)(3)(4) ,那么以下图中的(A)(B)所对应的运算结果可能是( )A .B*D ,A* DB .B*D , A*C C .B*C ,A*D D .C*D ,A*D答案 B分析由 (1)(2)(3)(4) 图得 A 表示 |,B 表示 □ ,C 表示 — ,D 表示 ○,故图 (A)(B) 表示 B* D和 A*C.1,2, 1, 3,2, 1, 4, 3,2, 1,, ,依它的前10 项的规律,这个数列的4. 已知数列: 1 1 21 2 3 1 2 3 4第 2 013 项 a2 013知足()11≤ a2 013<1A. 0<a2 013< B.1010C. 1≤ a2 013≤ 10D. a2 013>10答案A分析数列中项的规律:分母每一组中从小到大摆列:(1) , (1,2) ,(1,2,3) ,(1,2,3,4) , ,;分子每一组中从大到小摆列(1), (2,1), (3,2,1) , (4,3,2,1) ,, ,由上规律4 1知 a2 013=60=15.5.给出若干数字按以下图排成倒三角形,此中第一行各数挨次是1,2,3, , , 2 011,从第二行起每个数分别等于上一行左、右两数之和,最后一行只有一个数M,则这个数M 是()2 009A. 2 012 2·2 010B. 2 011 2·2 011C. 2 010 2·2 007D. 2 010 2·答案A分析第一行公差为1;第二行公差为2;,,;第 2010 行公差为22 009,第 2011 行只有 M,发现规律,得M= (1+ 2 011)2 0092·.或从第一行为 1,2,3 及 1,2,3,4,5 的两个“小三角形”联合选项概括得结果为 (3+1及 (5+ 1)×3n- 2.1)×2 2 ,猜一般规律为 (n+ 1) ·2+,若 a+ d= b+ c且 |a- d|<|b-c|,则有() 6.设 a,b, c, d∈RA. ad= bc B .ad<bc C.ad>bc D. ad≤ bc答案C分析|a - d|<|b- c|?( a-d)2<(b- c)2?a2+ d2-2ad<b2+ c2- 2bc,又∵a+ d= b+ c? (a +d)2= (b+ c)2? a2+ d2+ 2ad= b2+ c2+ 2bc,∴- 4ad<- 4bc,∴ ad>bc.a2+ b2127.已知 a>b>0,且 ab= 1,若 0<c<1, p= log c, q= log c() ,则 p, q 的大小2a+ b关系是()A. p>q B .p<qC. p= q D. p≥ q答案 Ba 2+b 2a 2+b 2分析∵>ab = 1, ∴ p = log c 22<0.12111又 q =log c () = log c>log c= log c >0, ∴q>p.a + ba +b + 2 ab4 ab4378. 对大于1 的自然数 m 的三次幂可用奇数进行以下方式的“分裂”:23, 3 3 9,511134315,, .仿此,若 m 3 的“分裂数”中有一个是59,则 m 的值为()17 19A . 5B .6C .7D . 8答案 D分析由已知可察看出m 3 可分裂为 m 个连续奇数,最小的一个为 (m - 1)m + 1.当 m =8时,最小的数为 57,第二个即是59.∴ m = 8.二、填空题9.察看以下等式1= 12+ 3+ 4= 9 3+ 4+5+ 6+ 7= 254+ 5+ 6+7+ 8+ 9+ 10= 49,,照此规律,第 n 个等式为 ________.答案n + (n + 1)+ (n + 2)+, + (3n - 2)= (2n - 1)2分析 第 n 个等式是首项为n ,公差为 1,项数为 2n - 1 的等差数列,即 n + (n + 1)+ (n+ 2)+, + (3n - 2)= (2n - 1) 2.110.若数列 { a n } 的通项公式 a n = n + 1 2,记 f(n)= 2(1-a 1 ) ·(1- a 2), (1- a n ),试经过计算f(1),f(2) ,f(3)的值,推测出 f(n)= ________.n + 2答案n + 13 1+ 2分析 f(1) = 2(1-a 1)=2= 1+ 1,1 1f(2) =2(1- a 1)(1 -a 2)= 2 1- 4 1- 9=4=2+ 2,3 2+1f(3) =2(1- a 1)(1 -a 2)(1 - a 3)=2 1- 1 1-1 1- 1=5= 3+2,4 9 16 4 3+1n + 2可猜想 f(n)=n + 1.11.二维空间中圆的一维测度(周长 )l = 2πr ,二维测度 (面积 )S = πr 2,察看发现 S ′= l ;三维空间中球的二维测度 (表面积 )S = 4πr 2,三维测度 (体积 )V =43,察看发现 V ′= S.则四3πr维空间中“超球”的四维测度 W = 2πr 4,猜想其三维测度 V = ________.答案 8πr 3分析 由已知, 可得圆的一维测度为二维测度的导函数; 球的二维测度是三维测度的导函数.类比上述结论, “ 超球 ”的三维测度是四维测度的导函数, 即 V = W ′ = (2πr 4)′= 8πr 3.12.函数 f(x)的定义域为 A ,若 x 1,x 2∈ A ,且 f(x 1 )= f(x 2)时总有 x 1= x 2,则称 f(x)为单函数. 例如 f(x)= 2x + 1 (x ∈ R )是单函数,以下命题:①函数f(x)= x 2 (x ∈ R )是单函数;②指数函数 f(x)= 2x (x ∈ R )是单函数,③若 f(x)为单函数, x 1, x 2∈ A 且 x 1≠ x 2,则 f(x 1)≠ f(x 2);④在定义域上拥有单一性的函数必定是单函数.此中的真命题是 __________( 写出全部真命题的编号 ). 答案 ②③④分析由 x 12= x 22,未必有 x 1= x 2,故 ① 不正确;关于 f(x)= 2x ,当 f(x 1)= f(x 2 )时必定有 x 1= x 2,故 ② 正确;当 f(x)为单函数时,有 f(x 1)= f( x 2)? x 1= x 2,则其逆否命题 f(x)为单函数时,x 1≠ x 2? f(x 1)≠ f(x 2) 为真命题,故 ③ 正确;当函数在其定义域上单一时, 必定有 f(x 1)= f(x 2) ? x 1= x 2,故 ④ 正确.三、解答题13. (2012 ·建福 )某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:① sin 213°+ cos 217°- sin 13 cos ° 17 ;°2 2 °- sin 15 cos ° 15 ;°② sin 15 °+ cos 15 22°- sin 18 cos ° 12 ;°③ sin 18 °+ cos 12④ sin 2(- 18°)+cos 248°-sin(- 18°)cos 48 ;°⑤ sin 2(- 25°)+cos 255°-sin(- 25°)cos 55 . °(1)试从上述五个式子中选择一个,求出这个常数;(2)依据 (1) 的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解方法一 (1)选择 ② 式,计算以下:sin 215°+ cos 215°- sin 15 cos ° 15 °1 sin 30 =°1- 1 3= 1- 4 = .2 4 (2)三角恒等式为322sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4.证明以下:sin 2α+ cos 2(30 °- α)- sin αcos(30 -°α)= sin 2α+(cos 30 cos ° α+ sin 30 sin ° α)2- sin α(cos 30 °cos α+ sin 30 sin ° α)23231 23 1 23 2323.= sin α+ cos α+2 sin αcos α+ sin α-2sin αcos α- sin α= sin α+ cos α= 442 4 4 4方法二 (1)同解法一.223 (2)三角恒等式为 sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4. 证明以下:22sin α+ cos (30 °- α)- sin αcos(30 -°α)= 1-cos 2α 1+ cos 60°- 2αα(cos 30 cos ° α+ sin 30 sin ° α)2+2- sin= 1-1 1+ 1 312α2 2cos 2α+ 2 2(cos 60 cos ° 2α+ sin 60 sin ° 2α)- 2 sin αcos α- 2sin1 1 cos 2α+ 1 + 1 3 sin 2α- 3= - 2 2 cos 2α+ 4 4sin 2α-2 41 1 1 1 3(1 -cos 2α)= 1- cos 2α-+ cos 2α= .44 4 4414.设会合 W 是知足以下两个条件的无量数列 { a n } 的会合.① a n + a n +2≤ a n +1;② a n ≤ M ,此中 n ∈ N * , M 是与 n 没关的常数.2(1)若 { a n } 是等差数列, S n 是其前 n 项的和, a 3= 4, S 3= 18,尝试究 { S n } 与会合 W 之间的关系;(2)若数列 { b n } 的通项为 b n = 5n - 2n ,且 { b n } ∈ W , M 的最小值为 m ,求 m 的值;(3)在 (2)的条件下,设 1 nc n = [ b n + (m - 5) ] + 2,求证:数列 { c n } 中随意不一样的三项都不5 能成为等比数列. (1)解 ∵ a 3= 4, S 3= 18,∴ a 1= 8, d =- 2,2 S n + S n + 2∴ S n =- n + 9n , 2 <S n + 1 知足条件 ① ,9S n =- n - 2 + 81,当 n = 4 或 5 时, S n 取最大值 20.2 4 ∴ S n ≤ 20 知足条件 ② ,∴ { S n } ∈ W.(2)解b n + 1- b n = 5- 2n 可知 { b n } 中最大项是 b 3= 7,∴M ≥7, M 的最小值为 7.(3)证明 由(2) 知 c n =n + 2,假定 { c n } 中存在三项 c p 、c q 、 c r (p 、 q 、 r 互不相等 )成等比数列,则 c 2q = c p ·c r ,∴ (q + 2)2= (p + 2)(r + 2),∴ (q 2- pr)+ (2q - p - r ) 2= 0.q 2 = pr ,∵ p 、q 、 r ∈ N * , ∴2q - p - r = 0,消去 q 得 (p- r )2= 0,∴p=r ,与 p≠ r 矛盾.∴{ c n} 中随意不一样的三项都不可以成为等比数列.。

高考数学理科必考题型:第43练-归纳与类比推理(含答案)

高考数学理科必考题型:第43练-归纳与类比推理(含答案)

第43练 归纳与类比推理[内容精要] 推理是数学的基本思维过程,也是我们在学习和生活中经常使用的思维方式,在数学学习中具有特殊的地位和作用.在高考中,选择题或填空题一般利用归纳或类比思想来单独考查有关的合情推理问题.题型一 利用归纳推理求解相关问题例1 如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴…,则第2 014个图形用的火柴根数为( )A .2 012×2 015B .2 013×2 014C .2 013×2 015D .3 021×2 015破题切入点 观察图形的规律,写成代数式归纳可得. 答案 D解析 由题意,第1个图形需要火柴的根数为3×1; 第2个图形需要火柴的根数为3×(1+2); 第3个图形需要火柴的根数为3×(1+2+3); ……由此,可以推出,第n 个图形需要火柴的根数为3×(1+2+3+…+n ). 所以第2 014个图形所需火柴的根数为3×(1+2+3+…+2 014) =3×2 014×(1+2 014)2=3 021×2 015,故选D.题型二 利用类比推理求解相关问题例2 如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面中的结论有________.破题切入点 由平面图形中各元素到空间几何体中各元素的类比.答案 S 2=S 21+S 22+S 23解析 建立从平面图形到空间图形的类比,在由平面几何的性质类比推理空间立体几何的性质时,注意平面几何中点的性质可类比推理空间几何中线的性质,平面几何中线的性质可类比推理空间几何中面的性质,平面几何中面的性质可类比推理空间几何中体的性质.所以三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.总结提高 (1)归纳推理的三个特点①归纳推理的前提是几个已知的特殊对象,归纳所得到的结论是未知的一般现象,该结论超越了前提所包含的范围;②由归纳推理得到的结论具有猜测的性质,结论是否准确,还需要经过逻辑推理和实践检验,因此归纳推理不能作为数学证明的工具;③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助发现问题和提出问题. (2)类比推理的一般步骤①定类,即找出两类对象之间可以确切表述的相似特征;②推测,即用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;③检验,即检验猜想的正确性,要将类比推理运用于简单推理之中,在不断的推理中提高自己的观察、归纳、类比能力.1.已知x >0,观察不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…,由此可得一般结论:x +ax n ≥n +1(n ∈N *),则a 的值为( )A .n nB .n 2C .3nD .2n 答案 A解析 根据已知,续写一个不等式:x +33x 3=x 3+x 3+x 3+33x 3≥44x 3·x 3·x 3·33x3=4,由此可得a =n n .故选A. 2.在平面内点O 是直线AB 外一点,点C 在直线AB 上,若OC →=λOA →+μOB →,则λ+μ=1;类似地,如果点O 是空间内任一点,点A ,B ,C ,D 中任意三点均不共线,并且这四点在同一平面内,若DO →=xOA →+yOB →+zOC →,则x +y +z 等于( ) A .0 B .-1 C .1 D .±1 答案 B解析 在平面内,由三角形法则,得AB →=OB →-OA →,BC →=OC →-OB →. 因为A ,B ,C 三点共线, 所以存在实数t ,使AB →=tBC →,即OB →-OA →=t (OC →-OB →), 所以OC →=-1t OA →+(1t +1)OB →.因为OC →=λOA →+μOB →, 所以λ=-1t ,μ=1t +1,所以λ+μ=1.类似地,在空间内可得OD →=λOA →+μOB →+ηOC →,λ+μ+η=1. 因为DO →=-OD →,所以x +y +z =-1.故选B.3.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 014的末四位数字为( )A .3125B .5625C .0625D .8125 答案 B解析 由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125,故周期T =4.又由于2 014=503×4+2,因此52 014的末四位数字是5625.4.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .199 答案 C解析 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4; f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11; f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123,即a 10+b 10=123.5.已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是( )A .正四面体的内切球的半径是其高的12B .正四面体的内切球的半径是其高的13C .正四面体的内切球的半径是其高的14D .正四面体的内切球的半径是其高的15答案 C解析 设正四面体的每个面的面积是S ,高是h ,内切球半径为R , 由体积分割可得:13SR ×4=13Sh ,所以R =14h .故选C.6.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式.根据π=3.14159…判断,下列近似公式中最精确的一个是( ) A .d ≈ 3169VB .d ≈32VC .d ≈3300157V D .d ≈32111V 答案 D解析 由V =43π(d 2)3,得d = 36V π,设选项中常数为a b ,则π=6ba ;A 中代入得π=6×916=3.375,B 中代入得π=6×12=3,C 中代入得π=6×157300=3.14,D 中代入得π=6×1121=3.142857,由于D 中值最接近π的真实值.7.(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=_________________________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.8.两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin(α+2π3)+sin(α+4π3)=0.由此可以推知:四点等分单位圆时的相应正确关系为________________________.答案 sin α+sin(α+π2)+sin(α+π)+sin(α+3π2)=0解析 由类比推理可知,四点等分单位圆时,α与α+π的终边互为反向延长线,α+π2与α+3π2的终边互为反向延长线,如图.9.(2013·陕西)观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 10.如图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推.设第n 个图中原三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为________;a 100=________.答案 18298解析 由三角形的生成规律得,后面的每一个图形中小三角形的边长均等于前一个图形中小三角形边长的12,即最小三角形的边长是以1为首项,12为公比的等比数列,则第4个图中最小三角形的边长等于1×123=18,由a 2-a 1=a 3-a 2=…=a n -a n -1=3可得,数列{a n }是首项为1,公差为3的等差数列,则a 100=a 1+99×3=1+297=298. 11.观察下列不等式: 1+122<32, 1+122+132<53, 1+122+132+142<74, …照此规律,第五个...不等式为_________________________________. 答案 1+122+132+142+152+162<116解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列. ∴第五个不等式为1+122+132+142+152+162<116.12.(2013·福建)当x ∈R ,|x |<1时,有如下表达式: 1+x +x 2+…+x n +…=11-x. 两边同时积分得:120⎰1d x +120⎰x d x +120⎰x 2d x +…+120⎰x nd x +…=120⎰11-xd x , 从而得到如下等式:1×12+12×(12)2+13×(12)3+…+1n +1×(12)n +1+…=ln 2. 请根据以上材料所蕴含的数学思想方法计算:C 0n ×12+12C 1n ×(12)2+13C 2n ×(12)3+…+1n +1C n n ×(12)n +1=________.答案1n +1[(32)n +1-1]解析 设f (x )=C 0n x +12C 1n x 2+13C 2n x 3+…+1n +1C n nx n +1, ∴f ′(x )=C 0n +C 1n x +C 2n x 2+…+C n n x n =(1+x )n .∴f ⎝⎛⎭⎫12=120⎰(1+x )n d x =⎪⎪1n +1(1+x )n +1120 =1n +1⎝⎛⎭⎫1+12n +1-1n +1(1+0)n +1=1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-1,即C 0n ×12+12C 1n ×⎝⎛⎭⎫122+13C 2n ×⎝⎛⎭⎫123+…+1n +1C n n ×⎝⎛⎭⎫12n +1=1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-1.。

类比推理题库及标准答案

类比推理题库及标准答案
66.《说岳全传》∶南宋
A.《三侠五义》∶明B.《西游记》∶唐
C.《金瓶梅》∶汉D.《封神演义》∶夏
答:B该题考查小说与小说所描述的背景时代之间的关系,《三侠五义》是北宋,《金瓶梅》也是北宋,《封神演义》则为商周。
67.十面埋伏∶韩信
A.鸡鸣狗盗∶春申君B.指鹿为马∶秦桧
C.口蜜腹剑∶李林甫D.纸上谈兵∶赵奢
答案:A
21、跳跃:动作
A.男人:女人B.湖南省:长沙市C.青年:妇女D.风俗:习惯
答案:D
22、周瑜:曹操
A.南京:北京B.动作:食物C.汽车:吊车D.官员:群众
答案:A
23、水壶:开水
A.桌子:游戏B.邮箱:信件C.黄梅戏:歌曲D.青蛙:池塘
答案:B
24、导演:电影
A.售货员:货物B.作家:小说C.农民:庄稼D.工人:机器
10、汽车:运输
A.捕鱼:鱼网B.编织:鱼网C.鱼网:编织D.鱼网:捕鱼
【解答】此题属于工具与作用的类比推理题,故正确答案为D。
11、医生:患者
A.工人:机器B.啄木鸟:病树C.警察:罪犯D.法官:律师
答案:B
12、紫竹:植物学家
A.金属:铸工B.铁锤:石头C.动物:植物D.蝴蝶:昆虫学家
答案:D
13、老师:学生
【解答】此题属于物体与其运动空间的类比推理题,故正确答案为C。
8、芙蕖:荷花
A.兔子:嫦娥B.窑洞:官邸C.伽蓝:寺庙D.映山红:蒲公英
【解答】因为芙蕖是荷花的书面别称,而伽蓝是寺庙的书面别称,故正确答案为C。
9、绿豆:豌豆
A.家具:灯具B.猴子:树木C.鲨鱼:鲸鱼D.香瓜:西瓜
【解答】选项C中的鲸鱼其实不是鱼,而是哺乳动物,故正确答案为D。

类比推理一百题(带答案及解析)

类比推理一百题(带答案及解析)

类比推理一百题(带答案及解析)1.量尺∶厘米()A.时间∶小时B.天平∶千克C.电话∶号码D.显微镜∶细胞1.B【解析】本题为两词型。

此题考查的是描述关系。

量尺是计量长度的工具,厘米是量尺的刻度的单位。

A.错误,时间不是计量工具,而是被测量的一个,与题目不符。

B.正确,天平是计量质量的工具,千克是天平的刻度的单位。

C.错误,电话不是计量工具,号码也不是计量单位。

D.错误,显微镜不是计量工具,细胞是显微镜观察到的,不是它的计量单位。

2.军队∶命令()A.乐队∶指挥B.游客∶向导C.志愿者∶号召D.学生∶教导2.A【解析】本题为两词型。

此题考查的是对应关系。

军队必须绝对服从命令。

A.正确,乐队必须绝对服从指挥。

B.错误,游客不一定必须服从向导。

C.错误,志愿者也不一定必须服从号召。

D.错误,学生不一定必须服从教导。

3.兴趣∶索然无味()A.知识∶不学无术B.误会∶善解人意C.骨气∶卑躬屈膝D.礼貌∶盛气凌人3.C【解析】此题考查的是言语关系中的反义关系,索然无味是指没有兴趣。

A.错误,知识是名词,没有反义词,不学无术是指没有学问,没有本领,没有反义关系。

B.错误,善解人意是善于理解他人的想法,反义词是不近人情类似的,不与误会构成反义关系。

C.正确,卑躬屈膝是指没有骨气,与骨气构成反义。

D.错误,盛气凌人形容人骄傲自大,气势逼人,不与礼貌形成反义关系。

4.软件∶程序员∶编写()A.木头∶木匠∶打制B.渔网∶渔民∶编织C.车票∶乘客∶购买D.麦克风∶歌手∶唱歌4.B【解析】本题为三词型,用造句子法。

此题考查的是语法关系中的主谓关系。

顺序是:B-C-A。

程序员编写软件。

软件是一种劳动成果,程序员是一种职业。

A.错误,木匠打制木头,但是木头并不是一种劳动成果。

B.正确,渔民编织渔网,渔网是渔民的一种劳动成果,渔民又是一种职业,顺序上也与题目一致。

C.错误,乘客购买车票,车票并不是一种劳动成果,乘客也不是一种职业。

归纳推理和类比推理

归纳推理和类比推理

练习1
电视纪录片不只是表现了那些来自遥远的东非的人们对保护野 生动物的虔诚,而且还向我们展示了在一个缺少食品的国 度,大象是一种有害的动物,而且是一种聪明的有害动物。 目前好像还没有办法保护非洲东部的农田免受晚上出来寻 找事物的狼吞虎咽的象群的破坏。显然,这个例子表明: 以下哪项最合逻辑地完成上文的论述? A.保护野生动物可能会危害人类的安康。 B. 现在应将大象从濒临灭绝的动物名单中除去。 C.电视纪录片除了重复那些被接受的虔诚外不应再纪录 别的事。 D.农民和农业官员在采取任何控制象群的措施前应当与 野生动物保护者密切合作。
II.近三年来,湖州地区日均 耗电量逐年明显增加。
III.今年湖州地区任一用电超 标单位的日均耗电量都高于 全地区的日均耗电量。
A.只有I C.只有III
B.只有II D.只有II和III
练习7
某社会机构公布了一项长期社 会调查的结果,调查显示:在 婚后的13年里,妇女们平均 增长了13公斤,男人们平均 增长了20公斤。这一机构得 出结论:婚姻能使人变胖。
师大附中与学生家长订了协议,如果孩子的 学习成绩的名次没有排在前二十名,双方共 同禁止学生玩滚轴溜冰。
玩滚轴溜冰的同学受到了学校有效的指导, 其中一部分同学才不至于因此荒废学业。
练习4
在一项实验中,实验对象的一半作为实验组,食用 了大量的味精。而作为对照组的另一半没有吃这 种味精。结果,实验组的认知能力比对照组差得多。 这一不利的结果是由于这种味精的一种重要成 分——谷氨酸造成的。
以下哪项如果为真,则最有助于证明味精中某 些成分造成认知能力低下这一结论?( )
大多数味精消费者不像试验中的人那样使用 大量的味精
上述结论中提到的谷氨酸在所有蛋白质中都 有,为了保证营养必须摄入一定量

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。

高考数学类比推理容易出错题(含答案及解析)

高考数学类比推理容易出错题(含答案及解析)

高考数学类比推理容易出错题(含答案及解析)1.设△的三边长分别为△的面积为,内切圆半径为,则.类比这个结论可知:四面体的四个面的面积分别为内切球的半径为,四面体的体积为,则=( )A .B .C .D .2.如图所示,面积为S 的平面凸四边形的第i 条边的边长记为i a (4,3,2,1=i ),此四边形内任一点P 到第i 条边的距离记为i h (4,3,2,1=i ),若k a a a a ====43214321,则kS h h h h 24324321=+++.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为i S (4,3,2,1=i ),此三棱锥内任一点Q 到第i 个面的距离记为i H (4,3,2,1=i ),若K S S S S ====43214321,则4321432H H H H +++等于( )A .2V KB .2V KC .3V KD .3V K3.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( )A .归纳推理B .演绎推理C .类比推理D .传递性推理4.我们知道,在边长为a a ,类比上述结论,在边长为a 的正四面体内任一点到其四个面的距离之和为定值( )A5.平面几何中的三角形在立体几何中类比的对象是( )A .三棱柱B .三棱台C .三棱锥D .正方体6.平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值2a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为 ( )A .3aB .4aC .3D .4a 7.天文学家经研究认为:“地球和火星在太阳系中各方面比较接近,而地球有生命,进而认为火星上也有生命存在”,这是什么推理( )A .归纳推理B .类比推理C .演绎推理D .反证法8.由“在平面内三角形的内切圆的圆心到三边的距离相等”联想到“在空间中内切于三棱锥的球的球心到三棱锥四个面的距离相等”这一推理过程是( )A.归纳推理B.类比推理C.演绎推理D.联想推理9.下列推理是归纳推理的是( )A.A ,B 为定点,动点P 满足|PA|+|PB|=2a >|AB|,则P 点的轨迹为椭圆B .由13,11-==n a a n ,求出321,,S S S 猜想出数列的前n 项和S n 的表达式C.由圆222r y x =+的面积π2r ,猜想出椭圆12222=+b y a x 的面积π=S ab D .科学家利用鱼的沉浮原理制造潜艇10.下列正确的是( )A .类比推理是由特殊到一般的推理B .演绎推理是由特殊到一般的推理C .归纳推理是由个别到一般的推理D .合情推理可以作为证明的步骤11.①由“若a ,b ,c ∈R ,则(ab)c =a(bc)”类比“若a 、b 、c 为三个向量,则(a·b)c=a(b·c)”;②在数列{a n }中,a 1=0,a n +1=2a n +2,猜想a n =2n -2;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;上述三个推理中,正确的个数为( )A .0B .1C .2D .312.下面几种推理中是演绎推理....的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=;B .由金、银、铜、铁可导电,猜想:金属都可导电;C .由平面三角形的性质,推测空间四面体性质;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= .13.由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( )A .各正三角形内一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点14.在平面几何中有如下结论:若正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间几何中可以得到类似结论:若正四面体A BCD -的内切球体积为1V ,外接球体积为2V ,则12V V =( )A .14B .18C .116D .12715.已知结论:“在正ABC ∆中,BC 中点为D ,若ABC ∆内一点G 到各边的距离都相等,则2=GDAG ”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若BCD ∆的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则=OM AO ( ▲ ) A .1 B .2 C .3 D .416.现有两个推理:①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;②由“若数列{}n a 为等差数列,则有15515211076a a a a a a +++=+++ 成立”类比 “若数列{}n b 为等比数列,则有151********b b b b b b ⋅⋅=⋅⋅ 成立”,则得出的两个结论A. 只有①正确B. 只有②正确C. 都正确D. 都不正确17.在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:6 D. 1:818.下列平面图形中与空间的平行六面体作为类比对象较合适的是( )A .三角形B .梯形C .平行四边形D .矩形19.由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是( )A. 归纳推理B. 类比推理C. 演绎推理D.以上都不是20.学习合情推理后,甲、乙两位同学各举了一个例子,甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2S l ”类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r =3V S”; 乙:由“若直角三角形两直角边长分别为a 、b ,则其外接圆半径r =”类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a 、b 、c ,则其外接球半径r =3”.这两位同学类比得出的结论( ) A .两人都对 B .甲错、乙对C .甲对、乙错D .两人都错21.求“方程345x x x +=的解”有如下解题思路:设34()()()55x x f x =+,则()f x 在R 上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,方程x xx x 1133+=+的解为 . 22.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________.23.在等差数列{}n a 中,若010=a ,则有n n a a a a a a -+++=+++192121)19(*∈<N n n ,且成立.类比上述性质,在等比数列{}n b 中,若19=b ,则存在的类似等式为________________________.24.半径为r 的圆的面积2()s r r π=,周长()2C r r π=,若将r 看作(0,+∞)上的变量,则2()'2r r ππ=①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,)+?上的变量,请写出类比①的等式:____________________.上式用语言可以叙述为_________________________.25.已知圆的方程是222r y x =+,则经过圆上一点),(00y x M 的切线方程为200r y y x x =+类比上述性质,可以得到椭圆12222=+b y a x 类似的性质为________.26.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r________________________ 27.设等差数列{}n a 的前n 项和为n S ,则4841281612S S S S S S S ,-,-,-成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T , , ,1612T 成等比数列.28.在Rt △ABC 中,若∠C=90°,AC=b ,BC=a ,斜边AB 上的高为h ,则有结论h 2=,运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,且三棱锥的直角顶点到底面的高为h ,则有结论: .29.已知边长分别为a 、b 、c 的三角形ABC 面积为S ,内切圆O 半径为r ,连接OA 、OB 、OC ,则三角形OAB 、OBC 、OAC 的面积分别为cr 21、ar 21、br 21,由br ar cr S 212121++=得cb a S r ++=2,类比得四面体的体积为V ,四个面的面积分别为4321,,,S S S S ,则内切球的半径R=_________________30.已知点),(),,(2121x x a x B a x A 是函数(1)x y a a =>的图象上任意不同两点,依据图象可知,线段AB 总是位于A 、B 两点之间函数图象的上方,因此有结论121222x x x x a a a ++>成立.运用类比思想方法可知,若点)sin ,(),sin ,(2211x x B x x A 是函数)),0((sin π∈=x x y 的图象上任意不同两点,则类似地有_________________成立.31.如图(1)有面积关系:PA B PAB S S ''∆∆=PA PB PA PB''⋅⋅,则图(2)有体积关系:P A B C P ABC V V '''--=________.32.在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有222b a c +=.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥LMN O -,如果用321,,S S S 表示三个侧面面积,4S 表示截面面积,那么类比得到的结论是 .33.已知正三角形内切圆的半径r 与它的高h 的关系是:13r h =,把这个结论推广到空间正四面体,则正四面体内切球的半径r 与正四面体高h 的关系是 .34.在平面上,到直线的距离等于定长的点的轨迹是两条平行直线.类比在空间中:(1)到定直线的距离等于定长的点的轨迹是 ;(2)到已知平面相等的点的轨迹是 .35.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为24a ;类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为___________ .36.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}n S n 为等差数列,且通项为1(1)2n S d a n n =+-⋅.类似地,请完成下列命题:若各项均为正数的等比数列{}n b 的首项为1b ,公比为q ,前n 项的积为n T ,则 .37.对于问题:“已知关于x 的不等式02>++c bx ax 的解集为(-1,2),解关于x 的不等式02>+-c bx ax ”,给出如下一种解法:解:由02>++c bx ax 的解集为(-1,2),得0)()(2>+-+-c x b x a 的解集为(-2,1),即关于x 的不等式02>+-c bx ax 的解集为(-2,1)参考上述解法,若关于x 的不等式0<++++c x b x a x k 的解集为(-1, 31-) (21,1),则关于x 的不等式0111<++++cx bx ax kx 的解集为________________ 38.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.39.已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A 、B 两点,则当AB 与抛物线的对称轴垂直时,AB 的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为 .40.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫为直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.请仿照直角三角形以下性质:(1)斜边的中线长等于斜边边长的一半;(2)两条直角边边长的平方和等于斜边边长的平方;(3)斜边与两条直角边所成角的余弦平方和等于1.写出直角三棱锥相应性质(至少一条):_____________________.42.通过圆与球的类比,由“半径为R 的圆的内接矩形中,以正方形的面积为最大,最大值为22R .”猜想关于球的相应命题为“半径为R 的球内接六面体中以 的体积为最大,最大值为 ”43.在平面内,三角形的面积为S ,周长为C ,则它的内切圆的半径CS r 2=.在空间中,三棱锥的体积为V ,表面积为S ,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=______________________。

逻辑学-推理归纳推理

逻辑学-推理归纳推理
复合原因ABC是复合现象abc旳原因; 已知B是b旳原因, 已知C是c旳原因, 所以,A是a旳原因。
剩余法旳特点是“从余果求余因” ,其结论 也是或然旳,它合用于观察、试验和日常生活中, 也是科学探索和司法工作必不可少旳措施及手段。
第 制作人:李卫五章 大炮 归纳与类比推理
利用剩余法时应注意旳问题
第一、必须明确被研究旳某复合现象是由某复合 原因引起旳,而且确知其中部分现象是对 应旳部分原因引起旳,而已知旳部分原因 与剩余部分旳现象无因果联络。不然,结 论就不可靠。
第二、注意观察剩余现象与剩余原因是单一旳, 还是复合旳,假如是复合旳,还必须进一 步探索,不能轻率地得出结论。
第 制作人:李卫五章 大炮 归纳与类比推理
提与结论之间存在着必然旳联络,所以我们能够 经过对前提中旳每一对象进行考察并拟定,从而 到达对一般性结论确实定和证明。
第 制作人:李卫五章 大炮 归纳与类比推理
完全归纳推理也有不足
因为它要考察全部旳对象。当对象数 量有限时,利用完全归纳推理有它旳优越 性,可是,当人们所要认识旳事物对象数 量极大,甚或无限时,就极难甚至根本无 法使用完全归纳推理。假如出现这种情况, 就要使用不完全归纳推理。
a
...
所以,A是a旳原因。
这种措施旳特点就是异中求同,即经过排除
事物现象间不同旳原因,寻找共同旳原因来拟定
被研究现象旳原因。
第 制作人:李卫五章 大炮 归纳与类比推理
二、求异法
求异法,也称差别法,其基本内容是:假如
某一被研究现象在第一种场合出现,在第二个场
合不出现,而这两个场合中旳其他情况完全相同,
在对五种措施旳简介中,我们已经了解 了它们不同旳主要作用。但是,在认识过程 中,这几种措施并不是孤立地进行旳,经常 是联合利用旳。尤其是求同法、求异法和共 变法应用旳较多。

2020年高考理科数学《推理与证明》题型归纳与训练及参考答案

2020年高考理科数学《推理与证明》题型归纳与训练及参考答案

2020年高考理科数学《推理与证明》题型归纳与训练合情推理与演绎推理 题型一 归纳推理1 与数字有关的等式的推理 【易错点】例1观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 【答案】 43×n ×(n +1)【解析】观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.2 与不等式有关的推理例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 22≥a 1a 2; a 1+a 2+a 33≥3a 1a 2a 3; a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4; …照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a nn ≥______. 【答案】na 1a 2…a n【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:1+2+3+…+n =12n (n +1); 1+3+6+…+12n (n +1)=16n (n +1)(n +2); 1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3); …可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=____________________. 【答案】1120n (n +1)(n +2)(n +3)(n +4)(n ∈N *) 【解析】 根据式子中的规律可知,等式右侧为 15×4×3×2×1n (n +1)(n +2)(n +3)(n +4) =1120n (n +1)(n +2)(n +3)(n +4) (n ∈N *). 4 与图形变化有关的推理例4某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 【答案】 D【解析】由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.【思维点拨】 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性. 题型二 类比推理例1(1)等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q 2 B .q 2 C.q D.nq【答案】C【解析】由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=(1)21n nn b q-.∴nT n =121n b q-,∴等比数列{nT n }的公比为q ,故选C.(2)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 【答案】P a h a +P b h b +P c h c +P dh d=1 【解析】设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.【思维点拨】 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 题型三 演绎推理例1数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n . 【答案】略【解析】(1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)【思维点拨】演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提. 直接证明与间接证明 题型四分析法 例1已知a >0,求证:a 2+1a 2-2≥a +1a-2.【答案】略 【解析】要证a 2+1a 2-2≥a +1a -2,只要证a 2+1a 2+2≥a +1a+2, 0>a ,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a +22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2,即a 2+1a 2≥2, 而上述不等式显然成立,故原不等式成立.【思维点拨】分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证. 题型五 综合法例1已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值; (2)证明:f (x )≤g (x ). 【答案】a =0,b =1.【解析】(1)f ′(x )=11+x,g ′(x )=b -x +x 2, 由题意得⎩⎪⎨⎪⎧g (0)=f (0),f ′(0)=g ′(0),解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x )=ln (x +1)-13x 3+12x 2-x (x >-1), h ′(x )=1x +1-x 2+x -1=-x 3x +1,∵x >-1,∴当-1<x <0时,h ′(x )>0; 当x >0时,h ′(x )<0.则h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数. h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).【思维点拨】综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法,其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性. 题型六 反证法例1 等差数列{}a n 的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{}a n 的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{}b n 中任意不同的三项都不可能成为等比数列. 【答案】(1)S n =n (n +2)(2)证明略.【解析】(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0,∴p =r ,与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成等比数列.【思维点拨】(1)适用范围:当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.(2)关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【巩固训练】合情推理与演绎推理 题型一 归纳推理1.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是( )【答案】A【解析】从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9 【答案】C【解析】由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6·n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)·(n-8)=0,所以n =8,故共有8层.3.观察下列等式:12=1; 12-22=-3; 12-22+32=6;12-22+32-42=-10; …依此规律,第n 个等式可为________【答案】12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2【解析】第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =n (n +1)2, 故有12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2. 题型二 类比推理1.若数列{}a n 是等差数列,则数列{}b n ⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{}c n 是等比数列,且{}d n 也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nn C .d n =nc n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n【答案】D【解析】若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D .2.在平面几何中:△ABC 的∠C 内角平分线CE 分AB 所成线段的比为AC BC =AEBE .把这个结论类比到空间:在三棱锥A -BCD 中(如图),平面DEC 平分二面角A -CD -B ,且与AB 相交于E ,则得到类比的结论是______【答案】AE EB =S △ACDS △BCD【解析】由平面中线段的比转化为空间中面积的比可得AE EB =S △ACD S △BCD .题型三 演绎推理1.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.【答案】证明略【解析】设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.3.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多.③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B. 直接证明与间接证明 题型四分析法1.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0【答案】C【解析】由于a >b >c ,且a +b +c =0,所以0,0,a c b a c ><=--且,b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔ -2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔ (a -c )(2a +c )>0⇔(a -c )(a -b )>0.2.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】C【解析】不妨设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证2a +7+2a (a +7)<2a +7+2·(a +3)(a +4), 只要证a 2+7a <a 2+7a +12, 只要证0<12,∵0<12成立,∴P <Q 成立.3.要使3a -3b <3a -b 成立,则a ,b 应满足( )A .ab <0且a >bB .ab >0且a >bC .ab <0且a <bD .ab >0且a >b 或ab <0且a <b 【答案】D【解析】要使3a -3b <3a -b 成立,只要(3a -3b )3<(3a -b )3成立,即a -b -33a 2b +33ab 2<a -b 成立,只要3ab 2<3a 2b 成立,只要ab 2<a 2b 成立,即要ab (b -a )<0成立, 只要ab >0且a >b 或ab <0且a <b 成立. 题型五 综合法1.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2【答案】D【解析】∵a >0,b >0,c >0, ∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.2.如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________. 【答案】a ≥0,b ≥0且a ≠b【解析】∵a a +b b -(a b +b a )=a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b . 3.若a ,b ,c 是不全相等的正数,求证: lga +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 【答案】证明略【解析】∵a ,b ,c ∈(0,+∞), ∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立. 上式两边同时取常用对数,得 lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .题型六反证法1.用反证法证明命题:若a+b+c为偶数,则“自然数a,b,c恰有一个偶数”时正确反设为() A.自然数a,b,c都是奇数B.自然数a,b,c都是偶数C.自然数a,b,c中至少有两个偶数D.自然数a,b,c中都是奇数或至少有两个偶数【答案】D【解析】由于“自然数a,b,c中恰有一个偶数”的否定是“自然数a,b,c都是奇数或至少有两个偶数”,故选D.2.用反证法证明命题“已知a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【答案】A【解析】用反证法证明命题的步骤中第一步是假设命题的反面成立,而“方程x3+ax+b=0至少有一个实根”的反面是“方程x3+ax+b=0没有实根”,故选A.3.已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.【答案】略【解析】(1)证明由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,∴SA⊥平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.11∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.∴不存在这样的点F,使得BF∥平面SAD.12。

高考数学常考问题专题讲解 类比推理问题—高考命题新亮点

高考数学常考问题专题讲解 类比推理问题—高考命题新亮点

类比推理问题—高考命题新亮点类比是常见而重要的一种数学思想方法,它是指在新事物与已知事物之间的某些方面作类似的比较,把已经获得的知识、方法、理论迁移到新事物中,从而解决新问题。

类比不仅是一种富有创造性的方法,而且更能体现数学的美感。

(一)不同知识点之间的类比数学中的不同知识点在教材中是相对分散的,知识点之间的联系需要教师通过自己的数学设计展示给学生,从而使得学生的概念图网络更加丰富和结构化。

它不仅可以在知识复习中使用,也可以在新知识的学习中进行。

1、立体几何中的类比推理【例1】若从点O所作的两条射线OM、ON上分别有点M1、M2与点N1、N 2,则三角形面积之比为:若从点O所作的不在同一个平面内的三条射线OP、OQ和OR上分别有点P1、P2与点Q1、Q2和R1、R2,则类似的结论为:。

【分析】在平面中是两三角形的面积之比,凭直觉可猜想在空间应是体积之比,故猜想(证明略)评注本题主要考查由平面到空间的类比。

要求考生由平面上三角形面积比的结论类比得出空间三棱锥体积比的相应结论。

【例2】在中有余弦定理:拓展到空间,类比三角形的余弦定理,写出斜三棱柱的3个侧面面积与其中两个侧面所成二面角之间的关系式,并予以证明。

【分析】根据类比猜想得出其中为侧面为与所成的二面角的平面角。

证明:作斜三棱柱的直截面DEF,则为面与面所成角,在中有余弦定理:,同乘以,得即评注本题考查由平面三角形的余弦定理到空间斜三角柱的拓展推广,因为类比是数学发现的重要源泉,因此平时的教学与复习中更要注意类比等思想方法的学习。

【例3】在平面几何中有“正三角形内任一点到三边的距离之和为定值”,那么在立体几何中有什么结论呢?解析“正三角形”类比到空间“正四面体”,“任一点到三边距离之和”类比到空间为“任一点到四个面的距离之和”,于是猜想的结论为:正四面体内任一点到其各面距离之和为定值。

图1如图1,设边长为的正三角形内任一点到其三边的距离分别为、、,将分割成三个小三角形,则有,即距离之和为正三形的高(定值)图2类似地,如图2,设棱长为的正四面体内任一点到四个面的距离分别为、、、,将正四面体分割成以为顶点,以四个面为底面的小三棱锥,则有,于是所以为定值【例4】在平面几何中,有勾股定理:设的两边、互相垂直,则。

归纳推理考试题目及答案

归纳推理考试题目及答案

归纳推理考试题目及答案一、单项选择题(每题2分,共10分)1. 归纳推理的主要形式是:A. 类比推理B. 演绎推理C. 归纳推理D. 辩证推理答案:A2. 下列哪个选项不是归纳推理的特点?A. 从特殊到一般B. 从一般到特殊C. 从个别到一般D. 从具体到抽象答案:B3. 归纳推理的结论具有:A. 必然性B. 偶然性C. 确定性D. 不确定性答案:D4. 归纳推理的前提与结论之间的关系是:A. 因果关系B. 逻辑关系C. 相关关系D. 无关关系答案:C5. 归纳推理的结论是:A. 必然的B. 偶然的C. 确定的D. 不确定的答案:D二、多项选择题(每题3分,共15分)6. 归纳推理的步骤包括:A. 观察B. 比较C. 概括D. 演绎答案:ABC7. 归纳推理的类型有:A. 完全归纳推理B. 不完全归纳推理C. 简单归纳推理D. 复杂归纳推理答案:AB8. 归纳推理的局限性包括:A. 以偏概全B. 以全概偏C. 以个别代表一般D. 以一般代表个别答案:AC9. 归纳推理的结论可能受到以下哪些因素的影响?A. 样本的代表性B. 样本的数量C. 观察者的主观性D. 观察者的知识水平答案:ABCD10. 下列哪些方法可以提高归纳推理的可靠性?A. 增加样本数量B. 选择具有代表性的样本C. 排除无关变量的干扰D. 重复实验答案:ABCD三、判断题(每题2分,共10分)11. 归纳推理是一种从一般到特殊的推理过程。

(×)12. 归纳推理的结论是绝对确定的。

(×)13. 归纳推理的结论是相对确定的。

(√)14. 归纳推理的结论可以被完全证明。

(×)15. 归纳推理的结论可以被证伪。

(√)四、简答题(每题5分,共20分)16. 简述归纳推理与演绎推理的主要区别。

答案:归纳推理是从特殊到一般,而演绎推理是从一般到特殊。

17. 请举例说明归纳推理在日常生活中的应用。

答案:例如,通过观察多个苹果都是红色的,我们可能会归纳出苹果通常是红色的。

归纳推理与类比推理

归纳推理与类比推理

归纳推理与类比推理一、基础知识:(一)归纳推理:1、归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理2、处理归纳推理的常见思路:(1)利用已知条件,多列出(或计算出)几个例子,以便于寻找规律(2)在寻找规律的过程中,要注意观察哪些地方是不变的(形成通式的结构),哪些地方是变化的(找到变量),如何变化(变量变化的规律)(3)由具体例子可将猜想的规律推广到一般情形,看是否符合题意3、常见的归纳推理类型:(1)函数的迭代:设f 是D D →的函数,对任意x D ∈,记()()()()()()()()()()()()0121,,,n n f x x f x f x f x f f x f x f f x +⎡⎤====⎡⎤⎣⎦⎣⎦ ,则称函数()()n f x 为()f x 的n 次迭代;对于一些特殊的函数解析式,其()()n f x 通常具备某些特征(特征与n )有关。

在处理此类问题时,要注意观察解析式中项的次数,式子结构以及系数的特点,以便于从具体例子中寻找到规律,得到()()n f x 的通式(2)周期性:若寻找的规律呈现周期性,则可利用函数周期性(或数列周期性)的特点求出某项或分组(按周期分组)进行求和。

(3)数列的通项公式(求和公式):从数列所给的条件中,很难利用所学知识进行变形推导,从而可以考虑利用条件先求出几项,然后找到规律,猜出数列的通项公式(求和公式)(4)数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项。

对于数阵首先要明确“行”与“列”的概念。

横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列。

例如:34a 表示第3行第4列。

在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列。

类比推理试题及参考答案解析汇总

类比推理试题及参考答案解析汇总

【例题】窑:陶瓷A、唯物主义:唯心主义B、整数:负整数C、青年:少年D、烤箱:面包【例题】纸:草A、火药:硝石B、磁石:石头C、树皮:细胞D、酱油:蚕豆【例题】税收:调节:差距A、政府:宏观:管理B、企业:利润:工资C、市场:计划:资源D、篝火:驱逐:寒冷【例题】校对:印刷:出版A、谈判:签署:废除B、抢劫:入狱:判刑C、选举:组阁:执政D、研发:转让:投入【例题】风俗:习惯A、男生:女生B、科学:技术C、江苏:泰州D、跳跃:动作【解析】D。

在“窑”中烤制“陶瓷”,在“烤箱”中烤制“面包”。

【解析】A。

题干存在两个属性,一是“纸”以“草”为原料,二是“纸”是中国四大发明之一。

如果只看到第一个属性,容易误选D。

A项中“火药”的原料是硝石,且“火药”也是四大发明之一。

【解析】D。

思路一:可用连读法,“税收”的作用是“调节”收入“差距”,“篝火”的作用是“驱逐”“寒冷。

”思路二:可用词性甄别法,题干三个词分别是名词、动词、名词,只有D 符合。

【解析】C。

题干属性有二,一是时间上严格的顺序性,二是前者为后者的必要条件。

唯有C符合这两个属性。

A项中,“签署”可以不经“谈判”,B项中;“抢劫”如果符合法定条件,如抢劫者不具有刑事责任能力,则未必“入狱”;D项中时序颠倒,“投入”应在“研发”之前。

【解析】D。

“风俗”是“习惯”的一种,故题干是种属关系,D项与之相符。

A项是并列关系,B项无种属关系,C项是属种关系。

A.富豪:空想B.郁闷:心情C.大楼:小屋D.蜡笔:图画【例题】歌声:姿势A.重要;严格B.美丽、动听C.悠扬;优美D.听觉;状态【例题】蜻蜓:昆虫A.学生:学校B.芹菜:蔬菜C.朋友:敌人D.友情:爱情【例题】古生物学者:化石A.鱼:脊椎动物B.起源:基督教C.警察:盗贼D.考古学家:古董【例题】蝉:知了A.土豆:玉米B.西红柿:蕃茄C.棉花:花生D.东瓜:南瓜【解析】B。

题中“跳跃”可构成一个“动作”,选项中只有“郁闷”属于“心情”描写,故此题选B。

高三总复习政治检测题 学会归纳与类比推理

高三总复习政治检测题 学会归纳与类比推理

学会归纳与类比推理一、选择题1.依据前提所考察对象的范围,归纳推理分为完全归纳推理和不完全归纳推理,二者既有联系又有明显的区别。

其区别表现为()①前者在前提中需要考察认识事物的全部对象,后者只需要考察部分对象即可②前者属于必然性推理,结论真实可靠;后者属于或然性推理,结论不一定真实可靠③二者都是由个别性或特殊性的知识为前提,推导出一般性的知识作为结论④二者都是由一般性的知识为前提,推导出个别性或特殊性的知识作为结论A.①②B.①③C.②④D.③④解析:选A由教材知识分析可知,①②符合题意。

③分析了二者的相同点而非不同点,不符合题意。

演绎推理是从一般性前提推出个别性结论的推理,④说法错误。

2.在实际生活和工作中,由于有的认识对象纷繁复杂,人们的精力、能力和条件有限,要想更加科学、有效率地认识事物,就需要运用不完全归纳推理。

下面关于不完全归纳推理的说法正确的是()①不完全归纳推理因为前提没有包含认识事物的全部对象,因此结论一定是错误的②简单枚举归纳推理过程中只要没发现反例情况,由部分情况得出的一般性结论就一定科学③科学归纳推理分析了事物之间的因果联系,因此它比简单枚举归纳推理的结论的可靠性要高④不完全归纳推理因未穷尽事物的全部对象,仅指没有遇到反例,所以属于或然推理A.①②B.①③C.②④D.③④解析:选D“因此结论一定是错误的”说法绝对,①排除;“就一定科学”说法绝对,②不选;根据教材知识分析可知,③④正确。

3.“坚持和加强党的全面领导能为实现中华民族伟大复兴凝聚磅礴之力;我们坚持和加强党的领导,所以,我们实现中华民族伟大复兴拥有磅礴之力。

”从个别与一般关系的角度看,下列各选项中的推理形式与材料相一致的是()①金受热体积膨胀,银受热体积膨胀,铁受热体积膨胀,所以,金属受热体积都会膨胀②声和光都可以直线传播,都可以反射和折射;因此,声有波动性质,光也有波动性质③只有坚持改革开放,国家才能发展;我国坚持改革开放,所以我国会取得进一步发展④所有的生物都可以进行新陈代谢,大熊猫是生物,所以,大熊猫可以进行新陈代谢A.①③B.②④C.①②D.③④解析:选D材料是从一般性前提推出个别性结论的演绎推理,③④与材料的推理形式一致,应选。

归纳推理与类比推理有答案

归纳推理与类比推理有答案

合情推理合情推理的推理过程为:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理(简称类比).由此可知:归纳推理是由部分到整体,由特殊到一般的推理,类比推理是由特殊到特殊的推理,由这两种推理方式即合情推理得到的结论未必正确,因此只能作为猜想,其正确与否需要通过演绎推理加以证明.归纳推理:1、在数列}{n a 中,*11,22,1N n a a a a nn n ∈+==+,试猜想这个数列的通项公式。

12+=n a n 2、已知数列}{n a 的前n 项和为n S ,321-=a 且)2(21≥=++n a S S n n n ,计算4321,,,S S S S ,并猜想n S 的表达式。

*,21N n n n S n ∈++-= 3、已知无穷数列1,4,7,10,……,则4891是它的第 项。

16314、下列四个图形中(如图2―1―1),着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )AA.a n =3n -1B.a n =3nC.a n =3n -2nD.a n =3n -1+2n -35、观察下列各等式:262,2464+=--5325434+=--,7127414+=--,102210424-+=---,依照以上各式成立的规律,得到一般性的等式为( )A A.824(8)4n n n n -+=--- B.1(1)52(1)4(1)4n n n n ++++=+-+- C.424(4)4n n n n ++=-+-D.152(1)4(5)4n n n n +++=+-+-6、==,=(a 、b 均为实数),请推测a =________,b =_______.6,357、观察下列等式n n i n i 212121+=∑= n n n i n i 6121312312++=∑= 23413412141n n n in i ++=∑= n n n n i n i 36131215134541-++=∑= 2456551211252161n n n n in i -++=∑= n n n n n i n i 42161212171356761+-++=∑= ……012211111a n a n a n a n a n a ik k k k k k k k k n i ++++++=----++=∑可以推测,当k ≥2(k ∈N *)时,21,111=+=+k k a k a ,a k -1=__________,a k -2=_____________0,12k 8、已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个整数对是________.把a ,b ,c ,d 排成形如⎪⎪⎭⎫ ⎝⎛d c b a 的式子,称为二行二列矩阵,定义矩阵的一种运算该⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛dy cx by ax y x d c b a .,运算的几何意义为:平面上的点(x ,y )在矩阵⎪⎪⎭⎫ ⎝⎛d c b a 的作用下变换成点(ax +by ,cx +dy ).(Ⅰ)求点(2,3)在⎪⎪⎭⎫ ⎝⎛0110的作用下形成的点的坐标. (Ⅱ)若曲线x 2+4xy +2y 2=1在矩阵⎪⎪⎭⎫ ⎝⎛11b a 的作用下变成曲线x 2-2y 2=1,求a +b 的值.解:(Ⅰ)⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛23320110,所以点(2,3)在⎪⎪⎭⎫ ⎝⎛0110的作用下变成点(3,2). (Ⅱ)在曲线x 2+4xy +2y 2=1上任取一点(m ,n ),则⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n bm an m n m b a 11,将(m +an ,bm +n )代入x 2-2y 2=1 得(m +an )2-2(bm +n )2=1,即(1-2b 2)m 2+2(a -2b )mn +(a 2-2)n 2=1又点(m ,n )在曲线x 2+4xy +2y 2=1上,所以m 2+4mn +2n 2=1由待定系数法可知:⎪⎩⎪⎨⎧=-=-=-224)2(212122a b a b解得⎩⎨⎧==02b a 所以a +b =2。

高中数学第三章推理与证明1归纳与类比类比题的题型及解法素材1

高中数学第三章推理与证明1归纳与类比类比题的题型及解法素材1

类比题的题型及解法类比题是近几年在数学高考中新出现的题型,它的特点是根据两个对象或两类事物之间存在着一些相同或相似的属性,猜测它们之间可能具有其它一些相同或相似的属性的思维方法.所以试题是以类比思维为轴心,与数学方法、数学思想和数学基础知识相整合,着重考查学生的探究能力、创造能力、推理能力,对考生的能力和素质的要求比较高.由于题意新颖,背景独特,在解答时有一定困难。

以下介绍几种高考中的类比题的题型和解法。

一、特殊向一般类比例1(2001年上海高考)已知两个圆:221xy +=①与22(3)1xy +-=②,则由①式减去②式可得上述两圆的对称轴方程。

将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,即已知命题应成为所推广命题的一个特殊。

推广的命题为_____.解析:考生对此题的理解会出现两个误区,一是认为命题就是文字叙述,所以就用文字语言来回答,而这是困难的;另一个误区是没有把握住两个圆对称必须要求两个圆的半径相等,且两圆的圆心位置要不同.可设两个圆的方程为:222()()x a y b r -+-=①和222()()x c y d r -+-=②(a c ≠或b d ≠,0r >),则由①式减去②式得两圆的对称轴方程.二、两个参量向多个参量类比例2 (2001年上海春季高考)若记号“*”表示两个实数a 与b的算术平均数的运算,即2a ba b +*=,则两边均含有运算符号“*”和“+”,且对于任意3个实数a b c ,,都能成立的一个等式可以是 . 解析:由于本题是探索性和开放性问题,问题的解决需要经过一定的探索过程,并且答案不惟一。

这题要把握住2a ba b +*=,还要注意到试题的要求不仅类比推广到三个数,而且等式两边均含有运算符号“*”和“+”,则可容易得到()()()a b c a b a c +*=+*+.正确的结论还有:()()()a b c a c b c *+=*+*,()()a b c b a c *+=*等.三、同类之间类比1.等差数列与等比数列类比例 3 (2000年上海高考)在等差数列{}na 中,若10a=,则有等式121219(19)n n a a a a a a n n *-+++=+++<∈N ,成立.类比上述性质,相应地:在等比数列{}nb 中,若91b=,则有等式 成立.解析:设等差数列{}na 的公差为d ,则9ad=-,8129ad a d=-=-,,,而11ad=,122a d=,,199ad=,恰好9a 与118a a ,与121a a ,,与19a 互为相反数,因此有等式121219(19)n n a a a a a a n n *-+++=+++<∈N ,成立.在等比数列{}nb 中类比,设公比为q ,因为91b=,则87128111bb b q q q===,,,,而28101117bq b q b q ===,,,,恰好8b 与107b b ,与111b b ,,与17b 是互为倒数,不难得到:121217(17)n n b bb b b b n n *-=<∈N ,.2.椭圆与双曲线类比例4 (2003年上海春季高考)设12F F ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右两个焦点.已知椭圆具有性质:若M N ,是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM PN ,的斜率都存在,并记为PMPNkk ,时,那么PMk 与PNk 之积是与点P 位置无关的定值.试对双曲线22221x y a b -=写出具有类似特征的性质,并加以证明.解析:类似的性质为:若M N ,是双曲线22221x y a b -=上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM PN ,的斜率都存在,并记为PM PNk k ,时,那么PMk 与PNk 之积是与点P 位置无关的定值.可设点()M m n ,,则点N 的坐标为()m n --,有22221m n a b -=.又设点()P x y ,,则由PMPN y n y n k k x m x m-+==-+,,得2222PMPNy n y n y n kk x m x m x m -+-==-+-··,把22222b x y b a=-,22222b m n b a=-代入上式,得22PMPNb kk a=·.同类之间的类比在圆锥曲线中,常常以姐妹题形式出现,这样对学生思维和素质的考查具有很好的功能,而且题型新颖,避免了传统的考法的单调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第43练 归纳与类比推理[内容精要] 推理是数学的基本思维过程、也是我们在学习和生活中经常使用的思维方式、在数学学习中具有特殊的地位和作用、在高考中、选择题或填空题一般利用归纳或类比思想来单独考查有关的合情推理问题、题型一 利用归纳推理求解相关问题例1 如图所示、是某小朋友在用火柴拼图时呈现的图形、其中第1个图形用了3根火柴、第2个图形用了9根火柴、第3个图形用了18根火柴…、则第2 014个图形用的火柴根数为( )A 、2 012×2 015B 、2 013×2 014C 、2 013×2 015D 、3 021×2 015破题切入点 观察图形的规律、写成代数式归纳可得、 答案 D解析 由题意、第1个图形需要火柴的根数为3×1; 第2个图形需要火柴的根数为3×(1+2); 第3个图形需要火柴的根数为3×(1+2+3); ……由此、可以推出、第n 个图形需要火柴的根数为3×(1+2+3+…+n )、 所以第2 014个图形所需火柴的根数为3×(1+2+3+…+2 014) =3×2 014×(1+2 014)2=3 021×2 015、故选D.题型二 利用类比推理求解相关问题例2 如图所示、在平面上、用一条直线截正方形的一个角、截下的是一个直角三角形、有勾股定理c 2=a 2+b 2.空间中的正方体、用一平面去截正方体的一角、截下的是一个三条侧棱两两垂直的三棱锥、若这三个两两垂直的侧面的面积分别为S 1、S 2、S 3、截面面积为S 、类比平面中的结论有________、破题切入点 由平面图形中各元素到空间几何体中各元素的类比、答案 S 2=S 21+S 22+S 23解析 建立从平面图形到空间图形的类比、在由平面几何的性质类比推理空间立体几何的性质时、注意平面几何中点的性质可类比推理空间几何中线的性质、平面几何中线的性质可类比推理空间几何中面的性质、平面几何中面的性质可类比推理空间几何中体的性质、所以三角形类比空间中的三棱锥、线段的长度类比图形的面积、于是作出猜想:S 2=S 21+S 22+S 23.总结提高 (1)归纳推理的三个特点①归纳推理的前提是几个已知的特殊对象、归纳所得到的结论是未知的一般现象、该结论超越了前提所包含的范围;②由归纳推理得到的结论具有猜测的性质、结论是否准确、还需要经过逻辑推理和实践检验、因此归纳推理不能作为数学证明的工具;③归纳推理是一种具有创造性的推理、通过归纳推理得到的猜想、可以作为进一步研究的起点、帮助发现问题和提出问题、 (2)类比推理的一般步骤①定类、即找出两类对象之间可以确切表述的相似特征;②推测、即用一类对象的已知特征去推测另一类对象的特征、从而得出一个猜想;③检验、即检验猜想的正确性、要将类比推理运用于简单推理之中、在不断的推理中提高自己的观察、归纳、类比能力、1、已知x >0、观察不等式x +1x≥2x ·1x =2、x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3、…、由此可得一般结论:x +ax n ≥n +1(n ∈N *)、则a 的值为( )A 、n nB 、n 2C 、3nD 、2n 答案 A解析 根据已知、续写一个不等式:x +33x 3=x 3+x 3+x 3+33x 3≥44x 3·x 3·x 3·33x3=4、由此可得a =n n .故选A. 2、在平面内点O 是直线AB 外一点、点C 在直线AB 上、若OC →=λOA →+μOB →、则λ+μ=1;类似地、如果点O 是空间内任一点、点A 、B 、C 、D 中任意三点均不共线、并且这四点在同一平面内、若DO →=xOA →+yOB →+zOC →、则x +y +z 等于( ) A 、0 B 、-1 C 、1 D 、±1 答案 B解析 在平面内、由三角形法则、得AB →=OB →-OA →、BC →=OC →-OB →. 因为A 、B 、C 三点共线、 所以存在实数t 、使AB →=tBC →、即OB →-OA →=t (OC →-OB →)、 所以OC →=-1t OA →+(1t +1)OB →.因为OC →=λOA →+μOB →、 所以λ=-1t 、μ=1t +1、所以λ+μ=1.类似地、在空间内可得OD →=λOA →+μOB →+ηOC →、λ+μ+η=1. 因为DO →=-OD →、所以x +y +z =-1.故选B.3、观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125、…、则52 014的末四位数字为( )A 、3125B 、5625C 、0625D 、8125 答案 B解析 由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125、故周期T =4.又由于2 014=503×4+2、因此52 014的末四位数字是5625.4、观察下列各式:a +b =1、a 2+b 2=3、a 3+b 3=4、a 4+b 4=7、a 5+b 5=11、…、则a 10+b 10等于( )A 、28B 、76C 、123D 、199 答案 C解析 记a n +b n =f (n )、则f (3)=f (1)+f (2)=1+3=4; f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11; f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123、即a 10+b 10=123.5、已知正三角形内切圆的半径是其高的13、把这个结论推广到空间正四面体、类似的结论是( )A 、正四面体的内切球的半径是其高的12B 、正四面体的内切球的半径是其高的13C 、正四面体的内切球的半径是其高的14D 、正四面体的内切球的半径是其高的15答案 C解析 设正四面体的每个面的面积是S 、高是h 、内切球半径为R 、 由体积分割可得:13SR ×4=13Sh 、所以R =14h .故选C.6、我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数、以十六乘之、九而一、所得开立方除之、即立圆径、“开立圆术”相当于给出了已知球的体积V 、求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式、根据π=3.14159…判断、下列近似公式中最精确的一个是( ) A 、d ≈ 3169VB 、d ≈32VC 、d ≈3300157V D 、d ≈32111V 答案 D解析 由V =43π(d 2)3、得d = 36V π、设选项中常数为a b 、则π=6ba ;A 中代入得π=6×916=3.375、B 中代入得π=6×12=3、C 中代入得π=6×157300=3.14、D 中代入得π=6×1121=3.142857、由于D 中值最接近π的真实值、7、(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数、如三角形数1,3,6,10、…、第n 个三角形数为n (n +1)2=12n 2+12n 、记第n 个k 边形数为N (n 、k )(k ≥3)、以下列出了部分k边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n 、正方形数 N (n,4)=n 2、 五边形数N (n,5)=32n 2-12n 、六边形数N (n,6)=2n 2-n………………………………………可以推测N (n 、k )的表达式、由此计算N (10,24)=_________________________. 答案 1 000解析 由N (n,4)=n 2、N (n,6)=2n 2-n 、可以推测:当k 为偶数时、N (n 、k )=k -22n 2+4-k2n 、∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.8、两点等分单位圆时、有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时、有相应正确关系为sin α+sin(α+2π3)+sin(α+4π3)=0.由此可以推知:四点等分单位圆时的相应正确关系为________________________、答案 sin α+sin(α+π2)+sin(α+π)+sin(α+3π2)=0解析 由类比推理可知、四点等分单位圆时、α与α+π的终边互为反向延长线、α+π2与α+3π2的终边互为反向延长线、如图、9、(2013·陕西)观察下列等式 12=1、 12-22=-3、 12-22+32=6、 12-22+32-42=-10、 …照此规律、第n 个等式可为________、答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子、每次增加一项、故第n 个等式左边有n 项、指数都是2、且正、负相间、所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间、其绝对值分别为1,3,6,10,15,21、….设此数列为{a n }、则a 2-a 1=2、a 3-a 2=3、a 4-a 3=4、a 5-a 4=5、…、a n -a n -1=n 、各式相加得a n -a 1=2+3+4+…+n 、即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 10、如图1是一个边长为1的正三角形、分别连接这个三角形三边中点、将原三角形剖分成4个三角形(如图2)、再分别连接图2中一个小三角形三边的中点、又可将原三角形剖分成7个三角形(如图3)、…、依此类推、设第n 个图中原三角形被剖分成a n 个三角形、则第4个图中最小三角形的边长为________;a 100=________.答案 18298解析 由三角形的生成规律得、后面的每一个图形中小三角形的边长均等于前一个图形中小三角形边长的12、即最小三角形的边长是以1为首项、12为公比的等比数列、则第4个图中最小三角形的边长等于1×123=18、由a 2-a 1=a 3-a 2=…=a n -a n -1=3可得、数列{a n }是首项为1、公差为3的等差数列、则a 100=a 1+99×3=1+297=298. 11、观察下列不等式: 1+122<32、 1+122+132<53、 1+122+132+142<74、 …照此规律、第五个...不等式为_________________________________、 答案 1+122+132+142+152+162<116解析 观察每行不等式的特点、每行不等式左端最后一个分数的分母与右端值的分母相等、且每行右端分数的分子构成等差数列、 ∴第五个不等式为1+122+132+142+152+162<116.12、(2013·福建)当x ∈R 、|x |<1时、有如下表达式: 1+x +x 2+…+x n +…=11-x. 两边同时积分得:120⎰1d x +120⎰x d x +120⎰x 2d x +…+120⎰x n d x +…=120⎰11-xd x 、 从而得到如下等式:1×12+12×(12)2+13×(12)3+…+1n +1×(12)n +1+…=ln 2. 请根据以上材料所蕴含的数学思想方法计算:C 0n ×12+12C 1n ×(12)2+13C 2n ×(12)3+…+1n +1C n n ×(12)n +1=________.答案1n +1[(32)n +1-1]解析 设f (x )=C 0n x +12C 1n x 2+13C 2n x 3+…+1n +1C n nx n +1、 ∴f ′(x )=C 0n +C 1n x +C 2n x 2+…+C n n x n =(1+x )n .∴f ⎝⎛⎭⎫12=120⎰(1+x )nd x =⎪⎪1n +1(1+x )n +112=1n +1⎝⎛⎭⎫1+12n +1-1n +1(1+0)n +1=1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-1、即C 0n ×12+12C 1n ×⎝⎛⎭⎫122+13C 2n ×⎝⎛⎭⎫123+…+1n +1C n n ×⎝⎛⎭⎫12n +1=1n +1⎣⎡⎦⎤⎝⎛⎭⎫32n +1-1.。

相关文档
最新文档