秦都区三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秦都区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使m∥β,应选择下面四个选项中的()
A.①④B.①⑤C.②⑤D.③⑤
2.若f(x)为定义在区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是()
①f(x)=,②f(x)=,③f(x)=,④f(x)=.
A.4 B.3 C.2 D.1
3.如果命题p∨q是真命题,命题¬p是假命题,那么()
A.命题p一定是假命题B.命题q一定是假命题
C.命题q一定是真命题D.命题q是真命题或假命题
4.某程序框图如图所示,则输出的S的值为()
A.11 B.19 C.26 D.57
5.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P 的坐标满足不等式x2+y2≤2的概率为()
A.B.C.D.
6.某程序框图如图所示,该程序运行后输出的S的值是()
A .﹣3
B .﹣
C .
D .2
7. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)
+(cos 2θ)
(θ∈R ),则(
+


的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
8. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )
A .[﹣1,﹣]
B .[﹣,﹣]
C .[﹣1,0]
D .[﹣,0]
9. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 10.已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
11.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )
A .
B .
C .
D .
12.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )
A .
B .
C .
D .6
二、填空题
13.已知函数f (x )=
恰有两个零点,则a 的取值范围是 .
14.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.
15.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
16.
= .
17.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
18.【徐州市2018届高三上学期期中】已知函数
(为自然对数的底数),若
,则实数 的取值范围为______.
三、解答题
19.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面
积.
20.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆
的右顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.
21.在数列中,,,其中,.
(Ⅰ)当时,求的值;
(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;
(Ⅲ)当时,证明:存在,使得.
22.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)
在椭圆内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.
23.(本小题满分12分)已知两点)0,1(1 F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P F Q =+,求直线m 的方程.
24.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).
(Ⅰ)求S n 与数列{a n }的通项公式;
(Ⅱ)设b n =(n ∈N *
),求使不等式b 1+b 2+…+b n >
成立的最小正整数n .
秦都区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,
故选D
【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.2.【答案】C
【解析】解:由区间G上的任意两点x1,x2和任意实数λ(0,1),
总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),
等价为对任意x∈G,有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),
①f(x)=的导数f′(x)=,f″(x)=,故在(2,3)上大于0恒成立,故①为“上进”函数;
②f(x)=的导数f′(x)=,f″(x)=﹣•<0恒成立,故②不为“上进”函数;
③f(x)=的导数f′(x)=,f″(x)=
<0恒成立,
故③不为“上进”函数;
④f(x)=的导数f′(x)=,f″(x)=,当x∈(2,3)时,f″(x)>0恒成立.
故④为“上进”函数.
故选C.
【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.3.【答案】D
【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,
又∵命题“非p”也是假命题,
∴命题p为真命题.
故命题q为可真可假.
故选D
【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.4.【答案】C
【解析】解:模拟执行程序框图,可得
S=1,k=1
k=2,S=4
不满足条件k>3,k=3,S=11
不满足条件k>3,k=4,S=26
满足条件k>3,退出循环,输出S的值为26.
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.
5.【答案】D
【解析】解:作出不等式组对应的平面区域如图,
则对应的区域为△AOB,
由,解得,即B(4,﹣4),
由,解得,即A(,),
直线2x+y﹣4=0与x轴的交点坐标为(2,0),
则△OAB的面积S==,
点P的坐标满足不等式x2+y2≤2区域面积S=,
则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,
故选:D
【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.
6.【答案】B
【解析】解:由程序框图得:第一次运行S==﹣3,i=2;
第二次运行S==﹣,i=3;
第三次运行S==,i=4;
第四次运行S==2,i=5;
第五次运行S==﹣3,i=6,
…S的值是成周期变化的,且周期为4,
当i=2015时,程序运行了2014次,2014=4×503+2,
∴输出S=﹣.
故选:B.
【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.
7.【答案】C
【解析】解:∵=(sin2
θ)+(cos2θ)(θ∈R),
且sin2θ+cos2θ=1,
∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),
即﹣=cos2
θ•(﹣),
可得=cos2
θ•,
又∵cos2θ∈[0,1],∴P在线段OC上,
由于AB边上的中线CO=2,
因此(+)•=2•,设||=t,t∈[0,2],
可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,
∴当t=1时,(+)•的最小值等于﹣2.
故选C.
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
8.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.
9. 【答案】C
【解析】根据分层抽样的要求可知在C 社区抽取户数为249
2
108180270360180108=⨯=++⨯.
10.【答案】A
【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15,
故选:A .
11.【答案】C
【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,
由以上各视图的描述可知其俯视图符合C 选项. 故选:C .
【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.
12.【答案】B
【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,
设底面边长为a ,则,∴a=6,
故三棱柱体积.
故选B
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
二、填空题
13.【答案】 (﹣3,0) .
【解析】解:由题意,a ≥0时,
x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立, f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;
﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3
﹣ax 2
﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3
﹣ax 2
﹣1在(﹣∞,0)上有零点﹣1,不符合题意;
a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3
﹣ax 2
﹣1在(﹣∞,0)上有两个零点,不符合题意;
综上所述,a 的取值范围是(﹣3,0). 故答案为(﹣3,0).
14.【答案】26 【解析】
试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和
11313713()
13262
a a S a +=
==.
考点:等差数列的性质和等差数列的和. 15.【答案】 24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
16.【答案】2.
【解析】解:=2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
17.【答案】4
【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,
所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
18.【答案】
【解析】令,则
所以为奇函数且单调递增,因此

点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内
三、解答题
19.【答案】
【解析】解:(1)f(x)=•=2cos2
x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,
令﹣+2kπ≤2x+≤+2kπ,
解得﹣+kπ≤x≤+kπ,
函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],
(Ⅱ)∵f(A)=2
∴2sin(2A+)+1=2,即sin(2A+)=….
又∵0<A<π,∴A=.…
∵a=,
由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…
∵sinB=2sinC∴b=2c ②…
由①②得c2=.…
∴S△ABC=.…
20.【答案】
【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,
又∵直线x﹣y﹣2=0经过椭圆的右顶点,
∴右顶点为(2,0),即a=2,c=,b=1,…
∴椭圆方程为:.…
(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)
联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…
则,
于是…
又直线OM、MN、ON的斜率依次成等比数列.
∴…
由m≠0得:
又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2
显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,
直线OM、ON中至少有一个斜率不存在,与已知矛盾)…
设原点O到直线的距离为d,则
∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…
【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.
21.【答案】
【解析】【知识点】数列综合应用
【试题解析】(Ⅰ),,.
(Ⅱ)成等差数列,,
即,
,即.
,.
将,代入上式,解得.
经检验,此时的公差不为0.
存在,使构成公差不为0的等差数列.
(Ⅲ),
又,令.
由,

……

将上述不等式相加,得,即.
取正整数,就有
22.【答案】
【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点
∴≤1⇒a2≥1,即a≥1或a≤﹣1,
命题p为真命题时,a≥1或a≤﹣1;
∵点(a,1)在椭圆内部,


命题q 为真命题时,﹣2<a <2,
由复合命题真值表知:若命题“p 且¬q ”是真命题,则命题p ,¬q 都是真命题 即p 真q
假,则
⇒a ≥2或a ≤﹣2.
故所求a 的取值范围为(﹣∞,﹣2]∪[2,+∞).
23.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
13
42
2=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11PQ F P
F Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k
k x x +-=⋅ 由222
11PQ F P F Q =+得,11
0F P FQ ?
即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22
222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±=x y
24.【答案】
【解析】解:(Ⅰ)因为=
+1(n ≥2),
所以是首项为1,公差为1的等差数列,…

=1+(n ﹣1)1=n ,…
从而S n =n 2
.…
当n=1时,a 1=S 1=1,
当n >1时,a n =S n ﹣S n ﹣1=n 2﹣(n ﹣1)2
=2n ﹣1.
因为a 1=1也符合上式, 所以a n =2n ﹣1.…
(Ⅱ)由(Ⅰ)知b n ==
=
,…
所以b 1+b 2+…+b n =
==
,…

,解得n >12.…
所以使不等式成立的最小正整数为13.…
【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想。

相关文档
最新文档