邢台市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邢台市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )
A .m >2
B .m >4
C .m >6
D .m >8
2. 已知i
是虚数单位,则复数等于( ) A
.﹣
+i B
.﹣
+i C
.
﹣i
D
.
﹣i
3. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111] A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
4. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给
出下列命题.
①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等
④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )
A .①②
B .②③
C .③
D .③④
5. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.
6. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有
1212
()()
0f x f x x x ->-,则有( )
A .(49)(64)(81)f f f <<
B .(49)(81)(64)f f f <<
C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<
7. 若变量x ,y 满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
8. 如图给出的是计算
的值的一个流程图,其中判断框内应填入的条件是( )
A .i ≤21
B .i ≤11
C .i ≥21
D .i ≥11
9. 若椭圆+
=1的离心率e=
,则m 的值为( )
A .1
B .
或
C .
D .3或
10.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0
B .2x ﹣y+1=0
C .x+2y ﹣7=0
D .x ﹣2y+5=0
11.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )
A .2对
B .3对
C .4对
D .5对
12.已知抛物线C :2
8y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,
Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )
A .20x y --=
B .20x y +-=
C .20x y -+=
D .20x y ++=
二、填空题
13.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.
14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.已知函数5()sin (0)2
f x x a x π
=-≤≤
的三个零点成等比数列,则2log a = . 16.已知点M (
x ,y )满足,当a >0,b >0时,若
ax+by 的最大值为
12,则+的最小值
是 .
17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x
C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 18.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN=
m .
三、解答题
19.本小题满分10分选修44-:坐标系与参数方程选讲
在直角坐标系xoy
中,直线的参数方程为32
x y ⎧=⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C
的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;
Ⅱ设圆C 与直线交于点A B 、,若点P
的坐标为(3,,求PA PB +.
20.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2﹣(ac+b)x+bc<0.
21.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P在该圆上,求线段OP的最大值和最小值.
22.设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
23.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中
随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
邢台市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:由f ′(x )=3x 2
﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)
∵函数的定义域为[0,2]
∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0, ∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,
则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m
由题意知,f (1)=m ﹣2>0 ①; f (1)+f (1)>f (2),即﹣4+2m >2+m ②
由①②得到m >6为所求.
故选C 【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大
值
2. 【答案】A 【解析】
解:复数
=
=
=,
故选:A .
【点评】本题考查了复数的运算法则,属于基础题.
3. 【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a
a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
4. 【答案】D
【解析】
【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.
【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB=
当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确
使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;
取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D 5. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
6. 【答案】A
【解析】
考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]
7.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t≤﹣,
即实数t的取值范围为是[﹣2,﹣],
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.8.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
9.【答案】D
【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=
由e=,得=,即m=3
当椭圆+=1的焦点在y轴上时,a=,b=,c=
由e=,得=,
即m=.
故选D
【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.10.【答案】A
【解析】解:联立,得x=1,y=3,
∴交点为(1,3),
过直线3x﹣2y+3=0与x+y﹣4=0的交点,
与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,
把点(1,3)代入,得:2+3+c=0,
解得c=﹣5,
∴直线方程是:2x+y﹣5=0,
故选:A.
11.【答案】D
【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,
∴面PDA⊥面ABCD,面PDC⊥面ABCD,
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,
∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,
∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD
综上相互垂直的平面有5对
故答案选D
12.【答案】B
【解析】
考点:抛物线的定义及性质.
【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物
线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.
二、填空题
13.【答案】60°°.
【解析】解:连结BC1、A1C1,
∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A
1
B1C中A1B=BC1=C1A1=a,
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
14.【答案】2016
-
15.【答案】
1 2 -
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
16.【答案】4.
【解析】解:画出满足条件的平面区域,如图示:
,
由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
17.【答案】-4-ln2
【解析】
点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,
再根据点在线上(或点在曲线上),就可以求出对应的参数值。
18.【答案】 150
【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .
在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得,
,因此AM=100
m .
在RT △MNA 中,AM=100m ,∠MAN=60°,由
得MN=100
×
=150m .
故答案为:150.
三、解答题
19.【答案】
【解析】Ⅰ∵:C ρθ= ∴2:sin C ρθ=
∴22:0C x y +-=,即圆C 的标准方程为22(5x y +=.
直线的普通方程为30x y +=.
所以,圆C
2
=
.
Ⅱ由22(53
x y y x ⎧+=⎪⎨=-+⎪⎩
,解得12x y =⎧⎪⎨=⎪⎩
或21x y =⎧⎪⎨=⎪⎩
所以 20.【答案】
【解析】解:(1
)因为不等式ax 2
﹣3x+6>4的解集为{x|x <1或x >b},所以x 1=1与x 2=b 是方程ax 2
﹣3x+2=0
的两个实数根,
且b >1.由根与系的关系得
,解得
,所以得
. (2)由于a=1且 b=2,所以不等式ax 2
﹣(ac+b )x+bc <0,
即x 2
﹣(2+c )x+2c <0,即(x ﹣2)(x ﹣c )<0.
①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|2<x <c}; ②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|c <x <2}; ③当c=2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.
综上所述:当c >2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为{x|2<x <c};
当c <2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为{x|c <x <2};
当c=2时,不等式ax 2
﹣(ac+b )x+bc <0的解集为∅.
【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.
21.【答案】
【解析】解:(1)ρ2
﹣4
ρcos (θ﹣)+6=0,展开为:ρ2
﹣4×ρ(cos θ+sin θ)+6=0.
化为:x 2+y 2
﹣4x ﹣4y+6=0.
(2)由x 2+y 2﹣4x ﹣4y+6=0可得:(x ﹣2)2+(y ﹣2)2
=2.
圆心C (2,2),半径r=. |OP|=
=2
.
∴线段OP 的最大值为2+=3
.
最小值为2﹣=
.
22.【答案】
||||PA PB +==
【解析】解:(1)证明:f ′(x )=m (e mx
﹣1)+2x .
若m ≥0,则当x ∈(﹣∞,0)时,e mx ﹣1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx
﹣1≥0,f ′(x )>0. 若m <0,则当x ∈(﹣∞,0)时,e mx ﹣1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx
﹣1<0,f ′(x )>0.
所以,f (x )在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x=0处取得最小值. 所以对于任意x 1,x 2∈,|f (x 1)﹣f (x 2)|≤e ﹣1的充要条件是
即
设函数g (t )=e t ﹣t ﹣e+1,则g ′(t )=e t
﹣1.
当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g (1)=0,g (﹣1)=e ﹣1
+2﹣e <0,故当t ∈时,g (t )≤0.
当m ∈时,g (m )≤0,g (﹣m )≤0,即合式成立;
当m >1时,由g (t )的单调性,g (m )>0,即e m
﹣m >e ﹣1.
当m <﹣1时,g (﹣m )>0,即e ﹣m
+m >e ﹣1.
综上,m 的取值范围是
23.【答案】(1)3,2,1;(2)710
. 【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,
22(,)A B ,
31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为
710
. 考点:1、分层抽样的应用;2、古典概型概率公式. 24.【答案】
【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.
X 的分布列为:
X 的数学期望为
()5151519
0123282856568
E X =⨯+⨯+⨯+⨯= (12)
分。